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Abstract Wave-particle resonant interaction is a key process controlling energetic electron flux dynamics in
the Earth's radiation belts. All existing radiation belt codes are Fokker-Planck models relying on the quasi-linear
diffusion theory to describe the impact of wave-particle interactions. However, in the outer radiation belt,
spacecraft often detect waves sufficiently intense to interact resonantly with electrons in the nonlinear regime.
In this study, we propose an approach for estimating and including the contribution of such nonlinear resonant
interactions into diffusion-based radiation belt models. We consider electron resonances with whistler-mode
wave-packets responsible for injected plasma sheet (~100 keV) electron acceleration to relativistic energies
and/or for their precipitation into the atmosphere. Using statistics of chorus wave-packet amplitudes and sizes
(number of wave periods within one packet), we provide a rescaling factor for quasi-linear diffusion rates, that
accounts for the contribution of nonlinear interactions in long-term electron flux dynamics. Such nonlinear
effects may speed up 0.1-1 MeV electron diffusive acceleration by a factor of x1.5-2 during disturbed periods.
We discuss further applications of the proposed approach and the importance of nonlinear resonant interactions
for long-term radiation belt dynamics.

1. Introduction

The radiation belt dynamics is traditionally modeled within the quasi-linear approach (Andronov &
Trakhtengerts, 1964; Kennel & Petschek, 1966) based on a Fokker-Planck diffusion equation for the descrip-
tion of electron interactions with whistler-mode chorus waves. The long-term dynamics of relativistic electron
fluxes observed by various spacecraft have been relatively well reproduced by such Fokker-Planck codes during
multiple time intervals, lending credence to the reliability of this approach (e.g., see Allison & Shprits, 2020;
Drozdov et al., 2015; Glauert et al., 2018; Li et al., 2014; Ma et al., 2018; Su et al., 2016; Thorne et al., 2013;
Tu et al., 2014). The wave-driven electron diffusion rates in the Fokker-Plank equation are evaluated under
the assumptions of weak wave intensity (Kennel & Engelmann, 1966; Lyons & Williams, 1984; Vedenov
et al., 1962) and broadband wave spectrum usually required for the application of the quasi-linear approach
(Shapiro & Sagdeev, 1997). The latter requirement can be relaxed in the inhomogeneous magnetic field of the
Earth dipole (Karpman, 1974; Le Queau & Roux, 1987), and quasi-linear diffusion rates can be evaluated even
for monochromatic waves (Albert, 2010; Karpman & Shklyar, 1977; Shklyar, 2021). Therefore, the main unre-
solved question for a safe application of the Fokker-Plank equation is posed by multiple observations of very
intense waves that will likely interact with electrons nonlinearly (see discussion in Albert et al., 2013; Artemyeyv,
Neishtadt, Vainchtein, et al., 2018; Li & Hudson, 2019, and references therein).

Besides nonlinear electron resonances with intense electromagnetic ion cyclotron waves (e.g., Albert &
Bortnik, 2009; Grach & Demekhov, 2020; Kubota et al., 2015; Omura & Zhao, 2012) and ultra-low-frequency
waves (e.g., Li et al., 2018,), the observed intensity of whistler-mode waves often exceeds the threshold for
nonlinear resonant interactions (e.g., Agapitov et al., 2014; Zhang et al., 2018, 2019). Such intense whistler-mode
chorus waves may very quickly accelerate electrons (Agapitov et al., 2015; Demekhov et al., 2006; Gan, Li,
Ma, Artemyev, & Albert, 2020; Katoh & Omura, 2007; Omura et al., 2007) or scatter them into the loss-cone
(Breneman et al., 2017; Chen et al., 2019,; Miyoshi et al., 2021; Zhang, Artemyeyv, et al., 2022). Modeling
of nonlinear wave-particle interactions, however, is based either on short test particle runs (e.g., Allanson
et al., 2020; An et al., 2022; Artemyev et al., 2012; Bortnik et al., 2008; Katoh et al., 2008; Tsai et al., 2022;
Zhang, Mourenas, et al., 2020) or on sophisticated generalizations of the Fokker-Planck equation (e.g., Artemyeyv,
Neishtadt, Vasiliev, & Mourenas, 2018; Artemyev, Neishtadt, Vasiliev, Zhang, et al., 2021; Furuya et al., 2008;
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Figure 1. Schematic of distributions of energy changes in a particle ensemble (with the same initial energy/pitch-angles)
after a single resonant interaction with (a) intense highly-coherent whistler-mode waves and (b) intense weakly coherent
whistler-mode waves. The distribution shown in (a) includes the phase bunched population (gray) and the phase trapped
population (blue). The gray population contains most of the particles and has a reduced energy E with (AE) < 0 proportional
to (Bw/ Bo)l/ 2 (B,, is the wave amplitude and B, the background magnetic field at the latitude of resonance), whereas the blue
population contains only a fraction ~ (B,,/Bo)'/? of the resonant particles and is increased in energy by (AE) of the order of
the initial E. The distribution shown in (b) contains the same two populations, but the phase trapped population is increased
to almost half of the total number of resonant particles (with a corresponding decrease of the phase bunched population). Due
to the low coherence of the wave, trapped electrons are more quickly released from resonance, with a smaller energy gain
(An et al., 2022; Gan et al., 2022; Mourenas et al., 2018; Tao et al., 2013). This decreases (AE) and makes it proportional

to (B,,/ Bo)" with k depending on the interplay of wave coherence and wave intensity (Artemyev, Neishtadt, Vasiliev, &
Mourenas, 2021). For intense short wave-packets k ~ 1/2, that is, the average energy changes due to trapping and bunching
are comparable, whereas the number of trapped particles becomes similar to the number of phase bunched particles (e.g.,
Zhang, Agapitov, et al., 2020).

Hsieh & Omura, 2017; Omura et al., 2015), which cannot be straightforwardly incorporated into the existing
diffusive models of the radiation belts. A more practicable approach for such an incorporation into existing radia-
tion belt codes would consist in rescaling the quasi-linear diffusion rates to account for the additional contribution
of nonlinear interactions in the long-term dynamics of electron fluxes, as first suggested by Artemyev, Neishtadt,
Vasiliev, and Mourenas (2021).

There are two good reasons for expecting that such a rescaling will be possible. First, nonlinear interactions
of intense waves with electrons are not rare (e.g., Cattell et al., 2008; Cully et al., 2008; Tyler et al., 2019;
Wilson et al., 2011; Zhang et al., 2019), but still sporadic and transient phenomena. Therefore, short intervals
of rapid electron flux dynamics due to nonlinear interactions are mixed with much longer intervals of more
common diffusive dynamics. Such transient bursts of intense waves shall lead to bursty electron precipitations
(e.g., Breneman et al., 2017; Chen et al., 2021, 2022; Miyoshi et al., 2020; Tsai et al., 2022; Zhang, Artemyeyv,
et al., 2022), but their contribution to equatorial flux dynamics may be well hidden by the diffusion, which
smooths electron phase space density gradients created by nonlinear interactions. Second, most of the observed
intense waves are propagating in the form of short wave-packets (e.g., Zhang et al., 2018; Zhang et al., 2021)
with strong modulation of wave characteristics within each packets (e.g., Nunn et al., 2021; Santolik et al., 2014;
Zhang, Agapitov, et al., 2020; Zhang, Mourenas, et al., 2020). Such modulation is known to reduce the efficiency
of nonlinear resonant interactions and to reduce the net effect of such nonlinear interactions to a nearly diffu-
sive one, albeit stronger in magnitude (Allanson et al., 2021; An et al., 2022; Gan, Li, Ma, Albert, et al., 2020;
Gan et al., 2022; Mourenas et al., 2018; Tao et al., 2013; Zhang, Agapitov, et al., 2020). Therefore, ignoring the
short-lived effects of fast acceleration (e.g., Agapitov et al., 2015; Demekhov et al., 2009; Gan, Li, Ma, Artemyev,
& Albert, 2020; Hsieh et al., 2020, 2022) or fast scattering into the loss-cone (e.g., Chen et al., 2022; Zhang,
Artemyeyv, et al., 2022) of small fractions of the total electron population, the long-term effect of nonlinear
interactions may be reduced to a diffusion that would be faster or slower than the classical quasi-linear diffusion
(Allanson et al., 2022; Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021; Shklyar, 2021). Figure 1 illustrates this
approach by showing a schematic of probability distribution functions of electron energy changes due to a single
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resonant interaction with waves of different amplitudes (see examples of such distributions in Tao et al., 2013;
Zhang, Agapitov, et al., 2020; An et al., 2022; Gan et al., 2022).

