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Abstract. In this paper we apply the abstract Morse index formulation developed in [27]
to study several optimization set-ups with constraints. In each case, we classify how the
general index is related to the index with a constraint. In addition, for capillary surfaces in
a Euclidean ball, we obtain an index estimate which recovers stability results of G. Wang-
C. Xia [29]and J. Gou- C. Xia [14] as special cases. By considering a family of examples,
we show that the inequality is sharp. Furthermore, we precisely determine indices with
constraints for important examples such as the critical catenoid, round cylinders in a ball,
and CMC hypersurfaces with constant scalar curvature in a sphere.

1. Introduction

Let (Ωn+1, g) be a complete orientable Riemannian manifold possibly with boundaries
and X : Σn 7→ Ωn+1, a smooth immersion of an n-dimensional compact manifold Σ. We
frequently identify Σ with X(Σ). In the presence of boundaries, we assume the immersion
is proper, that is, ∂Σ = Σ ∩ ∂Ω. Then Σ ⊂ Ω is called a partitioning of Ω. One considers
the set I(Σ,Ω) of all such immersions and a functional, such as the area (n-volume) of Σ
with the induced metric i∗(g) for i ∈ I(Σ,Ω).

In the calculus of variations, setting the first derivative of the functional to zero yields
critical points and one then computes the second variation. At a two-sided critical point,
it has the following structural formula, for smooth functions u and v,

(1.1) Q(u, v) =

∫
Σ

(
〈∇u,∇v〉 − puv

)
dµ−

∫
∂Σ
quvds.

Here, functions p and q are determined by the geometry of Σ and presumably depend on
the particular variational problem we consider.

Let MI(Q) denote the Morse index of the bi-linear form Q on the vector space of smooth
functions, C∞(Σ), which is the maximal dimension of a subspace on which Q(·, ·) is negative
definite. In the presence of a constraint, we only admit deformations preserving it. Conse-
quently, the index with a constraint is the index of Q(·, ·) restricted to a smaller function
space. The relation between these notions, with and without a constraint, has only been
studied for special cases [2, 17, 15, 28, 24].

In this paper, we will use the abstract formulation developed in [27] to determine these
relations for several variational problems. Due to the flexibility of our setup, the results
would be applicable for many types of domains, .e.g., a wedge, a slab, a cylinder, a cone, or
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a half space. Also, all critical points considered belong to the family of capillary surfaces,
defined as having constant mean curvature (CMC) and fixed intersecting angle. We refer
to an article of Finn-McCuan-Wente [9], for the history of such surfaces, and Finn’s book
[8], for a survey of the mathematical theory. When the angle is a right angle and the mean
curvature vanishes, they are called free boundary minimal surfaces (FBMS), a subject of
great interest which has produced beautiful results; see, for example, A. Fraser-M.Li[10],
A.Fraser-R. Schoen[11] and [12], M. Li and X. Zhou [16], and D. Maximo, I. Nunes, and G.
Smith [18]. Next, we will describe our contributions in details.

1.1. Index Relation. We consider the functional E which is a linear combination of the
area of the hypersurface and the wetted area. The latter is the the area of a portion of ∂Ω
bounded by ∂Σ.

Definition 1.1. A Type I constraint is to preserve the volume bounded by the partitioning
hypersurface Σ and parts of ∂Ω.

Our definition follows from [19, 29] and is a slight generalization of [4]. Consequently, it
can be shown that the corresponding Type I Morse index (Definition 2.10) is the index of
Q(·, ·) in the space of smooth functions with zero average1. The relation of indices with and
without the constraint is given by the following.

Theorem 1.2. Let Σ ⊂ Ω be a critical point. Then the Type I Morse index is equal to
MI(Q)− 1 if and only if there is a smooth function u such that

(∆ + p)u = −1 on Σ,

∇ηu = qu on ∂Σ,∫
Σ u ≤ 0.

Otherwise, it is equal to MI(Q).

Remark 1.3. We note that our analysis is applicable (and easier) for the cases of closed hy-
persurfaces and the fixed boundary problem. See Section 3.2 for more details. In particular,
we obtain a generalization of results from [15] and [24].

Remark 1.4. Either case might happen. See Subsection 4.1 and Proposition 4.7.

Next, we consider the Type II constraint.

Definition 1.5. A Type II constraint is to preserve the wetted area.

Consequently, the type-II Morse index, Definition 2.10, is the index of Q(·, ·) in the space
of smooth functions with zero boundary average. We have the following.

Theorem 1.6. Let Σ ⊂ Ω be a critical point. Then its Type-II Morse index is equal to
MI(Q)− 1 if and only if there is a smooth function u such that

(∆ + p)u = 0 on Σ,

∇ηu− qu = 1 on ∂Σ,∫
∂Σ u ≤ 0.

Otherwise, it is equal to MI(Q).

1It is also called weak Morse index in literature.
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1.2. An Index Estimate. When considering the partitioning of the Euclidean ball, Ω =
Bn+1, we obtain more precise results. In particular, we introduce a generalization of Type
I and Type II constraints, called Type I+II. To our knowledge, this is the first time such
condition is considered in the literature of geometric variational problems. It corresponds
to the partitioning of a convex body when preserving both the wetted area and enclosed
volume. An intermediate consequence is that we streamline the Type I and Type II stability
results of [29] and [14] as special cases.

The type-I+II Morse index, Definition 2.10, is the index of Q(·, ·) in the space of functions
with zero boundary and interior average. We characterize the stability case (index zero) and

give a lower bound. For X : Σn ⊂ Bn+1, let H, |
◦
A|, θ, ν be respectively the mean curvature,

the norm of the traceless second fundamental form, the fixed contact angle, and a choice
of an unit normal vector of Σ (for precise convention, see Section 2). For any coordinate
system {e1, · · · , en+1} of Rn+1, we construct a matrix Υ = (Υij)(n+1)×(n+1) with

Υij =

∫
Σ
n|
◦
A|2[〈(n−H〈X, ν〉)X + (n cos θ +

H

2
(|X|2 + 1))ν, ei〉〈X, ej〉].

Definition 1.7. A capillary hypersurface is called |
◦
A|2-scale equivalent to a hyper-planar

domain if |
◦
A|2X is on a hyperplane.

Remark 1.8. A capillary hypersurface is |
◦
A|2-scale equivalent to a hyper-planar then it is

on a half-ball and the level sets of |A|2 are hyper-planar.

Theorem 1.9. Assume X : Σ → Rn+1 is an immersed capillary hypersurface in the Eu-
clidean unit ball Bn+1. Let ` be the number of nonnegative eigenvalues of the matrix Υ.
Then

(1) If X has zero Type-I+II Morse index then it is totally umbilical.

(2) If it is |
◦
A|2-scale equivalent to a hyper-planar domain then its Type-I+II Morse

index is greater than or equal to `− 1.
(3) Otherwise, the Type-I+II Morse index is greater than or equal to `.

Remark 1.10. The first part recovers results of Ros-Vergasta [20], Wang-Xia [29, Theorem
1.1], and [14] as special cases.

Remark 1.11. For a symmetrical surface, it is easy to compute ` and we’ll show that the
estimate is sharp for round cylinders of suitable radius (See Section 4).

Remark 1.12. ` only depends on the geometry of Σ. Comparatively, in the current litera-
ture, most lower bounds of an index come from some topology consideration; see Ambrozio-
Carlotto-Sharp [1] and references therein.

We also apply our technique to study the indices of FBMS. An FBMS is a critical point
for either type I, type II, or type I+II partitioning problem. So the following result might
be of independent interest.

Theorem 1.13. Let X : Σ → Bn+1 be an immersed free boundary minimal hypersurface.
If it has Type I+II Morse index less than n+ 1, then it must be totally geodesic.

An immediate consequence is the following.

