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ABSTRACT. In this paper we investigate manifolds for which the curvature
operator of the second kind (following the terminology of Nishikawa in [20])
satisfies certain positivity conditions. Our main result settles Nishikawa’s con-
jecture that a manifold for which the curvature (operator) of the second kind
is positive is diffeomorphic to a sphere, by showing that such manifolds satisfy
Brendle’s PIC1 condition. In dimension four we show that curvature of the
second kind has a canonical normal form, and use this to classify Einstein
four-manifolds for which the curvature (operator) of the second kind is five-
non-negative. We also calculate the normal form for some explicit examples
in order to show that this assumption is sharp.

1. INTRODUCTION

Let V be an n-dimensional (real) inner product space, and let R : *V — R be
an algebraic curvature tensor. If T2(V) denotes the space of bilinear forms on V,
then we have the splitting

T(V) = S*(V) @ A*(V),
where S? is the space of symmetric two-tensors and A? is the space of two-forms.

By the symmetries of R, there are (up to sign) two ways that R can induce a linear
map R : T?(V) — T%(V). The classical example is R: A2(V) — A%(V), defined by

(1.1) R(e' N é?) ZRnge Aél,

where {e!,...,e"} is an orthonormal basis of V*. When R is the curvature tensor
of a Riemannian metric, then the map (1.1) is called the curvature operator.
The second map is R : SQ(V) — S2(V), defined by

(1.2) R(e @ej ZRMge o

where ® is the symmetric product (see Section 2 for definitions and conventions).
Note that S?(V) is not irreducible under the action of the orthogonal group on V.
If we let S3(V) denote the space of trace-free symmetric two-tensors, then S?(V)
splits as

S2V) = Sa(V) @ 1d.

R induces a bilinear form R : S2(TM) x S2(T'M) — R by restriction to S2(V).
When R is the curvature tensor of a Riemannian metric, S. Nishikawa called R the
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curvature operator of the second kind, to distinguish it from the map R in (1.1),
which he called the curvature operator of the first kind (see [20] and also [3]).

The curvature operator of the second kind naturally arises as the term in Lich-
nerowicz Laplacian involving the curvature tensor (see, for example, [19]). As such,
its sign plays a crucial role in rigidity questions for Einstein metrics. We say that
R > 0 (respectively, R > 0) if the eigenvalues of R as a bilinear form on S2(V) are
positive (respectively non-negative). It is easy to see that if R>0 (resp. > 0),
then the sectional curvature is positive (resp., non-negative).

Nishikawa proposed the following conjecture (][20]):

Conjecture 1.1. Let (M, g) be a closed, simply connected Riemannian manifold.
If R > 0 then M is diffeomorphic to a Riemannian locally symmetric space. If the
inequality is strict, then M is diffeomorphic to a round sphere.

This can be viewed as a differentiable sphere conjecture for positive curvature of
the second kind. In dimension three, it is easy to check that R>0 implies Re >
where Rc is the Ricci tensor and S is the scalar curvature. In particular the case of
the conjecture for three-manifolds with positive curvature operator of the second
kind follows from the work of Hamilton [14]. In all dimensions, if R > 0 then M
is a real homology sphere [21]. Also, if one imposes additional conditions on the
metric (for example, harmonic curvature), then the conjecture is true (see [15]).

Our first result is that the positive case of Nishikawa’s Conjecture is true — in
fact, the assumption can be weakened:

Theorem 1.2. Let (M,g) be a closed Riemannian manifold such that R is two-
positive (i.e., the sum of the smallest two eigenvalues of R is positive). Then M is
diffeomorphic to a spherical space form.

To explain the idea of the proof of Theorem 1.2, it will be helpful to recall a
definition due to S. Brendle [5]:

Definition 1.3. (M, g) satisfies the PIC1 condition if for any orthonormal frame
{e1, €2, e3,e4} we have

(1.3) Ris13 + A’Rua1a + Raszs + A’Raazs — 2AR1234 > 0 for all A € [0,1].

If the quantity in (2.4) is non-negative for any orthonormal frame, then we say that
(M, g) satisfies the NIC1 condition.

PIC1 is equivalent to the condition that the product manifold (M x R, g + ds?)
has positive isotropic curvature (PIC); see Proposition 4 of [5]. Brendle showed
that if (M, g) satisfies the PIC1 condition, then the Ricci flow with initial metric
g exists for all time and converges to a constant curvature metric as t — oo (see
Theorem 2 of [5]).

