
1. Introduction

The radiation belt dynamics is traditionally modeled within the quasi-linear approach (Andronov & 
Trakhtengerts, 1964; Kennel & Petschek, 1966) based on a Fokker-Planck diffusion equation for the descrip-
tion of electron interactions with whistler-mode chorus waves. The long-term dynamics of relativistic electron 
fluxes observed by various spacecraft have been relatively well reproduced by such Fokker-Planck codes during 
multiple time intervals, lending credence to the reliability of this approach (e.g., see Allison & Shprits, 2020; 
Drozdov et al., 2015; Glauert et al., 2018; Li et al., 2014; Ma et al., 2018; Su et al., 2016; Thorne et al., 2013; 
Tu et  al.,  2014). The wave-driven electron diffusion rates in the Fokker-Plank equation are evaluated under 
the assumptions of weak wave intensity (Kennel & Engelmann,  1966; Lyons & Williams,  1984; Vedenov 
et  al.,  1962) and broadband wave spectrum usually required for the application of the quasi-linear approach 
(Shapiro & Sagdeev, 1997). The latter requirement can be relaxed in the inhomogeneous magnetic field of the 
Earth dipole (Karpman, 1974; Le Queau & Roux, 1987), and quasi-linear diffusion rates can be evaluated even 
for monochromatic waves (Albert, 2010; Karpman & Shklyar, 1977; Shklyar, 2021). Therefore, the main unre-
solved question for a safe application of the Fokker-Plank equation is posed by multiple observations of very 
intense waves that will likely interact with electrons nonlinearly (see discussion in Albert et al., 2013; Artemyev, 
Neishtadt, Vainchtein, et al., 2018; Li & Hudson, 2019, and references therein).

Besides nonlinear electron resonances with intense electromagnetic ion cyclotron waves (e.g., Albert & 
Bortnik, 2009; Grach & Demekhov, 2020; Kubota et al., 2015; Omura & Zhao, 2012) and ultra-low-frequency 
waves (e.g.,  Li et  al., 2018,), the observed intensity of whistler-mode waves often exceeds the threshold for 
nonlinear resonant interactions (e.g., Agapitov et al., 2014; Zhang et al., 2018, 2019). Such intense whistler-mode 
chorus waves may very quickly accelerate electrons (Agapitov et  al.,  2015; Demekhov et  al.,  2006; Gan, Li, 
Ma, Artemyev, & Albert, 2020; Katoh & Omura, 2007; Omura et al., 2007) or scatter them into the loss-cone 
(Breneman et  al.,  2017;  Chen et  al., 2019,; Miyoshi et  al.,  2021; Zhang, Artemyev, et  al.,  2022). Modeling 
of nonlinear wave-particle interactions, however, is based either on short test particle runs (e.g., Allanson 
et al., 2020; An et al., 2022; Artemyev et al., 2012; Bortnik et al., 2008; Katoh et al., 2008; Tsai et al., 2022; 
Zhang, Mourenas, et al., 2020) or on sophisticated generalizations of the Fokker-Planck equation (e.g., Artemyev, 
Neishtadt, Vasiliev, & Mourenas, 2018; Artemyev, Neishtadt, Vasiliev, Zhang, et al., 2021; Furuya et al., 2008; 
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Hsieh & Omura, 2017; Omura et al., 2015), which cannot be straightforwardly incorporated into the existing 
diffusive models of the radiation belts. A more practicable approach for such an incorporation into existing radia-
tion belt codes would consist in rescaling the quasi-linear diffusion rates to account for the additional contribution 
of nonlinear interactions in the long-term dynamics of electron fluxes, as first suggested by Artemyev, Neishtadt, 
Vasiliev, and Mourenas (2021).

There are two good reasons for expecting that such a rescaling will be possible. First, nonlinear interactions 
of intense waves with electrons are not rare (e.g., Cattell et  al.,  2008; Cully et  al.,  2008; Tyler et  al.,  2019; 
Wilson et al., 2011; Zhang et al., 2019), but still sporadic and transient phenomena. Therefore, short intervals 
of rapid electron flux dynamics due to nonlinear interactions are mixed with much longer intervals of more 
common diffusive dynamics. Such transient bursts of intense waves shall lead to bursty electron precipitations 
(e.g., Breneman et al., 2017; Chen et al., 2021, 2022; Miyoshi et al., 2020; Tsai et al., 2022; Zhang, Artemyev, 
et  al.,  2022), but their contribution to equatorial flux dynamics may be well hidden by the diffusion, which 
smooths electron phase space density gradients created by nonlinear interactions. Second, most of the observed 
intense waves are propagating in the form of short wave-packets (e.g., Zhang et al., 2018; Zhang et al., 2021) 
with strong modulation of wave characteristics within each packets (e.g., Nunn et al., 2021; Santolík et al., 2014; 
Zhang, Agapitov, et al., 2020; Zhang, Mourenas, et al., 2020). Such modulation is known to reduce the efficiency 
of nonlinear resonant interactions and to reduce the net effect of such nonlinear interactions to a nearly diffu-
sive one, albeit stronger in magnitude (Allanson et al., 2021; An et al., 2022; Gan, Li, Ma, Albert, et al., 2020; 
Gan et al., 2022; Mourenas et al., 2018; Tao et al., 2013; Zhang, Agapitov, et al., 2020). Therefore, ignoring the 
short-lived effects of fast acceleration (e.g., Agapitov et al., 2015; Demekhov et al., 2009; Gan, Li, Ma, Artemyev, 
& Albert, 2020; Hsieh et al., 2020, 2022) or fast scattering into the loss-cone (e.g., Chen et al., 2022; Zhang, 
Artemyev, et  al.,  2022) of small fractions of the total electron population, the long-term effect of nonlinear 
interactions may be reduced to a diffusion that would be faster or slower than the classical quasi-linear diffusion 
(Allanson et al., 2022; Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021; Shklyar, 2021). Figure 1 illustrates this 
approach by showing a schematic of probability distribution functions of electron energy changes due to a single 

Figure 1. Schematic of distributions of energy changes in a particle ensemble (with the same initial energy/pitch-angles) 
after a single resonant interaction with (a) intense highly-coherent whistler-mode waves and (b) intense weakly coherent 
whistler-mode waves. The distribution shown in (a) includes the phase bunched population (gray) and the phase trapped 
population (blue). The gray population contains most of the particles and has a reduced energy E with 〈ΔE〉 < 0 proportional 
to (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2 (Bw is the wave amplitude and B0 the background magnetic field at the latitude of resonance), whereas the blue 
population contains only a fraction ∼ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2 of the resonant particles and is increased in energy by 〈ΔE〉 of the order of 
the initial E. The distribution shown in (b) contains the same two populations, but the phase trapped population is increased 
to almost half of the total number of resonant particles (with a corresponding decrease of the phase bunched population). Due 
to the low coherence of the wave, trapped electrons are more quickly released from resonance, with a smaller energy gain 
(An et al., 2022; Gan et al., 2022; Mourenas et al., 2018; Tao et al., 2013). This decreases 〈ΔE〉 and makes it proportional 
to (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

𝜅𝜅 with κ depending on the interplay of wave coherence and wave intensity (Artemyev, Neishtadt, Vasiliev, & 
Mourenas, 2021). For intense short wave-packets κ ∼ 1/2, that is, the average energy changes due to trapping and bunching 
are comparable, whereas the number of trapped particles becomes similar to the number of phase bunched particles (e.g., 
Zhang, Agapitov, et al., 2020).
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resonant interaction with waves of different amplitudes (see examples of such distributions in Tao et al., 2013; 
Zhang, Agapitov, et al., 2020; An et al., 2022; Gan et al., 2022).

In this study, we propose an approach for the derivation of the relation between nonlinear and quasi-linear gener-
alized diffusion rates DNL/DQL, where DNL is defined as the effective diffusion rate that would result in the same 
time-scale of diffusive evolution of electron fluxes as the corresponding time-scale of evolution due to nonlinear 
interactions. The ratio DNL/DQL depends on two main system parameters: wave intensity, 𝐴𝐴 𝐴𝐴

2

𝑤𝑤 , and the parameter 
β controlling the wave-packet amplitude modulation (Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021). The 
dependence of DNL/DQL on 𝐴𝐴 𝐴𝐴

2

𝑤𝑤 underlines that DNL depends on wave intensity in a nonlinear manner. The param-
eter β can be introduced as a wave-packet length measured in wavelength, or as a wave-packet duration measured 
in wave periods.

The paper is organized as follows. In Section 2 we describe the basic properties of electron nonlinear resonant 
interactions with field-aligned whistler-mode waves. We also relate the wave-packet size β with the character-
istics of such interactions. In Section 3, we describe an approach for evaluating DNL for fixed wave characteris-
tics. In Section 4, we show DNL for three energy/pitch-angle ranges of crucial importance in the radiation belts: 
∼1 MeV electrons with small pitch-angles and ∼100–300 keV electrons with large pitch-angles. In Section 5, we 
provide the corresponding rescaling factor 〈R〉 = 〈DNL〉/〈DQL〉 of quasi-linear diffusion rates DQL, averaged over 
measured statistical distributions of the main wave characteristics 

(

𝐵𝐵2

𝑤𝑤, 𝛽𝛽
)

 . In Section 6, we discuss the obtained 
results and their applications for radiation belt models.