Corollary 1.14. Let X : Σ → Bn+1 be an immersed free boundary minimal hypersurface.
If it has Type I or Type II Morse index less than n+ 1, then it must be totally geodesic.
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Remark 1.15. The Type I part of Cor. 1.14 can be deduced directly from the index estimate
of [12, 25]. There is a general version for capillary minimal hypersurfaces (Cor. 5.1).

1.3. Precise Index Computations. It is an interesting problem to determine precise
Morse indices for important examples. The case of the critical catenoid as a free boundary
minimal surface, without a constraint consideration, has received plenty of attention; see
[23, 22, 6, 25, 26]. Combining the aforementioned index relation with a scheme to determine
MI(Q) allows us to precisely determine Morse indices with constraints for several examples.

Corollary 1.16. Let Σ ⊂ Sn+1 be a closed CMC hypersurface of constant scalar curvature.
Then, its weak Morse index is equal to

MI(Q)− 1.

Remark 1.17. When n = 2, the scalar curvature is a multiple of the intrinsic Gauss
curvature. Thus, the reader can consult [21] for a precise computation when the Gaussian
curvature is vanishing.

For capillary cases, the simplest nontrivial examples are round cylinders and catenoids.
It is observed in [22] that, for critical catenoids, their indices become surprisingly high when
the dimensions are increasing. For the capillary round cylinders, even for a fixed dimension,
the Morse indices can be arbitrarily large when the radii are close to 1 or 0. More precisely,
we have the following statement.

Theorem 1.18. For a round cylinder Z := {(x, z) ∈ Rn × R, |x|2 = r2, r < 1} ∩ Bn+1,

(1) MI(Q) ≥ n+ 2,
(2) When r → 0 or r → 1, MI(Q)→∞;
(3) There is an interval 0 < a < r < b < 1 such that MI(Q) = n+ 2;
(4) The lower bound from Theorem 1.9 is n + 1. There are intervals on which the

Type-I+II index is n+ 1.

Remark 1.19. Thus, the index estimate is sharp.

Finally, we compute the indices with different constraints for the critical catenoid.

Theorem 1.20. Let Σ ⊂ B3 is the critical catenoid. Then its Type-I, Type-II, and Type
I+II Morse indices are all equal to 3.

In summary, the proof of index relation theorems follows from the interpretation of our
abstract formulation [27] for concrete cases. The index estimate depends on a careful
analysis making use of the domain’s symmetry. The organization of the paper is as follows.
The next section will collect some preliminaries and fix our notations. Then, we study the
relation between a general index and one with a constraint proving Theorems 1.2 and 1.6
and Corollary 1.16 in Section 3. The index inequality in the context of an Euclidean domain
will be investigated in Section 4, where there are proofs of Theorems 1.9 and 1.18. The
last section is about free boundary minimal hypersurfaces and we obtain proofs of Theorem
1.13 and Theorem 1.20.

1.4. Acknowledgments. H. T. was partially supported by a Simons Foundation Grant
[709791] and National Science Foundation Grant [DMS-2104988]. He also would like to
thank Richard Schoen for valuable discussion on the topic and the Vietnam Institute for
Advanced Study in Mathematics for its support and hospitality. D. Z. was partially sup-
ported by Faperj and CNPq of Brazil.
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2. Preliminaries

First, we record our notations, conventions, and collect useful results. We denote by ∇̄,
∆̄ and ∇̄2 (correspondingly ∇, ∆ and ∇2) the gradient, the Laplacian and the Hessian
on Ω (on Σ) respectively. One then considers a differentiable family of proper immersions
X(t, ·) : (−ε, ε)× Σ→ Ω, that is,

X(t, intΣ) ⊂ intΩ,

X(t, ∂Σ) ⊂ ∂Ω.

For subsequent calculation, Σ is equipped with the pullback metric via X(t, ·). We recall
the area, volume, and wetted area functionals:

A(t) =

∫
Σ
dµ(t),

V (t) =

∫
[0,t]×Σ

X∗dµΩ,

W (t) =

∫
[0,t]×∂Σ

X∗dµ∂Ω.

Also, it is relevant to consider the following energy functional, for a real number θ ∈ (0, π),

E(t) = A(t)− cos(θ)W (t).

This could be considered as a Lagrange multiplier setup where A(t) is the functional to
optimize and W (t) is the functional representing a constraint.

ν̄

N̄
ν

η

−ν
θ

θ

Σ
Ω

Next, let Σ = X(0,Σ) be a critical point of some
functional and dµ = dµ(0). For convenience, we will
omit this term when writing integrals whenever the
context removes all ambiguity. Let ν be a choice of
a unit normal vector Σ ⊂ Ω, η is the unit exterior
conormal vector of ∂Σ ⊂ Σ. N̄ is the outward point-
ing unit normal vector of ∂Ω ⊂ Ω. Let ν̄ be the unit
normal to ∂Σ in ∂Ω such that the bases {ν, η} and
{ν̄, N̄} have the same orientation in the normal bun-
dle of ∂Σ ⊂ Ω. Thus, along ∂Σ, the pairs (−ν, N̄)
and (η, ν̄) make the same angle.

The second fundamental form, for vector fields
X,Y , is defined as, A(X,Y ) = −

〈
∇̄XY, ν

〉
. Then,

the mean curvature H := Trace(A). Let
◦
A be

the traceless second fundamental form and |
◦
A|2 =

|A|2 − H2

n .

2.1. Variational Formulae and Constraints.
The first variations of the above functionals are well-
known and collected below. For a velocity vector field
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Y = X ′(0),

A′(0) =

∫
Σ
H 〈ν, Y 〉 dµ+

∫
∂Σ
〈η, Y 〉 ds,

V ′(0) =

∫
Σ
〈ν, Y 〉 dµ,

W ′(0) =

∫
∂Σ
〈ν̄, Y 〉 ds,

E′(0) =

∫
Σ
H 〈ν, Y 〉 dµ+

∫
∂Σ
〈η − cos(θ)ν̄, Y 〉 ds.

We consider functional E with either Type-I or Type-II constraint. The former is to
preserve the prescribed volume V .

Definition 2.1. A variation Y is volume-preserving and corresponds to a Type I partition-
ing if

∫
Σ 〈ν, Y 〉 dµ = 0.

It is immediate that Σ is a critical point of E with a Type I partitioning if and only if it
has constant mean curvature H and the projection of η onto the tangent bundle of ∂Ω is
exactly equal to (cos θ)ν̄. That is, H is constant and Σ intersects ∂Ω at fixed angle θ.

The Type II constraint, instead of preserving prescribed volume, preserves the wetted
area. Following [14], we define:

Definition 2.2. A variation Y is wetted-area-preserving and corresponds to a Type II
partitioning if

∫
∂Σ 〈ν̄, Y 〉 dµ = 0.

It is clear that a Type II stationary surface is minimal and meets the boundary at a
constant angle θ. On such a stationary surface, for Y = Y0 + uν, with Y0 tangential, it is
observed that the wetted-area-preserving is equivalent to∫

∂Σ
uds = 0.

We also introduce the following extension of Type I and Type II constraints, called Type
I+II. It essentially corresponds to the partitioning of a convex body while preserving both
the wetted area and enclosed volume.

Definition 2.3. A function u satisfies Type I+II constraint if simultaneously

0 =

∫
∂Σ
uds =

∫
Σ
udµ.

Definition 2.4. An orientable immersed smooth hypersurface Σn ⊂ Ωn+1 is called capillary
if it has constant mean curvature and fixed intersecting angle.

Furthermore, when Σ intersects ∂Ω at angle θ then

η = sin θ N̄ + cos θ ν̄,(2.1)

ν = − cos θ N̄ + sin θ ν̄.

Next, we collect useful calculation when Ω = Bn+1, an Euclidean ball centered at the origin.
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Lemma 2.5. Let X : Σ→ Rn+1 be an isometric immersion. The following identities hold:

∆X = −Hν,
∆

1

2
|X|2 = n−H〈X, ν〉,

∆ν = ∇H − |A|2ν,
∆〈X, ν〉 = 〈X,∇H〉+H − |A|2〈X, ν〉,
〈∇̄X, ∇̄ν〉 = H.

