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ABSTRACT

Open data sets that contain personal information are susceptible
to adversarial attacks even when anonymized. By performing low-
cost joins on multiple datasets with shared attributes, malicious
users of open data portals might get access to information that
violates individuals’ privacy. However, open data sets are primarily
published using a release-and-forget model, whereby data owners
and custodians have little to no cognizance of these privacy risks.
We address this critical gap by developing a visual analytic solution
that enables data defenders to gain awareness about the disclosure
risks in local, joinable data neighborhoods. The solution is derived
through a design study with data privacy researchers, where we
initially play the role of a red team and engage in an ethical data
hacking exercise based on privacy attack scenarios. We use this
problem and domain characterization to develop a set of visual
analytic interventions as a defense mechanism and realize them in
PRIVEE, a visual risk inspection workflow that acts as a proactive
monitor for data defenders. PRIVEE uses a combination of risk
scores and associated interactive visualizations to let data defenders
explore vulnerable joins and interpret risks at multiple levels of
data granularity. We demonstrate how PRIVEE can help emulate
the attack strategies and diagnose disclosure risks through two case
studies with data privacy experts.

Index Terms: Human-centered computing—Visualization—
Visualization application domains— Visual analytics;

1 INTRODUCTION

Accessibility of open data portals (e.g., NYC open data [41]) is
like a double-edged sword. On the one hand, they make institu-
tions and organizations accountable by providing public access to
proprietary information. On the flip side, inadvertent data leaks
could compromise the privacy of data subjects. Recent research
has shown how the lack of checks and balances in the conventional
release-and-forget model [45] makes it surprisingly easy to breach
privacy. An underlying reason for such a high privacy risk is the
joinability of multiple open data sets that contain information about
people. However, data owners and custodians (hereafter referred
to as defenders) lack effective ways in which joinability risks can
be summarized and communicated at the time of data set release or
whenever a vulnerability is detected online.

Several recent examples of privacy breach scenarios emphasize
the urgent need to address this problem. The Australian Depart-
ment of Health released de-identified medical records for 2.9 million
patients (10% of the population), but researchers were able to re-
identify the patients and their doctors using other open demographic
information [13]. Passengers’ private information might be dis-
closed through the public transportation open data released by the
city municipal of Riga, Latvia [36]. Researchers were also able
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to re-identify the details for 91% of all the taxis in NYC using an
anonymized open taxi dataset and an external dataset [23].

Complete automation of the risk evaluation process is not feasi-
ble due to several reasons, like the presence of noisy metadata and
the requirement for human expertise. Noisy metadata hinders the
automatic profiling of these datasets. The various definitions and
temporal nature of privacy risks, owing to the intermittent release
of new datasets, point to the necessity for a human-in-the-loop ap-
proach, where defenders can configure and update risk computation
techniques based on evolving compliance needs.

To address this critical need, we conducted a design study with
urban informatics and data privacy researchers to develop a proac-
tive risk inspector that is privy to the sensitive information that can
be leaked before and after dataset release in urban, open data portals.
PRIVEE, the visual analytic workflow resulting from this design
study process, acts as a data-driven risk confidante and informer
for the defender in the analysis loop. PRIVEE emulates potential
attack scenarios and enables defenders to triage risky dataset combi-
nations and ultimately diagnose the severity of disclosed information
through dataset joins. A defender can thus proactively check for
risks while releasing a dataset or depend on PRIVEE to be alerted
when new vulnerabilities emerge owing to newly available, joinable
data.

As the first contribution of this design study, we characterize
the problem of disclosure evaluation and develop a set of visual
analytic tasks that can be executed in a workflow to detect, cali-
brate, and inform data defenders about disclosure risks (Sections
3, 4). These tasks, developed in collaboration with privacy experts,
emerged when we analyzed the problem through the lens of an ad-
versary and developed several attack scenarios. We observed that it
is possible to breach the privacy of open datasets using these sce-
narios, thus corroborating the findings of NYC taxi data in a larger
scope where we can find information about data subjects [23]. As
our second contribution, we designed the visualizations required
for implementing the PRIVEE workflow and let defenders explore
and interpret risks at the metadata level, triage vulnerable dataset
groups and corresponding high-risk joinable dataset pairs, and ul-
timately reason about the severity of the information disclosed at a
record-level (Section 5). The design of these techniques is rooted
in the idea of automation with transparent explanations which are
responsive to user-controlled risk configurations (Sections 6, 7, 8).
Finally, we present an interactive interface to help data defenders
execute the workflow and demonstrate its effectiveness in the end-to-
end diagnosis of disclosure (Sections 9, 10) through two case studies
with domain experts.

2 BACKGROUND & RELATED WORK

The Open Data Charter was signed by the leaders of the G8 na-
tions in 2013, leading to the increasing adoption of datasets that
can be freely used, re-used, and redistributed by anyone, commonly
referred to as open datasets [8,31]. Though these are generally
anonymized before release, joining two anonymized datasets using
protected attributes can lead to the disclosure of sensitive informa-
tion. In this context, direct identifiers are those protected attributes
that can directly link to and identify an individual from a dataset
(like name, id, SSN), while quasi-identifiers are those protected
attributes that individually do not uniquely identify an individual
but when combined with others, can identify an individual (e.g., age,
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Figure 1: Open Data Disclosure risks using real datasets: (a) Two
individual-level de-identified open datasets can be joined using quasi-
identifiers like age, sex, race, location, and date in order to identify
an individual and reveal sensitive information about them like their
citation charge. (b) Aggregated-level datasets can cause disclosure
risk when a record with a meager value can be joined with another
individual-level dataset, e.g., the only 26-year-old Hawaiian female
living in a particular zip code has STD.

race, gender, location). Disclosure risks can be mainly of two types:
identity disclosure, where the data consumer knows who the indi-
viduals are, and attribute disclosure, where the values of different
quasi-identifiers or sensitive attributes (like disease, salary, etc.) are
revealed. Figure 1 shows two examples of identity and attribute
disclosures using open datasets related to traffic stop-search, police
citation, mobile clinic, and county health records.

