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Key Points:

1) Earth’s topography arises from the linear superposition of crustal isostatic and dynamic

contributions

2) The global integral of dynamic topography that encompasses all non-crustal buoyancy sources

equals zero

3) The best estimate of Earth’s dynamic topography is the difference between observed and crustal

isostatic topography



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Abstract

Earth’s topography arises from the linear superposition of isostatic and dynamic contributions.
The isostatic contribution reflects the distribution of thickness and density of the crust overlying a static,
non-convecting mantle. We argue that isostatic topography should be limited to the crust, thereby
delimiting all sources for dynamic topography below the Moho. Dynamic topography is the component of
the topography produced by normal stresses acting on the Moho that deflect the isostatic topography
away from crustal isostatic equilibrium largely as a consequence of mantle flow dynamics. These normal
stresses arise from pressure variations and vertical gradients of the radial flow in the convecting mantle.
The best estimate of dynamic topography is from the residual topography, which is the difference
between observed topography and crustal isostatic topography. Dynamic and residual topography are the
same. It is clear that thermal anomalies horizontally advected by plate motions would not exist if the
mantle were not convecting, therefore their contribution to topography is inherently dynamic in origin.
The global integral of dynamic topography that encompasses all non-crustal buoyancy sources is
demonstrated to be equal to zero. It follows that mantle convection cannot change the mean radius or
mean elevation of the Earth. Since changes in ocean basin volume driven by changes in mean depth of the
oceans are inherently part of dynamic topography, thereby requiring that continental elevations must also
change, such that the global integral of these perturbations must also be equal to zero. This constraint has
important implications for global long-term sea level and the stratigraphic record, among other features of

the Earth system impacted by changes in Earth’s dynamic topography.

Introduction

While it was postulated long ago that plate tectonics and mantle convection are intimately linked,
the coupling between the two systems continues to generate active debate in the geosciences. Much effort
has been invested to clarify the most important driving forces that maintain the observed plate motions, and
their changes in time, and also to elucidate the coupling of the plates with the evolution of the mantle
convective circulation. The ultimate goal is to develop physically consistent models of mantle convection
that yield realistic predictions of long-term (>107yr) evolution of plate motions. A focus on horizontal
motions is not complete, because plate tectonics is fundamentally a 3D process, in which the forces that
drive tangential movement also drive radial displacements of the solid surface that change with time. This

radial dimension of plate tectonics yields information on mantle convection dynamics that is distinct and
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complementary to that provided by observations of horizontal plate motions. In this contribution we

primarily focus on this radial component of the convective dynamics and its role in Earth’s topography.

Earth’s topography is often discussed by distinguishing various components: (1) isostatic
topography; (2) residual topography; and (3) dynamic topography (Forte, Peltier et al. 1993, Braun 2010,
Flament, Gurnis et al. 2013, Steinberger 2016). Unfortunately, there are no agreed upon standard
definitions of these components thereby leading to differences and some confusion even among the
cognoscenti. For example, does the isostatic topography include only the crust and hence only reflect
thickness and density variations above the Moho? In addition, what is the reference datum for computing
crustal isostasy? Furthermore, if the definition of dynamic topography implies stripping out contributions
related to oceanic depth-age, how is this justified given that this aspect of Earth’s topography is clear
evidence of mantle convection and plate tectonics (e.g. Forte et al. 1993)? If oceanic mantle lithosphere is
included in the isostatic balance, is a square-root-age cooling or a plate model employed, and how are those
dovetailed at continent-ocean boundaries? What constraints are used to model density anomalies in the
mantle lithosphere under continents? If density perturbations in the continental mantle lithosphere are
excluded from dynamic topography models, and these density anomalies change with time due to mantle
convection, how can their contributions to topography not be dynamic? Dynamical coupling between
subcontinental lithosphere and mantle convection can be appreciated, for example, by considering joint
geodynamic and seismic tomographic modelling of hot mantle upwellings under Africa which show a
correlation of lithospheric thinning or erosion with the upwellings (e.g. Fig. 5 in (Forte, Quéré et al. 2010).
The spatiotemporal connections between changes in cratonic lithosphere and mantle plumes was recently
emphasized in a joint analysis of African kimberlites and high-resolution tomographic images (Celli,

Lebedev et al. 2020).

These are but a small number of questions that typically arise in discussions of Earth’s topography
and its change with time. The purpose of this assessment is to provide a critical perspective on these issues,
based on our efforts over the past three decades to interpret and model Earth’s variable topography. We
acknowledge, at the outset, that this perspective will contrast with that presented in a number of recent
treatments of dynamic topography. Our goal is to provide an in-depth quantitative discussion that addresses
the questions cited above and, in the process, to elucidate a number of fundamental issues that have broad
implications for understanding the mantle-dynamic origin of Earth’s topography and its evolution over

time.

A Fundamental Global Constraint on Dynamic Topography
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Before engaging in a discussion of Earth’s topography, it will be helpful to establish a fundamental
constraint on the behavior of convective systems: the radial deflections of Earth’s solid surface resulting
from convection in the mantle do not change the mean radius and therefore mean elevation of the Earth.
These radial deflections, or dynamic topography, which are a consequence of radial stresses that perturb
the surface away from its hydrostatic equilibrium position, must therefore yield surface undulations whose
global integral is zero. This zero-integral constraint is not new and it has been explicitly employed in a
number of geodynamic modelling studies focusing on dynamic topography generated by buoyancy induced
mantle flow (e.g. Forte et al. 1993, (Moucha, Forte et al. 2007), Conrad & Husson 2009, Steinberger, 2016).
The geodynamic consequences of this global integral constraint are profound (e.g. Conrad & Husson 2009,
Rowley 2017) and underlie much of the analysis presented in this paper. Although, as pointed out in
Moucha et al. (2007), the basis of this global constraint derives from the principle of mass conservation, no
explicit proof was presented. A proof of the zero-integral constraint on dynamic topography is still lacking
in the published geodynamic literature. In the following we present a detailed proof of this constraint that
is based primarily on the principle of mass conservation and, secondarily, on an understanding of the time-

dependent relaxation of the free surface of a viscous fluid towards its equilibrium position.

The principle of mass conservation applied to a viscous compressible fluid is expressed by the
following equation, where the anelastic approximation is assumed, which is valid when the Mach number

is negligibly small and hence sound waves may be ignored (Jarvis and McKenzie 1980):
Vi) =0 , (1)

where p and U are, respectively, the mass density and velocity of the fluid, V- is the divergence operator,
and overscript arrows (here and in the following) denote vector quantities. Equation (1) shows that the mass

flux p i is a solenoidal vector field that may therefore be expressed as follows (Backus 1958):
pi=VxAp+Aq , ()

where p and q are scalars that represent poloidal and toroidal mass flux, respectively, and A =7x V, where

7’ is the radial position vector. The first term on the right-hand side of equation (2) can be rewritten as:

- _a A ~n 7(l01D -
pu—r7p+rxA(; T)+Aq , 3)
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where T is a unit radial vector and AZ = A - A is the horizontal Laplacian operator. In equation (3), the

operators T x A (= V)H , the horizontal gradient on a unit-radius sphere) and A 'describe only the horizontal
components of mass flux, whereas the radial component of mass flux (f, = p u,.) is entirely described by:

A2

fr=pu="p. “)

Equation (4) implies that radial mass flux f, must have a horizontal integral on any spherical
surface S, of radius r, concentric with the origin, that is identical to zero (Backus 1958). We can

demonstrate this key property by using a spherical harmonic expansion of the poloidal mass flux scalar:

p(T, 9' (P) = Zl Zm plm(r) Ylm(gf (P) ’ (5)

where Y™ (0, @) is a spherical harmonic function of degree [ and azimuthal order m that varies with
latitude and longitude, (8, @), respectively, and p;" (r) is the corresponding spherical harmonic coefficient
that varies with radius . Since Y;"*(0, ¢) is an eigenfunction of the horizontal Laplace operator, such that

A?2Y™ = —1(l + 1) Y™, we can rewrite equation (4):

fr(r,8,0) = Xy Xom i (1) Y[ (6, @), where fi" (r) = =1(L+ 1) p/"(r) . (6)

From equation (6), we conclude that the degree [ = 0 harmonic coefficient of the radial mass flux
must be identical to zero, which necessarily implies that its global integral on any spherical surface of radius

r in the mantle vanishes:

¢5r frd?S = fﬁsr pu,d’s=0 . (7)

We can now employ the mass-flux integral in equation (7) to derive a fundamental constraint on
globally averaged dynamic topography generated by fluid motions in the mantle. We begin by considering
a Gedanken-experiment in which, at reference time t = 0, a 3-D distribution of density anomalies is
instantaneously placed in a hydrostatic fluid (mantle) in which all bounding surfaces are initially spherically
symmetric (Fig. 1). Prior to this (t < 0), the density distribution p = py(r) only varies with radius r. (In
the work presented below, we employ the reference density py(r) given by PREM (Dziewonski and
Anderson 1981).

FIGURE 1- Here
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Figure 1. A schematic cross-section through Earth’s mantle, whose upper and lower bounding surfaces have
mean radii vy and ey, respectively, where the latter corresponds to the core-mantle boundary. a) Shows the
configuration at time t=0, the instant when internal density perturbations are introduced and when the bounding
surfaces are still spherically symmetric. b) At a slightly later time t >0, the transient mantle flow excited by these
density perturbations displaces both bounding surfaces away from their initial positions and thereby creates ‘dynamic
topography’ whose global integral is 0 (demonstrated in the main text). This transient flow ceases when the surface
loads associated with the dynamic topography balance the loads generated by the internal density perturbations,

where new local radii r = r. represent that balance.

We now consider, at a slightly later time t > 0, how the bounding surfaces are displaced away
from their initial spherical position (Fig. 1b), in response to the short-term transient flow generated by the
internal density anomalies §p(7, 6, @), where the total density distribution is given by p(r, 8, ¢) = po(r) +
6p(r,0,¢9). We now focus on the upper bounding surface, where the relationship between the time-

dependent “growth” of surface topography and transient radial flow at the top of the mantle is:

a
uT'O (9’ (pl t) = uT (rOI 9: (p: t) = ET(Q, ¢P t) ) (8)
where r(0,p,t) =15+ 67r(0,p,t) )

and &r (6, ¢, t) is the dynamic topography generated by the transient displacement of the free surface away
from its initial hydrostatic position at 7 = r,. We note that at time t = 0, 67(0, ¢,t) = 0, and that at time
t = t,, which is sufficiently long for the transient topographic undulations &7 (6, ¢, t) to grow to their final

equilibrium value, we have:
6r(6,¢,te) = 67.(6,¢) and u, (6, 9,t.) = 0 , (10)

This cessation of transient flow at time t = t, occurs when the surface loads associated with the equilibrium
topography 67, are in exact balance with (and opposed to) the loads associated with the internal density

anomalies 6p.

On the basis of expression (4), and using equations (8, 9), the radial mass flux associated with the

transient growth of topography at the free upper surface is:
a
f;”o (9, v, t) = ,0(7'0, 9' (P) uro (9: @, t) = ,00(7”0)[1 + g] a 67'(9, P, t) > (1 1)

where £ = 8p(r0,6,9)/po(10) - (12)
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On the basis of equation (11) and the constraint on the globally integrated radial mass flux in equation (7),

which is valid at all times and at all radii in the fluid mantle, we find:
G5, PoGro)1+ €] 2 67(6,,t) dS=0. (13)
We now integrate equation (13) between times t = 0 and t = t,, and using (10), we obtain:
%, Po(ro)[1+ €] 87,(0,0) d?S =0, (14)

where the integrand is the mass perturbation per unit area due to the growth of dynamic surface topography.
Here we ignored the negligible time evolution of the density anomalies §p during the short interval ¢,

required for the development of equilibrium topography (as justified below).

Equation (14) confirms that the total surface mass anomaly generated by the development of
topography at the upper bounding surface is exactly equal to zero. Dividing by po(1y), we rewrite the

surface integral in (14) as:
Eﬁsro[&e(@, @) + €81.(6,9)]d*S = 0. 15)

Since peak values of lateral density variations at the top of the mantle (e.g., in subducting lithosphere) are

of order 1 to 2 %, then € < 1 and we can accurately approximate the integral (15) by:

¢ 67,(0,90) d*S =0|. (16)
o

The equilibrium topography, &7, in expression (16) is called “dynamic topography” because it generates a
surface load that is in balance with the integrated buoyancy forces arising from all density anomalies 6p in
the convecting mantle. In equation (16), the global integral of dynamic topography over the surface of the

Earth equals zero.

We note from expression (15), that the “error” in constraint (16) is contained in a second-error

perturbation € :

€? = gﬁsr [e 67,(8, )] d?S . (17)
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In mantle convection modelling, such second-order perturbations are generally treated as negligible and
hence are ignored. We confirm this by evaluating €2 using mantle density anomalies and corresponding
dynamic surface topography predicted using the GyPSuM tomography model (Simmons, Forte et al. 2010).
The values of € range from —0.6% to 0.5% and J7, ranges from—1957 m to 2967 m. The peak values of
& 87, thus range from —13 m to 5 m and its global integral, defined in (17), is €2 = —0.7 m. We may
alternatively evaluate the magnitude of €2 using an a-priori subducted slab model, employed by Lu et al.
(Lu, Forte et al. 2020), which is based on the thermal modelling of Stadler et al. (Stadler, Gurnis et al.
2010). In this case, employing a spherical harmonic expansion of slab density anomalies truncated at degree
[ = 128, the peak positive value of ¢ is 2.3% while 7, ranges from —2168 m to 119 m, and we find that
€2 = —0.2 m. It is therefore clear that €2 is negligibly small and the global integral constraint (16) applies

with high accuracy.

Above, we noted that the dynamic topography is in equilibrium with the internal density loads after
the surface boundary relaxes over a “sufficiently long” time interval ¢, which is also assumed to be short
relative to the time scale over which internal density anomalies evolve as a consequence of thermal
convection. It is therefore important to quantify the magnitude of t, in relation to the time scale relevant to
mantle convection dynamics. The viscous relaxation of the surface boundary, in response to transient flow
generated by internal density anomalies, is exactly analogous to the glacial isostatic adjustment (GIA) of
the mantle in response to changing surface ice and water loads. As in GIA problems (e.g. (Peltier 1974);
see also (Richards and Hager 1984), the topographic undulations generated by the viscous relaxation of the

solid surface are mathematically described by a spherical harmonic expansion:
6r(6,¢,t) = X Xm 61 (£) ¥,(6,9) ; (18)

where each harmonic coefficient, corresponding to topographic contributions of different horizontal

wavelengths defined by the degree [, has a multi-modal time dependence expressed by:
ST (t) = IN_ rm[1— e /], (19)

where the N modes arise from discontinuous changes (e.g. at the surface, base of crust, core-mantle
boundary) in the reference density structure po (7). The time dependence in (19) applies to the Heaviside
loading history depicted in Fig. 1. Each mode (indicated by the index n in equation 19) is characterized by
arelaxation, or viscous decay, time T;,, whose value depends on the horizontal wavelength (given by degree
l) and viscosity structure of the mantle, and an amplitude 7}’ that depends on the integrated density

anomalies Jp in the mantle. The relaxation of the free surface and corresponding growth of topography,
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described by equations (18-19), requires transient flow in the viscous mantle. The radial component of this
transient flow at the upper bounding surface is:

d N
tr, (6,9,8) = 3:67(6,0,0) = 51 T Thea [(2) €= 7] 17 (6,0) . (20)

71

From the prescription for the equilibrium time ¢, in expression (10), it is clear from equation (20)
that transient mantle flow implicated in the growth of surface topography decays to negligible values when
t = t, is about three times greater than the longest viscous decay time: t, = 3 X max (7;,). The longest
wavelength-dependent decay times predicted on the basis of current geodynamically constrained radial
viscosity profiles are about ~20 ka (Forte, Moucha et al. 2010), and therefore t, = 60 ka. This time
interval for the development of equilibrium surface topography is much shorter than the characteristic time
scale for the evolution of density anomalies in the convecting mantle, which is of order ~1 Ma. This
separation of time scales implies that the evolution of dynamic topography at Earth’s surface, in response
to time-dependent variations of density anomalies in the convecting mantle, may at all times be considered

to be in nearly complete equilibrium with the buoyancy forces acting on Earth’s upper bounding surface.