2. Basic Characteristics of Nonlinear Resonant Interaction

The resonant interaction of a relativistic electron (rest mass is me, charge is −e) with a field-aligned propagating 
whistler-mode wave can be described by the Hamiltonian (e.g., Albert et al., 2013; Vainchtein et al., 2018):

𝐻𝐻 = 𝑚𝑚𝑒𝑒𝑐𝑐
2𝛾𝛾 +

√
2𝐼𝐼𝑥𝑥Ω0

𝑚𝑚𝑒𝑒𝑐𝑐2
𝑒𝑒𝑒𝑒𝑤𝑤

𝑘𝑘𝛾𝛾
cos (𝜙𝜙 + 𝜓𝜓) , 𝛾𝛾 =

√

1 +

(
𝑝𝑝‖

𝑚𝑚𝑒𝑒𝑐𝑐

)2

+
2𝐼𝐼𝑥𝑥Ω0

𝑚𝑚𝑒𝑒𝑐𝑐2
 (1)

where (s, p‖) are conjugated field-aligned coordinate and momentum, (ψ, Ix) are conjugated gyrophase and 
magnetic moment, Ω0 = eB0(λ)/mec with B0(λ) is the dipole magnetic field as a function of magnetic latitude λ 

given by equation 𝐴𝐴𝐴𝐴∕𝐴𝐴𝑑𝑑 = 𝐿𝐿𝐿𝐿𝐸𝐸

√

1 + 3 sin2 𝑑𝑑 cos 𝑑𝑑 , k = k(λ) is the wave number given by whistler-mode wave 
dispersion relation for a cold plasma (Stix, 1962), Bw(λ) is the wave amplitude depending on magnetic latitude, ϕ 
is the wave phase determined by wave frequency ω = −∂ϕ/∂t and k = ∂ϕ/∂s. The magnetic moment Ix relates to the 
local electron pitch-angle α and to the equatorial pitch-angle αeq as: Ix = mec 2(γ 2 − 1) sin 2 α/Ω0(s) = mec 2(γ 2 − 1)  
sin 2 αeq/Ω0(0). To set 𝐴𝐴 𝐴𝐴𝑤𝑤(𝜆𝜆) = 𝐴𝐴𝑤𝑤(0) ⋅ tanh

(

𝜆𝜆
2∕𝛿𝛿𝜆𝜆2

1

)

exp
(

−𝜆𝜆2∕𝛿𝛿𝜆𝜆2
2

)

 we consider a classical scenario of wave 
generation around the equatorial plane (e.g., Katoh & Omura, 2013; Katoh & Omura, 2016; Tao et al., 2017, and 
references therein) with damping at high latitudes (see, e.g., empirical models of Bw(λ) in Agapitov et al., 2018). 
We use δλ1 = 2° and δλ2 = 20°, that fit the typical Bw(λ) distribution for intense (observed during geomagnetically 
active condition) waves (Agapitov et al., 2013, 2018; Wang et al., 2019).

For whistler-mode waves kREL ≫ 1, ωREL/c ≫ 1, Ω0REL/c ≫ 1, and thus, wave phase ϕ changes much faster than 
the time-scale of electron bouncing along geomagnetic field lines. This separation of time-scales allows to expand 
the Hamiltonian Equation  1 around the resonance 𝜙̇𝜙 + 𝜓̇𝜓 = (𝑘𝑘𝑘𝑘‖∕𝛾𝛾𝛾𝛾𝑒𝑒) − 𝜔𝜔 + Ω0∕𝛾𝛾 = 0 as (e.g., Artemyev, 
Neishtadt, Vasiliev, & Mourenas, 2018; Vainchtein et al., 2018):

𝐻𝐻𝜁𝜁 =
1

2
𝑔𝑔𝑔𝑔 2

𝜁𝜁
+ A𝜁𝜁 + Bcos 𝜁𝜁 (2)

where ζ = ϕ + ψ, Pζ is the momentum conjugated to ζ (i.e., Pζ = 0 is the resonance), g, A, and B are functions 
of field-aligned coordinate s and momentum P‖ = p‖ + kIx, and (s, P‖) are given by the combination of the reso-
nant condition (kp‖/γme) − ω + Ω0/γ = 0 and the conservation law mec 2γ − Ixω = const. Functions B ∼ Bw and 
A ∼ ∂Ω0/∂s describe the effects of wave field and magnetic field inhomogeneity on electron dynamics at resonance. 
The competition of these effects determines the electron dynamics, including phase bunching and phase trapping 
(see expressions for A, B in, e.g., Artemyev, Neishtadt, Vasiliev, & Mourenas, 2018; Vainchtein et al., 2018). The 
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analysis of Hamiltonian Equation 2 is often replaced by an analysis of the analogous equation �̈ + Ã − B̃ sin � = 0 
(e.g., Karpman et al., 1974; Karpman, Istomin, & Shklyar, 1975; Nunn, 1974; Omura et al., 2007; Shklyar, 1981).

Although Hamiltonian Equation 1 describes electron motion in 4D phase space of (s, p‖, Ix, ψ) with the time 
dependence, the system's dimensionality can be significantly reduced for electron interaction with a monochro-
matic wave (when ∂ϕ/∂t = const). In the absence of waves, the conservation of energy and magnetic moment Ix 
guarantees the conservation of equatorial pitch-angle αeq and, thus, the unperturbed system is fully described by 
two constants (γ, Ix) or (γ, αeq). The resonant condition (kp‖/γme) − ω + Ω0/γ = 0 determines the resonant position 
in (s, p‖) space as a function of (γ, Ix). For a monochromatic wave, there is an integral of particle energy in the 
wave reference frame, mec 2γ − ωIx = const, and this integral removes p‖ from the consideration, that is, for fixed 
ω the resonance condition gives s = sR(γ). This equation can be rewritten as γ = γR(s) = γR(λ), where γR is the 
energy in the resonance (γ with p‖ is defined by resonance condition and Ix is defined by mec 2γ − ωIx = const). 
Thus, a fixed ω determines a curve mec 2γ − ωIx = const in the (γ, Ix) or (γ, αeq) space, and each position on this 
curve corresponds to some latitudes of resonance λR. Resonant wave-particle interactions move electrons along 
such curves (that are defined by the value of constant mec 2γ − ωIx = const), and there is a single-valued rela-
tion between the electron position on this curve and the resonant latitude λR. As a result, coefficients g, A, B in 
Hamiltonian Equation 2 are functions of λR only or, equivalently, of γR. An additional result of the conservation of 
mec 2γ − ωIx = const is that the energy change in the resonance is proportional to the Ix change, Δγ = ωΔIx/mec 2, 
and this relation provides the pitch-angle change Δαeq as a function of the energy change Δγ.

Figure 2 shows the phase portraits of Hamiltonian Equation 2 for a typical wave amplitude distribution along 
a geomagnetic field line. The resonance condition p‖ = me(γω − Ω0)/k shows that not-too-energetic resonant 
electrons (γ < Ω0/ω) are moving in the opposite direction to the wave propagation direction, that is, waves are 
generated at the equator and propagate toward high latitudes and resonant electrons are moving from high lati-
tudes to the equator.

Electrons interacting resonantly with waves at high latitudes will see the phase portrait with |A| > |B| due to the 
large background magnetic field gradient (A ∼ ∂Ω0/∂s) and small wave amplitudes (B ∼ Bw) there. All electrons 
with the same initial energy γ and pitch-angle αeq will experience a change of magnetic moment ΔIx = ΔIx(γ, αeq, 
ζ0), where ζ0 determines the initial electron phase ζ (and can be recalculated to the electron phase in the resonance 
ζR). The average magnetic moment change ⟨Δ𝐼𝐼𝑥𝑥⟩𝜁𝜁0 is equal to zero, and there is only diffusion ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ ≠ 0 . This 
diffusion rate ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ can be evaluated analytically (Karpman & Shklyar, 1977) and has been shown to be equal 
to quasi-linear diffusion coefficients (Albert, 2010) for |A| ≫ |B| with ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ ∝ 𝐵𝐵

2
𝑤𝑤 .

Electrons resonating with waves at intermediate latitudes will see a phase portrait with |A| < |B| (if wave intensity 
is sufficiently high). This phase portrait contains a region with closed trajectories oscillating around the reso-

Figure 2. (top) Profiles of coefficients A, B, and ratio B/A along magnetic latitude for typical parameters of wave-particle 
interaction. The wave intensity (controlling B) increases from zero at the equator to a maximum value around a few degrees 
off-equator and then decreases to zero at high latitudes. The coefficient A is proportional to ∂Ω0/∂s: it is zero at the equator 
and increases at higher latitudes. (bottom) Phase portraits of Hamiltonian Equation 2 for five B/A ratios (at five latitudes).
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nance Pζ = 0, that is, phase trapped trajectories. The separatrix demarcates the phase space regions with such 
trapped trajectories and other trajectories crossing the resonance Pζ = 0 only once. The presence of a region of 
finite (non-zero) area S = ∮ Pζdζ surrounded by the separatrix changes the character of electron resonant inter-
action with waves. Electrons meeting the resonance Pζ = 0 only once experience phase bunching, and electrons 
oscillating around the resonance Pζ = 0 along the closed orbits are phase trapped.

To explain these resonance effects, let us consider an ensemble of N electrons with the same initial energy and 
Ix (same initial αeq), but with different random ζ0. All these electrons have the same latitude of resonance and 
for them the Hamiltonian Equation 2 is identical. Interaction with the wave results in Ix change, and Figure 3 
shows the schematics of ΔIx distributions for |A| < |B| (a) and |A| > |B| (b). Note that due to the relation ωΔIx/
mec 2 = Δγ,  the distributions of ΔIx and Δγ are the same. In the absence of nonlinear resonant effects (|A| > |B|), 
the distribution F(ΔIx) is symmetric relative to ΔIx = 0 and the dispersion ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ ∝ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

2 for sufficiently 
small |B|/|A| (e.g., Albert, 2001, 2010; Karpman & Shklyar, 1977). In the presence of nonlinear resonant effects 
(|A| < |B|), the distribution F(ΔIx) consists of two well separated populations. The most representative popula-
tion contains almost all particles, ∼N, and have a finite ⟨Δ𝐼𝐼𝑥𝑥⟩ ∝ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2 for sufficiently large |B|/|A| (e.g., 
Albert, 2000; Artemyev et al., 2014; Shklyar, 2011). The dispersion of this population is ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ → (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

𝜅𝜅 
with κ → 1 for sufficiently large |B|/|A| (e.g., Karpman, Istomin, & Shklyar, 1975; Karpman & Shklyar, 1977). 
Such finite 〈(ΔIx)〉 means that all particles are shifted in Ix (in energy). This effect is called phase bunching (e.g., 
Demekhov et al., 2006; Omura et al., 1991; Shklyar & Matsumoto, 2009). A much smaller electron population  
contains only a fraction (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2 of all resonant particles, ∼(��∕�0)
1∕2

� , and this fraction goes to zero if 
at the latitude of resonance the area S decreases along the electron trajectories (e.g., Artemyev et  al.,  2015; 
Karpman, Istomin, & Shkliar, 1975; Neishtadt, 1975; Shklyar, 1981). This population is characterized by a finite 
〈ΔIx〉 ∼ O(Bw/B0). Such a large Ix (energy γ) change is due to phase trapping (e.g., Artemyev et al., 2015; Omura 
et al., 2007; Vainchtein et al., 2018). The dispersion of the entire F(ΔIx) distribution is about