A suite of anonymization methods [29] exists to address the
problem of linking among public and private datasets, for example,
between Census data and hospital records. The most promising
among those methods is the notion of differential privacy [25] that
the US Census has recently adopted [24,48]. However, besides US
Census data, which is just one of the sources of openly available data
about people and their behavior, there are now a plethora of open
data portals. As mentioned earlier, the adoption of open data is based
on the promise of transparency and utility, as depicted by the FAIR
principles [61], and at the same time, on the need for adherence
to emerging privacy laws [40]. The unrestricted availability of
open data [30] naturally raises the question: what if datasets within
the open data ecosystem are linked even without other sensitive
information from private datasets? Recent studies have demonstrated
how even heavily anonymized datasets can be used to re-identify
about 99% of Americans [45]. Re-identification or the disclosure
of sensitive information is a challenge that has been previously
explored by multiple researchers [19,20, 62].

Data owners often practice the release-and-forget model where
datasets, once released, are not analyzed further for potential privacy
risks concerning the newly released datasets [43,47]. However, the
risk of re-identification can be considered a temporal function [51],
thus requiring proactive monitoring of the risks. We developed the
PRIVEE workflow and visualization interface with the specific goal
of realizing a defender-in-the-loop analytical framework that can
be privy to the disclosure risks or possibility of accidental leak-
age of sensitive information whenever new datasets are released.
Though the target users of PRIVEE are mainly data custodians or
data owners, even data subjects [5] can use the workflow to in-
spect how vulnerable their identity or personal information might
be in the presence of multiple, linked data sets. We use the con-
cept of dataset joinability [38] in the presence of quasi-identifiers
as a means for calibrating disclosure risks that are communicated
using interactive visualizations throughout the PRIVEE workflow.
Commercial tools like Google Cloud Data Loss Prevention (DLP)
also help visualize the disclosure risk of a particular dataset using
the quasi-identifiers [59]. While we do find other examples of vi-
sualization techniques for expressing disclosure risks of individual
datasets [15,33] and sensitive information [16, 35], interactively vi-
sualizing disclosure risk among joinable open datasets is essentially
an open problem that we address in PRIVEE.

3 PROBLEM CHARACTERIZATION

To understand the requirements for addressing the disclosure risks
through the linking of open datasets, we decided to conduct a red-
team exercise with the help of researchers in data privacy and urban
informatics. A red-team exercise can be generally defined as a
structured process to better understand the capabilities and vulnera-
bilities of a system by viewing the problems through the lenses of
an adversary [63]. We engaged in a cold-start exploration process,
followed by a more focused exploitation of datasets with privacy-
related attributes, to develop a shared mental model of the problems
related to the vulnerabilities and understand the functional require-
ments of a system addressing these vulnerabilities. We used the data
sketches method and shared ideas about the different strategies with
our collaborators [37] and explored multiple attack scenarios.

Red-team exercises generally follow the cyber kill chain, which
starts with the initial reconnaissance step, where attackers try to
find vulnerable entry points into any target system [32]. Following
this step, we bootstrapped our red-teaming activity by first defining
an initial set of privacy-related attributes, like age, race, gender,
and location, to name a few. During our initial exploration, we
collected 39,507 datasets from around 500 data portals and ob-
served through an automated analysis that about 5404 datasets have
some combinations of quasi-identifiers. We filtered out datasets
related to non-human objects, leading to the retrieval of a seed set
of 426 datasets, including 151 individual record-level (e.g., records
of people committing crimes) and 275 aggregated record-level (e.g.,
college records) datasets [6]. Analysis of these datasets led to in-
teresting observations where some of the datasets have a highly
skewed distribution of records across different categories of the
quasi-identifiers. For example, the dataset Whole Person Care Demo-
graphics 2 [60] from the County of San Mateo Datahub portal [54]
has only one record for a 26-year-old Hawaiian female, similar to
the example shown in Figure 1b. This can lead to identity disclosure
and may leak sensitive information when joined with other datasets.

After building an initial collection of vulnerable datasets, we
aimed to understand the consequence of an attacker joining them
and accessing sensitive information. In this context, we would like
to highlight that join is a fundamental operation that connects two
or more datasets, and joinability is the measure to determine if two
datasets are linkable by any number of join keys [9,22]. When these
Jjoin keys coincide with protected attributes like age, race, location,
etc., the outcome of the join can potentially reveal sensitive informa-
tion about an individual or even disclose the individual’s identity. As
a next step in the red-teaming exercise, we randomly selected vul-
nerable pairs of datasets from multiple open data portals [10,41,44]
and analyzed them for joinability risks, in terms of what kind of
sensitive information may be leaked by these joins.

Several iterations of the selection of joinable pairs and join keys
led to the discovery of disclosure between the datasets Juvenile
Arrests and Adult Arrests from the Fort Lauderdale Police Open
Data Portal [28]. We observed that two individuals, aged 15 and 21,
mentioned separately in these datasets, were involved in the same
incident of larceny on 20! March 2018, at the Coral Ridge Country
Club Estate, Fort Lauderdale, similar to the example in Figure 1a.
We repeated this exercise and found other examples where dataset
joins ultimately led to disclosures.

4 VISUAL ANALYTIC GOALS AND TASKS

The results from the red-teaming exercise confirmed our intuition
that datasets with quasi-identifiers, when linked together, can po-
tentially divulge sensitive information. Analyzing the functional
requirements, we, together with our collaborators, concluded that
totally automating the risk evaluation process is infeasible as human
intervention is necessary at multiple stages of risk definition, inter-
pretation, and subsequent exploration of the dataset combinations
at high risk. To formulate a solution, we collaboratively developed
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Figure 2: PRIVEE is an end-to-end risk inspection workflow for open datasets that informs the defender in the analytical loop about potential
disclosure risks in the presence of joinable datasets. Interactive visualization plays a crucial role in bootstrapping the risk inspection process via
risk profiling, triaging and explaining risk signatures, and ultimately detecting instances of true disclosure at a record level. Colored borders track

datasets across the goals.