Equation (16) demonstrates that the integral of dynamic topography over the surface of the Earth
must vanish. Thus, the mean (i.e. global horizontal average) of dynamic topography and the change in
dynamic topography is zero at all times. Importantly, this constraint pertains to dynamic topography
produced by all density anomalies in the mantle including, for example, the age-dependent subsidence of
the cooling oceanic lithosphere. Although mantle convection cannot give rise to changes in the mean radius
of the Earth, at any instant in time, on very long time-scales where secular cooling is important (At >
100 Ma), the Earth’s mean radius (1) does shrink. Following (Jaupart, Labrosse et al. 2007) and equation
(A23) in Appendix A:

Ay~ 1 AT (14 £25), Q1)

Where Ary is the change in mean radius, () is the average thermal expansion coefficient, generally
estimated to be between 1 and 2 X 1075 K~1 (Jaupart, Labrosse et al. 2007), AT is the change in bulk
average temperature, and ¢ = K, 'G pZ r¢ ~ 0.33 is a parameter (see Appendix A) that quantifies the
impact of compressibility (K;~') on the contraction. Petrological data and some thermal evolution models
(e.g. (Herzberg, Condie et al. 2010) suggest that over the past 2.5 to 3.0 Ga, the average rates of change of
bulk temperature, AT /At, range between -50 K/Ga to -100 K/Ga. The secular cooling rate is likely to have
changed with time and may therefore differ from these estimates of long-term average rates (e.g. (Korenaga
2008)). Assuming (@) ~ 2 X 107> K~1, equation (21) then yields estimated average rates of thermal
9
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contraction, Ary/At, that range between —2.7 to —5.5 X 10™* ¢m/yr, which is 4 orders of magnitude
smaller than typical mantle convective flow velocities and transient topography changes due to viscous
relaxation. We finally estimate that Earth’s mean radius has contracted between 270 to 550 m over the past
100 Ma (i.e. since the mid-Cretaceous), and between 8 to 16 km over the past 3 Ga. It should be understood
that the zero-integral dynamic topography constraint (eq. 16) applies at each instant during the long-term
secular contraction of Earth’s mean radius, and, as discussed below, the change in mean radius is
unidirectional and not expanding then contracting on these time-scales, as implied by some models (e.g.

Miiller et al. 2008).

We conclude this discussion by underlining the key result in equation (16): on a thermally
convecting mantle, the mean value of dynamic topography variations is zero. As will be discussed below,
this zero integral constraint has important consequences for understanding the link between changes, for
example, in mean depth of the oceans due to variations in mean ocean floor age and continental flooding

as discussed by Rowley (2017) for a simple “Pitman-type” world. (i.e. (Pitman 1978).
Our Perspective: Simple Definitions of the Components of Earth’s Topography

The focus of this paper is to review current understanding of Earth’s large-scale topography. Here
large-scale refers to lengths greater than the flexural wavelength of the lithosphere (i.e. >100’s km). On
geological time scales (= ~1MY), Earth’s topography may be regarded as the (linear) superposition of two

distinct contributions (Forte, Peltier et al. 1993): (i) crustal isostatic topography, generated by

heterogeneities in crustal thickness and density; (ii) dynamic topography, due to radial deflections of the

solid surface in response to normal stresses generated by buoyancy forces arising from all density anomalies
in the mantle. Within this framework, “residual topography”, which is the difference between the observed
topography and crustal isostatic topography, is synonymous with dynamic topography. In other words,
residual topography is the component of the observed topography that requires explanation largely, if not
entirely, from mantle sources. We will return to the caveat of “largely” in the preceding sentence when we
discuss uncertainties in the current understanding of crustal thickness and density distribution and the

resulting impact on estimates of the residual topography.

We will use as our reference observed topography, a radially adjusted version of the Efopol Ice
digital elevation model (Amante and Eakins 2009) that is used in the CrustI.0 crustal heterogeneity model
(Laske, Masters et al. 2013), in which the radial adjustment removes all effects of glacial isostatic
adjustment (GIA) due to past glacial ice loading, using the full sea level modelling (Fig. 2a) (Raymo,

Mitrovica et al. 2011). This reference topography thus removes the effects of Pleistocene to recent glacial

10
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isostatic adjustment (GIA) that currently contaminates Earth’s topography, while preserving the current
surface ice as included in the Crust/.0 model. The global integral of the GIA topography correction is zero,
so that the mean elevation of the adjusted topography is identical with the starting Etopol_Ice model, which
has a global mean elevation of -2384.6 m. Because crustal model Crust/.0 has a spatial resolution of 1
arcdegree we employ a corresponding 1 arcdegree-average GIA corrected topography (Fig. 2b) for the

discussions below.

FIGURE 2 Here

Figure 2. (a) One arcdegree correction to remove the remaining GIA resulting from past changes in ice loading using
the full solution of the sea level equation (Raymo, Mitrovica et al. 2011). (b) One arcdegree gridded topography
derived from Etopol Ice with including radial correction to remove the effects of all remaining glacial isostatic

adjustments due to Pleistocene glaciations. Plate boundaries from Bird (Bird 2003).
Crustal Isostatic Topography

The first and most important source of topography, the crustal system, can be readily modelled
using classical isostasy theory, derived from Archimedes principle, provided the thickness and density of
each crustal column is known. It is critically important that the predicates of isostasy are fully appreciated.
In this modelling, the crust “floats” on a hydrostatic underlying mantle in which there are no dynamical
forces (i.c. the mantle is not convecting). In addition to the crust, sensu stricto, there may be sediments,
ice or water on top of the crust that contribute to the crustal loading and these need to be included in the
isostatic calculation. Any process that alters crustal thickness, such as shortening or extension due to
tectonics, or erosion or deposition associated with sediment production and redistribution, will change the
isostatic height of the crust, but otherwise an unchanging crustal column maintains a constant isostatic

height with time.

The definition of isostatic topography presented above provides a simple conceptual framework
that we quantify in the following. The classical method for calculating isostatic crustal topography
employed, for example, by Forte et al. (Forte, Peltier et al. 1993, Forte, Simmons et al. 2015) is presented
in algorithmic form for a multi-layer crust by (Pari and Peltier 2000). This framework treats crustal isostasy
in terms of perturbations of crustal loads acting on an undulating Mohorovici¢ discontinuity: the “Moho”,
defining the boundary between the crust and the mantle. Within this framework, the deflection of the Moho
due to crustal loading is computed such that the total pressure acting at a fixed reference depth below the
crust, in the (lithospheric) mantle, is constant at all locations thereby ensuring the hydrostatic equilibrium

of the underlying mantle. This condition requires that the total pressure perturbation, Py, relative to

11



318
319
320

321

322

323

324
325
326
327
328
329
330

331

332
333
334
335
336
337

338
339

340

341
342
343
344
345

the global (horizontally averaged) mean pressure, must equal zero at all geographic locations. The latter

requirement yields the following constraint on the local displacement of the radial position of the Moho,

5Tmoho:

6Ptotal = {pmoho 6Tm0h0 + Ocrust — Ocrust } g=0, (22)

where,

Ocrust = Zivzl Pi hi > (23)

and g is the gravitational acceleration, p,,on, 1S the density of the mantle below the Moho, p; and h; are the
density and thickness, respectively, of each layer in an N-layer crustal model, 0., is the total mass per
unit area of each crustal column, and o5 is the global (horizontally averaged) mean crustal mass per unit
area. The summation in (23) also includes sediment, water and/or ice layers that may overlie the solid
basement rocks in each crustal column. We note that the term (0,5t — Ocruse) g in expression (22) is the
perturbed load (having units of pressure) of each crustal column relative to the global mean load. Expression

(22) finally yields the following equation for the isostatic radial displacement of the Moho:

Srmoho = (acrust - acrust)/ Pmoho - (24)

We use the sub-Moho density prone = 3380.76 kg/m3, as specified in the PREM reference Earth model
(Dziewonski and Anderson 1981), which is spherically symmetric (i.e. laterally homogeneous) and upon
which a laterally heterogeneous crustal model such as Crustl.0 (Laske, Masters et al. 2013) is draped. In
the more recent 1-D reference Earth model, STW105 (Kustowski, Ekstrom et al. 2008), ppono =
3289.84 kg/m3. We note from expression (24) that the global mean of the Moho deflections generated by

laterally variable crustal loads is identically equal to zero.

The local radial displacement, 1y, of the external surface (i.e. layer 1 in expression 23) relative to

its mean radius is given by:
éry = ( herust = Rerust ) + 8Tmono » Where hepyse = ?,:1 h; , (25)

and m is the global (horizontally averaged) mean thickness of an N-layer representation of the crust.
In equation (25) the summation includes water or ice layers. In particular, for the CRUST.0 model (Laske,
Masters et al. 2013), layers 1 and 2 correspond to water and ice, respectively. In the PREM reference Earth
model, the radius r; (= 6371 km) also corresponds to the surface of the globally defined water layer. We

note that expression (25) implies that the (horizontally averaged) mean value of the local radial

12
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displacements of the external surface, §7;, is identically equal to zero and hence the mean radius of the

external surface is maintained and equal to that of the reference Earth model.

Finally, the isostatic radial deflection of the solid surface of the crust, §75,,r, which underlies the

outer water layer is given by,
5rsurf =6r —hy, (26)

where h; is the thicknesses of the water in each crustal column. We replace the water thickness originally
specified in the Crusti.0 model with the GIA-corrected values, ensuring that the top of each water column
corresponds to the geoid (approximated here as a spherical surface) and that the total water volume is
conserved. This calculation therefore requires an iterative solution of the sea level equation, as in
Austermann & Mitrovica (Austermann and Mitrovica 2015), in which shorelines are allowed to migrate
until consistency is achieved. The global variation of crustal isostatic topography we thus obtain from
expressions (24 —26) is presented in Figure 3. Since the global mean value of 67y is equal to zero, it is clear
from eq. (26) that the global mean value of the isostatic topography of Earth’s solid surface is determined
by the global mean depth of the water layer: m = —h, = —2619.4 m that should equal the mean
elevation of the surface of —2384.6 m , but does not for reasons touched on below. Similarly, the observed
l-arcdegree gridded topography derived from Etopol Ice (Fig. 2) must accommodate the same volume of
water in the Crustl.0 model, hence (following eq. 26) it must also have a mean solid surface radius that is

identical to the isostatic topography.
Figure 3 Here

Figure 3. Crustal isostatic topography determined from Crust1.0. This calculation conserves the total volume of water

while ensuring the water surface corresponds to the geoid. Mean elevation of the isostatic topography is —2384.6 m.

There are certain subtleties in the preceding treatment that are worth emphasizing. The most
important concerns the variation in water depth overlying the oceanic crust. The depth of the ocean layer
in crustal models, such as CRUST1.0, is variable and it increases according to the age of the ocean
lithosphere. This age-dependent ocean depth and hence water-load has been included in past modelling of
isostatic crustal topography (e.g. Pari and Peltier 2000, Forte et al. 2015) completely independent of any
particular depth-age model. This variability in ocean depth is, however, a manifestation of mantle dynamics
in which the thermal evolution of the oceanic lithosphere, which is the upper thermal boundary layer of the
convecting mantle, controls the subsidence of the oceanic crust. Since crustal isostasy assumes a completely

hydrostatic and hence non-convecting mantle, it can be argued that an internally consistent model of
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isostatic topography requires that the age-dependent variability of ocean depth should be rectified. To this
end, as described above, we begin with an air-loaded crustal isostatic topography to which we progressively
add the water load, until the volume of water equals the volume of liquid water on Earth (~1.33 x 10° km?)
and the water surface follows a geoid (Figure 3). This adjustment has a significant impact on the resulting
crustal isostatic topography relative to one that includes imposed (ocean-age-dependent) water load
variations, characterized by a difference of about +1.1 km relative to the isostatic topography as derived
from Crustl.0 (Figure 4). Recalling that crustal isostasy is relative to a non-convecting mantle and thus
reflects only contributions from crustal thickness and crustal density alone, this model of the crustal isostatic
topography, shown in Figure 3, is the most internally consistent result and is characterized by a flat-
bottomed ocean. Although the global isostatic topography is not explicitly shown in Steinberger (2016), his
modelling of Crustl.0 non-isostatic topography implies an isostatic oceanic bathymetry that is also flat-

bottomed.
Figure 4 Here

Figure 4. Difference between crustal isostatic topography from Crustl.0 with variable (ocean-age-dependent) water-

loading of the oceanic lithosphere and the internally consistent calculation shown in Fig. 3.

Another subtlety concerns the representation of oceanic crustal structure in Crustl.0 (Laske,
Masters et al. 2013), whose thickness and density is quite homogeneous. CrustI.( oceanic crustal thickness,
for grid ages less than 170 Ma, ranges from 2.3 to 35.8 km with a mean of 7.4+£2.1 km (1c). The mean
density of the oceanic crust is 2952422 kg/m? (15). The relatively narrow range of the majority of oceanic
crustal properties in Crust1.0 leads to a small range in isostatic depths. There are variations in the thickness
and density of overlying oceanic sediments that yield some variation in isostatic depth. However, in the
Crustl.0 model, the densities specified for very young oceanic crust (i.e. age < 4 Ma ; although a few
smaller backarc basins, with ages as old as 29 Ma, are also included) are decreased by a few hundreds of
kilograms per cubic meter in each of the three crustal layers. These density reductions contribute to
increased isostatic topography of ridges relative to older oceanic crust of up to 471 m. The basis for these
reduced oceanic crustal densities is not clear, nor whether their effect should be included in the calculation

of isostatic topography as they are in Fig. 3.