⟨
(Δ𝐼𝐼𝑥𝑥)

2
⟩
≈ ⟨Δ𝐼𝐼𝑥𝑥⟩2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁
+ ⟨Δ𝐼𝐼𝑥𝑥⟩2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁

∼

(
𝐵𝐵𝑤𝑤

𝐵𝐵0

)
⋅ 𝑂𝑂

(
𝐵𝐵𝑤𝑤

𝐵𝐵0

)
+ 𝑂𝑂

(
𝐵𝐵𝑤𝑤

𝐵𝐵0

)
⋅

(
𝐵𝐵𝑤𝑤

𝐵𝐵0

)1∕2

∼

(
𝐵𝐵𝑤𝑤

𝐵𝐵0

)1∕2 

To evaluate all averaged system characteristics (⟨Δ𝐼𝐼𝑥𝑥⟩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , ⟨Δ𝐼𝐼𝑥𝑥⟩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , and Ntrapping), we need only one func-
tion: S = S(λ), written as S = S(Ix):

𝑆𝑆 = ∮ 𝑃𝑃𝜁𝜁𝑑𝑑𝜁𝜁 =
2
√

𝑔𝑔

𝜁𝜁+

∫
𝜁𝜁−

√

A (𝜁𝜁+ − 𝜁𝜁 ) + B (cos 𝜁𝜁+ − cos 𝜁𝜁 )𝑑𝑑𝜁𝜁 

Figure 3. Two distributions of ΔIx changes obtained by integrating an ensemble of trajectories given by Hamiltonian 
Equation 1. All particles in each of these two ensembles have the same initial energy and pitch-angle and resonate with 
the wave only once. Panel (a) shows results for a very intense wave (|B/A| > 1), and panel (b) show results for a wave with 
a × 1/100 weaker amplitude (|B/A| < 1). Note that to show these two distributions within the same ΔIx range, we have 
multiplied ΔIx by 100 in panel (b).
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where 𝐴𝐴 𝐴𝐴− = arccos (A∕B) , see Figure 2 and Artemyev, Neishtadt, Vasiliev, and Mourenas (2018).

For an initial Ix, the phase bunching results in ⟨Δ𝐼𝐼𝑥𝑥⟩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −𝑆𝑆 (𝐼𝐼𝑥𝑥) ∕2𝜋𝜋 and the trapping probability 
Π = Ntrapping/N = (dS/dIx)/2π (Cary et al., 1986; Neishtadt, 1975; Shklyar, 1981). The change of ⟨Δ𝐼𝐼𝑥𝑥⟩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is 
determined as Ix,final − Ix where S(Ix,final) = S(Ix), and dS/dIx < 0 at Ix,final (e.g., Artemyev et al., 2015). Therefore, 
there is a simple geometrical interpretation of nonlinear wave-particle interactions: many particles drift in Ix 
space to smaller Ix with the velocity of drift ⟨Δ𝐼𝐼𝑥𝑥⟩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∕𝜏𝜏 , whereas in the Ix range with dS/dIx > 0 some parti-
cles can be trapped with a probability of trapping Π/τ and transported to larger Ix (see Figures 4a and Artemyev, 
Neishtadt, Vasiliev, & Mourenas, 2018; Artemyev, Neishtadt, et al., 2016). The typical time-scale τ of this motion 
is determined as the time between two resonances, and for a single wave resonating with electrons τ is equal to 
half of the bounce period along geomagnetic field lines. Figure 4 shows a schematic of the S(Ix) profile and the 
corresponding F(ΔIx) distributions. Such a relation between properties of individual electron resonances and the 
system characteristics, S(Ix), allows us to provide a description of the long-term dynamics of an electron ensemble 
with multiple nonlinear resonances.

Note that schematics in Figures  2 and  4 are displayed for electrons moving with resonant momentum 
p‖ = me(γω − Ωce)/k < 0 during the trapping motion. Sufficiently energetic (relativistic) electrons may be accel-
erated within the trapping to such energies that γ becomes larger than Ωce/ω, so that such trapped electrons can 
change their direction of motion and continue to be accelerated for a longer time (a phenomenon called turning 
acceleration, see Omura et al., 2007; Summers & Omura, 2007). This effect is well described by Hamiltonian 
system Equation 1, but we do not provide here a schematic illustration of such turning acceleration.

3. Mapping Technique for the Evaluation of DNL

Let us consider the mapping technique for wave-particle resonant interaction. A classical example of such a tech-
nique is the Chirikov map (Benkadda et al., 1996; Chirikov, 1979; Khazanov et al., 2013) that describes particle 
diffusion due to wave-particle interaction. For Hamiltonian Equation 1, this map works as

⎧⎪⎨⎪⎩

𝐼𝐼
(𝑛𝑛+1)
𝑥𝑥 = 𝐼𝐼

(𝑛𝑛)
𝑥𝑥 + 𝛿𝛿𝐼𝐼𝑥𝑥

(
𝐼𝐼
(𝑛𝑛)
𝑥𝑥

)
sin 𝜁𝜁 (𝑛𝑛)

𝜁𝜁 (𝑛𝑛+1) = 𝜁𝜁 (𝑛𝑛) + 𝛿𝛿𝜁𝜁
(
𝐼𝐼
(𝑛𝑛+1)
𝑥𝑥

) (3)

Figure 4. (top) Model S(Ix) profile and scheme of trapped and phase bunched particle motion along Ix. (bottom) Distributions 
of ΔIx obtained with map (5) for three small Ix ranges marked by (a), (b), and (c) in the top panel.
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where n is the number of iterations (i.e., time is t (n+1) = t (n) + τ), functions δIx and δζ describe the magnitude 
of Ix change at the resonance and the phase gain between two successive resonances. Since such phase gain 
δζ ∼ ωτ ≫ 1 for τ about a fraction of the bounce period, ζ can be taken as a random number with a distribution 
such that the sin ζ distribution repeats the properties of Δ𝐼𝐼𝑥𝑥 = 𝐼𝐼

(𝑛𝑛+1)
𝑥𝑥 − 𝐼𝐼

(𝑛𝑛)
𝑥𝑥  distributions. Although the ΔIx distri-

bution can be evaluated numerically (Artemyev et al., 2019; Itin et al., 2000; Lukin et al., 2021), this is computa-
tionally very expensive for a realistic multi-parameter system. Moreover, we are mostly interested in describing 
the phase averaged properties of Ix changes and, thus, we can reduce the map Equation 3 to

𝐼𝐼
(𝑛𝑛+1)
𝑥𝑥 = 𝐼𝐼

(𝑛𝑛)
𝑥𝑥 +

√

⟨

(Δ𝐼𝐼𝑥𝑥)
2
⟩

⋅

(

2𝜉𝜉(𝑛𝑛) − 1
)

 (4)

where ξ is a random value with a uniform distribution in [0, 1] and ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ ∝ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)
2 describes the dispersion 

of Ix changes in the system with a small wave intensity, |A| > |B|.

For a system with nonlinear resonant interactions (|A| < |B|), the analog of map (3) has been derived and verified 
in Artemyev et al. (2020b); Artemyev et al. (2020a):

𝐼𝐼
(𝑛𝑛+1)
𝑥𝑥 = 𝐼𝐼

(𝑛𝑛)
𝑥𝑥 +

⎧
⎪
⎨
⎪
⎩

⟨Δ𝐼𝐼𝑥𝑥⟩𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 , 𝜉𝜉(𝑛𝑛) ∈ [Π, 1]

⟨Δ𝐼𝐼𝑥𝑥⟩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑛𝑛𝑏𝑏 , 𝜉𝜉(𝑛𝑛) ∈ [0,Π)
 (5)

where ξ is a random value with a uniform distribution in [0, 1] and all system parameters (⟨Δ𝐼𝐼𝑥𝑥⟩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , ⟨Δ𝐼𝐼𝑥𝑥⟩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 
Π) are described by the S(Ix) profile. Map Equation 5 has been shown to describe well the long-term dynamics of 
an electron ensemble in different systems with nonlinear interactions (see Artemyev, Neishtadt, Vasiliev, Zhang, 
et al., 2021; Artemyev et al., 2022; Zhang, Artemyev, et al., 2022).

Figure  5a shows different examples of individual electron trajectories described by the maps (4) and (5) for 
model S(Ix) and ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ (𝐼𝐼𝑥𝑥) functions. There are random walks for map Equation  4, and a combination of 
bunching (drift) and trapping (rare large jumps) for map Equation 5. If we set an ensemble of N particles with 
initial uniform Ix distribution along the range of nonzero ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ (i.e., the range of resonant Ix for fixed ω and 
mec 2γ − ωIx = const) and trace them for a sufficiently long time (during a sufficiently large number of iterations, 
n ≫ 1), we can calculate the dynamics of the distribution variance

2 (𝑛𝑛) =
1

𝑁𝑁

𝑁𝑁
∑

𝑙𝑙=0

(𝐼𝐼𝑥𝑥 (𝑛𝑛) − 𝐼𝐼𝑥𝑥 (0))
2
−

2

1
(𝑛𝑛) , 1 (𝑛𝑛) =

1

𝑁𝑁

𝑁𝑁
∑

𝑙𝑙=0

(𝐼𝐼𝑥𝑥 (𝑛𝑛) − 𝐼𝐼𝑥𝑥 (0)) 

Figure 5b shows that 2 ∝ 𝑛𝑛 for both maps (see discussion in Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021). 
The proportionality coefficient 𝐴𝐴 𝐴𝐴2∕𝐴𝐴𝑑𝑑 can be interpreted as a generalized (averaged over the energy/pitch-angle 
range of resonant interactions along mec 2γ  −  ωIx  =  const curves) diffusion rate. For map (4), we have 

𝐴𝐴 𝐴𝐴𝑄𝑄𝑄𝑄 = 𝑑𝑑2∕𝑑𝑑𝑑𝑑 ∼ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)
2 , and for map (5) we have 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁 = 𝑑𝑑2∕𝑑𝑑𝑑𝑑 ∼ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2 . Previous numeri-
cal simulations have shown that the transition from quasi-linear diffusion to nonlinear resonant interactions is 
characterized by a weaker dependence of the usual electron diffusion rate on Bw/B0 (e.g., Gan, Li, Ma, Albert, 
et al., 2020; Tao et al., 2012). This underlines an important difference between quasi-linear diffusion and nonlin-
ear resonant interactions (see more examples in Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021). However, the 
usual diffusion rate only includes weak quasi-linear scatterings, whereas the effective rate DNL incorporates the 
stronger effects of nonlinear interactions. Hereafter, we use the mapping technique to quantify the ratio DNL/DQL 
for realistic system parameters.