PRIVEE, a visual risk inspection workflow in which defenders can
proactively engage to stay one step ahead of the attackers (Figure 2).

PRIVEE is motivated by protecting the most vulnerable data sets
against data join attacks. The workflow serves the dual purpose of: 1)
observing the open datasets to detect potential privacy vulnerabilities
and ii) being a trusted informer for the data defenders that can visu-
ally explain and communicate disclosure risks while encouraging a
deeper exploration of the attack and defense strategies. Automating
the analysis of the disclosures directly at the record level can be
an alternative, but this may lead to a seemingly infinite number of
combinations to explore. Our streamlined workflow, developed from
the experience gained during this design study process, will help
the data defenders focus on a set of highly vulnerable datasets, thus
reducing the number of combinations to be explored. In this section,
we first describe the inputs and then define the high-level goals of
the PRIVEE workflow in order to map them to the corresponding
visual analytic tasks ultimately realized in a web-based interface.
Inputs to the workflow: We initiate our defense strategy on the
seed set of privacy-related datasets, which are about people as the
data subjects, that we collected during the red teaming activity.
While collecting these datasets, we followed the universally accepted
common quasi-identifiers like age, race, gender, etc., with the notion
that an open data ecosystem should, at a minimum, protect against
attacks using these well-known quasi-identifiers.

After carefully curating the metadata from the seed datasets, we

observed that there is no standard nomenclature for the attributes
across the different data portals. This lack of standardization estab-
lished the importance of creating a metadata dictionary, focusing
on the well-known quasi-identifiers while providing defenders the
guidance and flexibility to define other privacy-related attributes.
These attributes and the datasets selected based on their metadata
serve as the inputs to the PRIVEE workflow (Figure 2a).
G1: Triage Joinable Groups: Candidate datasets for inspection
selected from the initial input can be of the order of tens or hundreds.
Finding all possible combinations of dataset joins among them is
computationally expensive. Moreover, the large set of join outcomes
will not lend well to human interpretation of risk. Also, during the
red-teaming exercise, we observed that the risky datasets could also
be construed from the datasets with vulnerable data distributions.
Therefore, the next tasks in the defender’s workflow are to focus on
groups of datasets that can be joined and then triage those groups
based on risk indicators:

T1: Explore cluster signatures: As shown in Figure 2b, this task
lets defenders explore cluster signatures in terms of presence (clus-
ters c1, c3) or absence (cluster c2) of the privacy-related attributes
and their overall semantics. Involving the defender ensures that their
inputs influence the algorithms used for grouping, using weighted
clustering. They can thus control the triaging process by judging the
groups’ risks and privacy relevance. This task ultimately helps them
select clusters of interest for further inspection of joinability risks.

T2: Find vulnerable datasets based on data distributions: The
red-teaming exercise highlighted the presence of disclosure risk in

datasets with a highly skewed records distribution across different
categories of the quasi-identifiers. This task helps to distinguish
between the most vulnerable and other datasets by inspecting a high
likelihood of finding unique records for given quasi-identifiers.
G2: Compare Joinability Risks: Once a cluster of datasets is
prioritized for inspection as part of G1, defenders would like to
compare joinable pairs of datasets in this group that may potentially
disclose sensitive information. To achieve this goal, we use disclo-
sure risk metrics to automatically suggest risky pairs based on their
feature profiles and then visualize those suggestions so defenders
can interpret the metrics. The following task achieves this:

T3: Explore and Explain Disclosure Risks: This task focuses

on pairs of datasets that can be ranked using multiple disclosure
risk metrics. Within those rankings, we want to use visual cues that
directly explain: which features are responsible for high risk, the
differences between high and low-risk pairs, and if other features
should augment the defender’s definition of privacy relevance.
G3: Identify cases of disclosure: Once dataset pairs are selected as
part of G2, defenders would like to understand the severity of the join
outcomes. Fully automating this process may lead to many scenarios
where the disclosures are less concerning and do not warrant any
significant change in the defense strategies. To provide more control
to defenders in their diagnosis of cases of actual disclosure, the tasks
required to accomplish this goal are:

T4: Detect matching records across data sets: Matching records
are the records present in both datasets in a pair. The main objec-
tive of this task is to detect lower frequencies of matching records,
which may lead to the disclosure of sensitive information about an
individual or disclose their identity.

TS: Augmenting the risky feature set with suggestions: One way
of discovering disclosures is finding attributes that have the same
values for all the records of the joined datasets. For example, joining
two hospital datasets may reveal that all the patients common in both
the hospitals are treated for cancer, leading to attribute disclosure
for these patients. In this task, we suggest a set of attributes that
may be highly related to the joining attributes, thus helping the users
augment the feature set for the dataset join.

5 DESIGN OVERVIEW

The design of PRIVEE is motivated by the need for a transpar-
ent explanation and evaluation of the risk inspection process. We
implemented a web-based interface that enables data defenders to
iterate between multiple entry points, evaluate the reasons for the
dataset joinability and analyze disclosure risks for different com-
binations of datasets and attributes. In this section, we provide an
overview of the design requirements for realizing the aforemen-
tioned visual analytic goals and tasks. An interactive version of
the interface for PRIVEE may be accessed through the Chrome
browser at http://privee.dataopen.online/.