Another issue worth noting is that there are detailed aspects of currently employed 1-D reference
Earth models that mismatch the global Crustl.0 model that we employ. In both PREM (Dziewonski and
Anderson 1981) and STW105 (Kustowski, Ekstrom et al. 2008), the spherical, global ocean layer is 3 km

thick, implying a water volume of 1.52 X 10% km? whereas the actual volume of water, including the water
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equivalent of all grounded ice, occupies a volume (~1.36 X 10° km3) that corresponds to a global-mean
ocean depth of about 2.661 km. If present-day grounded ice is retained (i.e. not converted to water) in the
crustal model, the ocean volume is ~1.33 X 10% km?3 yielding a global ocean whose depth is 2.613 km.
The mean elevation of the solid surface in both PREM and STW105 is -3000 m, whereas the mean elevation
in Etopol Ice is -2384.6 m. The 228-metre difference between the mean (isostatic) depth of -2613 m and
(observed) -2385 m arises from a fundamental distinction between the mean radius of the Earth as specified
by PREM (and STW105) and the mean radius determined on the basis of Earth’s actual topography. A
sphere whose volume is the same as that of the reference ellipsoid that best fits Earth’s geoidal surface is
used to determine the mean Earth radius in PREM, which is 6371.0008 km, based on the reference ellipsoid
in the 1980 World Geodetic System (Moritz 2000). However, the geoidal surface, and hence the reference
ellipsoid, does not include the additional continental topography above the geoid (i.e. above sea level). This
continental topography, as represented in the 1-arcdegree averaged Efopol Ice model, yields an additional
mean elevation of 228 m relative to the mean Earth radius in PREM. A more detailed discussion of this

issue may be found in (Chambat and Valette 2001).

Finally, both PREM and STW105 specify an upper crustal layer with a density of 2600 kg/m? that
is 12.0 km thick and lower crust of 2900 kg/m? with thickness of 9.4 km, yielding a total crustal thickness
of 21.4 km with mean density of 2732 kg/m>. In contrast, Crustl.0 (Laske, Masters et al. 2013) has a mean
crustal thickness, including sediments, but excluding water and ice, of 19.0 km with a mean density of 2823
kg/m?. In summary, current 1-D reference Earth models have 11.0% more water than present on Earth’s
surface, 8.3% more crustal mass than accounted for by Crust/.0, and has a mean radius that is 228 m less

than Earth’s mean radius.

Figure 5 (red lines) shows the starting GIA-corrected Crustl.0 cumulative and differential
hypsometry that represents the observed topography. The corresponding crustal isostatic topography as
represented by the cumulative (black line) and differential hypsometry (blue line) are also shown. Earth’s
bimodality is clearly reflected in the differential hypsometries, but there is a switch from GIA-corrected
hypsometry with a dominant shallow mode, as is true of the uncorrected hypsometry (Rowley 2013), to the
crustal isostatic topography where the deep oceans represent the dominant mode. As shown, oceanic crustal
regions are essentially flat in the crustal isostatic hypsometry whereas there is a persistent slope in the
observed hypsometry. This reflects the fact that the oceanic crust is, to first order, homogeneous in thickness
and density and thus would be expected to stand at essentially constant elevation as shown by the blue
curve. A second order contributor to this is the absence of variations in oceanic crustal thickness in regions

of many oceanic plateaus and hotspot tracks in the Crust1.0 dataset. The persistent slope in the observed
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topography reflects convection-related dynamic topography of the oceanic lithosphere depth-age

relationship.

Figure 5 Here

Figure 5. Cumulative hypsometry of the crustal isostatic topography of Crustl.0 relative to PREM with a mean
elevation is -2384.6m (black). Differential hypsometry of the crustal isostatic topography is shown along the left axis
by the blue line relative to the scale at the bottom left. Sea level is computed as the volume of the topography equivalent
to the volume of the water at the surface of the Earth. Sea level relative to this hypsometry would be at -640m. GIA-
corrected cumulative and differential hypsometry (red) of Crustl.0 topography with differential hypsometry scale in
the lower right. Sea level of the GIA-corrected topography is -5 m. Note the factor of 4 difference in the differential

hypsometry scales.

As noted above in our discussion of Fig. 3, we compute sea level on the isostatic topography via 2-
D integration of the volume of water to the geoid incorporating shoreline migration. This yields a height of
sea level relative to the isostatic topography of -640 m. A primary difference between our approach and
that of Steinberger (2016) is that we constrain the resulting solution by the volume of water in the oceans,
hence limit water-loading only to those depths below the geoid. In contrast, Steinberger (2016) applies a
water load correction to all regions currently below Om elevation requiring approximately 15% more water
than exists at the surface of the Earth, as should be clear from Fig. 5. This implied additional water increases

the water-load, thereby deepening the mean depth of the oceans relative to Fig. 5.

In contrast to the oceans being deeper, the isostatically supported continents stand high, in fact,
considerably higher than the average elevation of the continents today (Figure 5). The mean isostatic
elevation of the oceanic region (i.e. heights below Om) is -4553m, whereas the continents (i.e. heights above
Om) have a mean isostatic elevation of 1928m. These values contrast with -3707m and 786m, respectively,
in the GIA corrected Crustl.0 topography with a corresponding “sea level” height of -4.9m at 1 arcdegree
resolution. These differences clearly demonstrate the role of non-isostatic (i.e. dynamic) topography in

controlling ocean basin volume and continent elevation.

It is instructive to explore to what extent Earth’s present-day continental topography departs from
crustal isostatic equilibrium by considering the magnitude of changes to crustal structure that would yield
hydrostatic conditions in the underlying mantle, as expressed in equation (22). To this end, we consider
what perturbations to the crustal structure described by the Crusti.0 model would be required to establish
an equality between the isostatic and observed topography and whether these changes are large compared

to likely uncertainties in the model itself. We start with the understanding that oceanic topography is
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dominated by sub-moho processes and therefore perturbing crustal thickness or density to bring oceanic
topography into equilibrium is not meaningful. As a result, this exercise focuses entirely on the regions
above sea level. For this exercise we estimate end member solutions. One end member involves iteratively
adjusting each column crustal thickness, while assuming the mean crustal column density is correct, until
the load of each column (i.e. total pressure) at the depth of the compensation is the same (Fig. 6a). As
anticipated from consideration of Fig. 5, the thickness of continental crust must decrease, on average, to
bring the isostatic topography into equilibrium with observed topography. More precisely, the mean
decrease in crustal thickness for regions above sea level is 10.2 km from a mean of 39.1 km, where local
perturbations range from +35.8 to -21.5 km. Framed in terms of percent change in thickness of regions
above sea level, the mean change required is -24.6% with 95% of changes between -43.1% and +2.9%. The
other end member involves iteratively adjusting the mean column density, assuming the crustal thickness
is correct (Fig. 6b). The average change in mean crustal density, including ice, of continental regions is
148.3 kg/m’® from a mean of 2790.7 to 2939.0 kg/m?, where local perturbations range from -619.8 to 347.3
kg/m?®. These required perturbations to column density represent a mean increase of 5.3% with a 95% range
from -0.6 to 9.9% change. Although Crusti.0 does not specify uncertainties in either crustal thickness or
density, the required changes in crustal thickness are large relative to other estimates of uncertainty in
crustal thickness (Szwillus, Afonso et al. 2019). It is therefore unlikely that departures of observed
topography from isostasy can be explained solely in terms of errors in crustal thickness. Similarly, the
density changes required are pretty large, however, it is less clear that in-situ crustal densities (particularly
in the deep crust) are sufficiently well constrained to preclude accounting for some fraction of the resulting
non-isostatic (i.e. residual) topography. In this regard, it is worth noting that the density of continental lower
crust would have to increase by more than 10% to achieve a 1-km reduction of elevation in continental
regions (Pari and Peltier 2000) and thereby shift the isostatic topography of continents closer to observed
values (Fig. 5)

Figure 6 Here

Figure 6. Perturbations to Crustl.0 (a) crustal thickness and (b) mean crustal density of regions above sea level, such

that the isostatic topography equals observed topography.
Dynamic Topography

The second source of topography, the dynamic topography, arises from buoyancy forces generated
by convective circulation in the mantle, which includes density variations in the mantle lithosphere due to

thermal and petrological heterogeneity. The buoyancy forces associated with mantle convection are

generated by lateral temperature and petrologic variations associated with hot mantle upwellings (e.g.
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plumes) and cold mantle downwellings (e.g. subducted oceanic lithosphere) that together drive the mantle-
wide flow. Shallow-mantle buoyancy variations also arise from advected density anomalies in the
asthenosphere or through changes in lithospheric mantle composition or from deformation of the
lithospheric mantle layer due, for example, to plume-induced thinning, or alternatively to thickening which
may lead to partial or complete removal of the mantle lithosphere (e.g. “drips” or delamination). This
shallow deformation is a dynamical process that is generated by temperature anomalies and viscous stresses

arising from the sublithospheric, mantle-wide convective flow.

All processes that alter the buoyancy distribution in the mantle, including the lithospheric mantle,
will alter the dynamic topography and hence total (observable) topography of the Earth. Estimates of the
relative importance of “shallow” versus “deep” mantle contributions to dynamic topography suggest that
about 50% of the dynamic topography is produced by buoyancy in the top 200 km of the mantle, and the
remaining 50% is due to buoyancy distributed at all depths below 200 km (Forte 2007). As stated above, a
direct constraint on dynamic topography, shown in Figure 7 and henceforth denoted “FR2021”, is obtained
by subtracting the crustal isostatic topography (Figure 3) from the observed or in our case GIA-corrected
topography (Figure 2). This component has also been referred to as “residual topography”, as it is the

topography that requires explanation from buoyancy, largely, if not entirely, residing in the mantle.
Figure 7 Here

Figure 7. Dynamic topography of the Earth calculated as the difference between the observed topography (Figure 2b)
and the crustal isostatic topography (Figure 3). Note that since Crustl.0 does not account for variations in crustal
thickness of various aseismic ridges (e.g. 90°E, Walvis, Rio Grande, Hawaiian chain, among others), their crustal

isostatic topography is not represented and so they are masked by outlines of LIPS from (Coffin and Eldholm 1994)
in gray.

We adopt this conceptual formulation of topography, as originally proposed by (Forte, Peltier et al.
1993, Forte, Peltier et al. 1993), for two simple reasons: First and foremost is that the integral of dynamic
topography over the surface of the Earth, as defined in this way, is zero, as is the global integral of dynamic
topography change as a function of time (see eq. 16). This global integral constraint is thus critical in that
it provides a framework for understanding how changes in dynamic topography must be accommodated
globally. A simple consequence of this global integral property is that the crustal isostatic topography, GIA-
corrected topography, and present topography (corrected for the small difference between mean radius of
PREM and that of the Earth) all share the same mean clevation of the solid surface, because all of the

corresponding perturbation fields also have global integrals equal to zero.
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The second reason is that past subdivisions of contributions to residual topography into sub-sources
such as, thermal cooling of the oceanic lithosphere, compositional variations in the upper mantle such as
between cratons and oceans or between continental areas with and without cratonic roots, treat such sources
as if they themselves do not reflect or directly relate to mantle dynamics. When parsed in this way, it is
unlikely that topography contributions from these individual buoyancy sources, when integrated globally,
yield a mean topography perturbation that equals zero. Thus, for example, the elevation of the oceanic
lithosphere at the ridges represents a large positive contribution to overall non-isostatic topography of the
Earth resulting from shallow upper-mantle buoyancy variations (Figures 7). Treated independently, this
component does not appear to need balancing by other contributions to dynamic topography. In fact, in past
treatments of long-term sea level change (Miiller, Sdrolias et al. 2008, Conrad and Husson 2009, Spasojevic
and Gurnis 2012), this component is treated independently without balancing contributions (e.g. under
continents) thus implying increases and decreases in mean radius of the Earth over the past ~140 Myr
(Miiller, Sdrolias et al. 2008) to 230 Myr (Wright, Seton et al. 2020) as highlighted by (Rowley et al.,
submitted).

From our perspective, this approach to understanding the observed topography as the simple linear
superposition of crustal isostatic topography and dynamic (or residual) topography provides the simplest
and clearest way to think about this problem. The observed topography, with or without GIA corrections,
is well known, although direct measurements of oceanic depths remain relatively poorly observed (e.g.
(Weatherall, Marks et al. 2015). Global crustal thickness models are presumably improving with time as a
result of increasing numbers of approaches that image and resolve the depth to the Moho (Szwillus, Afonso
et al. 2019). Improved constraints on crustal density are also needed to reduce uncertainty in the crustal
isostatic topography. The unexplained part of the observed topography, i.e. the residual topography, then
becomes the focus where other observational geophysical constraints (including seismology and seismic
tomography, free-air gravity, and mantle flow calculations) help to bound models that account for this

dynamical component of the topography (see Forte et al. 2015).

It is not our intent here to review the approach of (Forte 2007, Forte, Simmons et al. 2015) that has
been used in development of tomography models (Simmons, Forte et al. 2006, Simmons, Forte et al. 2009,
Simmons, Forte et al. 2010, Lu, Forte et al. 2020, GliSovi¢, Grand et al. 2022) of the volumetric
heterogeneity in seismic velocity and density throughout the mantle, including both continental and oceanic
lithospheric mantle. These joint seismic-geodynamic tomography models provide optimal fits to plate
motions, dynamic=residual topography (Figure 7), free-air gravity, excess ellipticity of the CMB, and
incorporate mineral physics to constrain the 3-D density distribution of the mantle, including the mantle

lithosphere. This globally coherent approach treats dynamic topography as the integrated consequence of
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all sources of buoyancy operating within the complex viscosity structure of the mantle, rather than parsing
individual components such as continental mantle lithosphere, oceanic mantle lithosphere, asthenospheric
and transition zone, and lower mantle contributors to the dynamic topography. From this perspective, they

are all interconnected components of Earth’s mantle convective system.