Proof. We prove the last equation. For an orthonormal base e1, · · · , en+1 in Rn+1, we have

X = (x1, · · · , xn+1) =
n+1∑
i=1

xiei and ν = (ν1, · · · , νn+1) =
n+1∑
i=1

νiei.

Since 〈∇̄xi, ∇̄νj〉 = 〈ei, ∇̄νj〉 = ei〈ej , ν〉 = 〈ej , ∇̄eiν〉, then

〈∇̄X,∇ν〉 =
n+1∑
i=1

〈∇̄xi, ∇̄νi〉 =
n+1∑
i=1

〈ei, ∇̄eiν〉 = H.

�

We denote the Jacobi operator J := ∆ + |A|2.

Corollary 2.6. Let X : Σ → Rn+1 be an isometric immersion with constant mean curva-
ture. Then the following identities hold:

Jν = 0,

J〈X, ν〉 = H.

Proposition 2.7. Let X : Σ → Bn+1 be a capillary hypersurface with intersecting angle
θ ∈ (0, π). Then along ∂Σ,

∇̄η(X + cos θ ν) =q(X + cos θ ν)

∇̄ηY = qY.

Here, Y and q are defined as

Y := 〈X, ν〉X − 1

2
(|X|2 + 1)ν,

q :=
1

sin θ
+ cot(θ)A(η, η).

Furthermore, ∫
∂Σ
nη +Hν̄ = 0.

Proof. We first prove the point-wise identities. On the boundary, X = N̄ and X+cos θ ν =
sin θ η by (2.1). Since ∂Bn+1 is umbilical in Bn+1, η is a principal direction of ∂Σ in Σ, and

∇̄ην = A(η, η)η.

Thus,

∇̄η(X + cos θ ν) = η + cos θA(η, η)η = q sin θ η.
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For the second identity, we observe, on the boundary, ∇̄ηX = η, |X| = 1 and

∇̄ην = A(η, η)η,

〈X, ν〉X − 1

2
(|X|2 + 1)ν = − cos θX − ν = −(cos θ sin θ η + sin2 θ ν).

Then,

∇̄η[〈X, ν〉X −
1

2
(|X|2 + 1)ν]

= (〈∇̄ηX, ν〉+ 〈∇̄ην,X〉)X + 〈X, ν〉∇̄ηX − 〈∇̄ηX,X〉ν −
1

2
(|X|2 + 1)∇̄ην

= 〈∇̄ην,X〉X + 〈X, ν〉η − 〈η,X〉ν − ∇̄ην
= A(η, η)(sin θ X − η)− cos θ η − sin θ ν

= −A(η, η) cot θ(cos θ sin θ η + sin2 θ ν)− 1

sin θ
(cos θ sin θ η + sin2 θ ν)

= q(cos θ sin θ η + sin2 θ ν)

= q(ν + cos θ X).

The result follows. For the integral identity, let a be a constant vector field. By the
divergence theorem∫

Σ
−H〈ν, a〉dµ =

∫
Σ

∆〈X, a〉 =

∫
∂Σ
∇η〈X, a〉 =

∫
∂Σ
〈η, a〉.

On the other hand, one considers the tangential vector field Ya = 〈X, ν〉a− 〈ν, a〉X. For a
local normal coordinate system {Ei}ni=1 in Σ, we have

divYa =
∑
i

∇Ei〈Ya, Ei〉

=
∑
i

∇Ei

(
〈X, ν〉〈a,Ei〉 − 〈ν, a〉〈X,Ei〉

)
=
∑
i

(
〈Ei, ν〉〈a,Ei〉+ 〈X,

∑
j

AijEj〉〈a,Ei〉 − 〈
∑
j

AijEj , a〉〈X,Ei〉 − 〈ν, a〉〈Ei, Ei〉
)

= −n〈ν, a〉
Therefore, by the divergence theorem and (2.1),∫

Σ
−n〈ν, a〉dµ =

∫
Σ

divYa =

∫
∂Σ
〈η, Ya〉 =

∫
∂Σ
− cos θ〈η, a〉 − sin θ〈ν, a〉

=

∫
∂Σ
−〈cos θη + sin θν, a〉 =

∫
∂Σ
−〈ν̄, a〉.

Combining the above identities yield the desired result. �

2.2. The Index Form and An Abstract Formulation. For u = 〈Y, ν〉, [19, 3, 14]
showed that, for appropriate variations satisfying Type I or Type II constraint, the second
variation for functional E on a capillary surface Σ is given by,

E′′(0) =

∫
Σ
|∇u|2 − pu2dµ−

∫
∂Σ
qu2ds,
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for

p := RcΩ(ν, ν) + |A|2,

q :=
1

sin θ
A∂Ω(ν̄, ν̄) + cot θAΣ(η, η).

Here, A∂Ω and AΣ are the second fundamental forms with respect to N̄ and ν respectively.
RcΩ denotes the Ricci curuvature of Ω and our convention is such that the Ricci curvature of
the round sphere Sn is n times the identity. For Jacobi operator J = ∆ +p (for a Euclidean
domain, p = |A|2 as the Ricci curvature vanishes), the index form is defined as

Q(u, v) =

∫
Σ
〈∇u,∇v〉 − puv −

∫
∂Σ
quv(2.2)

=

∫
Σ
〈−Ju, v〉+

∫
∂Σ

(∇ηu− qu)v.

Definition 2.8. The index of a symmetric bi-linear form on a vector space is the maximal
dimension of a subspace on which the form is negative definite.

Definition 2.9. MI(Q) is the index of Q(·, ·) in the space of smooth functions on Σ.

As we see in [27], it is possible to replace the space of smooth functions by H1(Σ) =
W 1,2(Σ), the Sobolev space with one derivative and L2-norm.

Definition 2.10. The Type-I, Type-II, and Type-I+II Morse indices are with respect to the
following subspaces, respectively,

F :=

{
u ∈ H1(Σ);

∫
Σ
udµ = 0

}
,

G := {u ∈ H1(Σ) :

∫
∂Σ
udµ = 0},

L := F ∩G.

Σ is called (·)-stable if its corresponding index is zero.

Remark 2.11. Obviously, for a given capillary hypersurface, the Type I and Type II Morse
indices are greater than or equal to the Type I+II index.

In [27], we developed an abstract formulation to relate indices on a Hilbert space and a
finite-co-dimensional subspace. With appropriate interpretations, this theory will allow us
to relate MI(Q) and an index with a constraint. We briefly recall the required results here.
Let H be a separable Hilbert space. Let S(·, ·) be a symmetric continuous bi-linear form
and associated with a closed self-adjoint operator with a finite index.

Definition 2.12. For continuous linear forms {φi}ki=1 on H, let MIφ1,...,φk(S) denote the
index of S in the subspace ∩ki=1Kernel(φi).

Theorem 2.13. Let φ be a non-trivial continuous form. Then, MIφ(S) = MI(S)−1 if and
only if φ(·) = S(u, ·) for some u satisfying φ(u) = S(u, u) ≤ 0. Otherwise, MIφ(S) = MI(S).

Proof. It follows from [27, Theorem 1.1]. We’ll sketch the key steps here for completeness.
By classical theory, H = H− ⊕ H0 ⊕ H+ where S(·, ·) is negative on H−, zero on H0

and positive on H+. Next, by the Riesz representation theorem, there is φ̄ ∈ H such
that (φ̄, v) = φ(v)∀v ∈ H. As S(·, ·) is associated with a closed operator, consequently,
φ̄ = φ− + φ0 + φ+ for φ− ∈ H−, φ0 ∈ H0, φ+ ∈ H+, and (φ− + φ+, ·) = S(u, ·) for u ∈ H.
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If x = φ0 + φ+ 6= 0 then we construct W = span(H−, x) and S(·, ·) is negative on the
kernel of φ when restricted to W . Thus, MIφ(S) = MI(S).