In earlier work of Brendle-Schoen [7], they proved a differentiable sphere theorem
for quarter-pinched metrics. We also remark that C. Bohm and B. Wilking [2]
had earlier shown that if the curvature operator is two-positive, then the Ricci
flow converges to a constant curvature metric. It is not difficult to see that two-
positivity of R implies PIC1. All of these results can be viewed as (differentiable)
sphere theorems for curvature of the first kind.

To prove Theorem 1.2, we show
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Theorem 1.4. Let (M,g) be a Riemannian manifold of dimension n > 4 for
which R is two-positive (resp., two-non-negative). Then (M, g) satisfies PIC1 (resp.
NIC1).

Theorem 1.2 therefore follows from Theorem 1.4 and Theorem 2 of [4]. We will
also show

Theorem 1.5. Let (M,g) be a Riemannian manifold of dimension n > 4 for
which R is four-positive (respectively, four-non-negative). Then (M,g) satisfies
PIC (resp., non-negative isotropic curvature).

Combining Theorem 1.5 with the work of Micallef-Moore [17], we have

Theorem 1.6. Let (M, g) be a simply connected Riemannian manifold of dimen-
sion n > 4 for which R is four-positive. Then (M, g) is homeomorphic to S™.

Subsequently, Brendle showed that Einstein manifolds of dimension n > 4 with
PIC have constant sectional curvature, and if (M, g) has non-negative isotropic
curvature, then it is locally symmetric [5] (the four-dimensional case was earlier
proved by Micallef-Wang [18]). Therefore, a further consequence of Theorem 1.5 is

Theorem 1.7. Let (M, g) be a compact Einstein manifold of dimension n > 4. If
R is four-positive, then (M,g) has constant sectional curvature. If R is four-non-
negative, then (M, g) is locally symmetric

After a preprint of this article was circulated, X. Li was able to show that PIC1
follows if one only assumes that R is three-positive (see Theorem 1.6 of [16]). In
the same paper, Li settled the non-negative case of Nishkawa’s conjecture.

1.1. Dimension Four. For our next results we study curvature of the second kind
in dimension four. If (M*, g) is a closed, oriented four-manifold, recall that Singer-
Thorpe [22] showed that the curvature operator has a canonical block decomposition
of the form

_( W+ 55T B
(14) R_( B! W™+ 581, )7

where W : A2 — A2 denotes the (anti-)self-dual Weyl tensor, and B : A2 — A2
is determined by the trace-free Ricci tensor, and S is the scalar curvature. In
particular, B vanishes if and only if (M*,g) is Einstein (See Section 2 for more
details).

Analogous to this decomposition for R, we prove the following block decompo-
sition for the matrix associated to the bi-linear form R:

Theorem 1.8. Let (M*,g) be a closed, oriented four-manifold. Then there is an
orthonormal basis of SZ(TM*) with respect to which the matriz of R is given by

) D 0 O
(1.5) R=| -0, D, 05 |,
~0, -03; Ds
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and the D;’s are diagonal matrices given by

1
—(Xi 1) + 12.9

1
1.6) D; = :
(1.6) —(Xi + p2) + 125

1
Ai —5
—(Ni 4 p3) + 1
where {1, Ao, A3} are the eigenvalues of W, and {1, u2, us} are the eigenvalues
of W=. Moreover, O, O3, O3 are skew-symmetric 3 X 3 matrices which vanish if
and only if (M*,g) is Einstein.

The precise form of 01, Os, (93 is given in Proposition 4.4 in Section 4. If (M*, g)
is Einstein then the matrix for R is diagonal, and the eigenvalues of R are deter-
mined by the eigenvalues of W+ and the scalar curvature. Using the block decom-
position for R and the work of the first and third authors [9], we can weaken the
assumption of Theorem 1.7 to show

Theorem 1.9. Let (M, g) be a simply connected Einstein four-manifold such that
R is five-non-negative. Then (M*,g) is isometric, up to rescaling, to either the
round sphere or complex projective space with the Fubini-Study metric.

In Section 5.1 we compute the matrix explicitly for certain model cases. For
(CP?, grs), where gpg is the Fubini-Study metric, it is easy to see that R is five-
positive but not four-positive, the latter being clear from Theorem 1.7. (We would
like to thank the referee for pointing out to us that the matrix for R was calculated
for CP" in all dimensions by Bourguignon-Karcher in Section 5 of [3].) For (52 x
5% g,), where g, is the product metric, then R is not five-non-negative, but is
six-non-negative. Therefore, the assumption of Theorem 1.9 is sharp.

It would be interesting to know whether the aforementioned property charac-
terizes (S? x 52, g,) among Einstein four-manifolds; i.e., is it the unique Einstein
four-manifold for which R is six-non-negative but not not five-non-negative?