4. DNL for Realistic Wave Characteristics

The wave amplitude (more precisely, the wave amplitude profile along geomagnetic field lines) determines the 
S(Ix) profile and, thus, controls all characteristics of wave-particle nonlinear interactions for a fixed background 
field. However, such a single-parameter, Bw/B0, approach works only under the approximation of plane waves 
(i.e., for sufficiently long wave-packets). Spacecraft observations show that intense waves rarely propagate in 
the form of long wave-packets and that wave-packets most often contain only β  ≤  10 wave periods (Zhang 
et al., 2019). Recent comparisons of wave packet statistics and different models of whistler-mode (chorus) wave 
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generation (Zhang et al., 2021) have confirmed that the formation of short packets β ≤ 10 naturally results from 
nonlinear mechanisms of wave generation. Therefore, the second important parameter controlling the nonlin-
ear wave-particle interactions is the finite wave-packet length (or duration) measured in wave periods, β. The 
wave-packet length defines the maximum possible duration of trapping in a given packet, and the corresponding 
acceleration magnitude in the absence of internal phase jumps that may destroy trapping (Zhang, Agapitov, 
et al., 2020). In addition, electron acceleration by a train of wave-packets may be quite effective in case of multi-
ple consecutive trapping (Hiraga & Omura, 2020), but this effect is often reduced by the presence of large and 
random wave phase jumps between consecutive packets (Zhang, Agapitov, et al., 2020). Below, we shall consider 
two different types of wave-packet amplitude modulations, such that moderate modulations allow the presence of 
multiple consecutive trappings whereas strong modulations mostly suppress them. To highlight the importance 
of β, let us consider the peculiarities of trapped particle dynamics. A trapped particle oscillates within the effec-
tive potential of Hamiltonian Equation 1 with the oscillation period (e.g., Karpman et al., 1974; Nunn, 1971; 
Nunn, 1974)

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
2𝜋𝜋

Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

≈
2𝜋𝜋

Ω0

(

√

2𝐼𝐼𝑥𝑥Ω0

𝑚𝑚𝑒𝑒𝑐𝑐2
𝐵𝐵𝑤𝑤

𝛾𝛾𝐵𝐵0

)−1∕2

 

The maximum duration of electron resonant interaction with the wave-packet is determined as

𝑇𝑇max =
2𝜋𝜋

𝑘𝑘

𝛽𝛽

|𝑣𝑣𝑅𝑅 − 𝑣𝑣𝑔𝑔|
= 2𝜋𝜋𝛽𝛽

|
|
|
|
𝜔𝜔 −

Ω0

𝛾𝛾
− 𝑘𝑘

𝜕𝜕𝜔𝜔

𝜕𝜕𝑘𝑘

|
|
|
|

−1

≈
2𝜋𝜋𝛽𝛽𝛾𝛾

Ω0

 

We use the simplified wave dispersion 𝐴𝐴 𝐴𝐴 = Ω0

(

1 + (𝑘𝑘𝑘𝑘𝑒𝑒)
−2
)−1

 for a typical k ∼ 1/de, where de is the electron 
inertial length. During the trapping, electrons make

𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑇𝑇max

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝛽𝛽

(

√

2𝐼𝐼𝑥𝑥Ω0

𝑚𝑚𝑒𝑒𝑐𝑐2

𝛾𝛾𝛾𝛾𝑤𝑤

𝛾𝛾0

)1∕2

∝ 𝛽𝛽

(

𝛾𝛾𝑤𝑤

𝛾𝛾0

)1∕2

 

oscillations, whereas transient electrons cross the resonance within times-scale ∼Ttrapping. Thus, for Ktrapping ∼ 1, 
that is, for 𝐴𝐴 𝐴𝐴 ∼ (𝐵𝐵0∕𝐵𝐵𝑤𝑤)

−1∕2 , there is no significant separation of time-scales spend by transient and trapped elec-
trons in the resonance, and the changes of energies/pitch-angles for these two populations of electrons remain 
comparable (see more detailed estimates in Artemyev, Neishtadt, Vasiliev, & Mourenas, 2021). Importantly, the 

Figure 5. (a) Examples of Ix(n) profiles obtained with map (4) describing diffusion (top) and with map (5) describing 
nonlinear resonant interactions (bottom). For map (5) we use the model profile S(Ix) shown in Figure 4 (top), and for map (4) 
we use ⟨(Δ𝐼𝐼𝑥𝑥)2⟩ = 𝑆𝑆

2 (𝐼𝐼𝑥𝑥) . (b) 2(𝑛𝑛) profiles for the ensemble of trajectories integrated with map (4) describing diffusion 
(top) and with map (5) describing nonlinear resonant interactions (bottom). Black dotted lines show fits with 2 ∼ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

2 
(top) and 2 ∼ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2 (bottom).
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decrease of β not only reduces the efficiency of acceleration of individual trapped electrons, but also changes 
the probability of trapping. For β → ∞ (plane waves) this probability is determined as ∼dS/dIx with the S(Ix) 
gradient controlled by the Bw(λ) profile along magnetic field lines. For small β, the strongest S gradients occur 
at the wave-packet edges, and electrons can interact with packet edges at any latitude of resonance. Instead 
of a geometrical interpretation with a single S(Ix) profile as in Figure  4, we must consider multiple smaller 
S(Ix) profiles with randomly changing locations on the Ix-axis (see schematic in Figure 6). There are two possi-
ble scenarios of wave-particle resonant interaction with small β packets. To describe these scenarios, let us 
consider a model 𝐴𝐴 𝐴𝐴 (𝐼𝐼𝑥𝑥) = (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2
⋅ (𝐼𝐼+ − 𝐼𝐼𝑥𝑥)

5∕4(𝐼𝐼𝑥𝑥 − 𝐼𝐼−)
5∕4∕𝛿𝛿𝐼𝐼2

0
 , where I± and δI0 determine parameters of 

S(Ix) profile, whereas the factor (𝐵𝐵𝑤𝑤∕𝐵𝐵0)
1∕2 changes S with wave amplitude in agreement with Hamiltonian Equa-

tion 2. For large wave packets I±, δI0 do not vary with Bw/B0 but depend on the field-aligned profiles of Bw and 
the background magnetic field (e.g., Artemyev, Neishtadt, Vasiliev, & Mourenas,  2018). As β decreases, the 
range of resonant Ix shrinks (I+ − I− goes down), and δI0 also changes. In the first scenario, the β decrease results 
from the decrease of Bw/B0. In this case I± and δI0 should start varying with Bw/B0, and the S(Ix) model, after 
normalization, will vary with Bw/B0 like 𝐴𝐴 𝐴𝐴 (𝐼𝐼𝑥𝑥) ∝ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)

1∕2+𝜅𝜅 , with κ → 5/6 
(

𝑆𝑆 ∝ (𝐵𝐵𝑤𝑤∕𝐵𝐵0)
4∕3

)

 for a critically 
small β value corresponding to Ktrapping ∼ 1 (see corresponding calculations in Artemyev, Neishtadt, Vasiliev, & 
Mourenas, 2021). This scenario corresponds to the schematic shown in Figures 6a and 6b, with a large single 
S(Ix) evolving into a series of small S(Ix) as the amplitude decreases. In the second scenario; β does not depend 
on Bw/B0, and the small β results in a very strong increase of the probability of trapping, because dS/dIx goes up 
with I+ − I− going down for fixed Bw/B0. This scenario corresponds to the schematic shown in Figures 6a and 6c, 
with a large single S(Ix) evolving into a series of small S(Ix) with fixed amplitude. The fine interplay of Bw and 
background parameter profiles along magnetic field lines, the small β effect, and probabilities for electrons to 
interact with waves of different Bw at the same resonant latitude due to the finite wave-packet size, mix these 
two scenarios in realistic systems. Thus, instead of using a model S(Ix) function for mapping (4), we adopt the 
approach proposed in Artemyev et al. (2019); Lukin et al. (2021) and numerically calculate F(ΔIx) distributions 
for a wide range of Bw/B0 and β parameters.

To use numerical calculations of F(ΔIx), one must include evaluations of multiple trajectories with the map

𝐼𝐼
(𝑛𝑛+1)
𝑥𝑥 = 𝐼𝐼

(𝑛𝑛)
𝑥𝑥 + Δ𝐼𝐼𝑥𝑥(𝐼𝐼𝑥𝑥), 𝑡𝑡

(𝑛𝑛+1) = 𝑡𝑡
(𝑛𝑛) +

1

2
𝜏𝜏
(𝑛𝑛)

𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏
(𝐼𝐼

(𝑛𝑛)
𝑥𝑥 ) (6)

describing ΔIx changes with the given F(ΔIx) under assumption of a single resonant interaction during half of 
a bounce period. Distributions F(ΔIx, Ix) are evaluated for a dense Ix net covering the range of Ix with nonlinear 
resonant interactions for a fixed mec 2γ − ωIx parameter and fixed system characteristics (ω, L-shell, Bw profile, 
and β). Using map (5), we evaluate the 2(𝑛𝑛) function and approximate it by a linear fit, 2 ≈ 𝐷𝐷𝐷𝐷 . The fitting 

Figure 6. Schematic of system change from the long wave-packet (a) to multiple small (but still above the threshold of nonlinear wave-particle interactions) amplitude 
wave-packets (b) or to multiple very intense wave-packets (c). In case (b) the S of multiple wave-packets is the top part of S of a single long wave-packet. In case (c) S of 
multiple wave packets is the same as S of a single long wave-packet, but with the narrowed Ix range. (b1, b2) and (c1, c2) show change with time of S locations for series 
of wave-packets.
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coefficient D determines the diffusion rate (note that an additional fitting with Dt q gives q ∼ 1 and confirms 
that we deal with a diffusive process). For each set of system parameters, we construct a set of distributions 
for a wide range of peak wave amplitude Bw ∈ [Bw, min, Bw, max] (henceforth, the peak amplitude of wave-packets 
is denoted Bw for simplicity). The smallest Bw, min ∼ 5pT corresponds to the regime of quasi-linear diffusion, 
and thus we can consider normalized distributions 𝐹𝐹 (Δ𝐼𝐼𝑥𝑥 ⋅ (𝐵𝐵𝑤𝑤𝑤max ∕𝐵𝐵𝑤𝑤)) and the corresponding fitting coeffi-

cients 𝐷̄𝐷 (for a purely diffusive process, this normalization would mean 𝐷̄𝐷 = (𝐵𝐵𝑤𝑤𝑤max ∕𝐵𝐵𝑤𝑤)
2
⋅𝐷𝐷 (𝐵𝐵𝑤𝑤) ). The ratio 