Risk Profiling at metadata level: PRIVEE helps to analyze the
datasets’ risk profiles through a filter bar, located conveniently at the
top of the interface (Figure 3a), which contains a search option for
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Figure 3: Interface Design: The design of PRIVEE comprises rich interaction among filters and multiple views: (a) Filter area helps select datasets
based on metadata like tags, data granularity, and privacy-related attributes; (b) Projection View lets the defenders compare the signatures of
different joinable groups of datasets and evaluate vulnerable data distributions; (c) Risk View helps compare the risk for dataset pairs and select
the high-risk pairs; (d) Disclosure Evaluation View helps to analyze the matching records for potential disclosures.

the different tags and options to select the data portals and the dataset
granularity. During the initial page load, this filter bar is positioned
at the center of the page in order to avoid overwhelming the user
with the search results. Defenders can select any combination of the
tags from the tags search option, which is enriched with a modified
bar chart showing the frequency distribution of the tags. Though the
tags are sorted in descending order, the grey bar in the background
(achieved by tweaking a linear-gradient bar) provides an idea of the
frequency distribution of these tags among all the collected datasets.
Privacy-related attributes can also be selected using filters.

Triaging joinable groups: In order to fulfill G1, PRIVEE employs
a set of visualizations to help the data defenders triage the joinable
groups from the datasets selected using their metadata. This in-
cludes a projection plot, a word cloud, and a bar chart depicting
the attributes’ frequency, as illustrated in Figure 3b. This combina-
tion of visualizations is repeated for the different groups of joinable
datasets. Though PRIVEE automates the grouping of the datasets,
these visualizations provide the data defender a transparent method
to understand the group signatures and update the groups based on
their domain knowledge and definition of privacy relevance.

Finding vulnerable datasets: PRIVEE helps the data defenders
select vulnerable datasets by showing a distribution of the values of
the privacy-related attributes through a combination of histograms
(for numerical attributes) and bar charts (for categorical attributes),
as shown in Figure 3b. This combination is repeated for each dataset,

ranked according to their degree of vulnerability. It is also responsive
to the privacy-related attributes selected through the filter area. The
vulnerable categories for these attributes and their labels are shown
in bright red to help defenders efficiently select vulnerable datasets.
Comparing Joinability Risk: PRIVEE automatically computes the
possible pairs from the datasets selected from either Projection View
or the Vulnerable Datasets View and ranks them according to their
joinability risk. The visual cues, shown in Figure 3c, help the data
defender compare different datasets and select the high-risk pairs on
a priority basis. Overall information about the risk score distribution
allows flexible selection of dataset pairs of varying risk.
Identifying disclosures: The disclosure of sensitive information can
depend on multiple factors, subject to evaluation by the data de-
fender. In this Disclosure Evaluation View, as shown in Figure 3d,
PRIVEE lets the data defender analyze the matching records gen-
erated for a specific dataset pair and a join key selected from the
Risk Assessment View. PRIVEE also suggests other features to help
the defenders select a better join key, helping them understand the
relationship between different attributes and possible disclosures.

6 TRIAGE JOINABLE GROUPS (G1)

Data defenders need to analyze the degree of joinability between
datasets. Hence, the design requirements for addressing tasks T1 and
T2 are to develop human-in-the-loop clustering methods responsive
to multiple definitions of privacy relevance, along with transparency



in analyzing cluster signatures. This enables defenders to develop a
mental model of the context and the degree of the potential vulnera-
bility of subsequent joins. In this section, we discuss the analytical
methods and visualizations to find and triage the joinable groups.

6.1 Weighted clustering for finding joinable datasets

Converting Data Attributes to Word Embeddings: The joinability
of two datasets is a function of shared attributes. Hence, the datasets
with similar attributes should be more joinable. Attribute names
in open datasets are often noisy and inconsistent, making it com-
putationally difficult to perform a binary search for the presence
or absence of certain attributes. We focus on the idea that similar
attribute names can capture the semantic similarity among multiple
datasets that might have a similar context. We use a word-embedding
approach that simultaneously satisfies the need to capture datasets’
joinability and their semantic similarity. Word embeddings can be
defined as real-valued, fixed-length, dense, and distributed represen-
tations that can capture the lexical semantics of words [2,4]. Hence,
we converted the data attributes into their corresponding word em-
bedding form using Python’s spaCy library [55] and created a vector
representation for the attribute space of each dataset. The vectors
with a smaller distance between themselves signify datasets with
similar attributes, hence more joinable.

Adding Weights for Privacy-related attributes: At this stage, all the
data attributes have equal importance in the vector representation of a
dataset; hence, datasets with attributes like version, version number,
etc. may be marked similar to each other. However, these attributes
may not have much significance in the context of privacy. Hence,
we decided to add weights to some of the privacy-related attributes
identified from the seed dataset corpus. Attributes like age, race,
gender and age at arrest were selected, and adding more weights to
these attributes signifies that datasets having these attributes may be
marked as more joinable. Any disclosure using these datasets can
be considered a high risk, which will help further triage the datasets.

Cosine similarity is widely used to measure the similarity be-

tween words and documents [14,56]. However, word embeddings
are mere representations of the words, and multiplying them with
numeric weights would not increase the cosine similarity between
two datasets. Hence we introduced a weight vector where we as-
sign a weight if the privacy-related attributes selected by the data
defender are present in the dataset. If a data defender selects the
privacy-related attributes [age, gender; race], then the corresponding
weight vector for a dataset with only the age and gender attributes
would be [x,0,x], where x represents the weight assigned to the
privacy-related attributes. We concatenate these weight vectors with
the corresponding word embedding vectors to get the final vector
representation of each dataset.
Projecting the datasets and finding Clusters: Each dataset is now
represented by a vector with more than 300 elements/dimensions,
and comparing these datasets using a 2-D or 3-D plot would be
challenging if all the dimensions were used. Hence we used the
t-SNE dimensionality reduction algorithm to reduce these into two-
dimensional vectors [57]. A 2-D projection of the datasets might not
readily reveal dataset groupings. Hence, we experimented with clus-
tering algorithms like KMeans [58], DBSCAN [27,50], Birch [64],
and OPTICS [3,49]. After a careful analysis of the clusters’ quality
and the cluster density scores, we selected the DBSCAN algorithm.
Evaluating the clusters: There can be multiple groups of simi-
lar/joinable datasets, which would lead to the creation of multiple
clusters. A data defender may find it challenging to evaluate all of
these clusters. Hence we have employed a few cluster evaluation
techniques to triage these clusters (T1).