If x = φ0 + φ+ = 0 then MIφ(S) = MI(S)− 1 by direct calculation.
�

Also, there is a statement for several functionals and the following version for the bilinear
form Q(·, ·) will be used to estimate the Morse indices of capillary hypersurfaces.

Theorem 2.14. Assume X : Σ → Rn+1 is an immersed capillary hypersurface in the
Euclidean unit ball Bn+1. Let ϕ1, ..., ϕm be independent continuous linear functionals over
H1(Σ) and G = ∩mi=1Ker(ϕi). Suppose that ψ1, ψ2, · · · , ψk are functions such that there
exist C2 functions u1, u2, · · · , uk satisfy

ui ∈ G;

Jui = ψi, on Σ;

∇ηui = qui, on ∂Σ.

Furthermore, assume that ϕ1, ..., ϕm, ψ̄1, ..., ψ̄k are linearly independent where ψ̄i is the lin-
ear functional defined by L2(Σ)-multiplication by ψi. Then

MI{ϕ1,...ϕm,ψ̄1,··· ,ψ̄k}(Q) = MI{ϕ1,...ϕm}(Q)− ik,
where ik is the number of nonnegative eigenvalues of the matrix

Υ :=

(∫
Σ
ujψi

)
.

In particular, MI{ϕ1,...ϕm}(Q) ≥ ik.

Proof. Since G is a subspace of finite codimension, it is a Hilbert space. Because ϕ1, ..., ϕm,
ψ̄1, ..., ψ̄k are linearly independent, ψ̄1, ....ψ̄k are linearly independent as linear functionals
on G. Recall

Q(u, v) :=

∫
Σ
∇u∇v − puv −

∫
∂Σ
quv.

By integration by parts,

Q(ui, uj) =

∫
Σ
−Juiuj +

∫
∂Σ

(∇ηui − qui)uj

= −
∫

Σ
ujψi.

Applying [27][Theorem 1.3] for linear independent functionals ψ̄1, ...ψ̄k finishes the proof.
�

2.3. Fredholm Alternative with Robin Boundary Condition. In this subsection, we
will derive a Fredholm alternative for an elliptic operator with a Robin boundary condition.
The presentation here follows [7]. First, we recall the abstract Fredholm alternative.

Theorem 2.15 (Abstract Fredholm Alternative). [7, Appendix D] Let K : H 7→ H be a
compact linear operator on a Hilbert space and K∗ its adjoint. Then

• The null space of Id−K is finite dimensional,
• The range of Id−K is closed,
• The range of Id−K is the orthogonal complement of the null space of Id −K∗,
• The null space of Id−K is trivial if and only if Id−K is onto,
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• The dimension of the null space of Id−K is equal to that of Id−K∗.
Let Σ be a compact domain with a smooth boundary and outward conormal vector η.

We define the trace operator T : H1(Σ) 7→ L2(∂Σ) and the normal derivative Dη : H1(Σ) 7→
L2(∂Σ) such that, for u ∈ C∞(Σ),

Tu = u |∂Σ, Dηu = ∇ηu.
We consider a symmetric bilinear form, for u, v ∈ H1(Σ),

Q(u, v) :=

∫
Σ
∇u∇v − puv −

∫
∂Σ
qT (u)T (v).

This bilinear form induces an abstract linear map Q : H1(Σ) 7→ (H1)∗(Σ) (continuous
dual) such that Q(u, v) := Qu(v). A pair (−f, g), for f ∈ L2(Σ) and g ∈ L2(∂Σ), defines
an element in (H1)∗(Σ) via (−f, g)v = (−f, v)L2(Σ) + (g, Tv)L2(∂Σ). (Qu) = (−f, g) if and
only if there exists a weak solution to system

(2.3)

{
Ju = f in Σ,

∇ηu− qu = g on ∂Σ.

Indeed, for u, v ∈ C∞(Σ), by part integration, one observes

Q(u, v) = −
∫

Σ
vJu+

∫
∂Σ

(Dη(u)− qT (u))T (v),

= (−Ju, v)L2(Σ) + (Dηu− qT (u), v)L2(∂Σ).

Also, the associated homogeneous problem is given by

(2.4)

{
Ju = 0 on Σ,

Dηu− qu = 0 on ∂Σ.

By Cauchy-Schwarz inequalities and the trace theorem ||Tu||L2(∂Σ) ≤ c(Σ)||u||H1(Σ),
Q(·, ·) is bounded. Since |p| and q are bounded, following classical theory, one modifies, for
some constant γ > 0

Qγ(u, v) = Q(u, v) + γ〈u, v〉L2(Σ)

such that Qγ is coercive, for some constant β > 0,

Qγ(u, u) ≥ β||u||2H1(Σ).

Then Lax-Milgram theorem implies that the corresponding operator Qγ is an isomorphism
from H1(Σ) to (H1)∗(Σ). Thus, K := γQ−1

γ (·, 0) is well-defined and by the natural identi-

fication L2(Σ) ⊂ (H1)∗(Σ) and H1(Σ) ⊂ L2(Σ),

K : L2(Σ) 7→ L2(Σ).

It is immediate that for Kf = v, Qγ(v) = γ(f, 0),

β||Kf ||2H1(Σ) = β||v||2H1(Σ) ≤ Qγ(v, v) = (Qγv)(v) = γ(f, 0)(v) = γ(f, v)L2(Σ)

≤ γ||f ||L2(Σ)||v||L2(Σ) ≤ γ||f ||L2(Σ)||v||H1(Σ).

By Reillich-Kondrachov compactness, theorem, K is a compact operator. Furthermore, u
is a weak solution of (2.3) if and only if

(2.5) (Id−K)u = f1 for f1 = Q−1
γ (−f, g).

So the abstract Fredholm alternative theorem is applicable and yields the following.
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Theorem 2.16. The operator Q has closed range. For any f ∈ L2(Σ) and g ∈ L2(∂Σ),
either (2.3) has a unique weak solution or the homogeneous problem (2.4) has a non-trivial
space N of weak solutions. Furthermore, if the latter holds, then N has finite dimension
and (2.3) has a weak solution if and only if (f, v)L2(Σ) = (g, v)L2(∂Σ) for all v ∈ N .

Proof. From 2.5, we have

Q−1
γ Qu = (Id−K)u.

As Qγ is coercive, for v = Q−1
γ w,

β||Q−1
γ w||2H1(Σ) = β||v||2H1(Σ) ≤ Qγ(v, v) = (Qγv)(v) = w(v) ≤ ||w|(H1)∗(Σ)||v||H1(Σ).

Thus, ||Q−1
γ w||H1(Σ) ≤ 1

β ||w|(H1)∗(Σ) and Q−1
γ is a bounded operator. Consequently, the

closed range of Q comes from the close range of Id−K.
For the Fredholm alternative, one first observes that K = K∗. With the discussion

above, the only remaining nontrivial part is to interpret f1 = Q−1
γ (−f, g) in the orthogonal

complement of the null space of Id − K∗ = Id − K. For v in the null space, we have
(Id−K)v = 0. That is, Qγ(v) = γ(v, 0). Thus, f1 is in orthogonal complement if and only
if

0 = (f1, v)L2(Σ) = (v, 0)(f1) = Qγ(v)(f1) = Qf1(v) = (−f, g)v

= −(f, v)L2(Σ) + (g, v)L2(∂Σ).

The result then follows.
�

Remark 2.17. When there is no boundaries, Theorem 2.16 just recovers the Fredholm
alternative of an elliptic operator on a compact closed manifold. When q = 0, it recovers
the Fredholm alternative of an elliptic operator with a Neumann boundary condition.

3. Index Relations

In this section, we characterize in index with either a Type I or Type II constraint.

3.1. Type-I Partitioning. The Type I Morse index is at most equal to MI(Q) and is
finite. We are ready to exactly determine their difference.