There are a number of results which classify Einstein four-manifolds under var-
ious assumptions on the curvature operator (of the first kind); see for example
[5, 8, 10, 11, 13, 23] and references therein.

The paper is organized as follows: in Section 2 we summarize the necessary back-
ground material and establish our notation and conventions. In Section 3 we give
the proof of Theorems 1.2, 1.4, and 1.5. In Section 4 we give the proof of Theorem
1.8, and in Section 5 we prove the classification result of Theorem 1.9.
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grant DMS-2105460. The third author is partially supported by a Simons Collab-
oration Grant and NSF grant DMS-2104988. Also, part of the research was done
when he visited the Vietnam Institute for Advanced Study in Mathematics. The
authors would also like to thank the referee for their careful reading of the man-
uscript, and for their suggestions which significantly improved the final version of
the paper.



2. PRELIMINARIES

2.1. Notation and conventions. We adopt the following notation and conven-
tions:

e (M"™,g) is a Riemannian manifold of dimension n.

e R Rc, S, and W denote the Riemannian, Ricci, scalar, and Weyl curvatures
respectively. E = Rc — %S g denotes the traceless Ricci tensor, and K is
the sectional curvature.

e Givenp € M, if{ey,...,e,} is an orthonormal basis of T, M, then {e!, ..., e"}
denotes the dual basis of Ty M. At times we may assume that these bases
are locally defined via parallel transport.

e The tensor product of two one-forms is defined via
(ei ® ej)(ek, er) = 0i0je.
The symmetric product of e* and e’ is given by
o =e®e +ed e
The wedge product is given by

e Nel =e'Re! —ed ®e'.

e Let V be a finite dimensional vector space. Then S?(V) and A%(V) de-
note the space of symmetric and skew-symmetric two-tensors (i.e., bilinear
forms) on V (2-tensors and 2-forms, respectively). Then the space T2(V)
of bilinear forms on V' can be decomposed as

T*(V) = S*(V) @ A*(V).
Also, we let S3(V) denote trace-free symmetric two-tensors.
e The inner product in S?(V) is given by
(2.1) (u,v) = Tr(u’v).
The inner product in A%(V) is given by
1
(2.2) (u,v) = iTr(uTv).

With this convention, ||e? A e7|| = 1 and ||’ ® €?|| = /2 for i # j. In
particular, {e;; = e’ A e7};; is an orthonormal basis of A%, and

(2.3) ale;,ej) = (a,e; Nej) .

e For A, B € S%, the Kulkarni-Nomizu product Ao B € S?(A?) is defined by
(Ao B)ijr = AiBji + AjBit, — AuBji, — Ajr By
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e Let R(V) be the space of algebraic curvature tensors; i.e., (4,0) tensors sat-
isfying the same symmetry properties as the Riemannian curvature tensor,
along with the first Bianchi identity. Namely, if 7' € R(V), then

T(ei7 €5, €k, el) = _T(ej’ €i, €k, el) = _T(eiv €5, €1, ek) = T(eka €1, €4, ej)v

0= T(ei,ej7 €k, 61) + T(€i7 €k, el,ej) + T(ei, €1, €5, ek).

e Any T € R(V) can be identified with an element of End(A?): If w € A2,

T( ewej ZT elaej7€k7el) (ek7el)-
k<l

As a consequence,
Tijit :=T(es, e, ex, €r)
(2.4) =T(e"Nele" Nel) = (T(e Nel), e nel).

e Any T € R(V) can also be identified with an element of End(S?): If A € S2,

( )(ei, ex) ZT (e, e5,er,ex)Ales,e).

However, TA is not in general an endomorphism of S2. If we restrict TA to
S2 and consider the associated bilinear form, we call the resulting operator
the curvature operator of the second kind.

Of course the case of interest to us is when T = R, the Riemannian
curvature tensor of (M, g). We say that the (Riemannian) curvature oper-
ator of the second kind R is k-positive (non-negative) if the sum of any k
cigenvalues of the bilienar form R : S3 x S3 — R is positive (non-negative).

2.2. Curvature Decomposition. Recall that the Riemannian curvature tensor
can be decomposed into the Weyl, the Ricci, and the scalar parts. In terms of the
Kulkarni-Nomizu product defined above, we can express this decomposition as

(2.5) R=W+ ——FEog+

S
2n(n —
In dimension four this decomposition gives rise to a decomposition of the cur-

vature operator; see [22]. If (M* g) is oriented, then the Hodge star operator
% : A2 = A2, where A2 is the bundle of two-forms, induces a splitting

2 _ 42 2
A=A DA%,
where A% are the +1-eigenspaces of *. With respect to this splitting, the compo-
nents of the splitting in (2.5) have the property that
W: A2 — A%,
Eog: Ai — AQJF.
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Consequently, the curvature operator R : A2 — A2 has the following block decom-
position:
SId+ W+ lEoyg
(26) R ( saree ),
5Eo0g 5ld + W
where W* are the restriction of W to A2 M.

