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Abstract. In this paper we investigate manifolds for which the curvature

operator of the second kind (following the terminology of Nishikawa in [20])
satisfies certain positivity conditions. Our main result settles Nishikawa’s con-

jecture that a manifold for which the curvature (operator) of the second kind

is positive is diffeomorphic to a sphere, by showing that such manifolds satisfy
Brendle’s PIC1 condition. In dimension four we show that curvature of the

second kind has a canonical normal form, and use this to classify Einstein

four-manifolds for which the curvature (operator) of the second kind is five-
non-negative. We also calculate the normal form for some explicit examples

in order to show that this assumption is sharp.

1. Introduction

Let V be an n-dimensional (real) inner product space, and let R : ⊗4V → R be
an algebraic curvature tensor. If T2(V ) denotes the space of bilinear forms on V ,
then we have the splitting

T2(V ) = S2(V )⊕ Λ2(V ),

where S2 is the space of symmetric two-tensors and Λ2 is the space of two-forms.
By the symmetries of R, there are (up to sign) two ways that R can induce a linear
map R : T2(V ) → T2(V ). The classical example is R : Λ2(V ) → Λ2(V ), defined by

R(ei ∧ ej) =
1

2

∑
k,ℓ

Rijkℓ e
k ∧ eℓ,(1.1)

where {e1, . . . , en} is an orthonormal basis of V ∗. When R is the curvature tensor
of a Riemannian metric, then the map (1.1) is called the curvature operator.

The second map is R̂ : S2(V ) → S2(V ), defined by

R̂(ei ⊙ ej) =
∑
k,ℓ

Rikℓj e
k ⊙ eℓ,(1.2)

where ⊙ is the symmetric product (see Section 2 for definitions and conventions).
Note that S2(V ) is not irreducible under the action of the orthogonal group on V .
If we let S2

0(V ) denote the space of trace-free symmetric two-tensors, then S2(V )
splits as

S2(V ) = S2
0(V )⊕ Id.

R̂ induces a bilinear form R̂ : S2
0(TM) × S2

0(TM) → R by restriction to S2
0(V ).

When R is the curvature tensor of a Riemannian metric, S. Nishikawa called R̂ the
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curvature operator of the second kind, to distinguish it from the map R in (1.1),
which he called the curvature operator of the first kind (see [20] and also [3]).

The curvature operator of the second kind naturally arises as the term in Lich-
nerowicz Laplacian involving the curvature tensor (see, for example, [19]). As such,
its sign plays a crucial role in rigidity questions for Einstein metrics. We say that
R̂ > 0 (respectively, R̂ ≥ 0) if the eigenvalues of R̂ as a bilinear form on S2

0(V ) are

positive (respectively non-negative). It is easy to see that if R̂ > 0 (resp. ≥ 0),
then the sectional curvature is positive (resp., non-negative).

Nishikawa proposed the following conjecture ([20]):

Conjecture 1.1. Let (M, g) be a closed, simply connected Riemannian manifold.

If R̂ ≥ 0 then M is diffeomorphic to a Riemannian locally symmetric space. If the
inequality is strict, then M is diffeomorphic to a round sphere.

This can be viewed as a differentiable sphere conjecture for positive curvature of
the second kind. In dimension three, it is easy to check that R̂ ≥ 0 implies Rc ≥ S

6 ,
where Rc is the Ricci tensor and S is the scalar curvature. In particular the case of
the conjecture for three-manifolds with positive curvature operator of the second
kind follows from the work of Hamilton [14]. In all dimensions, if R̂ > 0 then M
is a real homology sphere [21]. Also, if one imposes additional conditions on the
metric (for example, harmonic curvature), then the conjecture is true (see [15]).

Our first result is that the positive case of Nishikawa’s Conjecture is true – in
fact, the assumption can be weakened:

Theorem 1.2. Let (M, g) be a closed Riemannian manifold such that R̂ is two-

positive (i.e., the sum of the smallest two eigenvalues of R̂ is positive). Then M is
diffeomorphic to a spherical space form.

To explain the idea of the proof of Theorem 1.2, it will be helpful to recall a
definition due to S. Brendle [5]:

Definition 1.3. (M, g) satisfies the PIC1 condition if for any orthonormal frame
{e1, e2, e3, e4} we have

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234 > 0 for all λ ∈ [0, 1].(1.3)

If the quantity in (2.4) is non-negative for any orthonormal frame, then we say that
(M, g) satisfies the NIC1 condition.

PIC1 is equivalent to the condition that the product manifold (M ×R, g + ds2)
has positive isotropic curvature (PIC); see Proposition 4 of [5]. Brendle showed
that if (M, g) satisfies the PIC1 condition, then the Ricci flow with initial metric
g exists for all time and converges to a constant curvature metric as t → ∞ (see
Theorem 2 of [5]).

In earlier work of Brendle-Schoen [7], they proved a differentiable sphere theorem
for quarter-pinched metrics. We also remark that C. Böhm and B. Wilking [2]
had earlier shown that if the curvature operator is two-positive, then the Ricci
flow converges to a constant curvature metric. It is not difficult to see that two-
positivity of R implies PIC1. All of these results can be viewed as (differentiable)
sphere theorems for curvature of the first kind.