Proof of Theorem 1.2. The Type I Morse index is equal to MIφ(Q) where φ is the functional

φ(u) = (1, u)L2(Σ).

As Q has closed range, Theorem 2.13 implies that MIφ(Q) = MI(Q)− 1 if and only if there
exists a weak solution 

−Ju = 1 in Σ,

Du = qu on ∂Σ,

(1, u)L2(Σ) ≤ 0.

The elliptic regularity theory (see, for example, [13, Chapter 8]) then asserts that the
solution is smooth. �
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3.2. Weak Morse index. Here we consider a special case of Type I partitioning when
there is no boundary (the main examples are boundary-less hypersurfaces in a sphere). The
second variation is simplified [3][Proposition 2.5]:

Q(u, v) =

∫
Σ

(
〈∇u,∇v〉 − puv

)
dµ,

p := RcΩ(ν, ν) + |AΣ|2.

Definition 3.1. The weak Morse index of the hypersurface Σn ⊂ Ωn+1 is the index of Q(·, ·)
on F = {u ∈ H1(Σ) :

∫
Σ udµ = 0}.

An immediate consequence of Theorem 1.2 is the following.

Theorem 3.2. Let Σ ⊂ Ω be a closed, orientable, CMC hypersurface. Its weak Morse index
is equal to MI(Q)− 1 if and only if there is a smooth function u such that

(3.1)

{
(∆ + p)u = −1 on Σ,∫

Σ u ≤ 0.

Otherwise, it is equal to MI(Q).

In some cases, (3.1) can be determined from the geometry of the surface. For instance,
Corollary 1.16 says that the difference of Morse indices is one for CMC surfaces with constant
scalar curvature in a unit sphere.

Proof of Corollary 1.16. For a CMC hypersurface in Sn+1,

J = ∆ + n+ |A|2.
Denoting by S the scalar curvature, by [5, Chapter 1], we recall the following Gauss equation

SΣ = SSn+1 − 2RcSn+1(ν, ν) +H2 − |A|2.
Therefore

|A|2 = H2 − SΣ + n(n− 1).

Since SΣ is constant,

p = n+ |A|2 = n2 +H2 − S = constant.

We have, Ker(Q) is the set of solutions

(∆ + p)u = 0.

It is non-trivial if and only if p > 0 is an eigenvalue of ∆. In that case, since the constant
function 1 is the first eigenfunction of ∆ with eigenvalue zero, for any v ∈ Ker(Q)

(1, v)L2(Σ) = 0.

By the Fredhom alternative, Theorem 2.16, there is always a solution of

Ju = −1.

For such u, we have,∫
Σ
pudµ = p

∫
Σ
udµ =

∫
Σ

(−1−∆u)dµ = −Area(Σ) < 0.

The assertion then follows from Theorem 3.2. �
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Remark 3.3. For Σ2 ⊂ S3, we can replace the scalar curvature by the intrinsic Gauss
curvature K

|A|2 = H2 − 2(K − 1) = 2 +H2 − 2K.

An almost identical analysis replacing H1(Σ) by H1
0 (Σ) is applicable for the fixed bound-

ary problem. The statement goes as follows.

Theorem 3.4. Let Σ ⊂ Ω be a CMC hypersurface with boundaries. Then its weak Morse
index with respect to the fixed boundary problem is equal to MI(Q) − 1 if and only if there
is a smooth function u such that

(3.2)


Ju = −1 on Σ,

u = 0 on ∂Σ,∫
Σ u ≤ 0.

Otherwise, it is equal to MI(Q).

3.3. Type-II Partitioning. In this section, we investigate Type II Morse indices for sta-
tionary hypersurfaces. It is at most MI(Q) and finite. We are ready to determine it precisely.

Proof of Theorem 1.6. The Type II Morse index is equal to MIϕ(Q) where ϕ is the func-
tional

ϕ(u) = (1, u)L2(∂Σ).

As Q has closed range, Theorem 2.13 implies that MIφ(Q) = MI(Q)− 1 if and only if there
exists a weak solution 

−Ju = 0 on Σ,

Du− qu = 1 on ∂Σ,

(1, u)L2(∂Σ) ≤ 0.

The elliptic regularity theory (see, for example, [13, Chapter 8]) then asserts that the
solution is smooth. �

4. Capillary hypersurfaces in a Euclidean ball

In this section, we study capillary hypersurfaces in a Euclidean ball Ωn+1 = Bn+1, center
at the origin, with respect to Type-I+II constraint. An advantage is to streamline stability
results of [29] and [14] as special cases. The key is to construct a family of functions satisfying
Type I+II constraint. We would like to highlight that our computation is valid and simpler
if the boundary ∂Σ is empty. So our results can be applied to closed CMC hypersurfaces
in Euclidean spaces. First, one recalls the Jacobi operator, J = ∆ + p = ∆ + |A|2, from
Section 2.

Proposition 4.1. Let X : Σ → Bn+1 be an isometric immersion with constant mean
curvature H and fixed intersecting angle θ. We consider

φ : =
|X|2

2
+

1

2
Z : = (∆φ)X − φ∆X,

Φ : = Hφ− n〈X, ν〉 − n cos θ −H.
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Then, for any constant c, the following identities hold:

J(Z + cν) = n|
◦
A|2X,(4.1)

∆Φ = n|
◦
A|2〈X, ν〉,(4.2)

〈(Z + n cos θν), J(Z + n cos θν)〉 = n2|
◦
A|2|XT |2 − Φ∆Φ.(4.3)

∇̄η(Z + n cos θν)|∂Σ = q(Z + n cos θν)|∂Σ,(4.4)

Proof. We first prove (4.1). First, Z = (∆φ)X − φ∆X = X∆φ+ φHν. Since φ = |X|2
2 + 1

2 ,
∆φ = n−H〈X, ν〉. Therefore,

∆Z = X(−H∆〈X, ν〉) +Hφ∆ν

= −HX(H − |A|2〈X, ν〉) +Hφ(−|A|2〈ν, a〉)
= −H2X +H|A|2〈X, ν〉X + φ|A|2∆X

= (n|A|2 −H2)X − |A|2[(n−H〈X, ν〉)X − φ∆X]

Then

∆Z + |A|2Z = n|
◦
A|2X.

Next,

∆Φ = H(n−H〈X, ν〉) + n(|A|2〈X, ν〉 −H) = n|
◦
A|2〈X, ν〉.

Then,

〈(Z + n cos θν), X〉 = |X|2∆φ+ φH〈X, ν〉+ n cos θ〈X, ν〉
= n|X|2 −H|x|2〈X, ν〉+ φH〈X, ν〉+ n cos θ〈X, ν〉
= n|XT |2 + n〈X, ν〉2 −H(2φ− 1)〈X, ν〉+ φH〈X, ν〉+ n cos θ〈X, ν〉
= n|XT |2 − 〈X, ν〉Φ.

Therefore,

〈(Z + n cos θν), J(Z + n cos θν)〉 = n2|
◦
A|2|XT |2 − nΦ|

◦
A|2〈X, ν〉

= n2|
◦
A|2|xT |2 − Φ∆Φ

The last identity follows from Proposition 2.7. �

We now fix a coordinate system of Rn+1 and choose, for i = 1, 2, · · · , n+ 1,

ui = (Z + n cos θν)i,

Jui = ψi = n|
◦
A|2Xi.

Lemma 4.2. Each ui satisfies the Type I+II constraint.

Proof. Let w = 〈X, ν〉. We have

Zi = (∆φ)Xi − φ∆Xi = div(Xi∇φ− φ∇Xi),

nνi = div(νiX − wei).
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Therefore, by the divergence theorem,∫
Σ
ui =

∫
Σ

div(Xi∇φ− φ∇Xi + cos θ(νiX − wei))dµ

=

∫
∂Σ

(Xi〈X, η〉 − ηi + cos θ(νi〈X, η〉 − wηi))ds

Applying (2.1) yields ∫
Σ
ui =

∫
∂Σ

sin θ(− cos θνi + cos θνi)ds = 0.