𝐴𝐴 𝐴𝐴 = 𝐷̄𝐷 (𝐵𝐵𝑤𝑤) ∕𝐷̄𝐷 (𝐵𝐵𝑤𝑤𝑤min ) ≃ 𝐷𝐷𝑁𝑁𝑁𝑁∕𝐷𝐷𝑄𝑄𝑁𝑁 describes the deviation of the scattering rate from the quasi-linear diffu-
sion rate. This ratio R depends on β and on the parameter describing the depth of the wave amplitude modulation, 
that is, on the ratio of the minimum and maximum wave field amplitudes inside a packet, min/max. We use a 
moderate modulation with min/max = 5/100 and a strong modulation with min/max = 7/1000. The stronger 
modulation corresponds to a more probable electron escape from trapping at the wave-packet edge, and less 
probable multiple trappings into several consecutive wave-packets (see examples of such multiple trappings in 
Hiraga & Omura, 2020).

Figure 7a1–7a3 show examples of C(ΔIx) cumulative distributions corresponding to 𝐹𝐹 (Δ𝐼𝐼𝑥𝑥) for different wave 
amplitudes Bw, two β values, and two different magnitudes of the wave amplitude modulation inside the packet. 
Although the range of ΔIx is comparable for all Bw after normalization, for large β there is a clear transition from 
C(ΔIx) symmetric relative to ΔIx = 0 for the smallest Bw ∼ Bw, min to C(ΔIx) having a long tail of large ΔIx for 
the largest Bw → Bw, max. For small β, the cumulative distribution C(ΔIx) has a less pronounced large ΔIx popu-
lation (i.e., for the strong modulation C(ΔIx) shows a large ΔIx population only for Bw = Bw, max). This is due 
to nonlinear trapping destruction in a system with small wave-packets. Note that to compare simulations with 
different β values, we fix the peak wave amplitude Bw and check that the average wave intensity ⟨𝐵𝐵2

𝑤𝑤⟩𝜙𝜙∈[−∞,+∞] 
remains almost the same for different β values, because there is no β → ∞ case under consideration and for all 
simulations the wave field takes ∼50% of the ϕ range. Figure 7b1–7b3 show that 2(𝑡𝑡) for different amplitudes 
Bw follows the ∼ 𝐷̄𝐷𝐷𝐷 trend, but there is a difference between fitting coefficients 𝐷̄𝐷 derived for different Bw. This 
difference is much smaller for smaller β. Figure 7c1–7c3 show R(Bw) for two β values and two magnitudes of 
wave amplitude modulation. For large β (see panel c1), the effective diffusion rate ratio R increases with Bw: in 
this case, the nonlinear interactions (trapping and bunching) mix resonant electrons along the resonance curve 
mec 2γ − ωIx = const much faster than (quasi-linear) diffusion does for the same wave intensity. For small β (see 
panel c2); this difference in efficiency between nonlinear resonant mixing and diffusive mixing is much less 
pronounced. The effect of nonlinear interactions becomes even less important for waves with a stronger modu-
lation (see panel c3).

5. Time-Averaged Diffusion Rate 〈DNL〉 and 〈R〉 = 〈DNL〉/〈DQL〉

To finalize the comparison of scattering rates due to diffusion and nonlinear resonances, we perform a massive 
set of simulations for a wide range of Bw and β parameters and for three typical electron energy and equatorial 
pitch-angle ranges: ∼100 keV, αeq ∼ 40°, ∼300 keV, αeq ∼ 50°, and ∼1 MeV, αeq ∼ 15° electrons. For ∼100 and 
∼300 keV simulations, we use the latitudinal profile 𝐴𝐴 𝐴𝐴𝑤𝑤(𝜆𝜆) = tanh

(

(𝜆𝜆∕𝛿𝛿𝜆𝜆1)
2
)

exp
(

−(𝜆𝜆∕𝛿𝛿𝜆𝜆2)
2
)

 with δλ1 = 2° 
and δλ2 = 20° for λ > 0. This profile mimics the empirical wave intensity distribution with wave growth near the 
equator and damping at high latitudes obtained from satellite observations (Agapitov et al., 2018). Such latitudi-
nally confined waves cannot resonate with ∼1 MeV field-aligned electrons, and for the simulation with ∼1 MeV 
and αeq  ∼  15°, we assume ducted wave propagation with Bw  =  const at all latitudes (Artemyev, Demekhov, 
et al., 2021; Chen et al., 2022). Figure 8 shows R(Bw, β) obtained by fitting the numerical R(Bw, β) distributions 
for these three sets of electron energy/pitch-angles and two magnitudes of wave-packet amplitude modulation. 
Top panels show results for a realistic, moderate modulation, which potentially allows multiple consecutive trap-
pings in a set of short wave-packets. There are two maxima of R: (a) for long and intense wave packets with 
Bw > 250pT and β > 100 which can effectively trap electrons, speeding up electron mixing/diffusion along the 
resonance curves; (b) for short (β < 15) and intense (β > 100) wave packets, in which case electron resonant 
interactions can include multiple trappings in several successive short packets (Hiraga & Omura, 2020), also 
speeding up electron mixing/diffusion along the resonance curves. However, spacecraft observations (Zhang, 
Agapitov, et al., 2020) and numerical simulations of whistler-mode chorus wave generation (Nunn et al., 2021; 
Zhang et al., 2021) suggest that a significant wave phase decoherence between wave-packets prevents such multi-
ple consecutive trappings and makes electron scattering by these waves more diffusive-like (An et  al.,  2022; 
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Mourenas et al., 2022; Zhang, Agapitov, et al., 2020). Indeed, maxima of R in the small β case are weaker in the 
bottom panels of Figure 8, where we show simulation results for a strong wave amplitude modulation, due to a 
reduction of the probability of multiple trappings when the time intervals of high wave amplitude are separated by 
longer intervals of low amplitude where no nonlinear interaction is possible. The results obtained in the bottom 
panels of Figure 8 therefore appear more realistic for short β < 15 wave-packets (An et al., 2022; Gan et al., 2022; 
Mourenas et al., 2022; Zhang, Agapitov, et al., 2020).

Figure 7. Characteristics of wave-particle resonant interactions for three types of wave-packets: (top row) results for a 
long wave-packet with a moderate amplitude modulation (β = 300, and 𝐴𝐴 𝐴𝐴𝑤𝑤 ∝ exp

(

−3 cos2(𝜙𝜙∕2𝜋𝜋𝜋𝜋)
)

 , with a 5/100 ratio of 
minimum to maximum wave field amplitudes, see inserted panel in [c1]). (middle row) Results for short wave-packet (β = 3) 
with a moderate amplitude modulation. (bottom row) Results for a short wave-packet with strong amplitude modulation 
(β = 3 and 𝐴𝐴 𝐴𝐴𝑤𝑤 ∝ exp

(

−5 cos2(𝜙𝜙∕2𝜋𝜋𝜋𝜋)
)

 , with a 7/1,000 ratio of minimum to maximum wave field amplitude, see inserted 
panel in [c3]). Panels (a) show the cumulative distributions C of ΔIx changes for different wave amplitudes (the inserted 
panels zoom in on the ΔIx > 0 distributions). Note that in C distributions, ΔIx is normalized as ΔIx ⋅ (Bw, max/Bw) to allow 
comparing C(ΔIx) for different wave amplitudes. Panels (b) show 2(𝑛𝑛) functions obtained with map (6) and C(ΔIx) 
distributions from panels (a). Panels (c) show the ratio 𝐴𝐴 𝐴𝐴 = 𝐷̄𝐷 (𝐵𝐵𝑤𝑤) ∕𝐷̄𝐷 (𝐵𝐵𝑤𝑤𝑤min ) ≡ 𝐷𝐷𝑁𝑁𝑁𝑁∕𝐷𝐷𝑄𝑄𝑁𝑁 as a function of wave amplitude. 
Note that due to the normalization ΔIx ⋅ (Bw, max/Bw), we expect R = 1 for systems in the regime of quasi-linear diffusion. 
All results are obtained for electrons with [80, 120] keV energies and [30°, 50°] pitch-angles, interacting resonantly with 
whistler-mode waves at L = 6. Wave frequency is 0.35Ωeq, plasma frequency is 6Ωeq and constant along magnetic field lines.
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The contribution of nonlinear interactions to electron flux dynamics can be quantified by deviation of R from 1. 
Thus, to characterize this contribution for the observed distribution of (Bw, β) we must calculate 〈R〉 averaged 
over the full wave-packet distribution. Here, we use two different statistics of intense (Bw > 50 pT) field-aligned 
whistler-mode chorus wave packets collected by Zhang et al. (2019) and Zhang, Mourenas, et al. (2020), and 
we separate each of these two distributions into several subsets corresponding to different levels of geomagnetic 
activity, AE < 50 nT, AE ∈ [50, 200] nT, AE ∈ [200, 500] nT, and AE > 500 nT. Note that the calculation of DNL 
requires multiple resonant interactions, and due to the phase trapping effect these interactions spread electrons 
over a wide energy/pitch-angle domain. Therefore, the present evaluation of R and 〈R〉 assumes an averaging over 
this energy/pitch-angle domain, because only such averaging may reduce the fine nonlinear resonant dynamics 
of individual particles to a diffusive-like dynamics of the particle ensemble, that we describe by 〈R〉⋅ DQL. Thus, 
the 〈R〉 dependence on energy/pitch-angle is nonlocal, and we evaluate here 〈R〉 for three energy/pitch-angle 
domains, instead of providing 〈R〉(γ, αeq).