We will also need a related normal form for R due to M. Berger [1]:

Proposition 2.1. Let (M, g) be a four-manifold. At each pointp € M, there exists
an orthonormal basis {e; }1<i<a of T, M, such that relative to the corresponding basis
{ei Nejti<icj<a of N*T,M, W takes the form

(2.7) wz<j31 ﬁ),

where A = Diag{ai, a2, as}, B = Diag{b1, ba, b3}. Moreover, we have the
following:
(1) ay = W(e1, ez,e1,e2) = W(es, e, €3, e4) = minjq—jpj=1, ars W(a,b,a,b),
(2) a3 = W(e1, eq,e1,e4) = W(ea, €3, €2, €3) = max|q|=|p|=1, arb W(a,b,a,b).
(3) as = W(e1,e3,e1,e3) = W(ea, eq,€2,4),
(4) b1 = Wiaszs, by = Wizga, b3 = Wigas,
(5) a1 +as+az3=0by +by+b3=0,
(6) by —b1| < az —ay, |bs—bi| <az—ai, |bs —b2| < ag — as.

2.3. Isotropic Curvature. Next we recall the notion of isotropic curvature and
related concepts. The notion of isotropic curvature on 2-planes was introduced by
M. Micallef and J. D. Moore in [17]. As mentioned in the Introduction Section, it
played a crucial role in the proof of the differentiable sphere conjecture [7] via the
Ricci flow.

Definition 2.2. (M, g) is said to have non-negative isotropic curvature if, for any
orthonormal frame {e;, ea,e3,e4} we have

Ri313 + Ri414 + Ro323 + Raa24 — 2R1234 > 0.
If the inequality is strict then it is said to have positive isotropic curvature.
The following property is well known (see [17]):

Lemma 2.3. In dimension four, non-negative isotropic curvature is equivalent to
S
~W* 4+ Z1d >0,
+ 242
as a bilinear form on A2.

In the work of Brendle and Schoen, they introduced the following extensions of
the notion of non-negative and positive isotropic curvature:

Definition 2.4. (M, g) is said to be NIC1 if for any orthonormal frame {e1, e2, €3, €4}
we have

Risis + A’Rua14 + Rasos + A’Raaos — 2AR1234 > 0 for all A € [0, 1].
If the inequality is strict then (M, g) is said to be PIC1.
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Definition 2.5. (M, g) is said to be NIC2 if for any orthonormal frame {eq, ez, €3, €4}
we have

Ri313 + A?Ruars + p#*Ragos + A2 p?Raazs — 2 \uRi234 > 0 for all A, p € [0,1].
If the inequality is strict then (M, g) is said to be PIC2.

Brendle and Schoen observed that all these conditions are preserved under the
Ricci flow [7, 4, 6]. In particular, Brendle was able to show the following;:

Theorem 2.6 ([4]). Let (M,g) be a Riemannian manifold satisfying the PIC1
condition. Then the normalized Ricci flow exists for all times and converges to a
constant curvature metric as t — oo. In particular, the manifold is diffeomorphic
to a spherical space form.

3. CURVATURE OF THE SECOND KIND AND PIC
In this section, we give the proofs to Theorems 1.2, 1.4, and 1.5.

Proof of Theorem 1.4. Fix a point p € M and let {e!,--- ,e"} be an orthonormal
basis of Ty M. We define the following trace-free symmetric two tensors:
hi=et@e® +Xe? ol
he =e2®e® — el @ et

It is easy to see that h; and ho are orthogonal to each other in S2. Since R is
two-positive we have

0< f{(hh hi) + R(hQ, ha).
We observe that all components of hy are trivial except
hi(e',€®) == (h1)13 = (h1)s1 = 1,
hi(e?,e*) == (h1)as = (ho)aa = A.
Then, we calculate
R(h1,h1) = Rijra(ha)ia(ha)
ijkl
= Z Rijri(h1)i(ha)jx
i3k, 1= =|k—j|=2
= 2(2)R1243 + Riz13 + 2ARi423 + A*Raao4).

Similarly,

Then, we calculate

R(hy, h) = ZRijkl(hQ)il(hQ)jk
ijkl
= Z Rijki(h2)ii(he) ik
i,k LI i=kj=5
= 2(—2)\R1234 — 2>\R1324 + )\2R1414 + R2323)'



Combining equations above yields

0 < (2AR1243 + Riz13 + 2AR1423 + A?Ras24)
+ (—2AR1234 — 2AR1324 + ARus14 + Rozas)
= Riz13 + Rases + A*(Rua14 + Roaza) — 4AR12314 — 2A(Ruaz2 + Risza).