In this study, we propose an approach for the derivation of the relation between nonlinear and quasi-linear gener-

alized diffusion rates Dy /D, , where Dy is defined as the effective diffusion rate that would result in the same

QL
time-scale of diffusive evolution of electron fluxes as the corresponding time-scale of evolution due to nonlinear
interactions. The ratio Dy, /D, depends on two main system parameters: wave intensity, B2, and the parameter
p controlling the wave-packet amplitude modulation (Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021). The
dependence of Dy, /D, on B2 underlines that Dy; depends on wave intensity in a nonlinear manner. The param-
eter 3 can be introduced as a wave-packet length measured in wavelength, or as a wave-packet duration measured

in wave periods.

The paper is organized as follows. In Section 2 we describe the basic properties of electron nonlinear resonant
interactions with field-aligned whistler-mode waves. We also relate the wave-packet size f with the character-
istics of such interactions. In Section 3, we describe an approach for evaluating Dy for fixed wave characteris-
tics. In Section 4, we show Dy for three energy/pitch-angle ranges of crucial importance in the radiation belts:
~1 MeV electrons with small pitch-angles and ~100-300 keV electrons with large pitch-angles. In Section 5, we
provide the corresponding rescaling factor (R) = (Dy; /(D ) of quasi-linear diffusion rates D, , averaged over
measured statistical distributions of the main wave characteristics (B,i,, B)- In Section 6, we discuss the obtained

results and their applications for radiation belt models.

2. Basic Characteristics of Nonlinear Resonant Interaction

The resonant interaction of a relativistic electron (rest mass is m,, charge is —e) with a field-aligned propagating
whistler-mode wave can be described by the Hamiltonian (e.g., Albert et al., 2013; Vainchtein et al., 2018):

2
H = mc?y + [21,Q0 Buos@rw). y=q/1+(2L) + 21,Q W
MeC2 k}/ MeC mGCZ

where (s, p;) are conjugated field-aligned coordinate and momentum, (y, [) are conjugated gyrophase and

magnetic moment, Q, = eB(A)/m ¢ with B(2) is the dipole magnetic field as a function of magnetic latitude A

given by equation ds/dA = LRg V1 + 3sin* Acos A, k = k(1) is the wave number given by whistler-mode wave
dispersion relation for a cold plasma (Stix, 1962), B, (1) is the wave amplitude depending on magnetic latitude, ¢
is the wave phase determined by wave frequency @ = —d¢/0t and k = d¢p/ds. The magnetic moment /_relates to the
local electron pitch-angle a and to the equatorial pitch-angle a,, as: I, = m,c*(y* — 1)sin® a/Q(s) = m,c*(y* — 1)
sin” @, /Q(0). To set B,(4) = B,(0) - tanh (A2/547) exp (—A?/643) we consider a classical scenario of wave
generation around the equatorial plane (e.g., Katoh & Omura, 2013; Katoh & Omura, 2016; Tao et al., 2017, and
references therein) with damping at high latitudes (see, e.g., empirical models of B, (1) in Agapitov et al., 2018).
We use 64, = 2° and 64, = 20°, that fit the typical B, (4) distribution for intense (observed during geomagnetically
active condition) waves (Agapitov et al., 2013, 2018; Wang et al., 2019).

For whistler-mode waves kR L > 1, wR L/c > 1, Q R L/c > 1, and thus, wave phase ¢ changes much faster than
the time-scale of electron bouncing along geomagnetic field lines. This separation of time-scales allows to expand
the Hamiltonian Equation 1 around the resonance ¢+ = (kpy/ym.) — o+ Qo/y =0 as (e.g., Artemyev,
Neishtadt, Vasiliev, & Mourenas, 2018; Vainchtein et al., 2018):

H; = %gPC2+AC+Bcos§ 2)
where { = ¢ + v, P: is the momentum conjugated to ¢ (i.e., P{ = 0 is the resonance), g, A, and B are functions
of field-aligned coordinate s and momentum P, = p, + ki, and (s, P) are given by the combination of the reso-
nant condition (kp”/yme) — w + Qy/y = 0 and the conservation law m?y — I @ = const. Functions B ~ B, and
A ~ 0€/0s describe the effects of wave field and magnetic field inhomogeneity on electron dynamics at resonance.
The competition of these effects determines the electron dynamics, including phase bunching and phase trapping
(see expressions for A, B in, e.g., Artemyev, Neishtadt, Vasiliev, & Mourenas, 2018; Vainchtein et al., 2018). The
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Figure 2. (top) Profiles of coefficients A, B, and ratio B/A along magnetic latitude for typical parameters of wave-particle

interaction. The wave intensity (controlling B) increases from zero at the equator to a maximum value around a few degrees
off-equator and then decreases to zero at high latitudes. The coefficient A is proportional to d€2,/ds: it is zero at the equator
and increases at higher latitudes. (bottom) Phase portraits of Hamiltonian Equation 2 for five B/A ratios (at five latitudes).

analysis of Hamiltonian Equation 2 is often replaced by an analysis of the analogous equation{ + A —Bsin¢ =0
(e.g., Karpman et al., 1974; Karpman, Istomin, & Shklyar, 1975; Nunn, 1974; Omura et al., 2007; Shklyar, 1981).

Although Hamiltonian Equation 1 describes electron motion in 4D phase space of (s, py, I, w) with the time
dependence, the system's dimensionality can be significantly reduced for electron interaction with a monochro-
matic wave (When d¢p/dt = const). In the absence of waves, the conservation of energy and magnetic moment /,
guarantees the conservation of equatorial pitch-angle a,, and, thus, the unperturbed system is fully described by
two constants (y, I,) or (y, aeq). The resonant condition (kp”/yme) — o + Qy/y = 0 determines the resonant position
in (s, p) space as a function of (y, I,). For a monochromatic wave, there is an integral of particle energy in the
wave reference frame, m % — wl_= const, and this integral removes py from the consideration, that is, for fixed
o the resonance condition gives s = s,(y). This equation can be rewritten as y = y4(s) = yz(4), where y, is the
energy in the resonance (y with p is defined by resonance condition and /, is defined by m,c% — wl_= const).
Thus, a fixed @ determines a curve m,c% — wl_ = const in the (y, 1) or (7, aeq) space, and each position on this
curve corresponds to some latitudes of resonance 4,. Resonant wave-particle interactions move electrons along
such curves (that are defined by the value of constant m,c% — wl_ = const), and there is a single-valued rela-
tion between the electron position on this curve and the resonant latitude 1,. As a result, coefficients g, A, B in
Hamiltonian Equation 2 are functions of 4, only or, equivalently, of y,. An additional result of the conservation of
m,c?% — wl_= const is that the energy change in the resonance is proportional to the I_change, Ay = wAl /m c?,
and this relation provides the pitch-angle change Aa, as a function of the energy change Ay.

Figure 2 shows the phase portraits of Hamiltonian Equation 2 for a typical wave amplitude distribution along
a geomagnetic field line. The resonance condition p; = m,(yw — €,)/k shows that not-too-energetic resonant
electrons (y < ,/w) are moving in the opposite direction to the wave propagation direction, that is, waves are
generated at the equator and propagate toward high latitudes and resonant electrons are moving from high lati-
tudes to the equator.

Electrons interacting resonantly with waves at high latitudes will see the phase portrait with |Al > IBl due to the
large background magnetic field gradient (A ~ 0€2,/ds) and small wave amplitudes (B ~ B,) there. All electrons
with the same initial energy y and pitch-angle a,, will experience a change of magnetic moment Al, = AL (y, a,,
), where ) determines the initial electron phase { (and can be recalculated to the electron phase in the resonance
). The average magnetic moment change (A1), is equal to zero, and there is only diffusion ((AI)*) # 0. This
diffusion rate ((AI,)*) can be evaluated analytically (Karpman & Shklyar, 1977) and has been shown to be equal

to quasi-linear diffusion coefficients (Albert, 2010) for |Al > IBI with ((AI,)*) « B2.

Electrons resonating with waves at intermediate latitudes will see a phase portrait with IAl < IBI (if wave intensity
is sufficiently high). This phase portrait contains a region with closed trajectories oscillating around the reso-
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Figure 3. Two distributions of A/, changes obtained by integrating an ensemble of trajectories given by Hamiltonian
Equation 1. All particles in each of these two ensembles have the same initial energy and pitch-angle and resonate with
the wave only once. Panel (a) shows results for a very intense wave (IB/Al > 1), and panel (b) show results for a wave with
a X 1/100 weaker amplitude (IB/Al < 1). Note that to show these two distributions within the same A/, range, we have
multiplied A/, by 100 in panel (b).

nance P, = 0, that is, phase trapped trajectories. The separatrix demarcates the phase space regions with such
trapped trajectories and other trajectories crossing the resonance P, = 0 only once. The presence of a region of
finite (non-zero) area S = 55 Pd¢ surrounded by the separatrix changes the character of electron resonant inter-
action with waves. Electrons meeting the resonance P, = 0 only once experience phase bunching, and electrons
oscillating around the resonance P, = 0 along the closed orbits are phase trapped.