Next, we consider ui on the boundary ∂Σ. Using the above calculation and (2.1) we have

ui |∂Σ = (n−H〈X, ν〉)Xi +
1

2
(X2 + 1)Hνi + n cos θνi

= (n+H cos θ)Xi +Hνi + n cos θνi

= n〈X + cos θν, ei〉+H〈cos θX + ν, ei〉
= n sin θ〈η, ei〉+H sin θ〈ν̄, ei〉.

Thus, by Proposition 2.7, ∫
∂Σ
ui = 0.

�

We consider the following matrix

Υ :=

(∫
Σ
uiψj

)
(n+1)×(n+1)

.

Alternatively, Υ can be seen as a bilinear form on Rn+1. Namely, for v1, v2 ∈ Rn+1,

Υ(v1, v2) : =

∫
Σ

(n|A|2 −H2)〈Z + n cos θν, v1〉〈X, v2〉

=

∫
Σ
n|
◦
A|2[〈(n−H〈X, ν〉)X + (n cos θ +

H

2
(|X|2 + 1))ν, v1〉〈X, v2〉]

Then, we can choose an orthonormal basis to diagonalize Υ as diag(λ1, ...., λn+1) with

(4.5) λi =

∫
Σ
n|
◦
A|2(n−H〈X, ν〉)X2

i +

∫
Σ
n|
◦
A|2(n cos θ + φH)Xiνi.

Lemma 4.3. The trace of Υ, tr(Υ), satisfies:

tr(Υ) =

∫
Σ
n2
(
|
◦
A|2|XT |2 + |

◦
A(XT )|2

)
.

Proof. We use (4.3) in Proposition 4.1:

n+1∑
i=1

uiψi = 〈(Z + c1ν), J(Z + c1ν)〉 = n(n|A|2 −H2)|XT |2 − Φ∆Φ.
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Since φ(X) = 1
2(|X|2 + 1), on the boundary,

Φ = Hφ− nw − n cos θ −H

=
1

2
H(|X|2 + 1)− n〈X, ν〉 − n cos θ −H

= 0.

Therefore, ∫
Σ

Φ∆Φ = −
∫

Σ
|∇Φ|2.

Consequently,

tr(Υ) =

∫
Σ

(
n(n|A|2 −H2)|XT |2 + |∇Φ|2

)
.

Finally,

∇Φ = H∇|X|
2

2
− n∇〈X, ν〉

= HXT − nA(XT ).

The result then follows. �

We are ready to prove Theorem 1.9.

Proof of Theorem 1.9. By Lemma 4.2, ui ∈ L (see Definition 2.10). Thus, if Σ is Type I+II
stable then Υ is nonpositive definite, and tr(Υ1) ≤ 0. From Lemma 4.3∫

Σ

(
|
◦
A|2|XT |2 + |

◦
A(XT )|2

)
≤ 0.(4.6)

Thus, |XT |2|
◦
A|2 ≡ 0 ≡

◦
A(XT ) and, consequently, ∇Φ ≡ 0. Since Φ ≡ 0 on ∂Σ, Φ ≡ 0

everywhere. Therefore, 〈X, ν〉(n|A|2−H2) = ∆Φ ≡ 0. If 〈X, ν〉 vanishes at a point different

from the origin, then, since |X|2 = 〈X, ν〉2 + |XT |2, |X|T 6= 0 and |
◦
A|2 = 0. Consequently,

◦
A ≡ 0 over a dense subset and, by unique continuation, Σ is totally umbilical.

Second, if Σ is not umbilical then (n|A|2 −H2) 6= 0 at some point, then there exists an
open subset U on which (n|A|2−H2) 6= 0. Let ψ′i be the linear functional defined by L2(Σ)
multiplication of the function ψi.

Claim: ψ1, · · · , ψn+1 are linearly independent and, thus, the dimension of the space
span{ψ1, · · · , ψn+1} is n+ 1.

Otherwise there exists c1, · · · , cn+1 ∈ R such that c2
1 + · · ·+ c2

n+1 6= 0 and, by Proposition
4.1,

c1X1 + · · · cn+1Xn+1 = 0.

This implies that U is contained in a hyperplane and thus is totally geodesic which contra-
dicts to (n|A|2 −H2) 6= 0. Thus, the claim is true,

Claim: The space span(ψ̄1, · · · , ψ̄n+1), as linear functionals over L has dimension n if Σ

is |
◦
A|2-scale equivalent to a hyper-planar. Otherwise it has dimension n+ 1.
Let χ and Ψ be linear functionals on H1(Σ) defined respectively by L2(Σ) and L2(∂Σ)-

multiplication by the constant function 1. It is immediate that

{ψ̄1, · · · , ψ̄n+1,Ψ}
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are linearly independent. Then, {ψ̄1, · · · , ψ̄n+1, χ} are linearly dependent if and only if, by
Proposition 4.1,

c1|
◦
A|2X1 + ...cn+1|

◦
A|2Xn+1 + 1 = 0.

That is, |
◦
A|2〈X, a〉 = 1 for some constant vector a. In that case, |

◦
A|2X is hyper-planar.

Using the previous claim, the proof is finished.

Finally, applying Theorem 2.14 yields the desired results.
�

4.1. Cylinder in a ball. We consider a flat cylinder of radius 0 < r < 1 inside Ω = Bn+1,
X : Σ = [−T, T ]× Sn−1 7→ Ω = Bn+1

(4.7) X(t, z) = (t, rz).

Here T =
√

1− r2. Let {wi, i = 1, ...n − 1} be a basis of tangent vectors on Sn−1. It is

straightforward to compute tangent vectors: X,t = (1,~0), X,i = (0, rwi). Consequently,

ν = (0, z),

η =
t

|t|∂t.

Thus, the boundary derivative becomes

∇η = ∂±t.

By our convention,

sin θ = 〈X.η〉 =
√

1− r2 = T,

cos θ = −〈X, ν〉 = −r.
Thus,

q =
1

sin θ
+ cot θA(η, η) =

1√
1− r2

=
1

T
.

The second fundamental form is

A(Xt, Xt) = −〈Xtt, ν〉 = 0,

A(Xi, Xi) = −〈Xii, ν〉 = r.

Thus,

H = (n− 1)
r

|Xi|2
=
n− 1

r
,

|A|2 =
n− 1

r2
,

|
◦
A|2 = |A|2 − H2

n
=
n− 1

nr2
.

The Jacobi operator is

J = ∆ + |A|2 = ∂2
t +

1

r2
∆Sn−1 +

n− 1

r2
.

We will first consider the index without any constraint, MI(Q).

Proposition 4.4. For a round cylinder of radius r in the unit ball, we have

(1) MI(Q) ≥ n+ 2;
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(2) When r → 0 or r → 1 MI(Q)→∞;
(3) There is an interval 0 < a < r < b < 1 such that MI(Q) = n+ 2.

Proof. Recall that MI(Q) is the number of negative eigenvalues of the system:

Ju+ λu = 0 on Σ,

∇ηu = qu on ∂Σ.

By separation of variables, the eigenfunctions have the form u = f(t)g(z), where g is a
spherical Laplacian eigenfunction. That is,

∆Sn−1g + αg = 0,

and f satisfies, for β := λ+ n−1
r2
− α

r2
,{
f ′′ + βf = 0,
f(T )
f ′(T ) = − f(−T )

f ′(−T ) = T.

Therefore, we exhaust all possible cases which may produce indices:
β = 0,

β > 0, tan(
√
βT ) =

√
βT or cot(

√
βT ) = −√βT,

β < 0, coth(
√−βT ) =

√−βT.