Applying the first Bianchi identity, we obtain
(3.1) 0 < (Rus13 + Rasas) + A*(Ria1a + Raaza) — 6AR1234.
Interchanging the roles of e' and e? and letting
hs =e2@e® + Xel @€t
we have
R(h& hs) = 2(Rasas + A?Ria1s + 2AR1324 + 2ARa143).
Similarly,

hy=¢e'®e® —/\62664,
R(ha, ha) = 2(Ruz1z + A\?Raaas — 2AR1493 — 2ARo134)

Adding these results together, we obtain

0 < (2AR2143 + Ra323 + 2AR1324 + A Ry414)
+ (=2AR2134 — 2AR1423 + A*Raa2s + Rizia)
= Ru313 + Rases + A?(Ria1a + Roga) — 4ARa134 — 2X\(Ri403 + Riza2).

Applying the first Bianchi identity, we obtain
(3:2) 0 < (Ris13 + Ras2s) + A*(Ri414 + Raa2a) — 6AR2134.
From equations (3.1) and (3.2), one concludes that
Ris1s + Rasas + A’Riars + A’Raazs > [6AR1234].
By Defintion 2.4, the PIC1 condition is equivalent to
Ris1s + Rass + A’Ri1a + A’Raaos + 2AR1234 > 0.

The result then follows. O

Proof of Theorem 1.2. By Theorem 1.4, the curvature is PIC1. The result follows
from Theorem 2.6. O
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Proof of Theorem 1.5. As before, we fix a point p € M and let {e!,--- ,e"} be an
orthonormal of T;; M. We define the following traceless symmetric two tensors:

1
hi=-(—eloel =2+t 0’ +etoet),

2
ho =et @et —e2 ®ed,
hs = —e' ©e® — e O et
hy = —el @t —e? e,
1 .
h5:5(*61®€1+62®62763®63+64®€4),
1
h6:5(*61@€1+62®€2+€3®63f€4®€4).

It is easy to see that these tensors are of the same magnitude and are mutually
orthogonal in S2.
Since R is 4-positive we have

0 < R(h1, 1) + R(ha, ko) + R(ha, hs) + R(hs, hs).
We compute
R(ha, b)) =Y Rijra(h)a(ha) i
ijki
= Z Rijji(h1)ii(h1) 5
i,j

= 2(—Ri212 — Raa34 + Riz13 + Ria1a + Razas + Rasoa).

Next,
R(h2, ha) =Y Rijri(ho)ir(h2)
ijkl
= ZRij(5—j)(5—i)(h2)i(5—i)(h2)j(5—j)
%,J
= 2(Ri414 + Ras2s + 2R1243 + 2R1342).

Similarly,
R(ha, ha) = 2(—=2R1243 — 2R1342 + Ria14 + Razos),
R(hs, hs) = 2(—Ri313 — Roazs + Ria1a + Roszs + Riziz + Rausa).

Combining the equations above yields
(3.3) 0 < Ria14 + Rasas.
Next, we consider
0 < R(h1, 1) + R(ha, ko) + R(hs, hs) + R(he, he).
Here,
R(h?n h3) = 2(—2R1234 — 2R1432 + Ri313 + Rouo4),
R(he, he) = 2(—Ruia14 — Rosas + Rusis + Riziz + Raasa + Raaza).
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Therefore, combining the equations above yields
0 < (Ri313 + Ria14 + Rasas + Raazs — Ri212 — Rauza)
+ (2R1243 + 2R1342 + Rig14 + Ro3o3)
+ (Ri313 + Ra424 — 2Ri1234 — 2R1432)
+ (Ri313 + Ri212 + Ra2a24 + Raaz4 — Rig14 — Raszas)
= 3(Ri313 + Ra424) + (Ria14 + Rasaz) — 4R1234 — 2(Rizas + Riaszz).
Applying the first Bianchi identity, we obtain
(3.4) 0 < 3(Ri313 + Raaz4) + (R1414 + Razz3) — 6R1234.
Adding (3.4) and twice of (3.3) gives
0 < 3(Rig13 + Ri414 + Rasas + Raaza — 2Ry234).

Since the inequality holds for any orthonormal four-tuple (eq, e, €3, €4), we conclude
that the manifold has positive isotropic curvature.
O

As explained in the Introduction Section, Theorems 1.6 and 1.7 follow from
Theorem 1.5 and Micallef-Wang’s work [17] and Brendle’s classification of Einstein
manifold with non-negative isotropic curvature [5].