Other Perspectives on Isostatic, Residual, and Dynamic Topography

There has been considerable discussion and outstanding differences in the published literature
concerning definitions of isostatic, residual, and dynamic topography, which have led to confusion and has
required (even experienced) readers to carefully parse how each publication defines and treats these terms.
This is an unfortunate situation, therefore in the following review we will adhere to the definitions we

presented above and highlight important distinctions with how others have used these same terms.
Continental Regions- Isostatic Topography

It is perhaps remarkable that differing approaches or definitions have been employed for estimating
the isostatic contribution to Earth’s topography. Some differences simply originate in the use of different
crustal models, including Crust2.0 (igppweb.ucsd.edu/~gabi/crust2.html, Forte 2007; Steinberger, 2007),
or Crust5.1 (Mooney, Laske et al. 1998, Pari and Peltier 2000), or simple continent-ocean crust (Forte et
al. 1993a), but are otherwise conceptually equivalent. The closest comparison is with the Steinberger (2016)
models of isostasy, henceforth ‘Sb2016” for brevity, because he provides an explicit discussion of each
component incorporated within his topography model, and thus it is possible to replicate his results allowing
explicit comparison. Sb2016 starts by defining non-isostatic topography using differences in crustal-column
loads as determined from Crustl.0 together with a mantle section integrated downward to a common depth
of 100km, below the maximum thickness of any crustal column (80 km in Crustl.0) and assuming a
constant sub-Moho (i.e. mantle) density p,, = 3350 kg/m3. Crustl.0 includes files (.bdX, where X is a
layer number) that specify the depth of interfaces of the various layers relative to the observed surface
topography, thus embedding the modern topography as a reference. If isostasy pertained, all column loads
(i.e. pressure) down to 100km depth would be the same. Differences in column loads reflect the non-
isostatic component in the observed topography, and thus correspond with what we have referred to as
‘dynamic topography=residual topography’ and Sb2016 refers to as a component of the ‘residual
topography’ (compare Sb2106 Figs. 2a, 2¢, and 2d). Sb2016 actually does not explicitly derive the isostatic
contribution, but instead focuses on this estimate of residual topography. We recomputed crustal non-

isostatic topography (i.e. dynamic topography), starting from the observed topography, following the
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Sb2016 methodology, which reproduces Fig. 2a in Sb2016. We then used the same methodology with the
GIA corrected topography. A comparison of this result relative to FR2021 (in Fig. 7) is shown in Figure
8a. The differences originate in two main sources. The first is that Sb2016 applied a water loading
correction, height/( pm-pw), for all regions in which the starting heights given by CRUST!.0 are below Om.
The resulting differences in water load distribution, relative to our calculation in which shorelines (on the
isostatic Earth) migrate to conserve water volume, are reflected in Figure 8b. The second is the difference
in assumed mantle density (Figure 8c). Figure 8b shows a uniform difference in the mean depth of the
oceans of -113m and mean height of regions above Om of ~160 m, and larger differences along continental
margins. In our calculations, the water load correction only applies to regions up to the height of the geoid,
with a volume of water equal to the water in the oceans, hence to depths deeper than -640m. In contrast,
Sb2016 applies the water loading correction to all regions that start below sea level and thus his calculation
does not conserve the volume of water at the surface of the Earth resulting in local differences greater than
1900 m. The reduced water load over regions with water-loaded heights less than -640m results in relative
uplift of the oceans (by 113 m) and consequent depression of the continents (by ~ 160 m) in order that the
global integral equals zero is satisfied. Figure 8c shows the simple consequence of changing the assumed
Moho density from the PREM value, 3380.76 kg/m?, to 3350.00 kg/m? as assumed by Sb2016. The
difference in assumed Moho density results in topography differences between -465 m and +141 m. It is
worth noting that these two differences are generally of opposite signs over the same regions partially

cancelling each other out, except along the continental margins (Fig. 8a).
Figure 8 Here

Figure 8. a) Difference between dynamic topography in figure 7, denoted “FR2021 ", and that derived by Steinberger
(2016), denoted “Sb2016”. b) Difference between FR2021 and Sb2016 dynamic topography in which the former is
derived using the same sub-Moho density (3350.00 kg/m?) as the latter. c¢) Difference in FR2021 dynamic topography
arising from two different assumed sub-Moho densities (3380.76 kg/m> versus 3350.00 kg/m?).

Others approach crustal isostasy differently. For example, Flament et al. (2013), following others,
rather than computing the isostatic topography over the continents instead subtract the mean elevation of
the continents (calculated by them to be 529 m) from all continental crustal areas as defined by the Miiller
et al. (2008) age grid and apply a depth-age correction for the oceanic crustal areas. Alternatively, Molnar
et al. (2015) use a crustal density of 2670 kg/m? and reference column of 30 km thickness at sea level to
derive their estimate of crustal isostasy. Relative to PREM, such a reference column would have an
elevation of about 1530m, reflecting the significant difference in mean density of Crustl.0 crust and the

reference density used in their analysis. Each of these different estimates of the crustal isostatic topography
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result in significant differences in estimates of the residual, i.e. dynamic, topography. Such discordances
undermine the notion that the residual topography may be considered an “observable”, or a reliable datum,
against which model results may be compared, unless the authors adhere to simple and straightforward

definitions of this “observable”, as we advocate here.

Oceanic Crust and Lithosphere Topography — Isostatic or Dynamic?

Oceanic topography is treated quite differently by different researchers. Forte et al. (1993) treat the
depth-age relationship as inherently part of Earth’s dynamic topography, as we do here. The age-dependent
increase in oceanic depth is the clearest topographic manifestation of mantle convection, wherein the
oceanic lithosphere represents the upper thermal boundary layer of the convective system. Flament et al.
(2013) conceptually agree and state: “the bathymetry of the ocean floor is compatible with that of the
thermal boundary layer of the convecting mantle, and, in this respect, the subsidence of oceanic lithosphere
with age should be included in the definition of dynamic topography." However, in practice, Flament et al.
(2013) exclude this component from their definition. A similar concurrence is expressed by (Steinberger
2016), but he too excludes this component from his estimate of residual topography (See his Fig. 2c).
Molnar et al. (2015) also exclude ocean floor depth-age topographic variation, stating that no one questions
the view that “isostatic equilibrium of the cooling lithosphere at mid-ocean ridges accounts for the variation

in depth and is a process largely isolated from sublithospheric mantle dynamics...”

These differing perspectives on the dynamical treatment of shallow-mantle (sub-crustal)
contributions to surface topography lead us to introduce the term “non-crustal isostasy”, which will refer to
application of the isostasy principle to shallow-mantle buoyancy sources. This shallow-mantle isostasy is
traditionally applied to buoyancy sources in the (oceanic and continental) lithosphere, although it has also
been applied to deeper sources below the lithosphere (e.g. (Fullea, Lebedev et al. 2021)). As will be
discussed in more detail below, classical isostasy applied to sub-crustal buoyancy is an approximation
whose accuracy diminishes substantially with increasing thickness of the shallow-mantle layer (see also

Appendix B).

We emphasize here that a fundamental conceptual conflict arises when depth-age is excluded from
the dynamic topography, as was originally pointed out by (Forte, Peltier et al. 1993). The predicate of
isostasy is that the mantle is hydrostatic and therefore not convecting, and yet the mid-oceanic ridge itself,
and the thermal anomaly that is being advected with the plates that gives rise to the depth-age relationship
inherently requires convection. This applies as well to (Wang, Liu et al. 2022) who use mid-oceanic ridges

as the global isostatic reference, stating that a ridge “consists of a simple mass column (oceanic crust
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overlying the ambient mantle) and is at a hydrostatic state relative to the low-viscosity mantle underneath.”
Adopting this reference frame ignores that ridges are inherently dynamic structures that only exist because
the mantle is convection, in contradiction to the predicate of isostasy itself. This reference choice also
inverts the sign of the effect of cooling with age. Ridges stand ~3550 m above old ocean floor (~175 Ma
based on Rowley, 2018). In this framework mid-oceanic ridges have negative and old oceanic lithosphere
has positive residual topography (Wang et al. 2022, their Fig. 2A). In the general framing (Forte et al. 1993,
Steinberger, 2016, and above), ridges represent a positive contribution to non-crustal isostatic topography
such that subsidence with age brings the oceanic crust closer to crustal isostatic equilibrium as shown in
Fig. 3. From the global integral equals zero perspective, the Wang et al. (2022) recommended change in
reference has a profound impact as the continents are relatively elevated by >1000m and oceanic lithosphere

depressed by ~-633m, and with ridges (age<5.0Ma) in particular depressed by ~-1930m relative to Fig. 7.

The dynamical importance in terms of ridge-push of the evolving thermal structure of the oceanic
lithospheric with age was also highlighted long ago by Richter (1973) and (Hager and O'Connell 1981) in
their studies of plate-driving forces. Thus, decoupling this dynamical lithospheric component and

effectively treating it as existing in the absence of mantle convection is physically incoherent.

Despite the above considerations, the depth-age component of the oceanic topography is often
excluded from dynamic topography analyses and is included as a separate mantle lithosphere “isostatic”
contribution to the topography. However, even when adopting this perspective, there is a question as to
which depth-age model to employ for the oceanic lithosphere and how to dovetail age depth corrections
with adjacent continental crust, specifically along passive continental margins. Should a square-root age
model reflecting half-space cooling be removed (Spasojevic and Gurnis, 2012, Steinberger, 2016), or some

“plate” model characterized by decreasing subsidence with age be subtracted?

Figure 9 Here

Figure 9. Depth-age models of the oceanic lithosphere modified from (Rowley 2018). Thick solid red is best-fit plate
model to the median of the depth-age data associated with actual age picks derived from marine magnetic anomalies
(Rowley, 2018), with associated fits to +1 o distributions in thinner red. Darker blue is best fit half-space cooling
constrained by picks younger than 84Ma and lighter blue half-space cooling at all ages. Orange is plate model of
Hoggard et al. (2016). Dashes are from (Stein and Stein 1992), and dots are (Crosby and McKenzie 2009).

Rowley (2018) used the ‘Global Seafloor Fabric and Magnetic Lineation’ (GSFML) data set
(Seton, Whittaker et al. 2014) that includes locations of approximately 100,000 magnetic anomaly picks,

to derive fits (shown in Figure 9) to a range of metrics, including median, mode, mean, and +1c and +2¢
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sediment-load corrected depth deviations at each magnetic anomaly pick age for the main ocean basins
(excluding back-arc basins). These picks represent the vast majority (~99%) of locations on the ocean floor
that have explicitly constrained oceanic crustal ages, and thus provide the only global dataset from which
to derive a robust depth-age relationship from data, not model ages. Rowley (2018) also derived a new
sediment load-correction of oceanic sediments based on more than 9 million wet-bulk density
measurements from deep sea drilling cores. From these data it is clear that the best fit sediment-load

corrected model is a plate model.

Spasojevic and Gurnis (2012) removed a half-space cooling model, fit to oceanic lithosphere ages
less than or equal to 70 Ma published by (Parsons and Sclater 1977), but applied to all ages. That half-space
depth-age relationship is similar to that shown in Fig. 9, which is a fit to ages < 84 Ma (Rowley, 2018).
Steinberger (2016) subtracts a square root age model based on (Korenaga and Korenaga 2008), who derived
their estimate using ages based on the 1997 version of the age grid (Miiller, Roest et al. 1997), for ages less
than 100 Ma, and a constant offset of -3300 m from the ridge depth for older ages as discussed further
below. Alternatively, one could use a best fit half-space cooling model for all ages (Fig. 9), but this has not
been used in any analyses that we are aware of. Flament et al. (2013) subtract a lithosphere cooling model
by Crosby and McKenzie (2009) (Figure 9), characterized by a rise and fall in the predicted ocean depth in
the Cretaceous, which Rowley (2018) shows is unsupported by GSFML and sediment load-corrected ocean
drilling data, or a more recent age grid model (Miiller, Seton et al. 2016). Hoggard et al. (2016) remove a
plate model that they derived (Figure 9). The differences among these models are as large as several hundred
meters: a magnitude that corresponds with some estimates of the maximum amplitude of dynamic
topography (e.g. Hoggard et al. 2016, Molnar et al. 2015). It is thus evident that subtracting these different
models will not only impact the magnitude of estimated dynamic topography, but also its sign, thereby
exacerbating the uncertainty generated by effectively arbitrary choices made by different research groups
to differentiate isostatic versus non-isostatic or dynamic topography. We finally note that these previous
studies use age-grid models, but these too have issues when compared with the direct magnetic anomaly

pick data, as demonstrated by Rowley (2018).

Another problem with the approaches discussed above is that oceanic lithosphere has considerable
variation in depths at all ages. According to Rowley (2018): 1) zero-age lithosphere has an 8 km range of
elevations; 2) there is some correlation of deeper ridge flanks with deeper ridges, hence depth at age has
some correlation with starting depth; 3) there is some correlation of ridge depth with full spreading rates
less than about 70 mm/y; and 4) there is some correlation between ridge depth and crustal thickness making

it unclear what constitutes anomalous bathymetry, or whether removing the best fit mode, mean, or median,
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with or without including +1 sigma distributions or half-space cooling is most appropriate, were one to

employ such an approach.

Figure 7 emphasizes that dynamic/residual topography across passive-type continent-ocean
boundaries (COB) is continuous and regardless of the age of the adjacent oceanic lithosphere. Removing
oceanic depth-age topography introduces an arbitrary step function boundary along COBs. It is easiest to
highlight this effect using Steinberger (2016) as he is explicit about the various components incorporated
in his definition of residual topography. As mentioned above, Steinberger (2016) provides the following

relationships:

hen, = hy — 330 /age(Ma) , for oceanic ages < 100 Ma
he,, = hg — 3300, for oceanic ages > 100
hip = hg — 4365, for undefined age,

where hy, is the height of each grid cell, and hy is chosen such that the integral of hy has zero global mean.
The third equation applies to all regions with no assigned ages, hence includes continental crust. What is
immediately obvious is that COBs will demarcate locations with an abrupt deepening of >1065 m in the
modeled residual topography, and for very young COBs an offset of ~4365m (see Fig. 10b). The magnitude
of this step change in modeled residual topography will vary based on the particular depth-age model
adopted but since data from the continents are excluded, all non-ocean grid cells are compelled to have a
single value that must offset the positive residual topography of MORs to satisfy the global integral
constraint. Furthermore, although this correction itself has a zero global mean, the heights of all continental
regions are uniformly depressed in order to match this constraint, whereas in the real world the crust and
mantle lithosphere vary spatially to yield a continuous gradient in isostatic and dynamic/residual

topography across these COBs.

The preceding discussion again highlights the rationale for modelling all mantle lithosphere
globally, incorporating both thermal and chemical contributions to density and hence as part of joint seismic
and geophysical inversions for present day dynamic topography (Forte et al., 2015; Lu et al., 2020). As

discussed above, we treat all topography not accounted for by crustal isostasy as dynamic topography, and

thus seek to account for all residual topography in the oceans as related to the direct consequences of mantle

convection, affecting both the lithosphere and underlying mantle.
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The discussion above has revealed differences in previously adopted definitions of the isostatic
topography, resulting in substantial differences in the topography component that needs explanation from
non-crustal isostatic sources. What is often difficult to recognize is the magnitude of the differences that
are embedded in various estimates of these other non-crustal isostatic sources of topography. Below we
explore these to highlight the components of Earth’s topography that are often hidden within or inherent in

these other treatments.

Residual Topography

Similar to isostatic topography, the term residual topography has also varied considerably in
meaning, depending upon the author. We equate this term, following Forte et al. (1993), to dynamic
topography, which is simply the difference between the observed or GIA-corrected topography and
crustal isostatic topography that is mapped, for example, in Figure 7. This straightforward definition

provides an explicit context for quantifying the sources and contributions to Earth’s topography.

In other assessments of the contributions to Earth’s topography, the term residual topography,
when assessed separately from dynamic topography, is usually regarded as an “observed” component of
the topography. Figure 10 shows residual topography fields, one of which is obtained by subtracting
Rowley (2018) age-dependent ocean bathymetry from FR2021 (Fig.7), along with several published
estimates of residual topography (Steinberger 2007, Flament, Gurnis et al. 2013, Steinberger 2016,
Hoggard, Winterbourne et al. 2017, Steinberger, Conrad et al. 2019) that provide a basis for interpreting
components included in the “explained” aspects of Earth’s topography versus what remains to be
explained by dynamic topography. Note that Steinberger (2016) (Fig. 10c) interpolates values in regions
of LIPs, whereas Fig. 10a does not. To asses these aspects, we use the published grids (Flament et al.
2013, Hoggard et al., 2016, (Steinberger, Conrad et al. 2019) regridded to pixel-centered one-arcdegree
grids identical with Crust1.0 and corresponding GIA-corrected topography (Figure 2).