To explain these resonance effects, let us consider an ensemble of N electrons with the same initial energy and
I, (same initial a,,), but with different random ¢,. All these electrons have the same latitude of resonance and
for them the Hamiltonian Equation 2 is identical. Interaction with the wave results in I change, and Figure 3
shows the schematics of A/, distributions for |Al < IBI (a) and |Al > IBI (b). Note that due to the relation wAl/
m,c? = Ay, the distributions of Al_and Ay are the same. In the absence of nonlinear resonant effects (1Al > IBI),
the distribution F(AI) is symmetric relative to Al = 0 and the dispersion ((AT)*) « (Bw/ By)* for sufficiently
small IBI/IAl (e.g., Albert, 2001, 2010; Karpman & Shklyar, 1977). In the presence of nonlinear resonant effects
(IAl < IBI), the distribution F(AI,) consists of two well separated populations. The most representative popula-
tion contains almost all particles, ~V, and have a finite (AI,) « (B, /Bo)"/? for sufficiently large IBI/IAI (e.g.,
Albert, 2000; Artemyev et al., 2014; Shklyar, 2011). The dispersion of this population is ((AI,)*) — (Bw/Bo)"
with x — 1 for sufficiently large IBI/IAl (e.g., Karpman, Istomin, & Shklyar, 1975; Karpman & Shklyar, 1977).
Such finite ((AI )) means that all particles are shifted in I, (in energy). This effect is called phase bunching (e.g.,
Demekhov et al., 2006; Omura et al., 1991; Shklyar & Matsumoto, 2009). A much smaller electron population
contains only a fraction (B,,/Bo)'/* of all resonant particles, ~(B,,/Bo)'/*N, and this fraction goes to zero if
at the latitude of resonance the area S decreases along the electron trajectories (e.g., Artemyev et al., 2015;
Karpman, Istomin, & Shkliar, 1975; Neishtadt, 1975; Shklyar, 1981). This population is characterized by a finite
(AL) ~ O(B,/B,). Such a large I, (energy y) change is due to phase trapping (e.g., Artemyev et al., 2015; Omura
et al., 2007; Vainchtein et al., 2018). The dispersion of the entire F(AI ) distribution is about

Nbunch[ng Ntrapping

<(AIX)2> ~ <AIX>Zunching + <A’X>t2rapping N

1/2 1/2

(B oo Be)yo B (Be)" ()"
By By By By By

To evaluate all averaged system characteristics ((A I Ypunching> {Alx Yirapping> and N,

wapping)» We need only one func-
tion: § = S(), written as § = S(/,):

[
s = ngdc = %/\/A(c:+ T+ Beosr —cos )¢
8
[
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Figure 4. (top) Model S(/)) profile and scheme of trapped and phase bunched particle motion along /.. (bottom) Distributions
of Al obtained with map (5) for three small I, ranges marked by (a), (b), and (c) in the top panel.

where ¢_ = arccos (A/B), see Figure 2 and Artemyev, Neishtadt, Vasiliev, and Mourenas (2018).

For an initial /, the phase bunching results in (AL )pmching = —S (Ix) /27 and the trapping probability
1= Nlrapping/N = (dS/dl)/2x (Cary et al., 1986; Neishtadt, 1975; Shklyar, 1981). The change of (A I )i apping 1S
determined as [, ., — I, where S(/_;..) = S(,), and dS/dI, < O at I,
there is a Simplé geometrical interpretation of nonlinear wave-particle interactions: many particles drift in /,

final (e.g., Artemyev et al., 2015). Therefore,
space to smaller I with the velocity of drift (AL )sunching /7, Whereas in the I, range with dS/d/ > 0 some parti-
cles can be trapped with a probability of trapping I1/z and transported to larger I, (see Figures 4a and Artemyev,
Neishtadt, Vasiliev, & Mourenas, 2018; Artemyev, Neishtadt, et al., 2016). The typical time-scale 7 of this motion
is determined as the time between two resonances, and for a single wave resonating with electrons 7 is equal to
half of the bounce period along geomagnetic field lines. Figure 4 shows a schematic of the S(/,) profile and the
corresponding F(AI) distributions. Such a relation between properties of individual electron resonances and the
system characteristics, S(I,), allows us to provide a description of the long-term dynamics of an electron ensemble
with multiple nonlinear resonances.

Note that schematics in Figures 2 and 4 are displayed for electrons moving with resonant momentum
py =m(yo — Q. )k <0 during the trapping motion. Sufficiently energetic (relativistic) electrons may be accel-
erated within the trapping to such energies that y becomes larger than Q /w, so that such trapped electrons can
change their direction of motion and continue to be accelerated for a longer time (a phenomenon called turning
acceleration, see Omura et al., 2007; Summers & Omura, 2007). This effect is well described by Hamiltonian
system Equation 1, but we do not provide here a schematic illustration of such turning acceleration.

3. Mapping Technique for the Evaluation of D,

Let us consider the mapping technique for wave-particle resonant interaction. A classical example of such a tech-
nique is the Chirikov map (Benkadda et al., 1996; Chirikov, 1979; Khazanov et al., 2013) that describes particle
diffusion due to wave-particle interaction. For Hamiltonian Equation 1, this map works as

1Y = 1" 4 61, (1) sin¢®
©)
ng) — é’(n) + 54« (I)((n-#l))
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where n is the number of iterations (i.e., time is ™+ = ¢ 4+ 7), functions 6I, and 8 describe the magnitude
of I, change at the resonance and the phase gain between two successive resonances. Since such phase gain
6f ~ wt > 1 for 7 about a fraction of the bounce period, { can be taken as a random number with a distribution
such that the sin¢ distribution repeats the properties of AT, = 1" — 1 distributions. Although the Al distri-
bution can be evaluated numerically (Artemyev et al., 2019; Itin et al., 2000; Lukin et al., 2021), this is computa-
tionally very expensive for a realistic multi-parameter system. Moreover, we are mostly interested in describing
the phase averaged properties of I, changes and, thus, we can reduce the map Equation 3 to

I}((,H_]) — I}((n) + <(A1x)2> . (25(") — 1) (4)

where ¢ is a random value with a uniform distribution in [0, 1] and ((AIX)Z) « (Bw/ Bo)2 describes the dispersion
of I, changes in the system with a small wave intensity, |Al > IBI.

For a system with nonlinear resonant interactions (Al < IBI), the analog of map (3) has been derived and verified
in Artemyev et al. (2020b); Artemyev et al. (2020a):

(ALY punching » €™ € [T 1]
I)((n+1) — I)((n)+ bunching (5)

(AL & e [0,1)

>trapping >

where £ is arandom value with a uniform distribution in [0, 1] and all system parameters ((A I Ysunching> (A Lx Ytrappings
II) are described by the S(/)) profile. Map Equation 5 has been shown to describe well the long-term dynamics of
an electron ensemble in different systems with nonlinear interactions (see Artemyev, Neishtadt, Vasiliev, Zhang,
et al., 2021; Artemyev et al., 2022; Zhang, Artemyeyv, et al., 2022).

Figure 5a shows different examples of individual electron trajectories described by the maps (4) and (5) for
model S(/,) and ((AI)*) (I) functions. There are random walks for map Equation 4, and a combination of
bunching (drift) and trapping (rare large jumps) for map Equation 5. If we set an ensemble of N particles with
initial uniform /_distribution along the range of nonzero ((AI)%) (i.e., the range of resonant I for fixed w and
m, % — wl_ = const) and trace them for a sufficiently long time (during a sufficiently large number of iterations,
n> 1), we can calculate the dynamics of the distribution variance

N N
M) = < 3 (L) = O = ME (), M) =~ 3 (I () = 1 (0)
1=0 1=0

Figure 5b shows that M, o n for both maps (see discussion in Artemyeyv, Neishtadt, Vasiliev, & Mourenas, 2021).
The proportionality coefficient d M, /dn can be interpreted as a generalized (averaged over the energy/pitch-angle
range of resonant interactions along m,? — wI = const curves) diffusion rate. For map (4), we have
Do =dM,/dn ~ (BM,/BO)z, and for map (5) we have Dy, =dM,/dn ~ (Bw/Bo)l/z. Previous numeri-
cal simulations have shown that the transition from quasi-linear diffusion to nonlinear resonant interactions is
characterized by a weaker dependence of the usual electron diffusion rate on B, /B, (e.g., Gan, Li, Ma, Albert,
et al., 2020; Tao et al., 2012). This underlines an important difference between quasi-linear diffusion and nonlin-
ear resonant interactions (see more examples in Artemyeyv, Neishtadt, Vasiliev, & Mourenas, 2021). However, the
usual diffusion rate only includes weak quasi-linear scatterings, whereas the effective rate Dy, incorporates the
stronger effects of nonlinear interactions. Hereafter, we use the mapping technique to quantify the ratio Dy; /D¢,
for realistic system parameters.