One of such metrics is the Calinski-Harabasz Index which is
defined as the ratio of the between-cluster dispersion and the inter-
cluster dispersion, where dispersion means the sum squared distance
between the samples and the barycenter [7]. A higher score signi-

fies that the different clusters are far away, implying better cluster
formation. We designed an experiment to evaluate the difference in
the results from this metric along with other metrics like Silhouette
Score [46] and Davies-Bouldin Index [18] and selected the Calinski-
Harabasz Index since we observed that it could efficiently guide
defenders in finding meaningful, joinable datasets. Further details
about this experiment can be found in the supplementary materials.
Finding vulnerable data distributions: A particular cluster can have
multiple datasets with vulnerable data distributions, leading to the
disclosure of sensitive information when joined with other individual
record-level datasets. Hence, we found such data distributions and
ranked these datasets according to their degree of vulnerability (T2).

In order to evaluate the degree of vulnerability, we first analyzed
all the datasets and created the record points for the privacy-related
attributes present in them. Record points are the unique categories
for a specific attribute, while vulnerable record points are those
record points that have very few records for them, as shown in
Table 1. These datasets are then sorted based on the number of
such vulnerable record points present and the frequency of the most
vulnerable record point. The intuition here is that a dataset with
more vulnerable record points is more prone to disclosure risk using
these privacy-related attributes.

Description
For age=11, there is only 1 record
[“age”, 15, 5] For age=15, there are 5 records
[“gender”, “F”, 2] | For gender="F", there are 2 records
Table 1: Sample record points

Record points
[“age”, 11, 1]

6.2 Visualizing joinable group signatures

We designed the Projection View to provide an overview of the
datasets and the joinable groups (T1) and perform an automatic
evaluation of the vulnerable data distributions of the datasets in each
joinable group (T2). Data defenders can review the group signatures
through the different components of the Projection View and update
the parameters to see the details and the data distribution of the
datasets that match their mental model of privacy relevance. The
components of these views are described as follows:

Joinable groups: Given a set of datasets selected based on their
metadata, defenders need to find groups of datasets that can be
joined together. The analytical process is performed automatically
by PRIVEE, leading to the formation of joinable clusters, which are
represented using a multi-dimensional projection plot, as illustrated
in Figure 4a. Here, a red dot represents an individual record-level
dataset in a particular cluster, while the grey dots represent the
datasets not in that cluster. During this design study, we realized
that some of the datasets are highly joinable due to their similarity in
the attribute space, which would cause overlapping of the dots in a
cluster. Hence, the overlapping datasets are represented by a single
dot with the number of overlapping datasets inscribed in it. For
example, Figure 4a shows a cluster of seven highly similar datasets
represented using a red dot. This view contains multiple projection
plots, where each plot represents a group of joinable datasets. It
helps the data defender quickly compare the different groups from
a single view. The dual color encoding scheme (red-grey) helps
visually differentiate between the datasets in a group and the other
datasets. Initially, a scatterplot with different colors for the different
clusters was also considered for this view. However, it was realized
that it is challenging to assign perceptually different colors to each
cluster when the number of clusters is large, due to the limits of
perception. Hence, a multiple plot design approach was chosen with
the two-color encoding scheme.

Transparent explanation of joinability and vulnerability: Under-
standing the cluster signatures is crucial in understanding the reason
behind the genesis of a joinable group (T1) and the presence of data
vulnerabilities (T2). Since we have construed these dataset groups
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Figure 4: Projection View: A group of joinable datasets is repre-
sented using (a) a projection plot. The (b) frequency distribution
bar chart and (c) word cloud for the attributes of a group of joinable
datasets help in the transparent explanation of the group signatures.

based on the similarity in their attribute space, it is essential to under-
stand the frequency of the attributes present in these groups. Hence,
bar charts become the natural choice for displaying the most frequent
attributes in a group and their frequency, as illustrated in Figure 4b.
These bar charts are sorted according to the attribute frequency, yet
the frequencies of the privacy-related attributes are shown first. The
vulnerable datasets are also represented using bar charts (for cate-
gorical attributes) / histograms (for numerical attributes) for each of
the privacy-related attributes present in them. However, bar charts
can have the limitation of visual scalability where only a certain
number of bars can be shown due to space constraints [26]. In order
to overcome this limitation, we also introduce word clouds of the
attributes, as shown in Figure 4c. All the attributes present in at least
two datasets in a joinable group are represented in this word cloud,
with the size channel representing their frequency.

The bar chart in Figure 4b explains the similarity of the datasets
since all seven of these datasets have gender and race attributes, thus
transparently explaining the group signatures. Besides overcoming
the visual scalability limitation of the bar chart, the word cloud also
helps the data defenders look for other attributes of interest that may
have a lower frequency but have much larger relevance in the context
of privacy. For example, attributes like victim age and offender age
may not be significant for a general user; however, a data defender
working with law enforcement may find them interesting since these
attributes are used in the police datasets. PRIVEE enables the data
defender to update the default selection of the privacy-related at-
tributes, which triggers a re-rendering of the whole Projection View,
thus automatically calculating new groups of joinable datasets with
extra weightage to the newly added privacy-related attributes victim
age and offender age. Together, these Projection View components
enable human-in-the-loop dataset grouping that is adaptive to var-
ious definitions of privacy relevance by transparently displaying
measures to evaluate cluster signatures.