Figure 10 Here

Figure 10. Five residual topography estimates for the present-day Earth. Color scales are the same for each map.
Residual topographies from: a) FR2021 (fig. 7) from which age-dependent oceanic topography derived by Rowley
(2018) (fig. 10b) has been removed, b) Rowley (2018) depth-age paired with continent value derived from
Steinberger (2016), c) Steinberger (2016) represented by fig. 2c in that paper, d) Flament et al. (2013), ¢) Hoggard
etal. (2016), and f) Steinberger et al. (2019) that shows the air-loaded residual topography. The age-dependent
lithosphere topography reduction in (a, b) and (c) assume a continental elevation of -1187m, based on Steinberger
(2016) age-dependent and undefined (~continental crust) equations. g) Root-mean-square (rms) amplitude of

dynamic and lithospheric topography, as a function of spherical harmonic degree, from FR2021 (fig. 7) and Rowley
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(2018) and from Steinberger (2016) (figs. 2b and 2c in that paper). h) Rms amplitude of residual dynamic
topography, as a function of spherical harmonic degree, for fields shown in maps (a), and (c) to (e).

The residual topographies, for example, in Fig. 10 are usually treated as “observables” that can be
compared with an independently calculated dynamic topography. Flament et al. (2013) compute the
residual topography by removing the mean continental elevation (529 m) from continental crust, which
includes all elevations above approximately -200m corresponding to the continental shelves. Over the
oceans they subtracted the Crosby and McKenzie (2009) depth-age curve from sediment load corrected
bathymetry. Hoggard et al. (2016) derived their residual topography over the oceans using deviations from
their depth-age model where they find a correlation with long wavelength (>700 km) free-air gravity
anomalies using an admittance of Z=25+10 mGal/km, to which they add primarily admittance-derived
estimates of residual topography over the continents, assuming a constant air-loaded admittance of Z=50
mGal/km. They make some additional adjustments using drainage patterns and remove continental
estimates within 500 km of oceanic residual depth determinations. Steinberger (2016) combines Crust1.0
non-crustal isostatic topography (see above-his Fig. 2a) with depth-age equations given above to derive this
estimate of residual topography (his Figs. 2c,d). We note, in this context, that Steinberger (2016) also
presents (his Fig. 6d) an alternative representation of long-wavelength residual topography in which the
ocean age correction is not applied, but analyses of fits between predicted (model) topography and residual
topography include the age correction. Finally, Steinberger et al. (2019) combine Steinberger (2016) over

the continental crust with Hoggard et al. (2016) over the oceans.

Given the differences in approaches, it is not surprising that these residual topography maps are
different. Indeed, one of the primary objectives of determining the residual topography is to set a basis for
evaluating the fit of dynamic topography derived from mantle flow, where the latter is modelled to fit the
former. Consequently, the differing definitions of residual topography helps to explain the contrasts
between different model calculations of dynamic topography. As discussed above, an important source
for these differences is the model adopted to represent the age-dependent bathymetry of the oceans and
the assumed equilibrium elevation of continents. This “lithospheric” signal is large and is comparable to
that of dynamic (non-isostatic crustal) topography, as is clearly evident in the wavelength-dependent
spectral amplitudes of both fields shown in Fig. 10g. Here we compare the spectral amplitudes of both
FR2021 and Sb2016 dynamic topography fields with the corresponding spectral amplitudes of age-
dependent lithospheric topography as determined by Sb2016 (his Fig. 2b) and by Rowley (2018), where
in the latter case we adopt the same value of lithospheric topography of continents as in Sb2016. The
similarity of the amplitudes of dynamic and “lithospheric topography” highlights the potentially large

uncertainties that can arise when these two fields are subtracted to infer the smaller-amplitude residual
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topography fields, shown in Fig. 10h. The relative differences between these estimates of residual

topography are larger than the relative differences between dynamic topography estimates (Fig. 10g).

To aid in a quantitative comparison of the maps in Fig. 10, we plot in Fig. 11 the spatial
correlations of these residual topography maps, starting with the correlation between the FR2021 dynamic
topography (Fig. 7) and the Sb2016 dynamic topography (his Fig. 2a). For consistency we plot
correlations (Fig. 11) of residual topography estimates that have been smoothed by truncating their
spherical harmonic expansion at degree £ =30. Figure 11a shows that there is a close correlation of what
Steinberger (2016) describes as non-isostatic topography derived from Crust/.0 and what we call
dynamic topography also derived from Crusti.0. The deviations from 1:1 correlation reflect regions on
continental margins where water load corrections applied by Steinberger (2016) do not account for
shoreline migration relative to background isostatic topography (Fig. 3). Figure 11b compares the residual
(FR2021-this study dynamic-R2018 lithospheric) topography of FR2021 (Fig. 10a) against Sb2016 (Fig.
10c), and we note that the correlation is now reduced relative to that in Fig. 11a, which highlights the
increased uncertainties inherent in estimating residual topography when sources beyond crustal isostasy
are included. Sb2019 is constructed by combining the residual topography from the continents and
deviations from the depth-age model from Hoggard et al. (2016) for the oceans, and hence is similar in
construction to FR2021-R2018. Although the correlation between residual Sb2016 and FR2021, Sb2016
Fig. 2¢ vs. FR2021-R2018, and Sb2019 vs. FR2021-R2018 (Fig. 11a-c) are good (>0.84), the other
correlations (Figs. 12d-f) are poor, with values between 0.191 and -0.048. An alternative quantification of
agreement is provided by the relative misfit, which is equal to the rms difference between the predicted
topography fields normalized by the rms amplitude of predicted topography. This measure of misfit
depends on both the spatial correlation and the amplitude of topography. The relative misfit between
smoothed FR2021 and Sb2016 residual topography (Fig. 11b) is 30%, whereas for the other comparisons
(Figs. 11d-f) it exceeds 100%. Given such low levels of agreement, it is not surprising that associated
models of dynamic topography interpreted in terms of mantle flow calculations, are themselves quite

different.
Figure 11 Here

Figure 11. Correlations of residual topography topography estimates with a bin size of 250 m. All plots are filtered
at maximum spherical harmonic degree 30: a) Steinberger (2016, his fig. 2a) with FR2021 (fig. 7). b) residual
topography of Steinberger (2016, his fig. 2c) versus residual FR2021-R2018 topography (fig. 10a), c) residual
topography of Steinberger et al. (2019) , d) Flament et al. (2013), and e) Hoggard et al. (2016) versus residual
FR2021-R2018, ) Hoggard et al. (2016) versus Flament et al. (2013).
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One of the fundamental problems is that mantle lithosphere density and thickness are
significantly more poorly constrained than crustal properties, particularly under the continents where
direct evidence from studies of mantle xenoliths provides limited spatial sampling (Kaban, Schwintzer et
al. 2003). Moreover, assessments of large-scale buoyancy range from at least locally positive (Kaban,
Schwintzer et al. 2003), to neutral (Jordan 1975, Jordan 1988) to negative (Forte and Perry 2000, Kaban,
Schwintzer et al. 2003). In contrast, modelling the density of the oceanic lithosphere mantle is, at least in

theory, straightforward.

As discussed above, we include all mantle lithosphere contribution to Earth’s topography in our
definition of dynamic (= residual) topography. This definition requires that any acceptable model of sub-
crustal density anomalies, at all depths in the mantle, must be in accord with global seismic tomography
and simultaneously fit an array of geophysical global observables that include free-air gravity anomalies,
excess ellipticity of the core-mantle boundary, present-day plate motions, and dynamic topography each
with their own sensitivities as explained by Forte et al. (2015) and employed by Simmons et al. (2009,
2010) and Lu et al. (2020). These solutions are typically characterized by negative buoyancy of most

continental roots that are included in the definition of dynamic topography we adopt.

While Flament et al. (2013), following (Gurnis 1993), recognize that oceanic depth-age should be
included in the definition of dynamic topography, they nonetheless state: “the dynamics of the continental
lithosphere are more complex and cannot be explained by boundary layer theory. For this reason, defining
dynamic topography globally as the difference between observed topography and isostatic crustal
topography (e.g., (Forte, Peltier et al. 1993, Forte, Peltier et al. 1993) results in continents dynamically
depressed by up to 3 km, which is inconsistent with observations” citing Gurnis (1993). Gurnis (1993)
predicated this argument on the observation that the long geological record of continental inundation by
sea water is inconsistent with large amplitude depressions exceeding ~300 meters. However, the cratonic
mantle lithospheric roots are dynamic in the sense that they are horizontally advected with the plates, as is
true of the oceanic lithosphere mantle, and that changes in thickness or density of these mantle
lithospheric roots gives rise to changes in surface topography independent of changes in crustal thickness
or crustal density. Thus, advection of the mantle lithosphere with the plates maintains the depression of
the continents on timescales of the ages of these roots and in proportion to their density contrast with the
mantle at equivalent depths, again identical with the oceanic lithosphere. This negates the argument put
forth by Gurnis (1993) and reiterated by Flament et al. (2013), among others. As discussed in Forte et al.
(1993, their Reply), the amplitude of changes in dynamic topography differs from the amplitude of
instantaneous (e.g. present-day) dynamic topography, such that geologic (inundation) data constrain the

former, not the latter. This point has also been discussed by Steinberger (2016). The continents remain at
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or near sea level because they are maintained there by the long-term preservation of the continental
mantle lithosphere roots. When those roots are dynamically removed, through some sort of gravitational
instability, the surface topography increases, as for example under the Colorado Plateau and Great Basin
region, eastern North China, and parts of the eastern seaboard of the US, among other regions. It is worth
noting that the gravitational instabilities such as drips or delaminations are activated because the mantle
lithosphere is more dense than the underlying mantle. In summary, there is no contradiction between
continental flooding records and large-scale continental depressions that we define as a component of

instantaneous (present-day) dynamic topography.
Limitations of Admittance Analysis

Finally, we consider Molnar et al.’s (Molnar, England et al. 2015) criticism of current estimates
of dynamic topography. Molnar et al. (2015) argue that because observed free-air gravity anomalies are
small, and isostatic anomalies are even smaller, that mantle flow induced normal stresses acting at the
base of the lithosphere do not result in greater than ~300m of deflection, thereby limiting dynamic
topography to within this amplitude. It is important to recognize the key role that Molnar et al. (2015)
place on free-air gravity anomalies as the arbiter of their estimates of the amplitude and location of any
and all dynamic topography. They state: “Much more important for geodynamics than labels is an
understanding of the degree to which normal tractions applied to the base of the lithosphere by convection
support the topography. Because the building of tectonic features requires that work be done by or against
gravity, we, as do many ... (long list of citations), consider gravity anomalies to offer the tightest
constraints on the degree to which surface topography results from normal tractions applied to the base of
the lithosphere” (p.1934). Molnar et al. (2015) then predicate their analysis of the amplitude of
topography associated with mantle flow induced normal stresses acting at the base of the lithosphere
based on observed free-air gravity anomalies. They derive a rule of thumb admittance, common to many

other such analyses (e.g. Hoggard et al. 2016), of about 50 mGal/km.

The problem with this translation of gravity anomalies by a rule of thumb admittance, is that for a
complex mantle viscosity structure, this rule of thumb is inappropriate. (Forte 2007, Forte, Simmons et al.
2015) describe the fundamental connections between surface geophysical observables and mantle flow,
and how they are applied in constructing seismic tomographic models that simultaneously solve for 3D
seismic velocity and density structure of the silicate Earth. The geophysical observables sensitive to
mantle buoyancy variations include free-air gravity, dynamic topography at Earth’s surface and at the
CMB, as well as plate motions. It is worth recalling that the succession of geodynamically constrained

seismic tomography and density models published by (Simmons, Forte et al. 2006, Simmons, Forte et al.
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2009, Simmons, Forte et al. 2010), and most recently (Lu, Forte et al. 2020), are based on the mantle-
dynamic framework presented in (Forte 2007, Forte, Simmons et al. 2015). This framework ensures that
all of their tomography-based mantle flow models simultaneously satisfy the free-air gravity data and
estimates of dynamic topography derived from differencing the observed and crustal isostatic topography,

thus making the arguments put forth by Molnar et al. (2015) entirely moot.

The reader is directed to (Forte 2007, Forte, Simmons et al. 2015) for more details concerning the
relationship between geodynamic observables (e.g. topography and gravity) and mantle flow induced by
density perturbations in a mantle with a complex depth-dependent viscosity. In these flow calculations,
the kernel functions that describe the wavelength-dependent connection between internal density
anomalies and surface observables are explicitly provided. One of the important characteristics of the
free-air gravity kernels is their complex depth-dependence that involves changes in sign due to changes of
viscosity with depth. This precludes the use of the simple admittance estimates employed in Molnar et al.
(2015), which itself is based on classical analyses by (McKenzie 1977) and earlier, in which the mantle is
treated as an isoviscous fluid. This point has also been made more recently by Yang & Gurnis (2016) and

by Coli et al. (Colli, Ghelichkhan et al. 2016) using viscous flow models of the mantle.

This point is further illustrated by Fig. 12a that shows the spatial correlation of observed free-air
gravity (Tapley, Ries et al. 2007) and Crust1.0 based modeled dynamic surface topography from Lu et al.
(2020), where both are represented up to spherical harmonic degree 32, corresponding to the long-
wavelength spatial scales analyzed by Molnar et al. (2015). We employ the computed dynamic
topography in order to demonstrate that computed mantle flow is capable of generating the observed
dynamic topography and be consistent with free-air gravity constraints. The corresponding estimates of
admittance based on these data are presented in Fig. 12b. It is clear from Fig. 12a that km-scale dynamic
topography can correspond to zero free-air gravity anomalies and that there is no correlation (R=-0.005)
of admittance and amplitude of dynamic topography (Fig. 12b) as assumed in Molnar et al. (2015),
among others. In summary, the admittance rule of thumb employed by Molnar et al. (2015), Hoggard et

al. (2016) and others, cannot be applied because the mantle is not isoviscous.
Figure 12 Here

Figure 12. a) Free-air gravity anomaly (Tapley et al., 2007) versus Crustl.0 derived dynamic topography both
represented to degree 32 (Lu et al. 2020) and sampled on the Crust1.0 grid with a bin size of 250 m for dynamic
topography and 10 mGal/km for gravity. B) Estimates of admittance based on 12a.