4. D, for Realistic Wave Characteristics

The wave amplitude (more precisely, the wave amplitude profile along geomagnetic field lines) determines the
S(1,) profile and, thus, controls all characteristics of wave-particle nonlinear interactions for a fixed background
field. However, such a single-parameter, B, /B, approach works only under the approximation of plane waves
(i.e., for sufficiently long wave-packets). Spacecraft observations show that intense waves rarely propagate in
the form of long wave-packets and that wave-packets most often contain only f < 10 wave periods (Zhang
et al., 2019). Recent comparisons of wave packet statistics and different models of whistler-mode (chorus) wave
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Figure 5. (a) Examples of / (n) profiles obtained with map (4) describing diffusion (top) and with map (5) describing
nonlinear resonant interactions (bottom). For map (5) we use the model profile S(/,) shown in Figure 4 (top), and for map (4)
we use ((AI,)*) = S? (I,). (b) M, (n) profiles for the ensemble of trajectories integrated with map (4) describing diffusion
(top) and with map (5) describing nonlinear resonant interactions (bottom). Black dotted lines show fits with M, ~ (B,,/ Boy)*
(top) and M, ~ (B,,/ Bo)'/? (bottom).

generation (Zhang et al., 2021) have confirmed that the formation of short packets f < 10 naturally results from
nonlinear mechanisms of wave generation. Therefore, the second important parameter controlling the nonlin-
ear wave-particle interactions is the finite wave-packet length (or duration) measured in wave periods, f. The
wave-packet length defines the maximum possible duration of trapping in a given packet, and the corresponding
acceleration magnitude in the absence of internal phase jumps that may destroy trapping (Zhang, Agapitov,
et al., 2020). In addition, electron acceleration by a train of wave-packets may be quite effective in case of multi-
ple consecutive trapping (Hiraga & Omura, 2020), but this effect is often reduced by the presence of large and
random wave phase jumps between consecutive packets (Zhang, Agapitov, et al., 2020). Below, we shall consider
two different types of wave-packet amplitude modulations, such that moderate modulations allow the presence of
multiple consecutive trappings whereas strong modulations mostly suppress them. To highlight the importance
of f3, let us consider the peculiarities of trapped particle dynamics. A trapped particle oscillates within the effec-
tive potential of Hamiltonian Equation 1 with the oscillation period (e.g., Karpman et al., 1974; Nunn, 1971;

Nunn, 1974)
-1/2
Torpine = —2F— n 2% \/m L
trapping Qirapping Qo mec? yBo

The maximum duration of electron resonant interaction with the wave-packet is determined as

2 p

2r Qo kaw - _ 2x=Py
k |vor = vgl

Tonax = 0 —— = J ~ o)

=2zf

We use the simplified wave dispersion o = Qq(1 + (kdg)'z)_] for a typical k ~ 1/d,, where d, is the electron
inertial length. During the trapping, electrons make

172 12
K _ Tmax _ ZIXQO wa Bw
trapping — - ﬁ _2 —— X ﬁ _
ﬂrapping mec B() BQ

oscillations, whereas transient electrons cross the resonance within times-scale NTlrapping' Thus, for Klrappin i 1,

that is, for # ~ (Bo/B.)~"/?, there is no significant separation of time-scales spend by transient and trapped elec-

trons in the resonance, and the changes of energies/pitch-angles for these two populations of electrons remain
comparable (see more detailed estimates in Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021). Importantly, the
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Figure 6. Schematic of system change from the long wave-packet (a) to multiple small (but still above the threshold of nonlinear wave-particle interactions) amplitude
wave-packets (b) or to multiple very intense wave-packets (c). In case (b) the S of multiple wave-packets is the top part of S of a single long wave-packet. In case (c) S of
multiple wave packets is the same as S of a single long wave-packet, but with the narrowed /, range. (b1, b2) and (c1, c2) show change with time of S locations for series

of wave-packets.

decrease of f not only reduces the efficiency of acceleration of individual trapped electrons, but also changes
the probability of trapping. For f — oo (plane waves) this probability is determined as ~dS/d/ with the S(/))
gradient controlled by the B, (1) profile along magnetic field lines. For small j, the strongest S gradients occur
at the wave-packet edges, and electrons can interact with packet edges at any latitude of resonance. Instead
of a geometrical interpretation with a single S(/,) profile as in Figure 4, we must consider multiple smaller
S(1,) profiles with randomly changing locations on the / -axis (see schematic in Figure 6). There are two possi-
ble scenarios of wave-particle resonant interaction with small § packets. To describe these scenarios, let us
consider a model S (I,) = (Bw/Bo)l/2 Sy = LY, - I_)5/4/6I§, where I and 61, determine parameters of
S(1) profile, whereas the factor (B, / By)'/? changes S with wave amplitude in agreement with Hamiltonian Equa-
tion 2. For large wave packets I_, 61 do not vary with B, /B, but depend on the field-aligned profiles of B,, and
the background magnetic field (e.g., Artemyev, Neishtadt, Vasiliev, & Mourenas, 2018). As f decreases, the
range of resonant /, shrinks (I, — I_ goes down), and 5/, also changes. In the first scenario, the $ decrease results
from the decrease of B, /B, In this case I, and 6/ should start varying with B, /B, and the S(/,) model, after
normalization, will vary with B, /B, like .S (Iy) & (Byw/ Bo)/***, with x — 5/6 (S « (Bw/ Bo)4/ 3 ) for a critically
small § value corresponding to K., ~ 1 (see corresponding calculations in Artemyev, Neishtadt, Vasiliev, &
Mourenas, 2021). This scenario corresponds to the schematic shown in Figures 6a and 6b, with a large single
S() evolving into a series of small S(/)) as the amplitude decreases. In the second scenario; # does not depend
on B, /B, and the small f§ results in a very strong increase of the probability of trapping, because dS/d/, goes up
with I, — I_ going down for fixed B, /B,,. This scenario corresponds to the schematic shown in Figures 6a and 6c,
with a large single S(/,) evolving into a series of small S(/,) with fixed amplitude. The fine interplay of B, and
background parameter profiles along magnetic field lines, the small j effect, and probabilities for electrons to
interact with waves of different B, at the same resonant latitude due to the finite wave-packet size, mix these
two scenarios in realistic systems. Thus, instead of using a model S(/,) function for mapping (4), we adopt the
approach proposed in Artemyev et al. (2019); Lukin et al. (2021) and numerically calculate F(AI) distributions
for a wide range of B, /B, and f parameters.

To use numerical calculations of F(AI), one must include evaluations of multiple trajectories with the map

100 = 10+ AL, 170 =1+ 250 (1) ©)
describing Al changes with the given F(AI ) under assumption of a single resonant interaction during half of
a bounce period. Distributions F(AI, 1) are evaluated for a dense I net covering the range of I with nonlinear
resonant interactions for a fixed m,c% — wlI_parameter and fixed system characteristics (w, L-shell, B, profile,
and p). Using map (5), we evaluate the M (n) function and approximate it by a linear fit, M, ~ Dn. The fitting
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coefficient D determines the diffusion rate (note that an additional fitting with D#9 gives ¢ ~ 1 and confirms
that we deal with a diffusive process). For each set of system parameters, we construct a set of distributions

for a wide range of peak wave amplitude B,, € [B ] (henceforth, the peak amplitude of wave-packets

w, min® Bw, max

is denoted B, for simplicity). The smallest B ~ 5pT corresponds to the regime of quasi-linear diffusion,

w, min
and thus we can consider normalized distributions F (A, - (Buwmax /By)) and the corresponding fitting coeffi-
cients D (for a purely diffusive process, this normalization would mean D = (B max / B.,)* - D (B.,)). The ratio
R = D (By) /D (Buwmin) ~ Dy1/Dor describes the deviation of the scattering rate from the quasi-linear diffu-
sion rate. This ratio R depends on £ and on the parameter describing the depth of the wave amplitude modulation,
that is, on the ratio of the minimum and maximum wave field amplitudes inside a packet, min/max. We use a
moderate modulation with min/max = 5/100 and a strong modulation with min/max = 7/1000. The stronger
modulation corresponds to a more probable electron escape from trapping at the wave-packet edge, and less
probable multiple trappings into several consecutive wave-packets (see examples of such multiple trappings in
Hiraga & Omura, 2020).