Here we exclude the case tanh(
√−βT ) =

√−βT since tanhx > x for all x 6= 0. By spherical
harmonic analysis, α = k(k + n− 2) with multiplicity

m0 = 1, m1 = n,

mk =
(n+ k − 1)!

(n− 1)!k!
− (n+ k − 3)!

(n− 1)!(k − 2)!
.

and corresponding eigenfunctions, g0 = 1, g1, g2, · · · , gn, · · · , · · · . Recall that MI(Q) is the
number of negative eigenvalues λ for

λ = β +
1

r2
(k − 1)(k + n− 1),

for k = 0, 1, 2.... Next, we analyse all possible cases which may contribute to the indices.
Case 1. If β = 0 then f(t) = t. If k ≥ 1 then λ ≥ 0. Hence only choosing k = 0 yields

λ < 0. We know that in this case β = 0 contributes 1 to the index whenever r ∈ (0, 1).
Namely the eigenfunction is u(t) = t and the corresponding eigenvalue is λ = −n−1

r .

Case 2. If β < 0, choosing k = 0, 1 yields λ < 0. Since coth(
√−βT ) =

√−βT , then√−βT = T0, where T0 be the unique positive number such that

coth(T0) = T0.

Then, for k ≥ 2,

λ =
1

r2
(k − 1)(k + n− 1)− T 2

0

T 2
.

In particular, k = 2,

λ =
n+ 1

r2
− T 2

0

1− r2
.
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Here we have used T 2 = 1− r2. So λ < 0 if and only if

r > r0 :=

√
n+ 1

T 2
0 + n+ 1

.

Therefore λ < 0 for all k such that

(k − 1)(k + n− 1) <
r2T 2

0

1− r2
.

When r → 1, the right hand side of above inequality goes to infinity and k can be sufficiently
large when r is close to 1. This implies MI(Q)→∞ as r → 1. Also we know that the case
β < 0 contributes exactly n + 1 to the index when r < r0. Namely the eigenfunctions are
u0(t) = cosh T0t

T , and u1(t) = cosh T0t
T g1, · · · , un(t) = cosh T0t

T gn, corresponding eigenvalues

are λ = −n−1
r −

T 2
0

1−r2 and λ = − T 2
0

1−r2 with multiplicity n.
Case 3. When β > 0, one observes that, for k ≥ 1, λ > 0. So we consider only k = 0.

Note that here are infinitely many periodic positive values T1 < T2 < · · · → +∞, satisfying
the equation tan x = x or cotx = −x. In this case we can choose βj such that

√
βjT = Tj .

Since k = 0,

λj = βj −
n− 1

r2
=
T 2

1

T 2
− n− 1

r2
.

Therefore, for each βj we can find a small r such that λ < 0. So MI(Q)→∞ when r → 0.
Moreover each βj have multiplicity one, we have the largest r1 such that MI(Q) = n+ 3.

Therefore the case β > 0 contributes at most 1 to the index when r > r1, where r1 is defined
as

r2
1 =

n− 1

T 2
1 + n− 1

.

When r > r1, a direct computation shows that the only eigenvalue is λ =
T 2
1

1−r2 − n−1
r2

which

is positive and the corresponding eigenfunction is u(t) = sin T1t
T .

Finally, combining with the case β < 0, MI(Q) = n+ 2 if and only if

n− 1 <
r2T 2

1

1− r2
,

n+ 1 >
r2T 2

0

1− r2
.

�

Remark 4.5. Numerically, T0 ≈ 1.19968 and T1 ≈ 2.79838.

Next, we’ll show that both cases of Theorem 1.2 might arise. As r varies from 0 to 1,

x = T
√
n− 1/r =

√
n− 1

√
1− r2

r

goes from +∞ to 0. Thus, cos(x) + x sinx fluctuates and assumes all possible real values.

Lemma 4.6. Let x = T
√
n− 1/r. If cos(x) + x sinx = 0 then the system

Ju = −1,

∇ηu = qu

has no solution.
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Proof. By our analysis above, λ = 0 (when β = 0 and k = 1) is an eigenvalue of

Ju+ λu = 0,

∇ηu = qu.

Under the hypothesis, let
√
β =

√
n− 1/r, then cot(

√
βT ) = −√βT and u = cos(

√
βt) is

an eigenfunction with eigenvalue 0 of the homogeneous system above. It is observed that∫
Σ udµ 6= 0. So, by the Fredholm alternative, Theorem 2.16, the result follows. �

Proposition 4.7. Let x = T
√
n− 1/r, the Type-I Morse index of a cylinder is{

MI(Q) if either cos(x) + x sinx = 0 or x < sinx
x sinx+cosx ,

MI(Q)− 1 otherwise.

Proof. If cos(x) + x sinx = 0 then the result follows from Lemma 4.6 and Theorem 1.2.
Otherwise, cos(x) + x sinx 6= 0 and let

u = c cos(t
√
n− 1/r)− r2

n− 1
.

It is readily verified that u solves the system

Ju = −1,

∇ηu = qu

for c(x sinx+ cosx) = r2

n−1 . As utt + n−1
r2
u = −1,

n− 1

r2

∫
Σ
udµ = −2u′(T )− 2T.

We have
√
n− 1/r(u′(T ) + T ) = −cn− 1

r2
sinx+ x

= − sinx

x sinx+ cosx
+ x.

Applying Theorem 1.2 again yields the conclusion. �

Next we check how Theorem 1.9 is applicable in this case. For these cylinders,

〈X, ν〉 = r.

Thus components of the matrix from Theorem 1.9 become

Υij =

∫
Σ
n
n− 1

nr2
〈(n− n− 1

r
r)X + (n(−r) +

n− 1

2r
(t2 + r2 + 1))ν, ei〉〈X, ej〉

=
n− 1

r2

∫
Σ
〈X +

(n− 1)(t2 + 1)− (n+ 1)r2

2r
ν, ei〉Xj

=
n− 1

r2

∫
Σ
XiXj +

(n− 1)(t2 + 1)− (n+ 1)r2

2r
νiXj .

For X1 = t,Xi = rzi−1, ν1 = 0, νi = zi−1, and i 6= j,

Υij = 0.
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It remains to calculate the diagonal terms. First, we have

Υ11 =
n− 1

r2

∫
Σ
t2 > 0.

Then, for j = i+ 1 > 1,

Υjj =
n− 1

r2

∫
Σ
r2z2

i +
(n− 1)(t2 + 1)− (n+ 1)r2

2r
rz2
i

=
(n− 1)2

2r2

∫
Σ

(t2 + 1− r2)r2z2
i > 0.

Thus, Theorem 1.9 implies the Type I+II index is at least n+ 1.

Proposition 4.8. Let a < r < b as in part (3) of Proposition 4.4. Let x = T
√
n− 1/r and

assume that cos(x) + x sinx 6= 0 and x > sinx
x sinx+cosx . Then, the Type I+II index is equal to

the Type I index and equal to n+ 1.

Proof. Let mI+II and mI be the indices with respect to constrains I+II and I respectively.
First, it is clear that

mI+II ≤ mI .

By the calculation above and Theorem 1.9, mI+II is at least n + 1. By Propositions 4.4
and 4.7, mI is at most n+ 1. The result then follows. �

Remark 4.9. It is clearly possible to do an analogous analysis between Type I+II and Type
II indices. We leave it for the reader.

Proof of Theorem 1.18. It is immediate from Propositions 4.4 and 4.8. �

5. Capillary Minimal Hypersurfaces

In this section, we study the case H = 0. First, we have the following.

Corollary 5.1. Assume that X : Σ → Rn+1 is a properly immersed capillary minimal

hypersurface in the Euclidean unit ball Bn+1. If it is not |
◦
A|2-scale to a hyper-planar domain

and ∫
Σ
|A|2〈X, v〉2 ≥

∫
Σ
|A|2 cos2 θ,

for any unit vector v ∈ Rn+1, then either it is totally geodesic or it has Type-I+II Morse
index bigger than n+ 1.