Dynamic Topography Models
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All agree that dynamic surface topography is the result of normal stresses acting on the solid-
surface, thus displacing this surface away from the position predicted by isostasy. An important and often
little emphasized aspect of differences in past models of dynamic topography is the specification of exactly
at what depth or material boundary, above which the isostatic support of subsurface density anomalies is
assumed. According to our definition, that boundary is the Moho, thereby limiting the isostatic contributions
to surface topography to crustal heterogeneity only. As highlighted above, this puts all subcrustal contrasts
in density and thickness of the lithospheric mantle within the dynamic topography component of the
topography. In past studies, there is an additional sub-crustal layer in which density anomalies are also
assumed to be in isostatic equilibrium. The (sometimes arbitrary) depths to which isostasy is assumed
include: the base of the lithosphere at ~100 km (Molnar et al. 2015), 220 km (Steinberger 2007, Miiller,
Sdrolias et al. 2008), 250 km (Spasojevic and Gurnis 2012), 300 km (Conrad and Husson 2009), 350 km
(Flament, Gurnis et al. 2013, Young, Flament et al. 2022), or 400 km (Afonso, Salajegheh et al. 2019,
Fullea, Lebedev et al. 2021). In most of these studies that employed seismic tomography models to represent
mantle heterogeneity, the adoption of separate age-dependent, and in some cases isopycnic (e.g. under
continents), representations for sub-crustal contributions to isostatic topography involved “zeroing out™ all
density anomalies above the lower boundary chosen for the isostatic layer. The choice of this boundary has
important consequences: (1) There is a direct relation between thickness of the layer and the minimum
wavelength of the resulting dynamic topography; and (2) removing mantle heterogeneity between the Moho
and approximately 200 to 350 km removes about 50% of the total dynamic topography (Forte et al. 2015)
that manifests surface boundary layer dynamics. It is also important to note that once this boundary is
specified, all regions shallower than the boundary are effectively treated as belonging to an isostatic layer
that may be substantially thicker than thermally defined lithosphere (especially for boundary depths > 100
km). In Appendix B we present a detailed evaluation of the dynamic implications of assuming isostatic

support for density heterogeneities in a shallow-mantle layer of variable thickness.

The deeper (> 100 km) isostasy models remove dynamical contributions from some or all of the
asthenospheric low velocity zone, a region with the lowest or among the lowest mean viscosities of the
mantle (Mitrovica and Forte 2004), and hence characterized by high deformation rates, which violates the
isostasy assumption. Although the Forte et al. (2015) estimate of shallower mantle contributions to dynamic
topography includes depth-age variations, there are non-trivial shallow, asthenospheric sources of
buoyancy unrelated to depth-age that are neglected when these deeper boundary layers are chosen.
Examples include the source of the Pliocene Orangeburg Scarp shoreline deflection along the east coast of
the US (Rowley, Forte et al. 2013), and western south Pacific across the SOPITA volcanic province
(Rowley, Forte et al. 2016) and western equatorial Pacific (Campbell, Moucha et al. 2018). Finally, not
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surprisingly, models that employ deeper compensation depths are characterized by much longer
wavelength, effectively hemispheric scale estimates of dynamic topography uncorrelated with surface plate
tectonics, but instead correlated with topography (and geoid) highs over the Pacific and Atlantic plus Africa,
and lows associated with circum-Pacific subduction under South America/northern North America and

western Pacific/southeast Asian regions (Figure 13).
Figure 13 Here

Figure 13. Models of dynamic topography. a) This study based on viscosity profile VI and new inversion
of Lu et al. (2020) up to =128, b) Steinberger (2007), c¢) Conrad and Husson (2009), d) Spasojevic and
Gurnis (2012), e) Flament et al. (2013), and f) Steinberger (2016-Fig. 6¢c) up to [=128 and rescaled by 1.45
over the oceans to respresent water-loaded dynamic topography as in Lu et al. (2020). Color scale is the

same for all images.

The maps in Figure 13a through f are computed present day dynamic topographies, but it is
important to recognize that each is derived in a different way and with different assumptions as to the depth
of the boundary above which the material is treated as effectively isostatic, as noted above. Figure 13a is
based on Lu et al. (2020) that follows Forte et al. (2015) description of a full joint seismic-geodynamic
tomography inversion that significantly updates previous versions (Simmons, Forte et al. 2006, Simmons,
Forte et al. 2009, Simmons, Forte et al. 2010). The latest joint tomography models by Lu et al. (2020)
provide optimal fits to dynamic topography (Fig. 7) and free-air gravity data up to degree 32, incorporating
mineral physics and geodynamic constraints on the 3-D density-velocity scaling, for a range of viscosity
models. Note that the scaling of shear wave velocity to density includes both thermal and non-thermal (i.e.
compositional) contributions and therefore varies in 3-D throughout the mantle to yield the best fit to the
geodynamic observables that include dynamic topography (Fig. 7). This explicit joint inversion approach
strongly departs from others and explains why the resulting modeled dynamic topography (among other
components, such as mantle flow) differs, often markedly, with other predictions. One contributor to these
differences relate to the scaling of seismic velocity anomalies to density. For example, Steinberger (2007)
uses a purely depth dependent velocity-density scaling that remains close to 0.25 g cm™ km™' s throughout
the mantle and thus effectively treats all density anomalies as thermal in origin. Similarly, Conrad and
Husson (2009) scale the S20RTS (Ritsema, van Heijst et al. 2004) shear wave velocity anomalies to density
anomalies with a constant value (0.15 g cmkm’'s). Spasojevic and Gurnis (2012) cite (Spasojevic, Gurnis
et al. 2010) to also scale S20RTS (Ritsema, van Heijst et al. 2004) shear wave velocity anomalies, but are

not explicit about which of the various scalings discussed they actually used in their model, although
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Flament et al. (2013) state that it varies radially from 0.05 to 0.3 g cm~km™' s and they too effectively treat

all density variations as thermal in origin.

Flament et al. (2013) and (Young, Flament et al. 2022) do not employ a tomography model, but
rather used a mantle flow model driven by imposed surface velocities that integrates both present and past
plate motions, the details of which are described in their paper, thereby producing a dominant contribution
from subducted slab heterogeneity in their prediction of the present-day dynamic topography. This
modelling approach implies that the dynamics of mantle convection, that is the forces driving both the
plates and the large-scale flow in the mantle, is largely if not entirely related to plate convergence, thereby
minimizing mantle flow contributions driven by active buoyant upwelllings, see Rowley et al. (2016) and
(Rowley and Forte 2022) for arguments supporting significant contributions from these active buoyant

upwelling to plate driving forces.

Steinberger (2016) provides a range of different modeled dynamic topography of which Fig. 13f
derives from his Fig. 6¢ that includes modeling seafloor topography with water loading and thus most

closely matches Lu et al. (2020).

Because all of the models start with an “observed” residual topography model, it is not surprising
that the predicted dynamic topography is correlated with those estimates. In order to help visualize the
differences we again use correlation plots of modeled dynamic topography (Fig. 14). Figures 14a through
14e are correlations relative to the model of Lu et al. (2020), whereas 14f compares Flament et al. (2013)
to Spasojevic and Gurnis (2012) to demonstrate that the limited correlations are not due to choice of the

reference model. We again limit the correlations to spherical harmonic wavelengths £'< 30 reflective of the

generally smooth, long-wavelength characteristic of most models of dynamic topography. Figure 14 makes
it clear that there is generally little correlation among these models and therefore little or no consensus as
to the underlying mantle flow dynamics. The closest comparison is between Steinberger (2016) with Lu et

al. (2020) (Fig. 6e).
Figure 14 Here

Figure 14. Correlations of dynamic topography from mantle flow calculations (a-e) relative to Lu et al.
(2020). a) Steinberger (2007); b) Conrad and Husson (2009) c) Spasojevic and Gurnis (2012), d) Flament
etal (2013); e) Steinberger (2016, Fig. 6¢); and f) Flament et al. (2013) relative to Spasojevic and Gurnis
(2012). Correlation coefficients (R) are provided in the lower right corners. Colors represent percent with
a bin size of 250m in both directions relative to 64800 total grid cells. All models are represented up to

spherical harmonic wavelengths of 1<30.
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Limitations of Isostasy

Past modelling of Earth’s topography in terms of isostatic contributions from density anomalies in
the shallow mantle, extensively reviewed above, suggests that shallow sources are dominant and that
density anomalies in the deeper mantle, with the important exception of the longest wavelengths (e.g. Forte
2007, (Yang and Gurnis 2016), have much smaller or negligible contributions. The past models have
employed differing estimates for the thickness of the isostatic layer below the crust, where the most recent
studies assume the bottom of this layer may be as deep as 400 km (Afonso, Salajegheh et al. 2019, Fullea,
Lebedev et al. 2021). Here we examine more closely the dynamical justification for employing thick layers
(> 100 km) for modelling isostatic topography, which will lead to a reevaluation of the relative importance

of shallow- verses deep-mantle contributions to dynamic topography (discussed in the next section).

In this analysis, we employ a viscous flow model of the mantle that incorporates 3-D
thermochemical density anomalies derived from joint inversions of global seismic and geodynamic data,
which include mineral physics constraints (Lu et al. 2020). This flow model, which was employed in the
dynamic topography prediction presented above in Figure 13a, also incorporates the coupling of mantle
flow to rigid tectonic plates whose rotations are determined by the underlying mantle flow, not vice-versa
(Forte 2007). In the following, it is also worth noting that the mechanical feedback of strong plates provides
an important dynamical stabilization of shallow density anomalies. This stabilization extends the validity
of the isostatic equilibrium approximation to greater depth than with the standard, free-slip (i.e. fully
yielding) surface boundary condition (see Appendix B). As noted above, in the discussion of equation (22),
the isostasy assumption requires that lateral pressure perturbations, relative to the global (horizontally

averaged) mean pressure, must everywhere equal zero at the base of the layer.

We now consider a mantle layer, immediately below the crust, which may have three possible
thicknesses: 100 km, 200 km, and 400 km. The density anomalies in this shallow layer will be taken from
the Lu et al. (2020) global tomography model and we assume zero density anomalies in the mantle below
the layer. For the depth-dependent viscosity structure of the mantle, we employ the viscosity profile derived
by Mitrovica and Forte (2004) from a joint inversion of mantle convection and GIA data. We next calculated
the equilibrium response of the mantle to the buoyancy distribution in the shallow layer, employing the
theory of a compressible, self-gravitating, viscous fluid in a spherical shell (Forte 2007). For each of the
three thicknesses cited above, we calculated the solid-surface topography that is in dynamical balance with
the integrated loads in the shallow mantle layer. If isostasy obtains, the topographic loading plus the
vertically integrated loads within the layer should yield no lateral pressure variations at the bottom of the

layer (as required by eq. 22).
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In Table 1, we summarize our testing of this isostatic approximation by tabulating the dynamic
pressure variations below the shallow layer and compare their magnitudes with pressure variations acting
directly below the solid surface (i.e. at the top of the shallow mantle layer), where the latter induce the
topographic deflection of the surface. A dynamic pressure perturbation of 10 MPa will induce a 460-m
vertical displacement of the solid surface (assuming an overlying water layer). The dynamic pressure in the
shallow layer and underlying mantle are determined by calculating the viscous response to the density loads
within the shallow layer. We find the global root-mean-square (rms) amplitude of dynamic pressure
variation predicted at the base of a 100-km thick layer is only 4% of the surface value, indicating isostasy
is a reasonably accurate assumption for this thickness. (Perfect isostasy of course requires 0%.) For a 200-
km thick layer, the rms basal dynamic pressure variation is almost 8% of the surface value, while for a 400-
km thick layer it is 18%. We thus observe a notable reduction in accuracy of the isostasy approximation

when layer thickness increases beyond 100 km.

Table 1: Dynamic Pressure Variations in a Shallow-Mantle Layer

Layer Thickness = 100 km Layer Thickness =200 km Layer Thickness = 400 km

depth=3 km |[depth=110km|| depth=3km |[depth=210km|| depth=3km |depth=425km

max | min | rms | max | min | rms || max | min | rms | max | min | rms || max | min | rms | max | min | rms

21 |-18| 5 |08 (-08[02]35 |41 12| 3 3 09| 64 |-62| 19| 14 | -12 | 3.5

Note: “max, min, rms” denote maximum, minimum and root-mean-square, respectively. Values are in MPa.

In the context of isostasy, the requirement for no pressure perturbations in the underlying mantle
naturally implies that no viscous flow should be excited in the mantle, since the latter is inconsistent with
hydrostatic equilibrium in the underlying mantle. In figure 15 we present maps of the mantle flow excited
by departures from perfect isostasy in the shallow mantle layer. When the layer thickness is 200 km (Fig.
15a) we find the rms amplitude of horizontal flow at 210 km depth is 0.6 cm/yr, which is 14% of the rms
amplitude of present-day tectonic plate motions in the no-net-rotation reference frame, which is 4.3 cm/yr.
For 400 km layer thickness, the rms amplitude of horizontal flow produced at 425 km depth (Fig. 15b) is
20% of the present-day plate motions. We note these relative amplitudes are similar to those obtained from
Table 1, in accord with the expected dynamical correspondence between horizontal flow amplitude and

pressure perturbations below the shallow-mantle layer.

Figure 15 Here
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Fig. 15. Viscous flow excited by shallow-mantle layers. In a) and b) the thickness of the layers is 200 and 400 km,
respectively. The density anomalies inside the layers are given by the global tomography model of Lu et al. (2020)
derived by jointly inverting global seismic, geodynamic and mineral physics data. In each case, density anomalies
are removed from the entire mantle below the layer. The predicted mantle flow in a) and b) is calculated at a depth
of 210 and 425 km, respectively, employing the radial viscosity profile derived by Mitrovica and Forte (2004). The
mechanical feedback of rigid, freely rotating tectonic plates is included in the flow calculations (Forte 2007). The
root-mean-square (rms) amplitude of horizontal flow is indicated below each map. All fields are

represented by a spherical harmonic expansion truncated at degree = 32.
Shallow- Versus Deep-Mantle Contributions to Dynamic Topography and Gravity Anomalies

It is evident from Table 1 and Fig. 15 that deviations from isostasy become increasingly
important as the thickness of the shallow-mantle layer increases, especially for a thickness of 400 km that
has been employed in recent modelling of upper-mantle heterogeneity (Afonso, Salajegheh et al. 2019,
Fullea, Lebedev et al. 2021). These recent studies assume this upper-mantle layer is in isostatic
equilibrium and also that it is sufficient to only consider density anomalies within the layer, including the
overlying crust, to fully model Earth’s global topography and anomalous gravity fields, where the latter
are high-pass filtered to approximately remove contributions from density anomalies below this layer.
This modelling of surface topography and gravity variations in terms of density anomalies contained in a
shallow upper-mantle layer requires that deeper-mantle contributions to these fields be negligible. To
directly evaluate the justification for this assumption, we again turn to the tomography-based mantle flow
model employed above in Figs. 13a and 15. The solid-surface undulations (i.e. dynamic topography)
driven by density loads contained everywhere below 400 km depth (Fig. 16b) have an rms amplitude that
is more than 50% of the topography amplitude induced by loads in a shallow 400-km thick layer (Fig.
16a). Moreover, we find that assuming pure isostasy overpredicts the amplitude of topography induced by
loads in the shallow layer by 19% (Fig. 16f), relative to a dynamically consistent prediction (Fig. 16a).
The isostatic prediction of topography, employing density anomalies in the top 400 km of the mantle,
provides a 69% variance reduction to the FR2021 crust-corrected topography (Fig. 7). This compares with
a 77% variance reduction obtained with a fully dynamic calculation of topography driven by density
anomalies at all depths (sum of Fig. 16a & 16b), and a 66% variance reduction when the dynamic

topography is driven only by density anomalies in the top 400 km of the mantle (Fig. 16a).