To prove Theorem 1.2, we show
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Theorem 1.4. Let (M, g) be a Riemannian manifold of dimension n ≥ 4 for

which R̂ is two-positive (resp., two-non-negative). Then (M, g) satisfies PIC1 (resp.
NIC1).

Theorem 1.2 therefore follows from Theorem 1.4 and Theorem 2 of [4]. We will
also show

Theorem 1.5. Let (M, g) be a Riemannian manifold of dimension n ≥ 4 for

which R̂ is four-positive (respectively, four-non-negative). Then (M, g) satisfies
PIC (resp., non-negative isotropic curvature).

Combining Theorem 1.5 with the work of Micallef-Moore [17], we have

Theorem 1.6. Let (M, g) be a simply connected Riemannian manifold of dimen-

sion n ≥ 4 for which R̂ is four-positive. Then (M, g) is homeomorphic to Sn.

Subsequently, Brendle showed that Einstein manifolds of dimension n ≥ 4 with
PIC have constant sectional curvature, and if (M, g) has non-negative isotropic
curvature, then it is locally symmetric [5] (the four-dimensional case was earlier
proved by Micallef-Wang [18]). Therefore, a further consequence of Theorem 1.5 is

Theorem 1.7. Let (M, g) be a compact Einstein manifold of dimension n ≥ 4. If

R̂ is four-positive, then (M, g) has constant sectional curvature. If R̂ is four-non-
negative, then (M, g) is locally symmetric

After a preprint of this article was circulated, X. Li was able to show that PIC1
follows if one only assumes that R̂ is three-positive (see Theorem 1.6 of [16]). In
the same paper, Li settled the non-negative case of Nishkawa’s conjecture.

1.1. Dimension Four. For our next results we study curvature of the second kind
in dimension four. If (M4, g) is a closed, oriented four-manifold, recall that Singer-
Thorpe [22] showed that the curvature operator has a canonical block decomposition
of the form

(1.4) R =

(
W+ + 1

12S I B
Bt W− + 1

12S I,

)
,

where W± : Λ2
± → Λ2

± denotes the (anti-)self-dual Weyl tensor, and B : Λ2
+ → Λ2

−
is determined by the trace-free Ricci tensor, and S is the scalar curvature. In
particular, B vanishes if and only if (M4, g) is Einstein (See Section 2 for more
details).

Analogous to this decomposition for R, we prove the following block decompo-
sition for the matrix associated to the bi-linear form R̂:

Theorem 1.8. Let (M4, g) be a closed, oriented four-manifold. Then there is an

orthonormal basis of S2
0(TM

4) with respect to which the matrix of R̂ is given by

R̂ =

 D1 O1 O2

−O1 D2 O3

−O2 −O3 D3

 ,(1.5)
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and the Di’s are diagonal matrices given by

Di =


−(λi + µ1) +

1

12
S

−(λi + µ2) +
1

12
S

−(λi + µ3) +
1

12
S

 ,(1.6)

where {λ1, λ2, λ3} are the eigenvalues of W+, and {µ1, µ2, µ3} are the eigenvalues
of W−. Moreover, O1,O2,O3 are skew-symmetric 3 × 3 matrices which vanish if
and only if (M4, g) is Einstein.

The precise form of O1,O2,O3 is given in Proposition 4.4 in Section 4. If (M4, g)

is Einstein then the matrix for R̂ is diagonal, and the eigenvalues of R̂ are deter-
mined by the eigenvalues of W± and the scalar curvature. Using the block decom-
position for R̂ and the work of the first and third authors [9], we can weaken the
assumption of Theorem 1.7 to show

Theorem 1.9. Let (M, g) be a simply connected Einstein four-manifold such that

R̂ is five-non-negative. Then (M4, g) is isometric, up to rescaling, to either the
round sphere or complex projective space with the Fubini-Study metric.

In Section 5.1 we compute the matrix explicitly for certain model cases. For
(CP2, gFS), where gFS is the Fubini-Study metric, it is easy to see that R̂ is five-
positive but not four-positive, the latter being clear from Theorem 1.7. (We would

like to thank the referee for pointing out to us that the matrix for R̂ was calculated
for CPn in all dimensions by Bourguignon-Karcher in Section 5 of [3].) For (S2 ×
S2, gp), where gp is the product metric, then R̂ is not five-non-negative, but is
six-non-negative. Therefore, the assumption of Theorem 1.9 is sharp.

It would be interesting to know whether the aforementioned property charac-
terizes (S2 × S2, gp) among Einstein four-manifolds; i.e., is it the unique Einstein

four-manifold for which R̂ is six-non-negative but not not five-non-negative?
There are a number of results which classify Einstein four-manifolds under var-

ious assumptions on the curvature operator (of the first kind); see for example
[5, 8, 10, 11, 13, 23] and references therein.

The paper is organized as follows: in Section 2 we summarize the necessary back-
ground material and establish our notation and conventions. In Section 3 we give
the proof of Theorems 1.2, 1.4, and 1.5. In Section 4 we give the proof of Theorem
1.8, and in Section 5 we prove the classification result of Theorem 1.9.
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grant DMS-2105460. The third author is partially supported by a Simons Collab-
oration Grant and NSF grant DMS-2104988. Also, part of the research was done
when he visited the Vietnam Institute for Advanced Study in Mathematics. The
authors would also like to thank the referee for their careful reading of the man-
uscript, and for their suggestions which significantly improved the final version of
the paper.
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2. Preliminaries

2.1. Notation and conventions. We adopt the following notation and conven-
tions:

• (Mn, g) is a Riemannian manifold of dimension n.