Figure 7al-7a3 show examples of C(Al ) cumulative distributions corresponding to F (AI,) for different wave
amplitudes B, , two f values, and two different magnitudes of the wave amplitude modulation inside the packet.
Although the range of Al is comparable for all B, after normalization, for large f there is a clear transition from

C(AI) symmetric relative to Al = O for the smallest B, ~ B to C(Al) having a long tail of large Al for

w, min
For small f, the cumulative distribution C(Al) has a less pronounced large A/, popu-
v.ma) Lhis is due

to nonlinear trapping destruction in a system with small wave-packets. Note that to compare simulations with

the largest B, — B

w, max*

lation (i.e., for the strong modulation C(Al ) shows a large Al population only for B,, = B

different f8 values, we fix the peak wave amplitude B, and check that the average wave intensity { B2 )pe(—co+oo]
remains almost the same for different § values, because there is no f — o case under consideration and for all
simulations the wave field takes ~50% of the ¢ range. Figure 7b1-7b3 show that M,(¢) for different amplitudes
B, follows the ~ Dn trend, but there is a difference between fitting coefficients D derived for different B,. This
difference is much smaller for smaller §. Figure 7c1-7c3 show R(B,) for two f values and two magnitudes of
wave amplitude modulation. For large f (see panel c1), the effective diffusion rate ratio R increases with B, : in
this case, the nonlinear interactions (trapping and bunching) mix resonant electrons along the resonance curve
m,c?% — wl_ = const much faster than (quasi-linear) diffusion does for the same wave intensity. For small  (see
panel c2); this difference in efficiency between nonlinear resonant mixing and diffusive mixing is much less
pronounced. The effect of nonlinear interactions becomes even less important for waves with a stronger modu-
lation (see panel c3).

5. Time-Averaged Diffusion Rate (Dy; ) and (R) = (Dy; ¥(D, )

To finalize the comparison of scattering rates due to diffusion and nonlinear resonances, we perform a massive
set of simulations for a wide range of B, and f parameters and for three typical electron energy and equatorial
pitch-angle ranges: ~100 keV, a,, ~ 40°, ~300 keV, a , ~ 50°, and ~1 MeV, a,, ~ 15° electrons. For ~100 and
~300 keV simulations, we use the latitudinal profile B, (4) = tanh ((A/641)) exp (—(4/842)7) with 84, = 2°
and 64, = 20° for 4 > 0. This profile mimics the empirical wave intensity distribution with wave growth near the
equator and damping at high latitudes obtained from satellite observations (Agapitov et al., 2018). Such latitudi-
nally confined waves cannot resonate with ~1 MeV field-aligned electrons, and for the simulation with ~1 MeV
and a,, ~ 15°, we assume ducted wave propagation with B,, = const at all latitudes (Artemyev, Demekhov,
et al., 2021; Chen et al., 2022). Figure 8 shows R(B,, p) obtained by fitting the numerical R(B,, ) distributions
for these three sets of electron energy/pitch-angles and two magnitudes of wave-packet amplitude modulation.

w?

Top panels show results for a realistic, moderate modulation, which potentially allows multiple consecutive trap-
pings in a set of short wave-packets. There are two maxima of R: (a) for long and intense wave packets with
B, > 250pT and f > 100 which can effectively trap electrons, speeding up electron mixing/diffusion along the
resonance curves; (b) for short (# < 15) and intense (f > 100) wave packets, in which case electron resonant
interactions can include multiple trappings in several successive short packets (Hiraga & Omura, 2020), also
speeding up electron mixing/diffusion along the resonance curves. However, spacecraft observations (Zhang,
Agapitov, et al., 2020) and numerical simulations of whistler-mode chorus wave generation (Nunn et al., 2021;
Zhang et al., 2021) suggest that a significant wave phase decoherence between wave-packets prevents such multi-
ple consecutive trappings and makes electron scattering by these waves more diffusive-like (An et al., 2022;
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Figure 7. Characteristics of wave-particle resonant interactions for three types of wave-packets: (top row) results for a

long wave-packet with a moderate amplitude modulation (f = 300, and B,, x exp (—3 cos*(¢p/ Znﬂ)), with a 5/100 ratio of
minimum to maximum wave field amplitudes, see inserted panel in [c1]). (middle row) Results for short wave-packet (f = 3)
with a moderate amplitude modulation. (bottom row) Results for a short wave-packet with strong amplitude modulation
(f=3and B, x exp (—5 cos*(¢ / 27rﬁ)), with a 7/1,000 ratio of minimum to maximum wave field amplitude, see inserted
panel in [c3]). Panels (a) show the cumulative distributions C of A/, changes for different wave amplitudes (the inserted
panels zoom in on the A/, > 0 distributions). Note that in C distributions, A/, is normalized as Al, - (B, ../B,) to allow
comparing C(Al) for different wave amplitudes. Panels (b) show M, (n) functions obtained with map (6) and C(A/,)
distributions from panels (a). Panels (c) show the ratio R = D (B.,) /D (Buwmin) = Dn1/Dor as a function of wave amplitude.
Note that due to the normalization A/, - (B, ../B,), we expect R = 1 for systems in the regime of quasi-linear diffusion.

All results are obtained for electrons with [80, 120] keV energies and [30°, 50°] pitch-angles, interacting resonantly with

whistler-mode waves at L = 6. Wave frequency is 0.35Q,,, plasma frequency is 6Q,, and constant along magnetic field lines.

‘eq’
Mourenas et al., 2022; Zhang, Agapitov, et al., 2020). Indeed, maxima of R in the small j case are weaker in the
bottom panels of Figure 8, where we show simulation results for a strong wave amplitude modulation, due to a
reduction of the probability of multiple trappings when the time intervals of high wave amplitude are separated by
longer intervals of low amplitude where no nonlinear interaction is possible. The results obtained in the bottom
panels of Figure 8 therefore appear more realistic for short < 15 wave-packets (An et al., 2022; Gan et al., 2022;
Mourenas et al., 2022; Zhang, Agapitov, et al., 2020).
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Figure 8. 2D distributions of R(B, , p) ratio for three energy/pitch-angle ranges: (a) ~100 keV, a,, ~ 40°, (b) ~300 keV,

g, ~ 50°, (c) ~1 MeV, a,, ~ 15°. Top panels show results for a moderate wave-packet modulation, and bottom panels show
results for a strong modulation that significantly reduces a probability for multiple trapping by successive short wave packets.
Background system parameters are: a plasma frequency to electron gyrofrequency ratio at the equator equal to six, a plasma
frequency that does not vary along magnetic field lines; a dipolar background geomagnetic field at L = 6. Wave frequency

is 0.35 times the equatorial electron frequency. The domain with R = 1 corresponds to the regime of quasi-linear electron
diffusion by whistler-mode waves.

The contribution of nonlinear interactions to electron flux dynamics can be quantified by deviation of R from 1.
Thus, to characterize this contribution for the observed distribution of (B,, ) we must calculate (R) averaged
over the full wave-packet distribution. Here, we use two different statistics of intense (B,, > 50 pT) field-aligned
whistler-mode chorus wave packets collected by Zhang et al. (2019) and Zhang, Mourenas, et al. (2020), and
we separate each of these two distributions into several subsets corresponding to different levels of geomagnetic
activity, AE < 50 nT, AE € [50, 200] nT, AE € [200, 500] nT, and AE > 500 nT. Note that the calculation of Dy
requires multiple resonant interactions, and due to the phase trapping effect these interactions spread electrons
over a wide energy/pitch-angle domain. Therefore, the present evaluation of R and (R) assumes an averaging over
this energy/pitch-angle domain, because only such averaging may reduce the fine nonlinear resonant dynamics
of individual particles to a diffusive-like dynamics of the particle ensemble, that we describe by (R)- Dy, . Thus,
the (R) dependence on energy/pitch-angle is nonlocal, and we evaluate here (R) for three energy/pitch-angle
domains, instead of providing (R)(y, a

The first empirical distribution of quasi-parallel lower-band chorus wave packets (Zhang et al., 2019) has been
derived from 5 years (2012-2017) of Van Allen Probes (Mauk et al., 2013) waveform measurements by the Elec-
tric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instruments (Kletzing et al., 2013)
in the inner magnetosphere, at L ~ 4—6 outside the plasmapause. Using such waveforms, a data set of lower-band
chorus wave packets with wave normal angles <25° (calculated using the singular value decomposition method,
see Santolik et al., 2003) and peak wave magnetic amplitudes B, > 50 pT has been built, providing a full coverage
at geomagnetic latitudes <20° and all local times (Zhang et al., 2019). Starting from the highest peaks of wave
amplitude, the boundaries of each packet have been fixed at one half of the packet peak amplitude on both sides.
The packet length f was defined as the number of wave periods inside a packet. These selected wave-packets
can be either isolated wave-packets or subpackets located inside a longer chorus element. Figure 9 (top) shows
the empirical probability distribution P(B,, f) from this first empirical distribution of wave-packets, as a func-
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Figure 9. Empirical probability distributions P(B,, f§) of intense (B,, > 50 pT) whistler-mode chorus wave-packet peak
amplitudes B,, and lengths f3 obtained from 5 to 6 years of Van Allen Probes measurements at L = 4-6. (top) Data set
provided in Zhang et al. (2019), with wave amplitude equal to B, /2 at wave-packet boundaries. (bottom) Data set provided in
Zhang, Mourenas, et al. (2020), with a low wave amplitude <50 pT at packet boundaries. Four AE ranges are shown.