The importance of deep-mantle contributions to free-air gravity anomalies is stronger than in the
case of dynamic surface topography. The tomography-based mantle flow model reveals that gravity
anomalies generated by density anomalies below 400 km depth (Fig. 16d) yield an rms amplitude that is
145% larger than the gravity signal generated by density anomalies in the upper 400 km of the mantle
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(Fig. 16c). High-pass filtered free-air gravity anomalies have reduced contributions from density
anomalies below 400 km depth, where the strength of reduction depends on the cut-off assumed for the
longest wavelengths included in the gravity anomalies. If gravity anomaly contributions described by
harmonic degrees 2 and 3 are removed (whose minimum wavelength is ~11,500 km), the rms amplitude
of the gravity signal generated by density anomalies below 400 km depth (Fig. 16¢) exceeds by over
100% the signal generated by all density anomalies in the upper 400 km of the mantle (Fig. 16¢). If a
stronger filtering is applied (e.g. Afonso et al. 2019), removing all contributions described by harmonic
degrees 2 to 9 (minimum wavelength is ~4,200 km), the amplitude of the gravity anomalies due to density
anomalies below 400 km depth is over 50% of the total signal in Fig. 16c. We finally note that a purely
isostatic calculation of free-air gravity anomalies due to density anomalies in the top 400 km of the
mantle (Fig. 16h, red curve) strongly misfits the data, yielding a variance reduction of -43% (up to
harmonic degree 32), largely because the amplitude of the short wavelength components (£ > 10) is too
large, and the spatial correlation of the long wavelength components (£ < 10) are too low (Fig. B1,
Appendix B).

It is thus clear from the calculations discussed above, that recent efforts to model surface
topography and gravity anomalies only in terms of shallow-mantle isostatic heterogeneity, will be
significantly biased by “un-modelled” density anomalies in the deeper mantle. Appendix B presents a
further detailed discussion of the implications of assuming isostasy on predicted topography and gravity
anomalies, in particular the difficulties that emerge when the thickness of the shallow-mantle layer is

greater than 200 km.

Figure 16 Here

Figure 16. Shallow- versus deep-mantle contributions to surface dynamic topography and free-air gravity
anomalies, determined by a tomography-based mantle flow model (Lu et al. 2020) and radial viscosity profile
derived by Mitrovica and Forte (2004). (a) Dynamic topography generated by all density anomalies in a
400km-thick layer at the top of the mantle. All density anomalies below 400 km depth are set to zero. (b)
The converse of (a), in which only density anomalies below 400 km depth are used to predict the dynamic
surface topography. (c) and (d) are the predicted free-air gravity anomalies calculated as in (a) and (b),
respectively. (e) Free-air gravity anomalies generated by all density anomalies below 400 km depth, where
the longest-wavelength contributions corresponding to spherical harmonic degrees = 2, 3 are removed.
Same contour scale used as in (c) and (d). (f) The difference between the isostatic and dynamic surface
topography, calculated using density anomalies in the top 400 km of the mantle only. All topography and

gravity fields are represented by a spherical harmonic expansion truncated at degree = 32. (g) Amplitude
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spectrum of dynamic topography predictions, defined as the root-mean-square amplitude at each spherical
harmonic degree . The isostatic topography (red curve), calculated using density anomalies in the top 400
km of the mantle, is described in detail in Appendix B. (h) Amplitude spectrum of the free-air gravity
anomaly predictions, The details of the calculation of the isostatic free-air anomalies (red curve) is

presented in Appendix B.
Correlation of Dynamic Topography with Plate Boundaries

If one adopts the prevailing view that subducting slabs drive plate motions (Elsasser 1969, Richter
1973, Forsyth and Uyeda 1975, Richter 1977), and innumerable more recent assessments), and hence that
ridges are entirely passive, then it follows there will be a predominant, hemispheric-scale correlation of
dynamic topography lows with sinking slabs in the transition zone and lower mantle, as discussed above.
However, an array of observations and modeling results raise significant questions as to the validity of this

view.

(Rowley, Forte et al. 2016, Rowley and Forte 2022) document plate-kinematic observations that
show the behavior of the East Pacific Rise is incompatible with models of Pacific plate motions driven by
slab pull alone. Instead, active mantle-wide flow driven by an elongated linear (longitude-parallel)
upwelling arises naturally out of best estimates of the buoyancy distribution in the mantle derived by joint
seismic-geodynamic tomography inversions (Simmons et al. 2010, Forte et al. 2015, Lu et al. 2020),
yielding predicted plate velocities that match the observations (GliSovi¢ and Forte 2014, Rowley, Forte et
al. 2016). This is a major departure from the dominant perspective in which subducted-slab heterogeneity
is the main, if not sole, driver of mantle convection dynamics. In the following we therefore review the
principal underpinnings of this paradigm, leading to a reassessment of the relationship between plate

boundaries and dynamic topography.

Slab-pull as the dominant driver of plate motions was predicated on: (1) two-layer convection in
which the upper mantle above ~670 km was convecting separately from the lower mantle; and (2) negligible
core mantle boundary (CMB) heat flux, relative to the top-of-mantle heat flux. These predicates were
originally developed in the absence of seismic tomographic data that constrain the three-dimensional
distribution of buoyancy within the mantle. Two-layer convection clearly decouples the realm of plates
from any buoyancy arising from the CMB heat flux. As shown by (Richter and Parsons 1975) one of the
important consequences of having a thin upper-mantle layer of convection, in which the layer thickness is
small compared to horizontal dimensions of plates is the development of secondary, small-scale convection

cells, now called Richter Rolls, that are characterized by rolls elongated in the direction of plate motions in

39



1193
1194
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218
1219
1220
1221
1222
1223
1224

which the convective flow is orthogonal to the direction of plate motions. Obviously, if Richter Rolls are
present beneath plates then basal tractions cannot contribute to driving plate motions, thereby emphasizing,

by default, the need for slab-driven plate kinematics.

The early assumption of independent upper and lower mantle convective systems, which
predominated in the plate tectonic and geodynamic literature until the 1990s, was undermined by the work
of Grand (Grand 1994) and (Grand, Van Der Hilst et al. 1997) in which the continuation of the Farallon
slab beneath eastern North America into the mid-mantle was clearly imaged tomographically. Subsequent
tomographic models, with the exception of stagnant slabs under the Honshu and Bonin trenches (e.g. (Fukao
and Obayashi 2013), reveal that slabs generally penetrate through the lower mantle and thus this is a general
property of Earth’s convective system. A simple consequence of this realization is that the vertical and
horizontal scales of convection (~1000s km) are comparable, thereby removing the argument (originally

based on Richter Rolls) against basal tractions as an important driver of plate motions.

Sluggish convection in the lower mantle, independent of the upper-mantle, was entirely compatible
with early estimates of very low CMB heat flux, in which relatively small (hotspot-related) plumes were
assumed responsible for extracting the majority of the CMB heat flux. For example, (Sleep 1990) estimated
that hotspot plume-related heat flux is approximately 2 TW. However, more recent estimates of CMB heat
flux have significantly increased into the range of 10 to 20 TW (de Koker, Steinle-Neumann et al. 2012,
Pozzo, Davies et al. 2012, Frost, Avery et al. 2022, Pozzo, Davies et al. 2022). Current estimates of top-of-
mantle heat flux of ~40 TW (Jaupart, Labrosse et al. 2007, Lay, Hernlund et al. 2008) indicate that
somewhere between 25% and 50% of this heat flux is coming from the core, having been extracted by
mantle convection (GliSovi¢, Forte et al. 2012, GliSovi¢ and Forte 2014). This augmented contribution from
CMB heat flux accords with the finding that good fits to both seismic and geodynamic global data using
mantle flow models require that about 50% of the buoyancy driving mantle convection and hence plate
motions derive from active upwellings originating in the lowermost mantle and ~50% from the top of the

mantle (slabs) (Rowley, Forte et al. 2016).

These recent developments reveal that at least some mid-oceanic ridges are not passive, in
particular the East Pacific Rise, which has been Earth’s dominant ridge over at least the past 80 Ma (Rowley,
Forte et al. 2016), and also segments of the Mid-Atlantic Ridge. These findings thus suggest that a
correlation between large scale mantle flow and resulting dynamic topography at divergent plate boundaries
is expected, as is evident in Figures 13a, f and 16a, and particularly 16b but absent from most other
assessments of dynamic topography as shown by the other panels in Fig. 13. This also contradicts the recent

suggestion by Wang et al. (2022) that ridges are isostatically supported.
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Broader Implications for Earth’s Topography and its Change over time

The most obvious aspect of Earth’s topography is the bimodal structure of its differential
hypsometry (Fig. 5), where ocean basins are about 4 km deeper than continents. This bimodality primarily
reflects the difference in thickness of the oceanic and continental crust modulated by crustal density, and
which is significantly impacted by dynamic topography. The mean thickness of the oceanic crust is mainly
set by mean mantle potential temperature (Klein and Langmuir 1987, McKenzie and Bickle 1988, Behn
and Grove 2015) whereas the continental crust reflects a complex array of processes operating over
protracted time scales that integrate to control its mean thickness (Rudnick and Gao 2014). A discussion of
these is beyond the scope of the present paper. However, it is important to recognize that this bimodality
provides the fundamental framework upon which secular changes in crustal isostatic and dynamic
topography operate. The bimodality of crustal isostatic topography, relative to observed topography, is
characterized by a significantly greater (~7 km) amplitude of the difference in elevation of oceanic and
continental components (Fig. 5). The reduced amplitude of the observed differential hypsometry between
the shallow and deep modes reflects the direct contribution of dynamic topography operating on different
time scales (Forte, Peltier et al. 1993). On the longest time scales, the generally long residence time (>500
MY) of relatively dense continental lithospheric mantle depresses continental crust maintaining its mode
at, or very near, sea level. The zero integral constraint (eq. 16), irrespective of the crustal model employed,
requires that the negative dynamic topography of the continental crustal regions must be offset by positive
dynamic topography in the oceans. Because mean oceanic lithosphere residence times are much shorter
(<100 MY) than continental lithosphere mantle residence times the compensating oceanic dynamic
topography must be continuously generated. This highlights that these components are coupled on the one
hand but operate on completely different time scales. This coupling of isostatic and dynamic topography is
completely compatible with the continuous operation of plate tectonics since the Archean or before. On
shorter time scales dynamic topography is expected to have spatial and temporal variability with complex
topographic consequences, and hence is expected to have had a significant impact on the geologic record
as reflected in spatial and temporal variations in the stratigraphic record of the continents. Even small
changes in mean age of the oceanic lithosphere, clearly a component of dynamic topography, can give rise

to significant changes in continental flooding extent (Rowley, 2017).

It is likely that the depressed state of the continental crust is a very long-term feature of the Earth,
reflective of the long residence time of continental crust, and strong coupling between the continental
mantle lithosphere and the overlying crust, that therefore maintains this depressed height. Although there
is much speculation as to the origins of the continental mantle lithosphere, based largely on mantle xenolith

samples and much evidence of protracted alteration from what are presumed to be residual peridotites from
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partial melting (Pearson, Canil et al. 2014), our understanding of the evolution of this component of the
Earth’s mantle remains exceedingly limited. Joint seismic-geodynamic modelling (Forte and Perry 2000)
has shown that although continental mantle lithosphere is chemically depleted resulting in positive
compositional buoyancy, the negative thermal buoyancy due to colder temperatures is dominant to depths
of about 250 km. Forte and Perry (2000, p. 1940) also note the “approximate equilibrium between thermal
and chemical buoyancy contributes to cratonic stability over geological time.” The significant thermal
contribution to the negative buoyancy of continental mantle lithosphere, which dominates positive chemical
buoyancy, was also revealed in joint seismic-geodynamic-mineral physical inversions (Simmons, Forte et
al. 2010) and most recently at higher spatial resolution by (Lu, Forte et al. 2020) for a range of viscosity

models.

There are several seismically imaged regions where thick lithospheric mantle is inferred to have
existed in the past but is presently thinned. Recent petrological and seismic tomographic modelling of the
African lithosphere (Celli, Lebedev et al. 2020) suggests significant mantle-plume-induced erosion or
thinning of lithospheric roots below cratons over the past 200 Myr, particularly in northern Africa. This
corresponds with the region responsible for the anomalous modal elevation at approximately +300m
(Rowley, 2013) of Africa. In North America, the most robustly sampled region showing lithospheric
thinning is the Colorado Plateau and eastern Great Basin region of the western United States (Schmandt
and Lin 2014). The inference of the former extent of cratonic mantle lithosphere across this region is
predicated on the regional Paleozoic and early Mesozoic stratigraphy characterized by relatively thin,
predominantly shallow marine platform strata interfingering with coastal plain strata (Spencer 1996),
comparable with sections farther east where cratonic mantle lithosphere is imaged today. Regions, both
largely unaffected (i.e. the Colorado Plateau) and variably impacted by Basin and Range extension show
significant dynamic topography reflecting, at least in part, the absence of this mantle lithospheric root. The
correlation of Cenozoic uplift and absence of the mantle lithospheric root supports models where the mantle

lithosphere contributes negative buoyancy to the cratons.

The long-term consequence of negatively buoyant continental lithosphere on topography is that the
balance between crustal isostasy and this negative lithospheric buoyancy maintains continental crust at or
near sea-level, thereby controlling continental freeboard. The net effect is that the dominant modal elevation
of the solid Earth is at sea level (Rowley 2013), with global hypsometry graded to sea level (Fig. 5. The
long-term persistence of this coupling explains the correlation of continental crustal heights with crustal
thickness, as shown by (Ingalls, Rowley et al. 2016) and updated here using the GIA corrected topography
(Fig. 17). Applying this relationship to compute the continental isostatic topography and differencing that
from the observed topography yields a dynamic topography range from approximately -3.9 km to +3.3km
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with results quite comparable to that obtained using Crustl.0. It should be pointed out that the scaling of
continental crustal thickness to elevation, with a value of 0.144, corresponds with (pm-pc)/pc and is not
internally consistent with PREM mantle density and mean continental crustal density of Crusti.0, hence
the conclusion that the dynamic topography of continents is depressed relative to isostasy is not contradicted

by these results.
Figure 17 Here

Fig. 17. Relationship between crustal thickness of continental crust (Tcc) in Crustl.0 and elevation (Elev) using the
GlA-corrected Etopol. Horizontal uncertainties represent £1s deviations of crustal thickness. Least squares
regression and R’ values also shown. Continental crust is here defined using a mask based on the (Miiller,
Dutkiewicz et al. 2013) age-grid, but excluding regions of arc-modified oceanic crust and accretionary prisms that

are represented in the age grid as not oceanic crust.