7 COMPARE JOINABILITY RISKS (G2)

Dataset groups from the Projection View can lead to multiple pair-
wise combinations of datasets, where the data defenders need to
analyze each pair for their joinability risk. Hence, the design require-
ment for addressing G2 is to facilitate efficient visual comparison
of the risk profile of dataset pairs and guide defenders towards fo-
cusing on high-risk dataset pairs. In this section, we describe the
metrics that can help a data defender quantify the risk of joinability
between the candidate datasets and the subsequent use of visual cues
to compare and prioritize the joinable pairs.

7.1 Metrics for Joinability risk comparison

Multiple metrics that can help the data defenders compare the join-
ability risks between different dataset pairs were explored during the
design study process. In this subsection, we define the mathematical
formulas for the different metrics that highlighted the joinability
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Figure 5: Risk Assessment View: (a) The distribution of privacy-
related attributes can affect the joinability risks between (b) dataset
pairs. Data defenders can compare the risk between these pairs
by analyzing the (c) sorted bar chart showing the shared attributes
and the joinability risk score represented by the (d) risk score bar.
They can use the (e) risk score distribution histogram to focus on the
dataset pair of their interest.

risks better and were selected as part of the PRIVEE workflow.
Metric based on attribute profile: Shannon’s entropy is a measure
of the uncertainty of a random variable [11]. It has been widely used
as a privacy metric [1,21,42,52], as higher entropy signifies more
unique values for that attribute, thus resulting in higher disclosure
risk. Hence, we used this metric to help defenders find joinable
attributes for a pair of datasets. For a pair of datasets (say A and
B), we first calculated Shannon’s entropy of each of their shared
attributes according to equation 1 and kept their maximum as the en-
tropy score for that attribute. The intuition here is that the attributes
with higher entropy can be offered as suggestions to the defender
for the join key.
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where X represents attribute X in dataset J (J € {A,B}), H(X))

represents the entropy of an attribute present in dataset J while x;,
represents each category of the attribute X; in dataset J.
Metric based on dataset pairs in a join: Since the joinability of two
datasets depends upon the number of shared features/attributes be-
tween them, the joinability risk score can be calculated as a function
of the number of shared attributes and the number of privacy-related
attributes between a pair of candidate datasets. The formulae for the
Jjoinability risk score can be defined as follows:

risk = o x p+(c—p) )

where ¢ is the empirical risk ratio (a constant), p is the number of
privacy-related attributes and c is the number of shared attributes.

The joinability risk score depends on the empirical risk ratio, and
to determine its value, we designed an experiment to calculate the
risk scores of all the possible combinations of joinable pairs from the
seed datasets (*20C, = 90,525 combinations). We observed that the
value @ = 50 works well to separate the dataset pairs with privacy-
related attributes and pairs without them; hence the empirical risk
ratio was fixed at the value of 50. We have included further details
about this experiment in the supplementary materials.

7.2 Visual risk assessment

PRIVEE uses multiple visual analytic components to encode the
joinability risk metrics, and these components together form the
Risk Assessment View. This subsection describes how we map these
metrics with the components of this view so that data defenders can
pro-actively analyze the risk between the candidate datasets.

Comparing shared attributes set: The shared attributes’ entropy
metric encodes the attribute profile information, potentially high-
lighting if an attribute should be included in the join key. In the Risk
Assessment View, these attributes and the entropy are represented
using a descending sorted bar chart between the dataset names, as
illustrated in Figure 5c. The horizontal position shows the different



attributes, while the vertical position encodes the entropy of these
attributes. The bars for the privacy-related attributes are colored in
violet (plum kingdom), while the other bars were colored in grey,
thus following the similar colorblind-safe two-color strategy used
in the other views. During an initial design iteration, each shared
attribute was represented using a small rectangular box, with each
box containing the attribute name in it. However, we realized that
this design leads to the loss of information about the difference
in entropy between the different shared attributes. This led to the
current design of the sorted bar charts where the data defender can
analyze the entropy, select any number of the shared attributes as
the join key for the dataset pair and evaluate them for disclosures.
Comparing risks: Each dataset pair (Figure 5b) is represented with
a combination of the following components: dataset names, shared
attributes, and the joinability risk bar. These pairs are sorted accord-
ing to the risk score. Thus, a top-ranked dataset pair would imply
higher chances of joinability. In order to highlight the joinability
risk score between the dataset pairs, the Risk Assessment View has
a joinability risk bar for each dataset pair (T3), as shown in Fig-
ure 5d. This bar is filled with a linear gradient between the grey
and red colors, representing low-risk and high-risk dataset pairs.
The exact risk score is highlighted using a black vertical bar. The
choice of the colors, following the two-color scheme used across
the different views in PRIVEE, helps express the joinability risk
score on a scale of low to high scores. This view also shows an
overview of the shared privacy-related attributes and the risk score
distribution between the dataset pairs using a horizontal bar chart
and a histogram (Figure 5a and Figure 5e). PRIVEE also automati-
cally selects the joining attributes based on their entropy and privacy
relevance, which the data defender can further augment.

8 IDENTIFYING DISCLOSURES (G3)

The design requirement for addressing tasks T4 and T5 is to let the
defenders judge the degree of sensitive information that can ulti-
mately be disclosed through the joins. Since an apriori definition
of risky features is insufficient, PRIVEE also suggests additional
features to defenders for diagnosing sensitive matches. In this sec-
tion, we first discuss the methods used for evaluating the disclosures,
followed by the design of the visual cues that can help evaluate them.

8.1 Methods for disclosure evaluation

During the red-teaming exercise, we realized that the join key could
vastly influence the disclosure of sensitive information. In this sub-
section, we discuss two methods for disclosure evaluation:

Based on the low frequency of matching records: Matching
records are the number of records present in the joined dataset.
Hence, the presence of matching records can indicate the possible
disclosures at the record level. However, the number of matching
records may vary according to the choice of attributes in the join key
and the type of records present in the datasets. For example, when
joined on attributes x and y, dataset A and dataset B may have 200
matching records, but when joined on the attributes x, y, and z, they
may have only 20 matching records. This implies that the attribute
combination x, y, and z have a better chance of discovering an actual
disclosure than the combination x and y. We have also observed
that matching records may contain duplicates if the original datasets
have duplicate or blank entries.