tion of AE. As AE increases, the fraction of intense wave-packets increases for all wave-packet sizes f (Zhang
et al., 2018) and there are also more long wave-packets, but mainly for moderately intense waves. Waves with
very large B,, > 0.5-1 nT and # > 100 are rare even in the highest AE range. Therefore, the effect of nonlin-
ear wave-particle interactions should be supported either by the small fraction of long (f > 100) and moder-
ately intense (B,, < 500pT) wave-packets or by the dominant population of relatively short (f < 30) and intense
(B,, > 250 pT) wave-packets.

A second empirical distribution of intense wave-packets (Zhang, Mourenas, et al., 2020) has been derived from
6 years of similar Van Allen Probes observations at L ~ 4-6 above the plasmapause. Quasi-parallel lower-band
chorus wave-packets have been identified, as before, by a peak of full wave magnetic amplitude B,, > 50 pT.
However, packet boundaries are now fixed at the nearest wave amplitude minimum below 50 pT or, if this mini-
mum amplitude is below 10 pT, at the time when the wave amplitude diminishes to 10 pT (Zhang, Mourenas,
et al., 2020). Such wave-packets are either isolated wave-packets, or subpackets located inside a long rising (or
falling) tone chorus element, but also, more rarely, very long wave-packets with not too strong internal modu-
lations. In contrast to the first empirical distribution of wave-packets (Zhang et al., 2019) described above, this
second empirical distribution provides packets with a much higher peak amplitude to minimum amplitude ratio.
Actual packets with B, ~ 300-1,000 pT, which correspond to the highest nonlinear to quasi-linear effective diffu-
sion rate ratio R in Figure 8 (top), have peak to minimum wave amplitude ratios ~7 to ~40, similar to the moder-
ate amplitude modulation by a factor of 20 used in Figure 7c1, 7c2, and 8 (top). These wave-packets often include
weaker but still significant internal amplitude modulations by a factor of ~2 that can terminate particle trapping
earlier than based on their full length # (Zhang, Mourenas, et al., 2020), as it can happen also for the ideal sinu-
soidal modulations used in Figures 7c and 8. It is worth noting that this second empirical distribution of intense
wave-packets, shown in Figure 9 (bottom), includes a much larger fraction of very long ( > 100) and intense
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of nonlinear to quasi-linear effective diffusion rates, averaged over two
empirical distributions of intense wave-packets (with B, > 50 pT), for two
different wave amplitude modulations and three electron energies, as a function
of AE (with § = f/min f). Blue curves show results for the first empirical
wave-packet distribution in top panels of Figure 9, using a rescaled probability
of occurrence P(B,, f#/3). Red curves show results for the second empirical
wave-packet distribution in bottom panels of Figure 9, using P(B,,, #). Dashed
curves show results for a moderate amplitude modulation in simulation
packets (as in top panels in Figure 8). Solid red curves show results for the
second empirical wave-packet distribution when wave phase decoherence is
approximately taken into account by replacing D (B, §) at the numerator

and denominator of Equation 7 by D(B.y, Leo) - INT(8/ Leon) + D(Bu, f*)
for > L, where p* = — L, - INT(B/L_,)and L, = 50 (red circles) or
L., = 100 (empty diamonds) wave periods. Solid blue curves show results
for the first empirical distribution with a strong amplitude modulation in
simulation packets (as in bottom panels in Figure 8). Numbers used for this
figure can be found in Table S1 in Supporting Information S1.

(B,, > 250 pT) packets than the first empirical distribution (compare with
Figure 9 top), because many of such long and intense packets are split into
several shorter packets in the first empirical distribution when their instanta-
neous amplitude decreases below B, /2. This second empirical distribution of
intense chorus wave-packets was found to agree well with results from simu-
lations of nonlinear chorus wave generation performed with various particle
codes, in studies where the formation of short and very short packets were
respectively ascribed to trapping-induced amplitude modulation and wave
superposition (Mourenas et al., 2022; Nunn et al., 2021; Zhang et al., 2021).

Next, we calculate the ratio (R) of nonlinear to quasi-linear effective electron
diffusion rates averaged over the measured statistical empirical distribution
of intense wave-packets, as

(DB By, (D)

(R) = = - = :
(D (Bumin.p)-B),  (Dor)

@)

where averages of D are performed using the probability distribution P(B,,
p) of the first or second statistics of observed wave-packets, and the factor
f = p/min(p) allows to take into account the important fact that the contri-
bution of wave-packets to the time-averaged wave intensity is proportional
to their duration . The ratio (R) given by Equation 7, averaged over the
full distribution of wave-packets, can be used to rescale classical quasi-linear
diffusion rates employed in Fokker-Planck codes, to incorporate the effects
of nonlinear resonant interactions.

Figure 10 shows the ratio (R) = (Dy )/(D, ) of nonlinear to quasi-linear
effective diffusion rates averaged over the two different wave-packet empir-
ical distributions of wave-packets displayed in Figure 9, as a function of AE
and for three energy/pitch-angle ranges. Typical wave amplitude modulations
within packets of the second empirical distribution of (B,, ) are similar to
the moderate modulation used in simulations in Figure 7c1, 7c2, and 8 (top).
Therefore, the effective diffusion rates D(B,, ) obtained from simulations
with the moderate amplitude modulation has been directly convolved with
the probability of occurrence P(B,, f) of the second empirical distribution
to obtain (R), shown in Figure 10 by dashed red curves. In contrast, all
wave-packets of the first empirical distribution are characterized by an ampli-
tude modulation by a factor slightly larger than 2, but much smaller than the
factor of 20 used in simulations in Figure 7c1, 7¢2, and 8 (top). Employing
the same criteria for identifying packets as in the first empirical distribution,
the simulation packets would be identified as packets (starting and ending
at B, /2) shorter by a factor of 3 than their full length 8 in simulations. For
consistency, the effective diffusion rates D(B,, ) obtained from simulations
with a moderate modulation are therefore convolved with the probability of
occurrence P(B,, f/3) of these simulation packets in the first empirical distri-
bution. The corresponding estimates of (R) are shown in Figure 10 by dashed
blue curves.

Figure 10 shows that (R) = (Dy; /(D ) increases with geomagnetic activity
from AE < 50 nT to AE ~ 400 nT, due to an increasing fraction of intense and/
or long packets during more disturbed periods (Zhang et al., 2018, 2019). (R)
averaged over the second empirical distribution of wave-packets (dashed red

curves) is significantly higher than (R) averaged over the first empirical distribution (dashed blue curves). This is
due to a much stronger contribution to (R) from long (5 > 100) and intense (B, > 250 pT) packets in the second
empirical distribution than in the first one, where such packets are rare. The strongest contribution in the first
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empirical distribution actually comes from short (# < 10) and intense (B,, > 250 pT) packets that correspond to a
lower R than long and intense packets in Figure 8.

How to reconcile the different results obtained for these two different empirical distributions of chorus
wave-packets, which have been derived from the same spacecraft measurements simply by using different criteria
for the identification of wave-packets? These different results point to the presence of an additional parameter
in the system, the presence of wave phase jumps, implicitly taken into account in one empirical distribution but
not the other. Strong and random wave frequency and wave phase jumps are known to occur between successive
wave-packets over half of a wave period, usually at times when the wave amplitude rapidly decreases to a mini-
mum (usually higher than ~50 pT), preventing a coherent nonlinear interaction (phase trapping) over consec-
utive packets (Zhang, Agapitov, et al., 2020; Zhang, Mourenas, et al., 2020) and making it more similar to an
interaction with isolated wave-packets (Mourenas et al., 2018; Zhang, Agapitov, et al., 2020). This is consistent
for long (# > 50) packets with what happens in simulations with moderate or strong modulations in Figures 7
and 8, because such long packets are separated in simulations by sufficiently long intervals of low amplitude to
prevent consecutive trappings of the same electrons by successive packets during a bounce period. The strong
and random wave phase jumps A® ~ 0.5-2 rad preventing continuous or successive coherent nonlinear interac-
tions usually correspond to a cluster of 2—4 consecutive wave frequency jumps Af/f > 0.3-0.5 (each over a wave
half-period) with a simultaneous wave amplitude variation reaching >30-50% of the peak amplitude (Zhang,
Agapitov, et al., 2020).