4. DIMENSION FOUR: THE MATRIX REPRESENTATION OF R

Let (M*, g) be an oriented Riemannian four-manifold, and p € M*. The space of
two forms A%(T,M*) splits into the space of self-dual and anti-self-dual two-forms:

A (T, M*) = A% (T, M*) © A% (T, M*).

If {e',e?, €3, e*} is an orthonormal basis of Ty X*, then the two-forms
wh= (et ne? + e net),

(4.1) wi=(e'Aed —e? Aet),
W= (et net + et ned),

constitute an orthogonal basis of A% (T, M*) with [w®|? = 2, and
nt= (et ne? —ed Aet),

(4.2) = (e' Ned +e? Aet),
7= (et net —e? AP,

is an orthogonal basis of A% (T, M*) with |n”|? = 2.

The Weyl tensor of (M*, g) defines trace-free (symmetric) linear endomorphisms

W= A% (T,M*) — A% (T,M*), hence there are bases of A2 (T,,M*) consisting of
eigenforms of W¥. Indeed, using Proposition 2.1, we have
_( (A+B) 0
(4.3) W_( 0 A-B) )
Here, A = diag(a1, ag, a3), B = diag(by, b2, b3), and a; + as + az = by +ba + b3 = 0.
As a result, thanks to Proposition 2.1 again, eigenvalues of W are ordered,

(4.4) {A1:a1+b1S/\Q:a2+b2§/\3=a3+b3,

p1=a1 — by < g =ag — by < 3 = az — bs.
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The following result is an excerpt from [12, Lemma 2], and is based on [22]:

Proposition 4.1. Let (M*, g) be an oriented, four-dimensional Riemannian man-
ifold, and p € M*.

(i) There is an orthonormal basis {e',e? e3 et} of T;M4 such that eigenforms
{whw? W} (resp., {n*,n%,n%}) as given in (4.1) (resp., of the form (4.2)) make
an orthogonal basis of A3 (T,M*) (respectively, A% (T,M*)).

(i7) If {\1, Ao, A3} and {1, po, p3} are the eigenvalues of W+ and W~ respectively,
then with respect to the dual orthonormal basis {e1,e?,e3 es}, the Weyl tensor is
given by

(4.5)
Wijke = %[Mwﬁj%z + Aowi Wiy + Aswijwity] + % (i mhe + 123 mihe + B3
with

(46) A1+ Ao+ A3 =0,

w1+ p2+pg =0.

(75i) The bases in (4.1) and (4.2) have a quaternionic structure: For 1 < a <3,
[(w*)?)ij = wiwiy = —dij,
(%)) = miimi; = —0ij

where the components are with respect to an orthonormal basis of TPM4. Also,

(4.7)

(WlWQ)ij = Wz‘lkwlzj = _Wgy

(wlws)ij = Wz'lkwlzj = wi2j7
18 (w2w3)ij = w?kw,‘rij = —wilj,
(4.8) 1,2y _ 1,2 _ 3

(" 1%)i5 = MiNiej = Nijo

('n)ij = mimit; = =i,

(7°0°)ij = mimie; = mij-

(iv) The bases in (4.1) and (4.2) generate an orthogonal basis of S3(TyX*), the
space of symmetric trace-free (0,2)-tensors by taking

(4.9) i = wionf.

Moreover, |h(*F)| = 2.

To simplify notation we label the basis in Proposition 4.1 (iv) in the following
way:

h(l,l) — hl, h(1,2) — h2, h(1,3) — h3,
(4.10) D = pt p(22) = B3 p(23) = b
h(3,1) — h7, h(3,2) _ hS7 h(3,3) _ h9.

Using the quaternionic structure of the bases of eigenforms, it is easy (but tedious)
to construct a ‘multiplication table’ for the basis element {h*}9_;:

Lemma 4.2. The basis elements in (4.10) satisfy
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Rl h? h3 h? h® h® h7 h® h?
pt| Id * * * —h% | R * hS | —h®
h? * Id * ho * P * h*
h3 * * Id | —n¥| A" * h | —ht *
hE * R [ =h¥| Id * * * —h3 | h?
R | —hY | « BT * Id * h3 x | —ht
KO A% | A7 * * * Id | =h?| Al *
BT« | =hS| m° * RS | —h%| Id | *
K8 Ab * —h* | =n3 * Al * Id *
RO —hb | At * h? | —ht * * * 1d

That 1is,
(h®)7; = hiLhiy; = bij,
and:
BIRS = —h°, KRS = B8,
WIS = 1S, RR® = —hS,
R2RY = RO, h2RS = —p7,
R2RT = —BS,  B2R% = bt
B3Rt = —h®, B3RS =BT,
R3RT = 15, h3hS = —h?,
BARS = —h3,  BARO = B2,
WORT = B3, hOR® = —h!,
h°hT = —h*,  h°h® = h'.
Also, each x represents a skew-symmetric matriz.