Based on the mutual information between the joining attributes:
The selection of the joining attributes is an iterative process in
PRIVEE. Mutual information measures the amount of information
one random variable contains about another [12] and quantifies the
mutual dependence of the two attributes of a dataset. Hence, we
use normalized mutual information to suggest other features that
defenders can use for detecting disclosures. PRIVEE automatically
calculates the normalized mutual information between the joining
attributes and the other attributes of the joined dataset. Next, it finds

the top-5 attributes with the highest mutual information score and
lets defenders consider those features for detecting matches (TS5).

8.2 Visual cues for evaluating disclosures

The design of the Disclosure Evaluation View follows Shneider-
man’s mantra [53], where PRIVEE first provides an overview of
the matched records, then allows the defender to explore them, and
finally lets them view the record details on demand. Here we discuss
the comparative visual cues [17] that aid in disclosure evaluation:
Exploration of matching records: Parallel Sets is a visualization
method for the interactive exploration of categorical data, which
shows the data frequencies instead of the individual data points [34].
PRIVEE shows the matching records using a modified parallel sets
visualization, as illustrated in Figure 3d. Here, each attribute of the
join key is represented using a stacked bar, where the height of the
stacks represents the frequency of the different categories of that
attribute. In the case of a numerical attribute, a histogram replaces
the stacked bar and shows its data distribution. The numerical data is
then divided into four equal bins to map them with the categories of
the other join key attributes. The parallel sets for the privacy-related
attributes are colored in violet, while that for the other attributes are
colored in grey, following the similar color scheme used in the other
views. The categories across the numerical and categorical attributes
are connected using ribbons. Each ribbon represents the number of
records in the joined dataset belonging to both categories. A simple
click interaction on any of these ribbons opens a pop-up window
showing the details of the records represented by the selected line.

This design helps detect both identity and attribute disclosures
through the matching records (T4). The thickness of the line may
represent the identity disclosure, while the height of the stacked
bar shows the attribute disclosure. For example, if there is only
one record with a certain combination of all the join key attributes,
this would be represented by a thin ribbon across the parallel sets
visualization. This may potentially lead to identity disclosure if an
individual is uniquely identified with this combination of the join key.
Suppose if an attribute has only one category, then the corresponding
stack height would cover all the height allocated to a certain attribute,
revealing that all the individuals belonging to both the datasets
have a particular feature and leading to attribute disclosure. This
Disclosure Evaluation View helps the data defenders ascertain the
degree of the sensitive information disclosed by visualizing the
overall relationship between the different attributes of the matching
records yet retaining the granularity of the dataset at the record level.
Suggesting potential joining attributes: PRIVEE uses bar charts
and histograms to encode the top-5 features with high mutual infor-
mation with the join key attributes. These suggestions are positioned
on the left and right-hand sides of the parallel sets, representing
the feature suggestions from either of the datasets (Figure 3d). The
privacy-related attributes are also highlighted in violet, while the
others are colored in grey, following a color scheme similar to the
interface’s other views. Selecting any attributes from the feature
suggestions would also update this visualization to include the newly
selected attributes. These attributes can be used as suggestions for
improving the initial set of joining attributes (T5). The data dis-
tributions and the ranking of the attributes help boost defenders’
understanding of the risky feature set that can be used as the join
key.

9 CASE STUDY: RISK CONFIDANTE

We report a case study that our data privacy collaborator and co-
author co-developed using the web interface of PRIVEE. He is a
senior researcher with more than 15 years of experience in privacy-
preserving data analysis and used PRIVEE as a privacy auditor.
Specifically, he wanted to determine if there are any disclosure risks
with the health-related datasets published in the open data portals and
validate the role of PRIVEE as a risk confidante for data defenders.
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Figure 6: PRIVEE as a risk confidante for defenders: (a) selecting datasets based on their metadata like the popular tag “health” and their
granularity of records, (b) finding and diagnosing the vulnerable data distributions and observing that there is only 1 record for the race “Hawaiian”,
(c) comparing the joinability risk with the individual record-level datasets and (d) evaluating the disclosures with the top 4 individual-level datasets

and observing that there is no disclosure.

Our collaborator selected the aggregated datasets in the interface
PRIVEE along with the privacy-related attributes age and race; and
then filtered them with the keyword “health” (see Figure 6a). He
also enabled the Vulnerable Datasets switch to check if there are
any vulnerabilities in the data distributions of these datasets. At this
point, our collaborator observed that the first few clusters do not have
such vulnerable datasets. However, the fourth cluster has the dataset
Whole Person Care Demographics 2 [60] from the open data portal
of San Mateo county [54]. This dataset had only 1 record where the
race was Hawaiian (Figure 6¢) (T2). This was a significant cause
of concern since if somebody knows a person in that county who
identified as Hawaiian, then any dataset with a similar race category
could potentially expose her health records. Thus, he started ana-
lyzing the risk of joining this dataset with all the individual-record
level datasets available through PRIVEE, as shown in Figure 6¢
(T3). He decided to join these dataset pairs on the selected privacy-
related attributes and the location attribute geocodedcolumnn since
he wished to find datasets containing information relevant to this
location. He observed that none of the top-4 dataset pairs yield any
matching record when joined on these attributes (Figure 6d). Thus,
our collaborator concluded that though this aggregated dataset has a
meager count of a particular race, it does not lead to any disclosure
(T4). He also analyzed a few other vulnerable datasets similarly but
found no disclosures. Thus, PRIVEE acts as a risk confidante for the
data defenders where they can analyze the disclosure risks for the
vulnerable datasets in the presence of other open datasets. He also
observed that he had not seen a tool with similar capabilities for in-
teractive risk calibration and triage and commented: “this is a great
visual tool to explore privacy risks of open data, with the ability to
visualize privacy risk across datasets in a dynamic manner”.