However, Zhang, Mourenas, et al. (2020) have shown that such strong frequency jumps Af/f > 0.5 also occur on
average over ~3% of the wave half-periods in the heart of long (# > 50) wave-packets, with a statistical occur-
rence rate remarkably independent of packet length f. Such strong frequency jumps typically occur in clusters
of ~3 jumps in as many consecutive wave half-periods, each cluster corresponding to one phase jump (Zhang,
Agapitov, et al., 2020; Zhang, Mourenas, et al., 2020). This suggests a maximum wave phase coherence length
of L, ~ 50-100 wave periods for long packets with # > 50, in agreement with previous estimates (Agapitov
et al., 2017). This is consistent with the near absence of long (# > 50-100) and intense (B,, > 0.25 nT) packets
in the first empirical distribution in Figure 9 (top), which implies that nearly all such long packets in the second
statistics actually contain strong wave amplitude (by at least a factor of 2) and wave phase jumps that likely limit

coherent nonlinear interaction to L_, < 50-100 wave periods. Such wave phase decoherence within long packets

‘coh
is already roughly taken into account in the first empirical distribution in Figure 9 (top), where long packets have
already been split into several shorter packets when their amplitude decreases below half of their peak amplitude
(Zhang, Mourenas, et al., 2020). However, it is not taken into account in the second empirical distribution, leading

to an overestimation of nonlinear effects and (R).

To include such wave phase decoherence effects in the second empirical distribution of wave-packets, we assume
to first order that all long packets with > L_, =~ 50-100 correspond to a coherent nonlinear interaction limited
to independent sub-intervals of = L, (or less) wave periods. This is done by replacing D (B, §) at the numer-
ator and denominator of Equation 7, by D(B.,, Leor) - INT(S /Leon) + D(B,, p*) for > L., keeping the same
probability distribution P(B,,, §) as before, with INT(x) the floor (or integer) function and f* = — L_, - INT(j/
L..)- The resulting refined estimates of (R) for the second empirical statistics are shown in Figure 10 by solid

‘coh

red curves, with red circles for L, = 50 and with white diamonds for L_, = 100. One can see that (R) is strongly
reduced by phase decoherence (compare dashed red and solid red curves). But the difference between results for
the first and second empirical distributions (dashed blue and solid red curves, respectively) remains similar, or
even increased at 100 keV where (R) for the second empirical distribution is now smaller than for the first one.

Although our approximate inclusion of wave phase decoherence effects in the evaluation of (R) for the second statis-
tics may lead to some underestimation of (R), one additional effect must be taken into account in the case of the first
empirical distribution of packets. For short and intense packets with < 10-20, which strongly contribute to (R)
for the first statistics but almost do not contribute for the second empirical distribution, the simulations in Figure 8
(top) sometimes contain consecutive trappings (Hiraga & Omura, 2020) that are absent in most cases for real short
packets, because the latter are usually separated by strong random wave phase jumps (Zhang, Agapitov, et al., 2020).
This inclusion of consecutive trappings implies a probable overestimation of (R) calculated for the first empirical
distribution using simulation packets with moderate amplitude modulation (dashed blue curves). To suppress this
overestimation, (R) is now calculated for the first empirical distribution based on simulations with packets possess-
ing a strong modulation, as in Figure 7¢3 and 8 (bottom). In such simulations, the occurrence of multiple trappings
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in consecutive short packets is indeed sensibly reduced as compared with simulations using packets with a moder-
ate modulation. The resulting more realistic estimate of (R) for the first empirical distribution is shown by solid
blue curves in Figure 10. Our two final estimates of (R) based on the first and second empirical distributions of
wave-packets (solid blue and solid red curves, respectively) are relatively close to each other, especially at 300 keV
and 1 MeV, demonstrating a rough consistency. The remaining differences illustrate the remaining uncertainties in
our approximate models of chorus wave-packet amplitude modulations and wave phase decoherence.

For 100-300 keV electrons with a,, ~ 40°-50°, our estimates of (R) (solid blue and red curves in Figure 10) are
comprised between ~1.2-1.5 and ~2-3, with only a slight increase from low (AE < 50 nT) to high (AE =350 nT)
geomagnetic activity. Therefore, such electrons can be accelerated ~1.5-3 times faster when nonlinear resonant
interactions with intense wave-packets are taken into account, as compared with a purely diffusive (quasi-linear)
acceleration. This faster electron acceleration can be present during disturbed periods (e.g., during geomagnetic
storms or prolonged periods of substorms, see Li et al., 2014; Thorne et al., 2013) characterized by whistler-mode
waves more often reaching time-averaged amplitudes higher than 50 pT (Zhang et al., 2018), because the corre-
sponding wave-packets reach significantly higher peak amplitudes, often sufficient to enter the nonlinear regime
of wave-particle interaction (e.g., see Artemyev, Agapitov, et al., 2016; Cully et al., 2011). The moderate increase
of (R) with AE is probably due to a dominant contribution from moderately long (f < 30-100) and not too
intense (B,, < 0.8 nT) wave-packets, whose distribution does not change significantly with AE in Figure 9. The
very slight decrease of (R) for AE > 500 nT apparently comes from a slight reduction of  for this population of
wave-packets, but this variation may not be real because there are less data and larger uncertainties in distribution
parameters during such highly disturbed periods.

For 1 MeV electrons with a,, ~ 15°, cyclotron resonance can be reached only at high magnetic latitudes, where
the background geomagnetic field gradient is sufficiently strong to prevent nonlinear resonant interaction for
moderately intense waves, whereas the occurrence rate of intense (B,, > 0.5 nT) waves (see Figure 8, right panel)
is not sufficiently high (see Figure 9) to strongly increase the average (R). As a result, (R) remains in the range
~1.2-1.9 from low to high AE for such electrons. The corresponding increase of the loss rate of 1-MeV electrons
is similar to the increase of the acceleration rate of 100-300 keV electrons. However, it is worth remembering
that ducted propagation of the waves up to high latitudes has been assumed to calculate (R) for 1 MeV electrons
(Artemyev, Demekhov, et al., 2021; Chen et al., 2022; Zhang, Angelopoulos, et al., 2022). In the opposite but
more frequent case of unducted wave propagation, the waves would rapidly become more oblique and, in general,
would be heavily damped before reaching the latitude of resonance with 1 MeV electrons (Chen et al., 2021).
Consequently, the time intervals with intense, ducted chorus waves should be characterized by a faster increase of
1-MeV electron flux and by stronger precipitations of 1-MeV electrons (Chen et al., 2022; Miyoshi et al., 2020;
Zhang, Angelopoulos, et al., 2022) than in calculations assuming a purely quasi-linear electron diffusion
(Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, &
Li, 2014), but it may not be the case during the more frequent periods with unducted wave propagation.

However, it is worth emphasizing that (R) has been evaluated above (in Figure 10) solely based on empirical
distributions of intense chorus wave-packets with amplitudes B,, > 50 pT. Such intense wave-packets can be
observed during both periods of weak and strong geomagnetic activity, with similar (B,, ) distributions of
packets contributing the most to (R). However, such intense wave-packets are mainly observed during disturbed
periods, like storms and substorms (Zhang et al., 2018), and less frequently during quiet periods. Figure 11a
shows the fraction F;, of total chorus wave power contained in such intense wave-packets (with B,, > 50 pT),
obtained from 9 months of lower-band chorus waves measurements by the Van Allen Probes in March-November
2017, demonstrating that this fraction F;,, indeed increases from ~30% to ~45% as AE increases from 50 to
1,000 nT. This full distribution of wave power can be used to estimate the full statistical ratio (R), = (Dy.)/
(Dg) of effective (nonlinear and quasi-linear) to quasi-linear diffusion rates of electrons in the outer radiation
belt, averaged over all (weak and intense) chorus waves observed during periods within a given AE range, by

replacing (D(Bu, B) - B) 5,5 bY Fiup X (D(Buw, ) - B) B, + (1 = Fiup) X (D(Bumin, B) - B)) in Equation 7.