As explained in the Introduction Section, the Weyl tensor can also be interpreted
as a symmetric bilinear linear form on the space of trace-free symmetric two-tensors.

If s,t € S3(T*X*?), then
(4.11) Wi(s,t) = WikejSwetiz,

where the components are with respect to an orthonormal basis of T, M 4. We can
compute the matrix of W with respect to the basis {h*}9_,, by using the algebraic
properties summarized in Proposition 4.1 and Lemma 4.2:

Proposition 4.3. The orthogonal basis {h®} defined in (4.9) and (4.10) diagonal-
izes the Weyl tensor, interpreted as a symmetric bi-linear form as in (4.11). With
respect to this basis the matriz of W is given by

R D 0 0
(4.12) W = 0 Dy 0 ,
0 0 Ds
where the D;’s are diagonal matrices given by
—4(N\; + 1)
(4.13) D; = —4(N\; + p2)

—4(Ni + p3)
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Proof. As indicated above, the proof is a consequence of the multiplicative prop-
erties of the basis elements, and the fact that W= are trace-free. For example, a
straightforward calculation gives

W(h', ') = Wikeihpohi;

1
D) [Alwilkwl}j + )‘2wi2kwl?j + ASW?}cW?j + Nlmlk??t}j + /1’277@'2k773j + NSW?kn?j]wlipn;Zw}qn;j
= —2X\1 + 2Xo + 2A3 — 21 + 20 + 2us3.
Since W= are trace-free, this can be rewritten
W(hl,hl) = 74()\1 + [Ll)

The other entries are computed in a similar manner. (]

To express the matrix for R with respect to the basis {h*}, we use the decom-
position of the curvature tensor in dimension four:

(4.14)

1 1
Rikej = Wike; + 3 (9ieExj — 9ijEre — greEij + grjEie) + ES (giegrs; — 9ijgre) -

If s and ¢ are trace-free symmetric two-tensors, then

R(s,t) = Rirejsketij
(4.15) ) . 1
= W(S’t) + E($7t) + ES<S>t>a

where (-,-) is the inner product on symmetric two-tensors, and F is the bilinear
form given by

(4.16) E(S,t) = E;i;siktr; = <E, St>,

where (st);; = s;xtr;. Consequently, to compute the matrix for R it only remains
to compute the matrix for E with respect to the basis {h*}.

Since {h“} is a basis for the space of trace-free symmetric two-tensors, we can
write

1
(4.17) Eij = qeahi,
where
(4.18) €a = (B, h%).

It follows from (4.16) that the matrix entry Ens = E(h®, hP) is given by
Eog = Eijhghy;

1 «
(4.19) = 160 e
_ 1
1

Using the product formulas in Lemma 4.2, we can therefore express the entries of

the matrix (E,g) in terms of the €, ’s:

ey (R, h®hP).
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Proposition 4.4. With respect to the basis in (4.9), the matrix ofE is given by
0 O O,

(4.20) E=| -0, 0 0; |,
-0y —-03 0
where O1, 02, O3 are skew-symmetric 3 X 3 matrices given by
0 —€g €8
(4.21) O1=| & 0 —€r ],
—€g €7 0
0 €6 —€5
(4.22) Oy=| —e O €4 )
€5 —e4 O
0 —€3 €9
(423) (93 == €3 0 —€1

—€g €1 0
Moreover, these matrices all vanish if and only if (M*,g) is Einstein.

Proof. This is a straightforward calculation, so we only point out some readily
observed features. First, since (h®)? = I, all diagonal entries vanish:

E(h® h®) = (B, (h*)?) = (E,I) =tr E =0.

In fact, if 1 < a,8 < 3 and a # f3, then by Lemma 4.2 the product h®h? is
skew-symmetric, hence

E(h*,h?) = (E,h*hP) =0,
since E is symmetric. This shows that the upper left 3 x 3 block of the matrix
vanishes, and a similar argument shows that all three such blocks along the diagonal
are zero.

Finally, note that all matrices vanish if and only if e = -+ - = €9, which by (4.17)
is equivalent to £ = 0. ([

Proof of Theorem 1.8. Recall that the basis {h*} is orthogonal, but not orthonor-
mal. If we define

I« 1a
h —§h,

then {h®} is an orthonormal basis of S3. Moreover, the matrix representation
with respect to {h®} can be obtained from the representation with respect to {h®}
by simply dividing by four. Therefore, Theorem 1.8 follows from Proposition 4.3,
Proposition 4.4, and the formula (4.15). O

5. EINSTEIN FOUR MANIFOLDS

In this section we apply our matrix representation of the curvature of the second
kind to study Einstein manifolds of positive scalar curvature in dimension four, and
give the proof to Theorem 1.9.