10 CASE STuDY: TRUSTED INFORMER

We report a case study that a researcher developed using the PRIVEE
web interface. He is a senior researcher and university professor
with over 25 years of experience in the fields of big data, cyber

security, and scientific visualization. He focused on validating the
role of PRIVEE as a trusted informer for the data defenders.

The researcher started by choosing the New Orleans Open Data
portal [39] and observed 7 datasets on the Projection View, which
were so similar in their attribute space that they were displayed
using an overlapping circle with the number of datasets inscribed.
Using the attribute distribution bar chart, he observed that none
of the default privacy-related attributes (age, race, gender) were
present in this group of datasets. However, on analyzing the word
cloud, he made an interesting observation that attributes like victim
age and offender age were present in these datasets, as shown in
Figure 7a (T1). Since, from his background knowledge, he knew that
these attributes are generally present in police datasets, he updated
the list of privacy-related attributes to select some of the similar
attributes like victim age, victim gender, victim race, and offender
age. As PRIVEE helps to triage the joinable groups of datasets based
on the data defender’s definition of privacy relevance, the Projection
View was updated to reflect the change in privacy-related attributes.

He selected all these seven datasets in order to compare the join-
ability risks of the 21 possible pairwise combinations in the Risk
Assessment View (T3). Since he wanted to focus only on the high-
risk pairs, he filtered out the low-risk pairs using the Risk Score
Distribution histogram. Joining the first pair of datasets, the re-
searcher observed that there are no matching records between them.

Next, he selected a pair of datasets, namely Electronic Police
Report 2016 and Electronic Police Report 2015, but augmented
the PRIVEE-suggested join key attributes and made the following
selection: location, victim age, offender age, victim race, victim
gender, offender gender, as illustrated in Figure 7b (T3). He joined
these datasets and observed 14 matching records in the Disclosure
Evaluation View. He inspected further details about a certain record
and observed that a 22-year-old black male was charged with at-
tempted robbery with a gun against a 27-year-old white male at 6XX
Tchoupitoulas St on 13™ July 2015 at 01 : 00 hrs and again on 30t
April 2016 at 03 : 00 hrs with attempted simple robbery (T4). Next,
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the risk between dataset pairs, (c) evaluating the matching records using the feature suggestions shows that only one incident was open in 2015
but closed in 2016, (d) inspecting record details shows that a runaway juvenile can be identified despite the location being partially masked.

from the feature suggestions offered by PRIVEE (T5), he selected
the attribute disposition, which shows the status of a particular inci-
dent. He observed that only one record was open in 2015 but closed
in 2016 (Figure 7c). On inspecting further details, as shown in Fig-
ure 7d, he found out that an incident of a runaway female juvenile
of age 17 was reported at 85XX Dinkins St on 26" February 2015,
and the same incident was closed through a supplemental report one
and half years later on 7% December 2016 (T4).

The researcher concluded that this is an example of identity dis-
closure where individuals were identified using PRIVEE even when
the addresses were partially masked in de-identified datasets. He
was also shown an earlier version of the PRIVEE interface during
the case study. He commented that the new changes “improved
the rich functionalities” of PRIVEE and added that this interface
could “help experienced data custodians analyze disclosure risks
and potentially find examples of disclosures”.

11 DiscussIioN

When plugged into the open data stream, PRIVEE can act as both
arisk profiler and a trusted informer that oversees risks while pro-
viding an appropriate level of control to defenders for integrating
their domain knowledge using an end-to-end workflow. One of the
lessons learned during this design study is that an interface helping
defenders evaluate disclosures should enable seamless communi-
cation across sources and implications of risks while responding
to the myriad definitions of privacy relevance. PRIVEE is boot-
strapped by a default view that quickly adapts to the data defenders’
inputs, allowing them to leverage appropriate levels of control while
automating parts of the analysis process.

In its current implementation, one of the limitations of PRIVEE
is scalability, concerning the number of records of each processed
dataset and the size of the seed input that is used for bootstrap-
ping. We have limited the number of records to 100,000 to avoid
interaction latency.

There is also the need to incorporate greater automation in the
selection of privacy-relevant, personal datasets without manual inter-

vention. During this design study process, we learned that automa-
tion of this workflow is inherently challenging as privacy-relevance
is subjective and open data are noisy; hence, training a model to
mimic human judgment is difficult. Our approach of specifying a
seed set outside the PRIVEE workflow is an important methodolog-
ical choice allowing us to focus on the most vulnerable datasets
and anticipated attack scenarios. Currently, PRIVEE only assesses
joinability risk between pairs of datasets. It is certainly possible that
there could be other scenarios like when multiple datasets are joined
progressively, the risks propagate through the links. However, based
on the feedback of our data privacy collaborator, we consider the risk
scenarios handled in PRIVEE to be the necessary first steps toward
assessing more complex combinations and variants of disclosure
risks.

12 CONCLUSION

PRIVEE, the visual risk inspection workflow described in this de-
sign study paper, is a first step towards allowing data defenders both
the control and efficiency needed to minimize disclosure risks from
the joinability of open datasets. Through our case studies with data
privacy experts, we demonstrated a key takeaway that the visualiza-
tions and interactions were effective in end-to-end exploration and
diagnosis of actual disclosure of sensitive information or identity of
individuals. As an ongoing and future work, we will be exploring
disclosure risks beyond joinable pairs. We will further augment our
workflow with intelligent and scalable data processing capabilities
in collaboration with big data experts. We also plan to conduct
controlled studies for evaluating the usability of PRIVEE and its
components with real-world cyber defenders.
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