The first empirical distribution of quasi-parallel lower-band chorus wave packets (Zhang et al., 2019) has been 
derived from 5 years (2012–2017) of Van Allen Probes (Mauk et al., 2013) waveform measurements by the Elec-
tric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instruments (Kletzing et al., 2013) 
in the inner magnetosphere, at L ≃ 4–6 outside the plasmapause. Using such waveforms, a data set of lower-band 
chorus wave packets with wave normal angles <25° (calculated using the singular value decomposition method, 
see Santolík et al., 2003) and peak wave magnetic amplitudes Bw > 50 pT has been built, providing a full coverage 
at geomagnetic latitudes <20° and all local times (Zhang et al., 2019). Starting from the highest peaks of wave 
amplitude, the boundaries of each packet have been fixed at one half of the packet peak amplitude on both sides. 
The packet length β was defined as the number of wave periods inside a packet. These selected wave-packets 
can be either isolated wave-packets or subpackets located inside a longer chorus element. Figure 9 (top) shows 
the empirical probability distribution P(Bw, β) from this first empirical distribution of wave-packets, as a func-

Figure 8. 2D distributions of R(Bw, β) ratio for three energy/pitch-angle ranges: (a) ∼100 keV, αeq ∼ 40°, (b) ∼300 keV, 
αeq ∼ 50°, (c) ∼1 MeV, αeq ∼ 15°. Top panels show results for a moderate wave-packet modulation, and bottom panels show 
results for a strong modulation that significantly reduces a probability for multiple trapping by successive short wave packets. 
Background system parameters are: a plasma frequency to electron gyrofrequency ratio at the equator equal to six, a plasma 
frequency that does not vary along magnetic field lines; a dipolar background geomagnetic field at L = 6. Wave frequency 
is 0.35 times the equatorial electron frequency. The domain with R = 1 corresponds to the regime of quasi-linear electron 
diffusion by whistler-mode waves.
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tion of AE. As AE increases, the fraction of intense wave-packets increases for all wave-packet sizes β (Zhang 
et al., 2018) and there are also more long wave-packets, but mainly for moderately intense waves. Waves with 
very large Bw > 0.5–1 nT and β > 100 are rare even in the highest AE range. Therefore, the effect of nonlin-
ear wave-particle interactions should be supported either by the small fraction of long (β > 100) and moder-
ately intense (Bw < 500pT) wave-packets or by the dominant population of relatively short (β < 30) and intense 
(Bw > 250 pT) wave-packets.

A second empirical distribution of intense wave-packets (Zhang, Mourenas, et al., 2020) has been derived from 
6 years of similar Van Allen Probes observations at L ≃ 4–6 above the plasmapause. Quasi-parallel lower-band 
chorus wave-packets have been identified, as before, by a peak of full wave magnetic amplitude Bw > 50 pT. 
However, packet boundaries are now fixed at the nearest wave amplitude minimum below 50 pT or, if this mini-
mum amplitude is below 10 pT, at the time when the wave amplitude diminishes to 10 pT (Zhang, Mourenas, 
et al., 2020). Such wave-packets are either isolated wave-packets, or subpackets located inside a long rising (or 
falling) tone chorus element, but also, more rarely, very long wave-packets with not too strong internal modu-
lations. In contrast to the first empirical distribution of wave-packets (Zhang et al., 2019) described above, this 
second empirical distribution provides packets with a much higher peak amplitude to minimum amplitude ratio. 
Actual packets with Bw ∼ 300–1,000 pT, which correspond to the highest nonlinear to quasi-linear effective diffu-
sion rate ratio R in Figure 8 (top), have peak to minimum wave amplitude ratios ∼7 to ∼40, similar to the moder-
ate amplitude modulation by a factor of 20 used in Figure 7c1, 7c2, and 8 (top). These wave-packets often include 
weaker but still significant internal amplitude modulations by a factor of ∼2 that can terminate particle trapping 
earlier than based on their full length β (Zhang, Mourenas, et al., 2020), as it can happen also for the ideal sinu-
soidal modulations used in Figures 7c and 8. It is worth noting that this second empirical distribution of intense 
wave-packets, shown in Figure 9 (bottom), includes a much larger fraction of very long (β > 100) and intense 

Figure 9. Empirical probability distributions P(Bw, β) of intense (Bw > 50 pT) whistler-mode chorus wave-packet peak 
amplitudes Bw and lengths β obtained from 5 to 6 years of Van Allen Probes measurements at L = 4–6. (top) Data set 
provided in Zhang et al. (2019), with wave amplitude equal to Bw/2 at wave-packet boundaries. (bottom) Data set provided in 
Zhang, Mourenas, et al. (2020), with a low wave amplitude ≤50 pT at packet boundaries. Four AE ranges are shown.
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(Bw > 250 pT) packets than the first empirical distribution (compare with 
Figure 9 top), because many of such long and intense packets are split into 
several shorter packets in the first empirical distribution when their instanta-
neous amplitude decreases below Bw/2. This second empirical distribution of 
intense chorus wave-packets was found to agree well with results from simu-
lations of nonlinear chorus wave generation performed with various particle 
codes, in studies where the formation of short and very short packets were 
respectively ascribed to trapping-induced amplitude modulation and wave 
superposition (Mourenas et al., 2022; Nunn et al., 2021; Zhang et al., 2021).

Next, we calculate the ratio 〈R〉 of nonlinear to quasi-linear effective electron 
diffusion rates averaged over the measured statistical empirical distribution 
of intense wave-packets, as

⟨𝑅𝑅⟩ =

⟨
𝐷̄𝐷 (𝐵𝐵𝑤𝑤, 𝛽𝛽) ⋅ 𝛽𝛽

⟩
𝐵𝐵𝑤𝑤 ,𝛽𝛽⟨

𝐷̄𝐷 (𝐵𝐵𝑤𝑤,min , 𝛽𝛽) ⋅ 𝛽𝛽
⟩
𝛽𝛽

≡

⟨𝐷𝐷𝑁𝑁𝑁𝑁⟩
⟨𝐷𝐷𝑄𝑄𝑁𝑁⟩

, (7)

where averages of 𝐷̄𝐷 are performed using the probability distribution P(Bw, 
β) of the first or second statistics of observed wave-packets, and the factor 
𝛽𝛽 = 𝛽𝛽∕min(𝛽𝛽) allows to take into account the important fact that the contri-
bution of wave-packets to the time-averaged wave intensity is proportional 
to their duration β. The ratio 〈R〉 given by Equation  7, averaged over the 
full distribution of wave-packets, can be used to rescale classical quasi-linear 
diffusion rates employed in Fokker-Planck codes, to incorporate the effects 
of nonlinear resonant interactions.

Figure  10 shows the ratio 〈R〉  =  〈DNL〉/〈DQL〉 of nonlinear to quasi-linear 
effective diffusion rates averaged over the two different wave-packet empir-
ical distributions of wave-packets displayed in Figure 9, as a function of AE 
and for three energy/pitch-angle ranges. Typical wave amplitude modulations 
within packets of the second empirical distribution of (Bw, β) are similar to 
the moderate modulation used in simulations in Figure 7c1, 7c2, and 8 (top). 
Therefore, the effective diffusion rates D(Bw, β) obtained from simulations 
with the moderate amplitude modulation has been directly convolved with 
the probability of occurrence P(Bw, β) of the second empirical distribution 
to obtain 〈R〉, shown in Figure  10 by dashed red curves. In contrast, all 
wave-packets of the first empirical distribution are characterized by an ampli-
tude modulation by a factor slightly larger than 2, but much smaller than the 
factor of 20 used in simulations in Figure 7c1, 7c2, and 8 (top). Employing 
the same criteria for identifying packets as in the first empirical distribution, 
the simulation packets would be identified as packets (starting and ending 
at Bw/2) shorter by a factor of 3 than their full length β in simulations. For 
consistency, the effective diffusion rates D(Bw, β) obtained from simulations 
with a moderate modulation are therefore convolved with the probability of 
occurrence P(Bw, β/3) of these simulation packets in the first empirical distri-
bution. The corresponding estimates of 〈R〉 are shown in Figure 10 by dashed 
blue curves.

Figure 10 shows that 〈R〉 = 〈DNL〉/〈DQL〉 increases with geomagnetic activity 
from AE < 50 nT to AE ∼ 400 nT, due to an increasing fraction of intense and/
or long packets during more disturbed periods (Zhang et al., 2018, 2019). 〈R〉 
averaged over the second empirical distribution of wave-packets (dashed red 

curves) is significantly higher than 〈R〉 averaged over the first empirical distribution (dashed blue curves). This is 
due to a much stronger contribution to 〈R〉 from long (β > 100) and intense (Bw > 250 pT) packets in the second 
empirical distribution than in the first one, where such packets are rare. The strongest contribution in the first 

Figure 10. Ratio ⟨𝑅𝑅⟩ = ⟨𝐷̄𝐷 (𝐵𝐵𝑤𝑤, 𝛽𝛽) 𝛽𝛽⟩𝐵𝐵𝑤𝑤 ,𝛽𝛽∕⟨𝐷̄𝐷 (𝐵𝐵𝑤𝑤,min , 𝛽𝛽) 𝛽𝛽⟩𝛽𝛽 ≡ ⟨𝐷𝐷𝑁𝑁𝑁𝑁⟩∕⟨𝐷𝐷𝑄𝑄𝑁𝑁⟩ 
of nonlinear to quasi-linear effective diffusion rates, averaged over two 
empirical distributions of intense wave-packets (with Bw > 50 pT), for two 
different wave amplitude modulations and three electron energies, as a function 
of AE (with 𝛽𝛽 = 𝛽𝛽∕min 𝛽𝛽 ). Blue curves show results for the first empirical 
wave-packet distribution in top panels of Figure 9, using a rescaled probability 
of occurrence P(Bw, β/3). Red curves show results for the second empirical 
wave-packet distribution in bottom panels of Figure 9, using P(Bw, β). Dashed 
curves show results for a moderate amplitude modulation in simulation 
packets (as in top panels in Figure 8). Solid red curves show results for the 
second empirical wave-packet distribution when wave phase decoherence is 
approximately taken into account by replacing 𝐷̄𝐷 (𝐵𝐵𝑤𝑤, 𝛽𝛽) at the numerator 
and denominator of Equation 7 by 𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝐿𝐿𝑐𝑐𝑐𝑐𝑐) ⋅ INT(𝛽𝛽∕𝐿𝐿𝑐𝑐𝑐𝑐𝑐) + 𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝛽𝛽

∗) 
for β > Lcoh, where β* = β − Lcoh ⋅ INT(β/Lcoh) and Lcoh = 50 (red circles) or 
Lcoh = 100 (empty diamonds) wave periods. Solid blue curves show results 
for the first empirical distribution with a strong amplitude modulation in 
simulation packets (as in bottom panels in Figure 8). Numbers used for this 
figure can be found in Table S1 in Supporting Information S1.
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empirical distribution actually comes from short (β < 10) and intense (Bw > 250 pT) packets that correspond to a 
lower R than long and intense packets in Figure 8.