• R, Rc, S, and W denote the Riemannian, Ricci, scalar, and Weyl curvatures
respectively. E = Rc − 1

nSg denotes the traceless Ricci tensor, and K is
the sectional curvature.

• Given p ∈ M , if {e1, . . . , en} is an orthonormal basis of TpM , then {e1, . . . , en}
denotes the dual basis of T ∗

pM . At times we may assume that these bases
are locally defined via parallel transport.

• The tensor product of two one-forms is defined via

(ei ⊗ ej)(ek, eℓ) = δikδjℓ.

The symmetric product of ei and ej is given by

ei ⊙ ej = ei ⊗ ej + ej ⊗ ei.

The wedge product is given by

ei ∧ ej = ei ⊗ ej − ej ⊗ ei.

• Let V be a finite dimensional vector space. Then S2(V ) and Λ2(V ) de-
note the space of symmetric and skew-symmetric two-tensors (i.e., bilinear
forms) on V (2-tensors and 2-forms, respectively). Then the space T 2(V )
of bilinear forms on V can be decomposed as

T 2(V ) = S2(V )⊕ Λ2(V ).

Also, we let S2
0(V ) denote trace-free symmetric two-tensors.

• The inner product in S2(V ) is given by

(2.1) ⟨u, v⟩ = Tr(uT v).

The inner product in Λ2(V ) is given by

(2.2) ⟨u, v⟩ = 1

2
Tr(uT v).

With this convention, ||ei ∧ ej || = 1 and ||ei ⊙ ej || =
√
2 for i ̸= j. In

particular, {eij = ei ∧ ej}i̸=j is an orthonormal basis of Λ2, and

(2.3) α(ei, ej) = ⟨α, ei ∧ ej⟩ .

• For A,B ∈ S2, the Kulkarni-Nomizu product A ◦B ∈ S2(Λ2) is defined by

(A ◦B)ijkl = AikBjl +AjlBik −AilBjk −AjkBil.
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• Let R(V ) be the space of algebraic curvature tensors; i.e., (4, 0) tensors sat-
isfying the same symmetry properties as the Riemannian curvature tensor,
along with the first Bianchi identity. Namely, if T ∈ R(V ), then

T (ei, ej , ek, el) = −T (ej , ei, ek, el) = −T (ei, ej , el, ek) = T (ek, el, ei, ej),

0 = T (ei, ej , ek, el) + T (ei, ek, el, ej) + T (ei, el, ej , ek).

• Any T ∈ R(V ) can be identified with an element of End(Λ2): If ω ∈ Λ2,

T (ω)(ei, ej) :=
∑
k<l

T (ei, ej , ek, el)ω(ek, el).

As a consequence,

Tijkl := T (ei, ej , ek, el)

= T (ei ∧ ej , ek ∧ el) :=
〈
T (ei ∧ ej), ek ∧ el

〉
.(2.4)

• Any T ∈ R(V ) can also be identified with an element of End(S2): If A ∈ S2,

(T̂A)(ei, ek) =
∑
j,l

T (ei, ej , el, ek)A(ej , el).

However, T̂A is not in general an endomorphism of S2
0 . If we restrict T̂A to

S2
0 and consider the associated bilinear form, we call the resulting operator

the curvature operator of the second kind.
Of course the case of interest to us is when T = R, the Riemannian

curvature tensor of (M, g). We say that the (Riemannian) curvature oper-

ator of the second kind R̂ is k-positive (non-negative) if the sum of any k

eigenvalues of the bilienar form R̂ : S2
0 ×S2

0 → R is positive (non-negative).

2.2. Curvature Decomposition. Recall that the Riemannian curvature tensor
can be decomposed into the Weyl, the Ricci, and the scalar parts. In terms of the
Kulkarni-Nomizu product defined above, we can express this decomposition as

(2.5) R = W+
1

n− 2
E ◦ g + S

2n(n− 1)
g ◦ g.

In dimension four this decomposition gives rise to a decomposition of the cur-
vature operator; see [22]. If (M4, g) is oriented, then the Hodge star operator
∗ : Λ2 → Λ2, where Λ2 is the bundle of two-forms, induces a splitting

Λ2 = Λ2
+ ⊕ Λ2

−,

where Λ2
± are the ±1-eigenspaces of ∗. With respect to this splitting, the compo-

nents of the splitting in (2.5) have the property that

W : Λ2
± → Λ2

±,

E ◦ g : Λ2
± → Λ2

∓.



7

Consequently, the curvature operator R : Λ2 → Λ2 has the following block decom-
position:

(2.6) R =

(
S
12 Id +W+ 1

2E ◦ g
1
2E ◦ g S

12 Id +W−

)
,

where W± are the restriction of W to Λ2
±M .