Proof. Assume that Σ is not totally geodesic. Then there exists a coordinate X1, X2, · · · , Xn+1,
such that |A|2X1, |A|2X2, · · · , |A|2Xn+1 are linearly independent. From (4.5) we know

λi =

∫
Σ

(n|A|2)(nX2
i + n cos θXiνi).

By Cauchy inequality and |νi| ≤ 1, we have

|
∫

Σ
|A|2 cos θXiνi| ≤

∫
Σ
|A|2| cos θ||Xi| ≤

(∫
Σ
|A|2 cos2 θ

) 1
2
(∫

Σ
|A|2X2

i

) 1
2

.
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Hence

λi = n2

[∫
Σ
|A|2X2

i +

∫
Σ
|A|2 cos θXiνi

]
≥ n2

[∫
Σ
|A|2X2

i −
(∫

Σ
|A|2 cos2 θ

) 1
2
(∫

Σ
|A|2X2

i

) 1
2

]

= n2

(∫
Σ
|A|2X2

i

) 1
2

[(∫
Σ
|A|2〈X, ei〉2

) 1
2

−
(∫

Σ
|A|2 cos2 θ

) 1
2

]
≥ 0.

From Theorem 1.9, we know that the Type-I+II Morse index is at least n+ 1. The proof
is complete. �

Corollary 5.2. Assume that X : Σ → Rn+1 is a capillary minimal hypersurface in the

Euclidean unit ball Bn+1. If it is not |
◦
A|2-scale to a hyper-planar domain and is a polar-

graph then either it is totally geodesic or it has Type-I+II Morse index bigger than n+ 1.

Proof. Since Σ is a polar graph, by choosing the unit normal conveniently we may assume
the function 〈X, ν〉 is non-negative. We may also assume it is positive somewhere because
the embedding is not totally geodesic. Notice that by Corollary 2.5 we have

(∆ + |A|2)〈X, ν〉 = 0.

By the maximum (or rather minimum) principle, we conclude that the function 〈X, ν〉 must
attain its minimum at the boundary. Since at the boundary we have, by (2.1)

〈X, ν〉 = | cos θ|
we conclude that

|〈X, ν〉| ≥ | cos θ|.
everywhere on Σ, and the result now follows from Corollary 5.1. �

When H = 0 and θ = π/2, Σ is called a FBMS. As cos θ = 0, the functional E no longer
depends on the wetted area and the boundaries are so-called free.

Proof of Theorem 1.13. Assume for sake of contradiction that the immersion is not totally

geodesic. First, we claim that Σ is not |
◦
A|2-scale to a hyper-planar domain. If it is, then

for some constant unit vector ei and some fixed number c > 0

|
◦
A|2〈X, ei〉 = c.

That is Xi is positive. On the other hand, by Lemma 4.2,∫
Σ
Xi = 0,

which is a contradiction.
Then from the proof of Theorem 1.9, we know that φ1, · · · , φn+1 are linearly independent

and the dimension of span{φ1, · · · , φn+1} is n + 1 as linear functionals acting on H1(Σ).
Since Σ a FBMS, then H = 0, cos θ = 0. (4.5) implies

λi =

∫
Σ
n2|A|2X2

i ≥ 0.
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If the Type-I+II Morse index is less than n+ 1, there exists at least one i ∈ {1, 2, ..., n+ 1}
such that Xi ≡ 0 on some open subset U . Hence |A| ≡ 0 on U . This is a contradiction to
the unique continuation of minimal surface and assumption that Σ is not totally geodesic.
The proof is complete. �

5.1. Critical Catenoid in a ball. In this section, we’ll determine precisely the indices
with different constraints for the embedded critical catenoid, the unique (up to isometry)
rotationally symmetric FBMS in B3. Here θ = π

2 and Ω = B3. Then,

p = |A|2 and q = 1.

The surface can be parametrized by a conformal harmonic map X : Σ 7→ B3, for t ∈
[−T, T ] and 0 ≤ τ ≤ 2π,

(5.1) X(t, τ) = c(cosh t cos τ, cosh t sin τ, t).

T and c are determined by

coshT = T sinhT and c =
1

T coshT
.

Following a straightforward calculation, we have

|A|2 =
2

c2 cosh4 t
and ∇η =

1

c coshT
∂±t = T∂±t.

The Jacobi operator is given by

J = ∆ + p = ∆ + |A|2 =
1

c2 cosh2(t)
(∂2
t + ∂2

τ +
2

cosh2(t)
).

Proposition 5.3. The Type-I Morse index of the critical catenoid is 3.

Proof. We consider

u = −a cosh2 t+ b(1− t tanh(t)).

One then calculate

Ju =
−4a

c2
,

Dηu(T ) = T (−a sinh(2T ) + b(− tanh(T )− T

cosh2(T )
)).

Solving Dηu(T ) = u(T ) gives

b = −a cosh(T ) sinh(T ).

Therefore, choosing a = c2

4 and b = −a cosh(T ) sinh(T ) yields
Ju = −1 on Σ

∇ηu = u on ∂Σ,∫
Σ u < 0.

By Theorem 1.2, its Type-I Morse index is equal to MI(Q)−1. By recent results of [25, 23, 6],
MI(Q) = 4 and the proof is complete. �

Now, we complete the second part of Corollary 1.20.

Proposition 5.4. The Type II Morse index of the critical catenoid is 3.
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Proof. We consider
u = a(1− t tanh(t)).

One then calculate

Ju = 0,

Dηu = −Ta(tanh(T ) +
T

cosh2(T )
).

Solving Dηu− u = 1 gives

a = − coth2(T ).

For that choice of a 
Ju = 0 on Σ

Dηu− u = 1 on ∂Σ,∫
Σ u < 0.

By Theorem 1.6, its Type II Morse index is equal to MI(Q) − 1. By recent results of
[25, 23, 6], MI(Q) = 4 and the proof is complete. �

Theorem 5.5. Let Σ ⊂ B3 is the critical catenoid. Then its Type-I, Type-II, and Type
I+II Morse indices are all equal to 3.

Proof. By Corollary 1.13, the Type I+II index is at least 3. Since it is smaller than or equal
to either the Type I or type II one, by Propositions 5.3 and 5.4, the result follows. �
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J. Reine Angew. Math., 311(312):80–100, 1979.

[5] Bennett Chow, Peng Lu, and Lei Ni. Hamilton’s Ricci flow, volume 77 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, 2006.

[6] Baptiste Devyver. Index of the critical catenoid. Geom. Dedicata, 199:355–371, 2019.
[7] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. Amer-

ican Mathematical Society, Providence, RI, second edition, 2010.
[8] Robert Finn. Equilibrium capillary surfaces, volume 284 of Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1986.
[9] Robert Finn, John McCuan, and Henry C. Wente. Thomas Young’s surface tension diagram: its history,

legacy, and irreconcilabilities. J. Math. Fluid Mech., 14(3):445–453, 2012.
[10] Ailana Fraser and Martin Man-chun Li. Compactness of the space of embedded minimal surfaces with

free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary. J. Differential
Geom., 96(2):183–200, 2014.

[11] Ailana Fraser and Richard Schoen. The first Steklov eigenvalue, conformal geometry, and minimal
surfaces. Adv. Math., 226(5):4011–4030, 2011.

[12] Ailana Fraser and Richard Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball. Invent.
Math., 203(3):823–890, 2016.

[13] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in
Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[14] Jinyu Guo and Chao Xia. Stability for a second type partitioning problem. J. Geom. Anal., 31(3):2890–
2923, 2021.



26 HUNG TRAN AND DETANG ZHOU

[15] Miyuki Koiso. Deformation and stability of surfaces with constant mean curvature. Tohoku Math. J.
(2), 54(1):145–159, 2002.

[16] Martin Man-Chun Li and Xin Zhou. Min-max theory for free boundary minimal hypersurfaces I—
Regularity theory. J. Differential Geom., 118(3):487–553, 2021.
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