How to reconcile the different results obtained for these two different empirical distributions of chorus 
wave-packets, which have been derived from the same spacecraft measurements simply by using different criteria 
for the identification of wave-packets? These different results point to the presence of an additional parameter 
in the system, the presence of wave phase jumps, implicitly taken into account in one empirical distribution but 
not the other. Strong and random wave frequency and wave phase jumps are known to occur between successive 
wave-packets over half of a wave period, usually at times when the wave amplitude rapidly decreases to a mini-
mum (usually higher than ∼50 pT), preventing a coherent nonlinear interaction (phase trapping) over consec-
utive packets (Zhang, Agapitov, et al., 2020; Zhang, Mourenas, et al., 2020) and making it more similar to an 
interaction with isolated wave-packets (Mourenas et al., 2018; Zhang, Agapitov, et al., 2020). This is consistent 
for long (β > 50) packets with what happens in simulations with moderate or strong modulations in Figures 7 
and 8, because such long packets are separated in simulations by sufficiently long intervals of low amplitude to 
prevent consecutive trappings of the same electrons by successive packets during a bounce period. The strong 
and random wave phase jumps ΔΦ ∼ 0.5–2 rad preventing continuous or successive coherent nonlinear interac-
tions usually correspond to a cluster of 2–4 consecutive wave frequency jumps Δf/f > 0.3–0.5 (each over a wave 
half-period) with a simultaneous wave amplitude variation reaching >30–50% of the peak amplitude (Zhang, 
Agapitov, et al., 2020).

However, Zhang, Mourenas, et al. (2020) have shown that such strong frequency jumps Δf/f > 0.5 also occur on 
average over ∼3% of the wave half-periods in the heart of long (β > 50) wave-packets, with a statistical occur-
rence rate remarkably independent of packet length β. Such strong frequency jumps typically occur in clusters 
of ∼3 jumps in as many consecutive wave half-periods, each cluster corresponding to one phase jump (Zhang, 
Agapitov, et al., 2020; Zhang, Mourenas, et al., 2020). This suggests a maximum wave phase coherence length 
of Lcoh ≃ 50–100 wave periods for long packets with β > 50, in agreement with previous estimates (Agapitov 
et al., 2017). This is consistent with the near absence of long (β > 50–100) and intense (Bw > 0.25 nT) packets 
in the first empirical distribution in Figure 9 (top), which implies that nearly all such long packets in the second 
statistics actually contain strong wave amplitude (by at least a factor of 2) and wave phase jumps that likely limit 
coherent nonlinear interaction to Lcoh < 50–100 wave periods. Such wave phase decoherence within long packets 
is already roughly taken into account in the first empirical distribution in Figure 9 (top), where long packets have 
already been split into several shorter packets when their amplitude decreases below half of their peak amplitude 
(Zhang, Mourenas, et al., 2020). However, it is not taken into account in the second empirical distribution, leading 
to an overestimation of nonlinear effects and 〈R〉.

To include such wave phase decoherence effects in the second empirical distribution of wave-packets, we assume 
to first order that all long packets with β > Lcoh ≃ 50–100 correspond to a coherent nonlinear interaction limited 
to independent sub-intervals of β = Lcoh (or less) wave periods. This is done by replacing 𝐷̄𝐷 (𝐵𝐵𝑤𝑤, 𝛽𝛽) at the numer-
ator and denominator of Equation 7, by �̄(��, ���ℎ) ⋅ INT(�∕���ℎ) + �̄(��, �

∗) for β > Lcoh, keeping the same 
probability distribution P(Bw, β) as before, with INT(x) the floor (or integer) function and β* = β − Lcoh ⋅ INT(β/
Lcoh). The resulting refined estimates of 〈R〉 for the second empirical statistics are shown in Figure 10 by solid 
red curves, with red circles for Lcoh = 50 and with white diamonds for Lcoh = 100. One can see that 〈R〉 is strongly 
reduced by phase decoherence (compare dashed red and solid red curves). But the difference between results for 
the first and second empirical distributions (dashed blue and solid red curves, respectively) remains similar, or 
even increased at 100 keV where 〈R〉 for the second empirical distribution is now smaller than for the first one.

Although our approximate inclusion of wave phase decoherence effects in the evaluation of 〈R〉 for the second statis-
tics may lead to some underestimation of 〈R〉, one additional effect must be taken into account in the case of the first 
empirical distribution of packets. For short and intense packets with β < 10–20, which strongly contribute to 〈R〉 
for the first statistics but almost do not contribute for the second empirical distribution, the simulations in Figure 8 
(top) sometimes contain consecutive trappings (Hiraga & Omura, 2020) that are absent in most cases for real short 
packets, because the latter are usually separated by strong random wave phase jumps (Zhang, Agapitov, et al., 2020). 
This inclusion of consecutive trappings implies a probable overestimation of 〈R〉 calculated for the first empirical 
distribution using simulation packets with moderate amplitude modulation (dashed blue curves). To suppress this 
overestimation, 〈R〉 is now calculated for the first empirical distribution based on simulations with packets possess-
ing a strong modulation, as in Figure 7c3 and 8 (bottom). In such simulations, the occurrence of multiple trappings 
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in consecutive short packets is indeed sensibly reduced as compared with simulations using packets with a moder-
ate modulation. The resulting more realistic estimate of 〈R〉 for the first empirical distribution is shown by solid 
blue curves in Figure 10. Our two final estimates of 〈R〉 based on the first and second empirical distributions of 
wave-packets (solid blue and solid red curves, respectively) are relatively close to each other, especially at 300 keV 
and 1 MeV, demonstrating a rough consistency. The remaining differences illustrate the remaining uncertainties in 
our approximate models of chorus wave-packet amplitude modulations and wave phase decoherence.

For 100–300 keV electrons with αeq ∼ 40°–50°, our estimates of 〈R〉 (solid blue and red curves in Figure 10) are 
comprised between ∼1.2–1.5 and ∼2–3, with only a slight increase from low (AE < 50 nT) to high (AE = 350 nT) 
geomagnetic activity. Therefore, such electrons can be accelerated ∼1.5–3 times faster when nonlinear resonant 
interactions with intense wave-packets are taken into account, as compared with a purely diffusive (quasi-linear) 
acceleration. This faster electron acceleration can be present during disturbed periods (e.g., during geomagnetic 
storms or prolonged periods of substorms, see Li et al., 2014; Thorne et al., 2013) characterized by whistler-mode 
waves more often reaching time-averaged amplitudes higher than 50 pT (Zhang et al., 2018), because the corre-
sponding wave-packets reach significantly higher peak amplitudes, often sufficient to enter the nonlinear regime 
of wave-particle interaction (e.g., see Artemyev, Agapitov, et al., 2016; Cully et al., 2011). The moderate increase 
of 〈R〉 with AE is probably due to a dominant contribution from moderately long (β < 30–100) and not too 
intense (Bw < 0.8 nT) wave-packets, whose distribution does not change significantly with AE in Figure 9. The 
very slight decrease of 〈R〉 for AE > 500 nT apparently comes from a slight reduction of β for this population of 
wave-packets, but this variation may not be real because there are less data and larger uncertainties in distribution 
parameters during such highly disturbed periods.

For 1 MeV electrons with αeq ∼ 15°, cyclotron resonance can be reached only at high magnetic latitudes, where 
the background geomagnetic field gradient is sufficiently strong to prevent nonlinear resonant interaction for 
moderately intense waves, whereas the occurrence rate of intense (Bw > 0.5 nT) waves (see Figure 8, right panel) 
is not sufficiently high (see Figure 9) to strongly increase the average 〈R〉. As a result, 〈R〉 remains in the range 
∼1.2–1.9 from low to high AE for such electrons. The corresponding increase of the loss rate of 1-MeV electrons 
is similar to the increase of the acceleration rate of 100–300 keV electrons. However, it is worth remembering 
that ducted propagation of the waves up to high latitudes has been assumed to calculate 〈R〉 for 1 MeV electrons 
(Artemyev, Demekhov, et al., 2021; Chen et al., 2022; Zhang, Angelopoulos, et al., 2022). In the opposite but 
more frequent case of unducted wave propagation, the waves would rapidly become more oblique and, in general, 
would be heavily damped before reaching the latitude of resonance with 1 MeV electrons (Chen et al., 2021). 
Consequently, the time intervals with intense, ducted chorus waves should be characterized by a faster increase of 
1-MeV electron flux and by stronger precipitations of 1-MeV electrons (Chen et al., 2022; Miyoshi et al., 2020; 
Zhang, Angelopoulos, et  al.,  2022) than in calculations assuming a purely quasi-linear electron diffusion 
(Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, & 
Li, 2014), but it may not be the case during the more frequent periods with unducted wave propagation.

However, it is worth emphasizing that 〈R〉 has been evaluated above (in Figure 10) solely based on empirical 
distributions of intense chorus wave-packets with amplitudes Bw > 50 pT. Such intense wave-packets can be 
observed during both periods of weak and strong geomagnetic activity, with similar (Bw, β) distributions of 
packets contributing the most to 〈R〉. However, such intense wave-packets are mainly observed during disturbed 
periods, like storms and substorms (Zhang et al., 2018), and less frequently during quiet periods. Figure 11a 
shows the fraction Fiwp of total chorus wave power contained in such intense wave-packets (with Bw > 50 pT), 
obtained from 9 months of lower-band chorus waves measurements by the Van Allen Probes in March-November 
2017, demonstrating that this fraction Fiwp indeed increases from ∼30% to ∼45% as AE increases from 50 to 
1,000 nT. This full distribution of wave power can be used to estimate the full statistical ratio 〈R〉stat ≡ 〈DNL〉/
〈DQL〉 of effective (nonlinear and quasi-linear) to quasi-linear diffusion rates of electrons in the outer radiation 
belt, averaged over all (weak and intense) chorus waves observed during periods within a given AE range, by 
replacing ⟨𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝛽𝛽) ⋅ 𝛽𝛽⟩𝐵𝐵𝑤𝑤 ,𝛽𝛽 by 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 × ⟨𝐷̄𝐷(𝐵𝐵𝑖𝑖, 𝛽𝛽) ⋅ 𝛽𝛽⟩𝐵𝐵𝑖𝑖 ,𝛽𝛽 + (1 − 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖) × ⟨𝐷̄𝐷(𝐵𝐵𝑖𝑖,min , 𝛽𝛽) ⋅ 𝛽𝛽⟩⟩𝛽𝛽 in Equation 7.