We will also need a related normal form for R due to M. Berger [1]:

Proposition 2.1. Let (M, g) be a four-manifold. At each point p ∈ M , there exists
an orthonormal basis {ei}1≤i≤4 of TpM , such that relative to the corresponding basis
{ei ∧ ej}1≤i<j≤4 of ∧2TpM , W takes the form

(2.7) W =

(
A B
B A

)
,

where A = Diag{a1, a2, a3}, B = Diag{b1, b2, b3}. Moreover, we have the
following:

(1) a1 = W(e1, e2, e1, e2) = W(e3, e4, e3, e4) = min|a|=|b|=1, a⊥b W(a, b, a, b),
(2) a3 = W(e1, e4, e1, e4) = W(e2, e3, e2, e3) = max|a|=|b|=1, a⊥b W(a, b, a, b).
(3) a2 = W(e1, e3, e1, e3) = W(e2, e4, e2, e4),
(4) b1 = W1234, b2 = W1342, b3 = W1423,
(5) a1 + a2 + a3 = b1 + b2 + b3 = 0,
(6) |b2 − b1| ≤ a2 − a1, |b3 − b1| ≤ a3 − a1, |b3 − b2| ≤ a3 − a2.

2.3. Isotropic Curvature. Next we recall the notion of isotropic curvature and
related concepts. The notion of isotropic curvature on 2-planes was introduced by
M. Micallef and J. D. Moore in [17]. As mentioned in the Introduction Section, it
played a crucial role in the proof of the differentiable sphere conjecture [7] via the
Ricci flow.

Definition 2.2. (M, g) is said to have non-negative isotropic curvature if, for any
orthonormal frame {e1, e2, e3, e4} we have

R1313 +R1414 +R2323 +R2424 − 2R1234 ≥ 0.

If the inequality is strict then it is said to have positive isotropic curvature.

The following property is well known (see [17]):

Lemma 2.3. In dimension four, non-negative isotropic curvature is equivalent to

−W± +
S

12
Id ≥ 0,

as a bilinear form on Λ2
±.

In the work of Brendle and Schoen, they introduced the following extensions of
the notion of non-negative and positive isotropic curvature:

Definition 2.4. (M, g) is said to be NIC1 if for any orthonormal frame {e1, e2, e3, e4}
we have

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234 ≥ 0 for all λ ∈ [0, 1].

If the inequality is strict then (M, g) is said to be PIC1.
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Definition 2.5. (M, g) is said to be NIC2 if for any orthonormal frame {e1, e2, e3, e4}
we have

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0 for all λ, µ ∈ [0, 1].

If the inequality is strict then (M, g) is said to be PIC2.

Brendle and Schoen observed that all these conditions are preserved under the
Ricci flow [7, 4, 6]. In particular, Brendle was able to show the following:

Theorem 2.6 ([4]). Let (M, g) be a Riemannian manifold satisfying the PIC1
condition. Then the normalized Ricci flow exists for all times and converges to a
constant curvature metric as t → ∞. In particular, the manifold is diffeomorphic
to a spherical space form.

3. Curvature of the second kind and PIC

In this section, we give the proofs to Theorems 1.2, 1.4, and 1.5.

Proof of Theorem 1.4. Fix a point p ∈ M and let {e1, · · · , en} be an orthonormal
basis of T ∗

pM . We define the following trace-free symmetric two tensors:

h1 = e1 ⊙ e3 + λe2 ⊙ e4,

h2 = e2 ⊙ e3 − λe1 ⊙ e4.

It is easy to see that h1 and h2 are orthogonal to each other in S2. Since R̂ is
two-positive we have

0 < R̂(h1, h1) + R̂(h2, h2).

We observe that all components of h1 are trivial except

h1(e
1, e3) := (h1)13 = (h1)31 = 1,

h1(e
2, e4) := (h1)24 = (h2)42 = λ.

Then, we calculate

R̂(h1, h1) =
∑
ijkl

Rijkl(h1)il(h1)jk

=
∑

i,j,k,l,|l−i|=|k−j|=2

Rijkl(h1)il(h1)jk

= 2(2λR1243 +R1313 + 2λR1423 + λ2R2424).

Similarly,

(h2)23 = (h2)32 = 1,

(h2)14 = (h2)41 = −λ.

Then, we calculate

R̂(h2, h2) =
∑
ijkl

Rijkl(h2)il(h2)jk

=
∑

i,j,k,l,l+i=k+j=5

Rijkl(h2)il(h2)jk

= 2(−2λR1234 − 2λR1324 + λ2R1414 +R2323).
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Combining equations above yields

0 < (2λR1243 +R1313 + 2λR1423 + λ2R2424)

+ (−2λR1234 − 2λR1324 + λ2R1414 +R2323)

= R1313 +R2323 + λ2(R1414 +R2424)− 4λR1234 − 2λ(R1432 +R1324).

Applying the first Bianchi identity, we obtain

(3.1) 0 < (R1313 +R2323) + λ2(R1414 +R2424)− 6λR1234.

Interchanging the roles of e1 and e2 and letting

h3 = e2 ⊙ e3 + λe1 ⊙ e4,

we have

R̂(h3, h3) = 2(R2323 + λ2R1414 + 2λR1324 + 2λR2143).

Similarly,

h4 = e1 ⊙ e3 − λe2 ⊙ e4,

R̂(h4, h4) = 2(R1313 + λ2R2424 − 2λR1423 − 2λR2134)

Adding these results together, we obtain

0 < (2λR2143 +R2323 + 2λR1324 + λ2R1414)

+ (−2λR2134 − 2λR1423 + λ2R2424 +R1313)

= R1313 +R2323 + λ2(R1414 +R2424)− 4λR2134 − 2λ(R1423 +R1342).