For simplicity, let (M, g) be a four-dimensional manifold with Rc = g. Conse-
quently, S = 4. For such a manifold, E = 0, so the block matrix for R in (1.4) is
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diagonal. Using the notation from Proposition 4.1 and Theorem 1.8, the eigenvalues
of R are given by
1
(3= = hy)-

Proof of Theorem 1.9. First, with the aid of the ordering of eigenvalues of W in
(4.4), we have

A3+ p3 = Az + p2 > Az + pa,

Ao+ 2 > Ao+ p1 > A1+ i,

A3+ p3 = A2+ pz > A+ ps,

Ao+ o > A+ 2 > A+ .

R is 5-non-negative if and only if

5
0§§—3)\3—3/~L3—)\2—)\1—N2—/~L17

5
0§§—3/\3—2/~L3—2)\2—2M2—/¢1,

5
0§§—2)\3—3M3—2)\2—2M2—)\1.

Using >, A = >, s = 0 and Proposition 2.1, we obtain
) ) 5 ) 1
0< 2920\ =2 daz =2 —AWisra = 2 — 4Ryg1a — =)
=3 (A3 + p3) 3 as 3 1414 = 3 (Ri414 3)
This implies Ri414 < %. By the ordering (4.4), the sectional curvature is bounded
above by 2. Using the classification result of [9, Corollary 1.3] we arrive at the
conclusion. ([

When R is 6-non-negative, we have the following observation.

Proposition 5.1. Let (M, gA) be a simply connected Einstein four-manifold with

positive scalar curvature. If R is 6-positive then its sectional curvature is bounded

above by the Finstein constant. Moreover, the curvature operator (of first kind) is
4-non-negative.

Proof. Again, we use the normalization Re = ¢. R is 6-non-negative if and only if
0<2—3X3 —3u3 — 2y — Ay — 2o — p1,
0<2—3X3 —2u3 — 3y — 212 — 24,
0<2—2X\3 —3us — 2 gy — 3us — 2)1.

Due to Prop. 2.1, it is equivalent to

0<2—(A3+ps)+ M\ +p=2—2a3+2a;
0 <2+ 3\,
0<243u.
The first inequality is equivalent to
Rig14 — Ri212 < 1.

In combination with the equality

Ri212 + Riziz + Riga = 1,
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and the ordering
Ri212 £ Rizi3 < Riaa,
we conclude that Riyq14 < 1.

For the last statement, recall that the eigenvalues of the curvature operator of
the first kind are given by

1 1 1
AM+=<A — < )A3+ =
1+3,2+3,3+37

+ ! < p2 + = < pz+ =
H1 3= 2 3= w3 3
Thus, R is 4-non-negative if and only if

OS _)\3_M37

Wk Wl

OS7+)\17

< 4
The ﬁI‘Sl lnequahty iS equi\/a‘lenl IO

Rig1a <1

The result then follows. O

5.1. Examples. To illustrate our results, we use Theorem 1.8 to compute the
matrix of R for some model cases.

1. (S%, go), where go is the round metric. In this case W = 0 and S = 12 at each
point, hence

R=1

where T is the identity matrix. In particular, R (as a bilinear form) is positive
definite.

2. (CP?, gps), where gpg is the Fubini-Study metric. In this case, W~ = 0 and
S = 8. Since the metric is Kahler, W can be diagonalized at each point as

(5.1) wt = -8 ,

see Proposition 2 of [12]. Consequently, up to ordering of the eigenvalues, the
matrix for R is given by

) —21 0 0
(5.2) R= 0 4I 0
0 0 4I

Note that the sum of the four smallest eigenvalues is negative, but the sum of the
five smallest is positive. Hence R is 5-positive but not 4-positive.

3. (5% x S2,g,), where g, is the product of the standard metric on each factor.
In this case, S = 4, and g, is Kéhler with respect to both orientations; i.e., the
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representation (5.1) holds for both W+ and W~. Consequently, up to ordering of
the eigenvalues, the matrix for R is given by

-1

1

Notice that the sum of the five smallest eigenvalues is negative; i.e., R is not five-
non-negative. However, it is six-non-negative.

1

[2

(3]
[4]
(5]

(7]

8

(10]
(11]
(12]
(13]
[14]
(15]
[16]

(17)

18]

(19]
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