Figures 11b-11d show the corresponding full statistical ratio (R)
100 and 300 keV electrons with Aoy ™ 40°-50° and for 1 MeV electrons near the loss-cone, in the same format as in

averaged over all (weak and intense) waves for

Figure 10 for (R) averaged only over intense wave-packets. All full statistical ratios (R), in Figure 11 are sensi-

stat
bly smaller than the corresponding intense packet ratios (R) in Figure 10, because intense wave-packets suscep-

tible to produce nonlinear effects contain only F, iwp<50% of the total wave power. As in Figure 10, solid blue and
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Figure 11. (a) Fraction F,, of the total lower-band chorus wave power
contained by intense wave-packets (with B,, > 50 pT) as a function of AE,
based on 9 months of Van Allen Probe measurements. (b—d) Full statistical
ratio (R}, = (Dy.)/(Dg.) of nonlinear to quasi-linear effective diffusion
rates, averaged over the full distribution of chorus waves (including both
intense packets and weak waves), for three electron energies and for two
empirical distributions of intense wave-packets, as a function of AE. All curves
show the same results as in Figure 10, but (D(Bu., p) - ﬁ) B,.p has been replaced
by Fiu'p X (D(Buw ﬂ) : B)Bu.,/) + (1 - Fiwp) X (D(Bw.min ’ ﬂ) ° ﬂ_>>ﬁ in Equation 7.
Numbers used for this figure can be found in Table S2 in Supporting
Information S1.

red curves show the most realistic and consistent estimates of (R), ., obtained

stat>
using the two different empirical distributions of intense wave-packets from
Figure 9. Solid blue curves show results based on the first empirical distri-
bution of intense packets, with a strong amplitude modulation in simulation
packets, using a rescaled probability of occurrence P(B,, f/3). Solid red
curves show results based on the second empirical distribution of intense
packets in Figure 9, using P(B,, ), with wave phase decoherence taken into
account by replacing D(B., p) by D(Buw, Leon) - INT(S/ Lcon) + D(B., £*)
for p> L, where p* = — L, - INT(B/L,,) and L, = 50 (red circles) or
L., = 100 (empty diamonds) wave periods. One can see that the full statisti-
cal (R)
weak waves, increases with AE in all cases. As AE increases from 50 nT to
400-800 nT, the statistical ratio (R),,, increases from 1.07-1.5 to 1.12-2.0
at 100 keV, from 1.2-1.3 to 1.25-1.5 at 300 keV, and from 1.05-1.25 to

1.1-1.35 at 1 MeV.

‘coh?

«ar NOW calculated over both periods of intense waves and periods of

6. Conclusions

In this paper, we have proposed an approach for the derivation of a rescaling
factor R = Dy, /Dy, of the classical quasi-linear diffusion rate D, of elec-
trons by whistler-mode waves, allowing in principle to incorporate long-term
effects of nonlinear resonant interactions into Fokker-Planck radiation belt
codes in a simple and practicable way. We considered a generalized, effec-
tive nonlinear diffusion rate Dy; that would result in the same time-scale of
electron distribution relaxation along resonance curves as the corresponding
time-scale of evolution due to nonlinear interactions. We first noted that the
ratio R = Dy, /D, depends on two main system parameters: wave intensity,
B2, wave packet length/duration, . We proposed an approach for evaluating
Dy for fixed wave characteristics.

Next, we provided the average rescaling factor (R) = (Dy )/(Dq) of
quasi-linear diffusion rates D, , averaged over empirical distributions of
intense whistler-mode chorus wave-packet characteristics (B,i., ﬁ), derived
from years of Van Allen Probes measurements at L = 4-6 of intense
packets with B, > 50 nT. This rescaling factor has been evaluated for three
energy/pitch-angle ranges of key importance in the outer radiation belt:
~1 MeV electrons with small pitch-angles and ~100-300 keV electrons with
medium/large pitch-angles. We found that (R) increases only weakly with
geomagnetic activity (AE) and that nonlinear effects can speed up 0.1-1 MeV
electron diffusive acceleration by a factor of x2-3, while only slightly
increasing the loss rate of 1-MeV electrons by a factor of X1.5 (in the latter
case, only for ducted wave propagation). The finite differences between our
two different estimates of (R), based on two different empirical distributions
of the same chorus wave-packets obtained using different wave-packet selec-
tion criteria, suggest that the effects of wave phase coherence on nonlinear
interactions deserve further study. In particular, a further analysis of statisti-
cal properties of wave phase jumps inside wave-packets would be useful, as
well as a more precise analysis of their effects in simulations.

But the ratio (R)(AE) discussed above has been evaluated based solely
on empirical distributions of intense chorus wave-packets, with ampli-
tudes B,, > 50 pT. However, such intense wave-packets are observed
more frequently during disturbed periods, like geomagnetic storms and

substorms, than during quiet times (Zhang et al., 2018). Therefore, a second, more realistic statistical ratio (R)

wat(AE) = (Dy1 /(D¢ ) has been calculated by averaging nonlinear and quasi-linear diffusion rates over all chorus

ARTEMYEV ET AL.

17 of 22



I ¥ell . .
NI Journal of Geophysical Research: Space Physics 10.1029/2022JA030853

ADVANCING EARTH
AND SPACE SCIENCE

Acknowledgments

A.V.A. and X.-J.Z. acknowledge support
by NASA awards 8ONSSC21K0729

and 8ONSSC22K0522, D.V. acknowl-
edges support by NASA award
80NSSC19K0266, and A.V.A.
acknowledge support by NSF grants
NSF-2026375.

waves, intense (B,, > 50 pT) and weak (B,, < 50 pT), observed during periods within a given AE range. This full

statistical ratio (R) . does increase with geomagnetic activity, varying from (R) . ~ 1.0-1.2 during quiet peri-
ods to (R)
electron injections leading to the generation of intense wave-packets with B, > 50 pT (Meredith et al., 2003; Li

et al., 2009, 2011; Zhang et al., 2018).

stat stat

~ 1.35-2.0 when AE ~ 400-800 nT, corresponding to strong substorms with important low-energy

The obtained statistical rescaling factor (R) . of quasi-linear diffusion rates accounts for the contribution of

stat

nonlinear resonant interactions in long-term electron flux dynamics. Note that (R) . can be significantly different

stat
from 1 only in the presence of sufficiently intense wave-packets, above the threshold for nonlinear resonant inter-
action. But it is worth emphasizing that chorus wave-packets usually reach peak amplitudes much larger than the
(3-s to hourly) root-mean-squared time-averaged amplitudes of chorus waves, and that the threshold amplitude
for nonlinear interaction can typically vary between 100 and 500 pT at L = 4-6, depending on electron energy
and pitch-angle, on the background geomagnetic field inhomogeneity, and on the latitudinal wave power profile
(Albert et al., 2013; Artemyev, Agapitov, et al., 2016). Accordingly, this rescaling factor (R)

calculated in each parameter domain wherein nonlinear interactions are potentially available.

should be carefully

stat

Increasing quasi-linear electron diffusion rates by factors (R) . ~ 1.5-2.0 over long intervals of disturbances may

stat
have a profound impact on the long-term dynamics of ~0.1-5 MeV electron fluxes, because electron diffusive
acceleration is a gradual process such that a small fraction of the abundant low-energy electrons injected from
the plasma sheet can ultimately be transported to much higher energy, where the electron flux is initially very
small. As a result, even a limited increase in diffusion rate due to nonlinear interactions can potentially lead to a
significant increase of >1 MeV electron fluxes over hours to days. Including such nonlinear effects into radiation
belt codes could therefore probably help to better reproduce and forecast the dynamics of relativistic electron

fluxes over the long run.

During shorter periods (less than a few hours), the nonlinear increase of electron diffusion rates can occasionally
reach higher values than the full statistical ratio (R),, when intense wave-packets are more frequent than in
month-averaged statistics. In this case, the factor of increase of quasi-linear diffusion rates should be closer to (R)
averaged only over intense wave-packets, potentially reaching higher values (R) ~ 2-3. This could explain some
of the apparent step-like increases of relativistic electron flux observed within intervals of tens of minutes to a
few hours by the Van Allen Probes during storms or substorms (Foster et al., 2017; Murphy et al., 2018; Thorne

etal., 2013).

Finally, it is worth noting that the present approach of rescaling quasi-linear diffusion coefficients to take into
account nonlinear effects requires electron mixing in the energy/pitch-angle space over a sufficient time (about
1 hour or more) to make the electron distribution evolution more diffusive after averaging over a large number of
nonlinear resonant interactions. It definitely does not work for short-time effects (like microbursts), but should
work over time scales of hours, like during a typical storm. Such a description should provide the change of
the variation rate of the electron distribution due to nonlinear effects, but it cannot reproduce any fine transient
changes to this distribution.

Data Availability Statement

The authors acknowledge the Van Allen Probes EMFISIS data obtained from https://emfisis.physics.uiowa.edu/
data/index. Data access and processing was done using SPEDAS V4.1 Angelopoulos et al. (2019) available
at https://spedas.org/. Main research results, (R) profiles shown in Figures 10 and 11 are provided in tables in
Supporting Information S1.
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