Applying the first Bianchi identity, we obtain

(3.2) 0 < (R1313 +R2323) + λ2(R1414 +R2424)− 6λR2134.

From equations (3.1) and (3.2), one concludes that

R1313 +R2323 + λ2R1414 + λ2R2424 > |6λR1234|.

By Defintion 2.4, the PIC1 condition is equivalent to

R1313 +R2323 + λ2R1414 + λ2R2424 + 2λR1234 > 0.

The result then follows. □

Proof of Theorem 1.2. By Theorem 1.4, the curvature is PIC1. The result follows
from Theorem 2.6. □
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Proof of Theorem 1.5. As before, we fix a point p ∈ M and let {e1, · · · , en} be an
orthonormal of T ∗

pM . We define the following traceless symmetric two tensors:

h1 =
1

2
(−e1 ⊙ e1 − e2 ⊙ e2 + e3 ⊙ e3 + e4 ⊙ e4),

h2 = e1 ⊙ e4 − e2 ⊙ e3,

h3 = −e1 ⊙ e3 − e2 ⊙ e4,

h4 = −e1 ⊙ e4 − e2 ⊙ e3,

h5 =
1

2
(−e1 ⊙ e1 + e2 ⊙ e2 − e3 ⊙ e3 + e4 ⊙ e4),

h6 =
1

2
(−e1 ⊙ e1 + e2 ⊙ e2 + e3 ⊙ e3 − e4 ⊙ e4).

It is easy to see that these tensors are of the same magnitude and are mutually
orthogonal in S2.

Since R̂ is 4-positive we have

0 < R̂(h1, h1) + R̂(h2, h2) + R̂(h4, h4) + R̂(h5, h5).

We compute

R̂(h1, h1) =
∑
ijkl

Rijkl(h1)il(h1)jk

=
∑
i,j

Rijji(h1)ii(h1)jj

= 2(−R1212 − R3434 +R1313 +R1414 +R2323 +R2424).

Next,

R̂(h2, h2) =
∑
ijkl

Rijkl(h2)il(h2)jk

=
∑
i,j

Rij(5−j)(5−i)(h2)i(5−i)(h2)j(5−j)

= 2(R1414 +R2323 + 2R1243 + 2R1342).

Similarly,

R̂(h4, h4) = 2(−2R1243 − 2R1342 +R1414 +R2323),

R̂(h5, h5) = 2(−R1313 − R2424 +R1414 +R2323 +R1212 +R3434).

Combining the equations above yields

(3.3) 0 < R1414 +R2323.

Next, we consider

0 < R̂(h1, h1) + R̂(h2, h2) + R̂(h3, h3) + R̂(h6, h6).

Here,

R̂(h3, h3) = 2(−2R1234 − 2R1432 +R1313 +R2424),

R̂(h6, h6) = 2(−R1414 − R2323 +R1313 +R1212 +R3434 +R2424).
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Therefore, combining the equations above yields

0 < (R1313 +R1414 +R2323 +R2424 − R1212 − R3434)

+ (2R1243 + 2R1342 +R1414 +R2323)

+ (R1313 +R2424 − 2R1234 − 2R1432)

+ (R1313 +R1212 +R2424 +R3434 − R1414 − R2323)

= 3(R1313 +R2424) + (R1414 +R2323)− 4R1234 − 2(R1324 +R1432).

Applying the first Bianchi identity, we obtain

(3.4) 0 < 3(R1313 +R2424) + (R1414 +R2323)− 6R1234.

Adding (3.4) and twice of (3.3) gives

0 < 3(R1313 +R1414 +R2323 +R2424 − 2R1234).

Since the inequality holds for any orthonormal four-tuple (e1, e2, e3, e4), we conclude
that the manifold has positive isotropic curvature.

□

As explained in the Introduction Section, Theorems 1.6 and 1.7 follow from
Theorem 1.5 and Micallef-Wang’s work [17] and Brendle’s classification of Einstein
manifold with non-negative isotropic curvature [5].

4. Dimension four: the matrix representation of R̂

Let (M4, g) be an oriented Riemannian four-manifold, and p ∈ M4. The space of
two forms Λ2(TpM

4) splits into the space of self-dual and anti-self-dual two-forms:

Λ2(TpM
4) = Λ2

+(TpM
4)⊕ Λ2

−(TpM
4).

If {e1, e2, e3, e4} is an orthonormal basis of T ∗
pX

4, then the two-forms

ω1 = (e1 ∧ e2 + e3 ∧ e4),

ω2 = (e1 ∧ e3 − e2 ∧ e4),

ω3 = (e1 ∧ e4 + e2 ∧ e3),

(4.1)

constitute an orthogonal basis of Λ2
+(TpM

4) with |ωα|2 = 2, and

η1 = (e1 ∧ e2 − e3 ∧ e4),

η2 = (e1 ∧ e3 + e2 ∧ e4),

η3 = (e1 ∧ e4 − e2 ∧ e3),

(4.2)

is an orthogonal basis of Λ2
−(TpM

4) with |ηβ |2 = 2.
The Weyl tensor of (M4, g) defines trace-free (symmetric) linear endomorphisms

W± : Λ2
±(TpM

4) → Λ2
±(TpM

4), hence there are bases of Λ2
±(TpM

4) consisting of
eigenforms of W±. Indeed, using Proposition 2.1, we have

(4.3) W =

(
(A+B) 0

0 (A−B)

)
.