Figures 11b–11d show the corresponding full statistical ratio 〈R〉stat averaged over all (weak and intense) waves for 
100 and 300 keV electrons with αeq ∼ 40°–50° and for 1 MeV electrons near the loss-cone, in the same format as in 
Figure 10 for 〈R〉 averaged only over intense wave-packets. All full statistical ratios 〈R〉stat in Figure 11 are sensi-
bly smaller than the corresponding intense packet ratios 〈R〉 in Figure 10, because intense wave-packets suscep-
tible to produce nonlinear effects contain only Fiwp<50% of the total wave power. As in Figure 10, solid blue and 
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red curves show the most realistic and consistent estimates of 〈R〉stat, obtained 
using the two different empirical distributions of intense wave-packets from 
Figure 9. Solid blue curves show results based on the first empirical distri-
bution of intense packets, with a strong amplitude modulation in simulation 
packets, using a rescaled probability of occurrence P(Bw, β/3). Solid red 
curves show results based on the second empirical distribution of intense 
packets in Figure 9, using P(Bw, β), with wave phase decoherence taken into 
account by replacing 𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝛽𝛽) by 𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝐿𝐿𝑐𝑐𝑐𝑐𝑐) ⋅ INT(𝛽𝛽∕𝐿𝐿𝑐𝑐𝑐𝑐𝑐) + 𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝛽𝛽

∗) 
for β > Lcoh, where β* = β − Lcoh ⋅ INT(β/Lcoh) and Lcoh = 50 (red circles) or 
Lcoh = 100 (empty diamonds) wave periods. One can see that the full statisti-
cal 〈R〉stat, now calculated over both periods of intense waves and periods of 
weak waves, increases with AE in all cases. As AE increases from 50 nT to 
400–800 nT, the statistical ratio 〈R〉stat increases from 1.07–1.5 to 1.12–2.0 
at 100  keV, from 1.2–1.3 to 1.25–1.5 at 300  keV, and from 1.05–1.25 to 
1.1–1.35 at 1 MeV.

6. Conclusions

In this paper, we have proposed an approach for the derivation of a rescaling 
factor R = DNL/DQL of the classical quasi-linear diffusion rate DQL of elec-
trons by whistler-mode waves, allowing in principle to incorporate long-term 
effects of nonlinear resonant interactions into Fokker-Planck radiation belt 
codes in a simple and practicable way. We considered a generalized, effec-
tive nonlinear diffusion rate DNL that would result in the same time-scale of 
electron distribution relaxation along resonance curves as the corresponding 
time-scale of evolution due to nonlinear interactions. We first noted that the 
ratio R = DNL/DQL depends on two main system parameters: wave intensity, 

𝐴𝐴 𝐴𝐴
2

𝑤𝑤 , wave packet length/duration, β. We proposed an approach for evaluating 
DNL for fixed wave characteristics.

Next, we provided the average rescaling factor 〈R〉  =  〈DNL〉/〈DQL〉 of 
quasi-linear diffusion rates DQL, averaged over empirical distributions of 
intense whistler-mode chorus wave-packet characteristics 

(

𝐵𝐵2

𝑤𝑤, 𝛽𝛽
)

 , derived 
from years of Van Allen Probes measurements at L  =  4–6 of intense 
packets with Bw > 50 nT. This rescaling factor has been evaluated for three 
energy/pitch-angle ranges of key importance in the outer radiation belt: 
∼1 MeV electrons with small pitch-angles and ∼100–300 keV electrons with 
medium/large pitch-angles. We found that 〈R〉 increases only weakly with 
geomagnetic activity (AE) and that nonlinear effects can speed up 0.1–1 MeV 
electron diffusive acceleration by a factor of ×2–3, while only slightly 
increasing the loss rate of 1-MeV electrons by a factor of ×1.5 (in the latter 
case, only for ducted wave propagation). The finite differences between our 
two different estimates of 〈R〉, based on two different empirical distributions 
of the same chorus wave-packets obtained using different wave-packet selec-
tion criteria, suggest that the effects of wave phase coherence on nonlinear 
interactions deserve further study. In particular, a further analysis of statisti-
cal properties of wave phase jumps inside wave-packets would be useful, as 
well as a more precise analysis of their effects in simulations.

But the ratio 〈R〉(AE) discussed above has been evaluated based solely 
on empirical distributions of intense chorus wave-packets, with ampli-
tudes Bw  >  50  pT. However, such intense wave-packets are observed 
more frequently during disturbed periods, like geomagnetic storms and 

substorms, than during quiet times (Zhang et al., 2018). Therefore, a second, more realistic statistical ratio 〈R〉

stat(AE) = 〈DNL〉/〈DQL〉 has been calculated by averaging nonlinear and quasi-linear diffusion rates over all chorus 

Figure 11. (a) Fraction Fiwp of the total lower-band chorus wave power 
contained by intense wave-packets (with Bw > 50 pT) as a function of AE, 
based on 9 months of Van Allen Probe measurements. (b–d) Full statistical 
ratio 〈R〉stat ≡ 〈DNL〉/〈DQL〉 of nonlinear to quasi-linear effective diffusion 
rates, averaged over the full distribution of chorus waves (including both 
intense packets and weak waves), for three electron energies and for two 
empirical distributions of intense wave-packets, as a function of AE. All curves 
show the same results as in Figure 10, but ⟨𝐷̄𝐷(𝐵𝐵𝑤𝑤, 𝛽𝛽) ⋅ 𝛽𝛽⟩𝐵𝐵𝑤𝑤 ,𝛽𝛽 has been replaced 
by 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 × ⟨𝐷̄𝐷(𝐵𝐵𝑖𝑖, 𝛽𝛽) ⋅ 𝛽𝛽⟩𝐵𝐵𝑖𝑖 ,𝛽𝛽 +

(
1 − 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖

)
× ⟨𝐷̄𝐷(𝐵𝐵𝑖𝑖,min , 𝛽𝛽) ⋅ 𝛽𝛽⟩⟩𝛽𝛽 in Equation 7. 

Numbers used for this figure can be found in Table S2 in Supporting 
Information S1.
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waves, intense (Bw > 50 pT) and weak (Bw < 50 pT), observed during periods within a given AE range. This full 
statistical ratio 〈R〉stat does increase with geomagnetic activity, varying from 〈R〉stat ∼ 1.0–1.2 during quiet peri-
ods to 〈R〉stat ∼ 1.35–2.0 when AE ∼ 400–800 nT, corresponding to strong substorms with important low-energy 
electron injections leading to the generation of intense wave-packets with Bw > 50 pT (Meredith et al., 2003; Li 
et al., 2009, 2011; Zhang et al., 2018).

The obtained statistical rescaling factor 〈R〉stat of quasi-linear diffusion rates accounts for the contribution of 
nonlinear resonant interactions in long-term electron flux dynamics. Note that 〈R〉stat can be significantly different 
from 1 only in the presence of sufficiently intense wave-packets, above the threshold for nonlinear resonant inter-
action. But it is worth emphasizing that chorus wave-packets usually reach peak amplitudes much larger than the 
(3-s to hourly) root-mean-squared time-averaged amplitudes of chorus waves, and that the threshold amplitude 
for nonlinear interaction can typically vary between 100 and 500 pT at L = 4–6, depending on electron energy 
and pitch-angle, on the background geomagnetic field inhomogeneity, and on the latitudinal wave power profile 
(Albert et al., 2013; Artemyev, Agapitov, et al., 2016). Accordingly, this rescaling factor 〈R〉stat should be carefully 
calculated in each parameter domain wherein nonlinear interactions are potentially available.

Increasing quasi-linear electron diffusion rates by factors 〈R〉stat ∼ 1.5–2.0 over long intervals of disturbances may 
have a profound impact on the long-term dynamics of ∼0.1–5 MeV electron fluxes, because electron diffusive 
acceleration is a gradual process such that a small fraction of the abundant low-energy electrons injected from 
the plasma sheet can ultimately be transported to much higher energy, where the electron flux is initially very 
small. As a result, even a limited increase in diffusion rate due to nonlinear interactions can potentially lead to a 
significant increase of >1 MeV electron fluxes over hours to days. Including such nonlinear effects into radiation 
belt codes could therefore probably help to better reproduce and forecast the dynamics of relativistic electron 
fluxes over the long run.

During shorter periods (less than a few hours), the nonlinear increase of electron diffusion rates can occasionally 
reach higher values than the full statistical ratio 〈R〉stat, when intense wave-packets are more frequent than in 
month-averaged statistics. In this case, the factor of increase of quasi-linear diffusion rates should be closer to 〈R〉 
averaged only over intense wave-packets, potentially reaching higher values 〈R〉 ∼ 2–3. This could explain some 
of the apparent step-like increases of relativistic electron flux observed within intervals of tens of minutes to a 
few hours by the Van Allen Probes during storms or substorms (Foster et al., 2017; Murphy et al., 2018; Thorne 
et al., 2013).

Finally, it is worth noting that the present approach of rescaling quasi-linear diffusion coefficients to take into 
account nonlinear effects requires electron mixing in the energy/pitch-angle space over a sufficient time (about 
1 hour or more) to make the electron distribution evolution more diffusive after averaging over a large number of 
nonlinear resonant interactions. It definitely does not work for short-time effects (like microbursts), but should 
work over time scales of hours, like during a typical storm. Such a description should provide the change of 
the variation rate of the electron distribution due to nonlinear effects, but it cannot reproduce any fine transient 
changes to this distribution.

Data Availability Statement

The authors acknowledge the Van Allen Probes EMFISIS data obtained from https://emfisis.physics.uiowa.edu/
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