Here, A = diag(a1, a2, a3), B = diag(b1, b2, b3), and a1 + a2 + a3 = b1 + b2 + b3 = 0.
As a result, thanks to Proposition 2.1 again, eigenvalues of W± are ordered,

(4.4)

{
λ1 = a1 + b1 ≤ λ2 = a2 + b2 ≤ λ3 = a3 + b3,

µ1 = a1 − b1 ≤ µ2 = a2 − b2 ≤ µ3 = a3 − b3.
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The following result is an excerpt from [12, Lemma 2], and is based on [22]:

Proposition 4.1. Let (M4, g) be an oriented, four-dimensional Riemannian man-
ifold, and p ∈ M4.

(i) There is an orthonormal basis {e1, e2, e3, e4} of T ∗
pM

4 such that eigenforms

{ω1, ω2, ω3} (resp., {η1, η2, η3}) as given in (4.1) (resp., of the form (4.2)) make
an orthogonal basis of Λ2

+(TpM
4) (respectively, Λ2

−(TpM
4)).

(ii) If {λ1, λ2, λ3} and {µ1, µ2, µ3} are the eigenvalues of W+ and W− respectively,
then with respect to the dual orthonormal basis {e1, e2, e3, e4}, the Weyl tensor is
given by

Wijkℓ =
1

2

[
λ1ω

1
ijω

1
kℓ + λ2ω

2
ijω

2
kℓ + λ3ω

3
ijω

3
kℓ

]
+

1

2

[
µ1η

1
ijη

1
kℓ + µ2η

2
ijη

2
kℓ + µ3η

3
ijη

3
kℓ

]
,

(4.5)

with

λ1 + λ2 + λ3 = 0,

µ1 + µ2 + µ3 = 0.
(4.6)

(iii) The bases in (4.1) and (4.2) have a quaternionic structure: For 1 ≤ α ≤ 3,

[(ωα)2]ij = ωα
ikω

α
kj = −δij ,

[(ηα)2]ij = ηαikη
α
kj = −δij ,

(4.7)

where the components are with respect to an orthonormal basis of TpM
4. Also,

(ω1ω2)ij = ω1
ikω

2
kj = −ω3

ij ,

(ω1ω3)ij = ω1
ikω

3
kj = ω2

ij ,

(ω2ω3)ij = ω2
ikω

3
kj = −ω1

ij ,

(η1η2)ij = η1ikη
2
kj = η3ij ,

(η1η3)ij = η1ikη
3
kj = −η2ij ,

(η2η3)ij = η2ikη
3
kj = η1ij .

(4.8)

(iv) The bases in (4.1) and (4.2) generate an orthogonal basis of S2
0(T

∗
pX

4), the
space of symmetric trace-free (0, 2)-tensors by taking

h
(α,β)
ij = ωα

ikη
β
kj .(4.9)

Moreover, |h(α,β)| = 2.

To simplify notation we label the basis in Proposition 4.1 (iv) in the following
way:

h(1,1) = h1, h(1,2) = h2, h(1,3) = h3,

h(2,1) = h4, h(2,2) = h5, h(2,3) = h6,

h(3,1) = h7, h(3,2) = h8, h(3,3) = h9.

(4.10)

Using the quaternionic structure of the bases of eigenforms, it is easy (but tedious)
to construct a ‘multiplication table’ for the basis element {hα}9α=1:

Lemma 4.2. The basis elements in (4.10) satisfy
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h1 h2 h3 h4 h5 h6 h7 h8 h9

h1 Id ∗ ∗ ∗ −h9 h8 ∗ h6 −h5

h2 ∗ Id ∗ h9 ∗ −h7 −h6 ∗ h4

h3 ∗ ∗ Id −h8 h7 ∗ h5 −h4 ∗
h4 ∗ h9 −h8 Id ∗ ∗ ∗ −h3 h2

h5 −h9 ∗ h7 ∗ Id ∗ h3 ∗ −h1

h6 h8 −h7 ∗ ∗ ∗ Id −h2 h1 ∗
h7 ∗ −h6 h5 ∗ h3 −h2 Id ∗ ∗
h8 h6 ∗ −h4 −h3 ∗ h1 ∗ Id ∗
h9 −h5 h4 ∗ h2 −h1 ∗ ∗ ∗ Id

That is,

(hα)2ij = hα
ikh

α
kj = δij ,

and:

h1h5 = −h9, h1h6 = h8,

h1h8 = h6, h1h9 = −h5,

h2h4 = h9, h2h6 = −h7,

h2h7 = −h6, h2h9 = h4,

h3h4 = −h8, h3h5 = h7,

h3h7 = h5, h3h8 = −h4,

h4h8 = −h3, h4h9 = h2,

h5h7 = h3, h5h9 = −h1,

h6h7 = −h2, h6h8 = h1.

Also, each ∗ represents a skew-symmetric matrix.

As explained in the Introduction Section, the Weyl tensor can also be interpreted
as a symmetric bilinear linear form on the space of trace-free symmetric two-tensors.
If s, t ∈ S2

0(T
∗X4), then

Ŵ (s, t) = Wikℓjskℓtij ,(4.11)

where the components are with respect to an orthonormal basis of TpM
4. We can

compute the matrix of Ŵ with respect to the basis {hα}9α=1, by using the algebraic
properties summarized in Proposition 4.1 and Lemma 4.2:

Proposition 4.3. The orthogonal basis {hα} defined in (4.9) and (4.10) diagonal-
izes the Weyl tensor, interpreted as a symmetric bi-linear form as in (4.11). With
respect to this basis the matrix of W is given by

Ŵ =

 D1 0 0
0 D2 0
0 0 D3

 ,(4.12)

where the Di’s are diagonal matrices given by

Di =

 −4(λi + µ1)
−4(λi + µ2)

−4(λi + µ3)

 .(4.13)
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Proof. As indicated above, the proof is a consequence of the multiplicative prop-
erties of the basis elements, and the fact that W± are trace-free. For example, a
straightforward calculation gives

W (h1, h1) = Wikℓjh
1
kℓh

1
ij

=
1

2

[
λ1ω

1
ikω

1
ℓj + λ2ω

2
ikω

2
ℓj + λ3ω

3
ikω

3
ℓj + µ1η

1
ikη

1
ℓj + µ2η

2
ikη

2
ℓj + µ3η

3
ikη

3
ℓj

]
ω1
kpη

1
pℓω

1
iqη

1
qj

= −2λ1 + 2λ2 + 2λ3 − 2µ1 + 2µ2 + 2µ3.

Since W± are trace-free, this can be rewritten

W (h1, h1) = −4(λ1 + µ1).

The other entries are computed in a similar manner. □

To express the matrix for R̂ with respect to the basis {hα}, we use the decom-
position of the curvature tensor in dimension four:

Rikℓj = Wikℓj +
1

2
(giℓEkj − gijEkℓ − gkℓEij + gkjEiℓ) +

1

12
S (giℓgkj − gijgkℓ) .

(4.14)

If s and t are trace-free symmetric two-tensors, then

R̂(s, t) = Rikℓjskℓtij

= Ŵ (s, t) + Ê(s, t) +
1

12
S⟨s, t⟩,

(4.15)

where ⟨·, ·⟩ is the inner product on symmetric two-tensors, and Ê is the bilinear
form given by

Ê(s, t) = Eijsiktkj = ⟨E, s t⟩,(4.16)

where (s t)ij = siktkj . Consequently, to compute the matrix for R̂ it only remains

to compute the matrix for Ê with respect to the basis {hα}.
Since {hα} is a basis for the space of trace-free symmetric two-tensors, we can

write

Eij =
1

4
ϵγh

γ
ij ,(4.17)

where

ϵα = ⟨E, hα⟩.(4.18)

It follows from (4.16) that the matrix entry Êαβ = Ê(hα, hβ) is given by

Êαβ = Eijh
α
ikh

β
kj

=
1

4
ϵγh

γ
ijh

α
ikh

β
kj

=
1

4
ϵγ⟨hγ , hαhβ⟩.

(4.19)

Using the product formulas in Lemma 4.2, we can therefore express the entries of
the matrix (Êαβ) in terms of the ϵγ ’s:
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Proposition 4.4. With respect to the basis in (4.9), the matrix of Ê is given by

Ê =

 0 O1 O2

−O1 0 O3

−O2 −O3 0

 ,(4.20)

where O1,O2,O3 are skew-symmetric 3× 3 matrices given by

O1 =

 0 −ϵ9 ϵ8
ϵ9 0 −ϵ7
−ϵ8 ϵ7 0

 ,(4.21)

O2 =

 0 ϵ6 −ϵ5
−ϵ6 0 ϵ4
ϵ5 −ϵ4 0

 ,(4.22)

O3 =

 0 −ϵ3 ϵ2
ϵ3 0 −ϵ1
−ϵ2 ϵ1 0

 .(4.23)

Moreover, these matrices all vanish if and only if (M4, g) is Einstein.

Proof. This is a straightforward calculation, so we only point out some readily
observed features. First, since (hα)2 = I, all diagonal entries vanish:

Ê(hα, hα) = ⟨E, (hα)2⟩ = ⟨E, I⟩ = tr E = 0.

In fact, if 1 ≤ α, β ≤ 3 and α ̸= β, then by Lemma 4.2 the product hα hβ is
skew-symmetric, hence

Ê(hα, hβ) = ⟨E, hαhβ⟩ = 0,

since E is symmetric. This shows that the upper left 3 × 3 block of the matrix
vanishes, and a similar argument shows that all three such blocks along the diagonal
are zero.

Finally, note that all matrices vanish if and only if ϵ1 = · · · = ϵ9, which by (4.17)
is equivalent to E = 0. □

Proof of Theorem 1.8. Recall that the basis {hα} is orthogonal, but not orthonor-
mal. If we define

h̃α =
1

2
hα,

then {h̃α} is an orthonormal basis of S2
0 . Moreover, the matrix representation

with respect to {h̃α} can be obtained from the representation with respect to {hα}
by simply dividing by four. Therefore, Theorem 1.8 follows from Proposition 4.3,
Proposition 4.4, and the formula (4.15). □

5. Einstein Four Manifolds

In this section we apply our matrix representation of the curvature of the second
kind to study Einstein manifolds of positive scalar curvature in dimension four, and
give the proof to Theorem 1.9.

For simplicity, let (M, g) be a four-dimensional manifold with Rc = g. Conse-

quently, S = 4. For such a manifold, E ≡ 0, so the block matrix for R̂ in (1.4) is
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diagonal. Using the notation from Proposition 4.1 and Theorem 1.8, the eigenvalues
of R̂ are given by

(
1

3
− λi − µj).

Proof of Theorem 1.9. First, with the aid of the ordering of eigenvalues of W in
(4.4), we have

λ3 + µ3 ≥ λ3 + µ2 ≥ λ3 + µ1,

λ2 + µ2 ≥ λ2 + µ1 ≥ λ1 + µ1,

λ3 + µ3 ≥ λ2 + µ3 ≥ λ1 + µ3,

λ2 + µ2 ≥ λ1 + µ2 ≥ λ1 + µ1.

R̂ is 5-non-negative if and only if

0 ≤ 5

3
− 3λ3 − 3µ3 − λ2 − λ1 − µ2 − µ1,

0 ≤ 5

3
− 3λ3 − 2µ3 − 2λ2 − 2µ2 − µ1,

0 ≤ 5

3
− 2λ3 − 3µ3 − 2λ2 − 2µ2 − λ1.

Using
∑

i λi =
∑

i µi = 0 and Proposition 2.1, we obtain

0 ≤ 5

3
− 2(λ3 + µ3) =

5

3
− 4a3 =

5

3
− 4W1414 =

5

3
− 4(R1414 −

1

3
).

This implies R1414 ≤ 3
4 . By the ordering (4.4), the sectional curvature is bounded

above by 3
4 . Using the classification result of [9, Corollary 1.3] we arrive at the

conclusion. □

When R̂ is 6-non-negative, we have the following observation.

Proposition 5.1. Let (M, g) be a simply connected Einstein four-manifold with

positive scalar curvature. If R̂ is 6-positive then its sectional curvature is bounded
above by the Einstein constant. Moreover, the curvature operator (of first kind) is
4-non-negative.

Proof. Again, we use the normalization Rc = g. R̂ is 6-non-negative if and only if

0 ≤ 2− 3λ3 − 3µ3 − 2λ2 − λ1 − 2µ2 − µ1,

0 ≤ 2− 3λ3 − 2µ3 − 3λ2 − 2µ2 − 2µ1,

0 ≤ 2− 2λ3 − 3µ3 − 2λ2 − 3µ2 − 2λ1.

Due to Prop. 2.1, it is equivalent to

0 ≤ 2− (λ3 + µ3) + λ1 + µ1 = 2− 2a3 + 2a1

0 ≤ 2 + 3λ1,

0 ≤ 2 + 3µ1.

The first inequality is equivalent to

R1414 − R1212 ≤ 1.

In combination with the equality

R1212 +R1313 +R1414 = 1,
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and the ordering

R1212 ≤ R1313 ≤ R1414,

we conclude that R1414 ≤ 1.
For the last statement, recall that the eigenvalues of the curvature operator of

the first kind are given by

λ1 +
1

3
≤ λ2 +

1

3
≤ λ3 +

1

3
,

µ1 +
1

3
≤ µ2 +

1

3
≤ µ3 +

1

3
.

Thus, R is 4-non-negative if and only if

0 ≤ 4

3
− λ3 − µ3,

0 ≤ 4

3
+ λ1,

0 ≤ 4

3
+ µ1.

The first inequality is equivalent to

R1414 ≤ 1.

The result then follows. □

5.1. Examples. To illustrate our results, we use Theorem 1.8 to compute the
matrix of R̂ for some model cases.

1. (S4, g0), where g0 is the round metric. In this case W = 0 and S = 12 at each
point, hence

R̂ = I,

where I is the identity matrix. In particular, R̂ (as a bilinear form) is positive
definite.

2. (CP2, gFS), where gFS is the Fubini-Study metric. In this case, W− ≡ 0 and
S = 8. Since the metric is Kähler, W+ can be diagonalized at each point as

W+ =

 1
6S

− 1
12S

− 1
12S

 ,(5.1)

see Proposition 2 of [12]. Consequently, up to ordering of the eigenvalues, the

matrix for R̂ is given by

R̂ =

 −2I 0 0
0 4I 0
0 0 4I

 .(5.2)

Note that the sum of the four smallest eigenvalues is negative, but the sum of the
five smallest is positive. Hence R̂ is 5-positive but not 4-positive.

3. (S2 × S2, gp), where gp is the product of the standard metric on each factor.
In this case, S = 4, and gp is Kähler with respect to both orientations; i.e., the
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representation (5.1) holds for both W+ and W−. Consequently, up to ordering of

the eigenvalues, the matrix for R̂ is given by

R̂ =



−1
0

0
0

0
1

1
1

1


.(5.3)

Notice that the sum of the five smallest eigenvalues is negative; i.e., R̂ is not five-
non-negative. However, it is six-non-negative.
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