One of the importamt aspects of this study is to highlight that the integral of dynamic topography
over the surface of the Earth is zero (eq. 16). This topography includes the subsidence of oceanic
lithosphere with age, which is the clearest signal in Earth’s topography that the mantle is convecting, as
emphasized earlier in the text. One of the profound consequences of this integral property is that changes
in dynamic topography resulting from changes in, for example, the depth distribution of the oceanic crust,
reflecting changes in the mean age of the oceanic lithosphere, are not independent of the height
distribution of the continents (Rowley 2017). If at any time the mean depth of the ocean basins changes,
then the mean height of the continents must necessarily change at the same time, to maintain a constant
(globally averaged) mean elevation of the Earth. Thus, one cannot treat continental hypsometry
independently from changes in ocean basin volume. This has important consequences for our

understanding of long-term sea-level.

To illustrate the relationship between changes in mean depth of the oceans and corresponding
changes in continental elevation we compare the geometrical/ hypsometric approach of Rowley (2017)
with a dynamical model-based calculation of perturbations to the dynamic topography of the oceanic
lithosphere. For present purposes we use GIA-corrected geography (Fig. 2) in which the depth of the
oceans deeper than -3000m is perturbed by a fixed amount (+20 m), that tapers to 0 perturbation between
-3000 m and -2600 m following the model of Rowley (2017) (Figure 18a). For reference a change of
+20m corresponds a change in mean age of the oceanic lithosphere of ~-1.5 MY, using the depth-age
model of Rowley (2018) to a mean age of ~61.7 Ma. For the dynamical calculation the mean depth

perturbation is implemented by changing the thermal structure of the present oceanic lithosphere so as to
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match the geometrical perturbations mimicking a change in the mean age of the oceanic lithosphere and
hence a change in dynamic topography of the oceanic lithosphere. The resulting global topography is
computed using a spherical harmonic representation to degree 256 (Alex is this correct) by allowing the
perturbed field to relax to equilibrium without imposing any constraints on the response of continental
regions (Fig. 18b). The resulting global perturbation field is shown in Fig. 18c, and the corresponding,
hypsometric comparison between the geometric/hypsometric approach and dynamical calculation is
shown in Fig. 18d. Figure 18c makes clear that the response to a perturbation to the mean depth of the
oceans gives rise to a global perturbation response, with the amplitude of opposite sign and larger
amplitude over the continental regions. Figure 18 d shows two curves that are almost perfectly
superimposed one computed by simply applying Rowley’s (2017) geometric/hypsometric approach and
the other the geodynamical approach. Figs. 18 b and d show the paleo-shoreline predicted by this
perturbation field at ~57 m relative to present, with all ice treated as water. As modeled by Rowley (2017)
and confirmed by Figures 18 b and d the areal extent of flooding correlates changes in ocean basin

volume associated with changes in mean depth of the oceanic lithosphere.
Figure 18 Here

Fig. 18. Comparison of geodynamic and geometric/hypsometric approaches to changes in ocean basin
volume associated with changes in the mean depth of the oceanic crust. a) Imposed perturbation field of oceanic
depths of +20 m for depths <-3000 m, decreasing to Om at -2600 m, elsewhere 0 m. b) Resulting global perturbation
field of both continental and oceanic regions obeying the global integral equal zero constraint on changes in
dynamic topography. c) Resulting global “paleogeography’” with the paleo-shoreline highlighted by the black
contour at +57 m. d) Hypsometric curves produced by the geometric/hypsometric approach of Rowley (2017) and
geodynamic calculation — they are superimposed so indistinguishable, together with estimated paleo-shoreline
height at +57 m, and areal extent of flooding derived by integrating ocean basin volume up to the volume of ocean
water in the oceans plus all grounded ice as water. e) Comparison of modern Etopol_ice hypsometry (gray), and
OMa hypsometry (orange) and 300 Ma paleo-hypsometry (blue) curves both from Young et al. (2022, Fig. 8), where
the 300 Ma paleohypsometry curve has been corrected by +130 m so that both 0 Ma and 300 Ma hypsometric

curves share the same mean elevation.

Young et al. (2022) recently questioned Rowley’s (2017) approach arguing that they do find a
counter-balancing of oceanic and continental perturbations. The difference in their conclusion and that
presented above is simple to explain. First, it is clear from their paleo-hypsometric curves that they do not
actually enforce a constant global mean elevation. Examination of their Fig. 8 200 Ma, 300 Ma, and 400
Ma in which both the paleo-hypsometric and their modern curves are plotted. In each of these cases the

paleo-hypsometric curve is significantly deeper in the oceans than their modern curve over regions of
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~200*10° km? or greater. This is the same area as the above sea level parts of those curves, so, in order to
maintain a constant mean elevation, the continental portions of their paleo-hypsometric curves would
have to have the same mean difference but opposite sign as in the oceanic regions, which is clearly not the
case. Second, they exclude depth-age within their definition of dynamic topography, and do not explicitly
enforce that the global integral of variations in depth-age with age are also required to be equal to zero.
The simple explanation for changes in mean elevation as shown by their Fig. 8 is that they allow changes
in mean depth of the oceans to not be balanced by changes elsewhere. Hence, they have not included the
global integral equals zero constraint for all components of their perturbation fields, which is what gives
rise to the effect that they claim their analysis precludes. This last point can be shown by compelling their
paleo-hypsometric curve, for example for their 300 Ma paleo-hypsometry to share the same mean
elevation as their modern curve by correcting it upwards by ~130 m. Note that both curves were digitized
from the same graph using the centers of each curve, thereby ensuring that they share the same scaling
(Fig. 18e). When corrected for mean elevation differences the on average deeper oceans are balanced by
higher continents, just as Rowley (2017) and the geodynamic analysis above requires. These points made
above apply to previous treatments of this problem by Miiller et al. (2008), and Wright et al. (2020)
among others, resulting in increases and decreases in mean radius of the Earth on time scales of 10’s of
millions of years as discussed above. While not wanting to overly belabor the criticism of Young et al.
(2022) it is worth noting on Fig. 18e that the thin gray curve represents the observed global hypsometry of
Etopol ice (Amante and Eakins 2009). Comparing the observed (gray) and the orange curve that
represents the Young et al. (2002) OMa hypsometry, it is clear these curves differ by ~500m in the deep
oceans, such that the volume of water depicted on their Fig. 8 for 0 Ma is in fact more than 10% grater
than actually is present based on Etopol Ice topography. For other intervals the implied volumes exceed
modern values by more than 25% of ocean basin volume. In conclusion, Young et al. (2022) failure to
replicate Rowley (2017) and our own geodynamic analys results from their failure to ensure that the
global mean elevation remains constant. Using their paleo-hypsometry curves but enforcing a constant

mean elevation replicates the results of Rowley (2017) and that presented above.

The framing of Earth’s topography as the linear superposition of crustal isostatic topography and
dynamic topography has important implications for understanding various aspects of the geologic record
as exemplified by Figure 18b. It is not the purpose here to present model-based estimates of changes in
isostatic or dynamic topography over time, but it is possible to derive important intuition regarding how
changes in isostatic and dynamic topography manifest themselves in the geologic record. Perhaps the
most obvious is in relation to the origins of accommodation reflected in the stratigraphic record of the

continents. Changes in elevation of the surface at long wavelength relative to lithospheric flexure, have
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two drivers: generally local changes in crustal thickness and changes in dynamic topography. Changes in
crustal thickness are primarily concentrated in regions of active tectonism, where crustal convergence and
divergence result in thickening and thinning of the crust, respectively, which impact the isostatic
topography. Similarly, erosion and deposition of sediments change local crustal thickness and isostatic
topography, often tightly coupled with active tectonism.

Within a McKenzie (McKenzie 1978) extensional basin framework, the crustal isostatic response
to stretching is crustal thinning and the production of localized rift basins, but the long-term subsidence is
a response to dynamic topography induced by the cooling and thickening of the mantle lithosphere.
Returning to the stratigraphic record of the nominally stable, undeforming parts of continents where
crustal thickness was not changing, the vast majority of accommodation is the direct result of changes in
dynamic topography, that is changes in mantle buoyancy associated with the large-scale flow of the
mantle and perturbations to the thickness, thermal structure, and composition of the mantle lithosphere
amplified by sediment loading. The stratigraphic record of the continents is therefore direct evidence for
changes in dynamic topography as a function of time (e.g. Heine et al. 2008, Braun 2010)

It is important to keep in mind, as in discussions of GIA far-field effects from changes in ice and
water loads whose global integral is zero, that analyses of the stratigraphic record must carefully
distinguish proximal changes in dynamics and potential far-field influences as the mantle responds to
satisfy the constraint that the global-average topography perturbation is zero (Fig. 18). For example,
regions not significantly impacted by changes in crustal thickness, hence not expected to have significant
variations in crustal isostatic height, such as the Colorado Plateau are nonetheless characterized by a
kilometer and a half Paleozoic stratigraphic section in the Grand Canyon region of the southwestern
United States exposed today at about a kilometer and a half of elevation. Neither the accommodation nor
the current elevation would exist were it not for dynamic topography controlling these large amplitude
changes in surface elevation. The sedimentary cover of the Colorado Plateau reflects the large-scale
production of accommodation, amplified by water and sediment loading effects. However, is this
stratigraphic record simply a consequence of local to regional perturbation or some combination of global
changes in, for example, mean depth of the oceans, together with local changes due to differential
motions of the mantle and overlying plates? At this time, it is not possible to answer these questions
rigorously due to the inherent numerical difficulty in accurately backtracking the details of mantle flow
on time scales longer than about 70 to perhaps 100 million years (e.g. (Bello, Coltice et al. 2014, GliSovi¢
and Forte 2014, GlisSovi¢ and Forte 2016) while incorporating the full spectrum of dynamic topography
that matches the definition of dynamic topography advocated here.

Conclusions
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Earth’s topography is most straightforwardly considered to be the result of the linear
superposition of its crustal isostatic topography and dynamic topography. Crustal isostatic topography is
the height of the surface due to the thickness and density of each column load relative to the sub-Moho
mantle reference density, assuming the mantle is not convecting. Although there are uncertainties in the
crustal thickness and density, this part of the Earth is better known and thus contributes less uncertainty
than also including the mantle lithosphere in the isostatic component of Earth’s topography. Explicit and
implicit estimates of continental mantle lithosphere density vary greatly and thus should not be included
in the “observed”, i.e. isostatic part of Earth’s topography. Including oceanic mantle lithospheric cooling
related subsidence in the isostatic component of topography is inconsistent with the inherently dynamic
origin of this topography, which would not exist in the absence of mantle convection. In addition,
including this component adds an artificial step function change at COBs that adds an arbitrary constant
deflection of the continents to compensate for the depth-age variations of the oceans, and that is not
observed in residual topography estimates derived from differencing observed topography and crustal

isostatic topography.

An isostatic ocean floor would be expected to be quite flat, reflecting the relative uniformity of
oceanic crustal thickness and density (Fig. 3). Thus, the best estimate of oceanic isostasy also removes the
lithosphere-age-dependent variation of water loading that reflects this convective contribution to ocean
isostatic bathymetry, further flattening ocean isostatic topography. To be internally consistent, water-load
corrections should only be applied to regions below the geoid and conserve the volume of water at the
surface of the Earth. This requires iterative solution of the sea level equation with migrating shorelines.
Continental crustal isostatic equilibrium, given current best estimates of thickness and density, as
represented by Crustl.0, results in heights of the continents significantly higher than are observed today.
A crude estimate of magnitudes of continental crustal thickness or density error required for the
continents to actually be in isostatic equilibrium suggests that both thickness and density uncertainty are

unlikely to account for the majority of non-isostatic topography.

A first order aspect of Earth’s topography is its bimodality. This bimodality is underpinned by the
bimodality in crustal thickness of the oceanic and continental crust. The amplitude of the difference in
modes in the observed topography is approximately 4500m, whereas the amplitudes would be
approximately 6700m were it controlled by crustal isostatic topography. Thus, Earth’s bimodality is
significantly impacted by dynamic topography, raising the ocean floor and lowering the continents. That
Earth’s observed topography is graded to sea level, and Earth’s dominant mode is at sea level, supports
the interpretation that this dynamic topographic contribution represents a long-term (>Ga) contributor to

Earth’s topography reflective of the lo the global integral of these perturbations ng-term stability of the
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continental mantle lithosphere. This obviates the criticism (Gurnis 1993) against linking oceanic depth-
age subsidence with dynamic topography based on continental flooding histories. The continental crust is
continually depressed because the continental mantle lithosphere and crust are coupled and have been on
long time scales. Simultaneously, the decay of elevated mid-oceanic ridges associated with oceanic
lithosphere age-depth subsidence is continuously generated offsetting negative continental dynamic
topography thereby coupling short-time scale with long-term processes, compatible with long time-scale
operation of plate tectonics.

Dynamic topography is the difference between the observed topography and the crustal isostatic
topography. Dynamic topography quantifies the component of the observed topography that is not
explained by crustal isostasy. One can subdivide the dynamic topography into various components, depth-
age subsidence, continental mantle lithosphere contributions, mantle flow induced deflections, etc., but
their sum must account for all of the non-crustal isostatic component of Earth’s topography equal to what
we explicitly refer to as dynamic topography.

An important aspect of dynamic topography is that its integral over the surface area of the Earth
is zero. This implies that any subdivision of dynamic topography sources has to result in a global field
that is required to satisfy this zero-integral constraint. As demonstrated in the joint seismic-geodynamic
inversions by (Simmons, Forte et al. 2006, Simmons, Forte et al. 2009, Simmons, Forte et al. 2010, Lu,
Forte et al. 2020) that solve for the distribution of seismic velocity and density with a complex viscosity
structure, it is possible to explicitly solve for each of the contributions to fit observational estimates of
Earth’s dynamic surface topography. These models explicitly solve for the continental and oceanic
lithospheric mantle contribution and all deeper-mantle contributions. These global joint tomography
inversions thus provide explicit estimates of all of the components needed to account for the dynamic
topography today.

The zero global integral constraint that applies to isostatic topography, glacial isostatic
adjustment, and to dynamic topography has the important implication that local perturbations have global
effects. A change to dynamic topography somewhere is not an isolated effect but is inherently coupled to
responses everywhere. This is most obvious in discussions of long-term sea level controlled by changes in
ocean basin volume. Since ocean basin volume is largely controlled by the mean depth of the oceanic
lithosphere, which in turn is related to its mean age, variations in mean depth cannot be decoupled from
continental elevation variations. If the mean depth of the oceans shallows, the mean height of the
continents must decrease, and because the area of the oceans is greater than the continents the
corresponding adjustment of the continents must be larger. The net result is that the large-scale flooding
history of the continents can be accounted for by quite subtle variations in mean depth and hence mean

age of the oceanic lithosphere.
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We have suggested that dynamic topography is the major controller of the preserved stratigraphic
record of the continents because this controls the vast majority of the production of accommodation on
the continents. Local isostatic production of syn-rifting accommodation in rift basins, and relatively local
flexural accommodation in thrust load basins are obvious exceptions, but virtually all other
accommodation on the continents reflects the history of dynamic topography. Because of the zero global
integral constraint, the radial position of every location on the Earth’s surface must constantly adjust as
Earth evolves. Thus, the height of any given location today may provide little or no insight into its
elevation history. From this perspective, the Earth’s surface acts like a ‘magic carpet’ with continental
flooding variably reflecting local dynamics and far-field responses to changes in the global dynamic
topography field as a function of time. Discerning the relative contributions of these near and far-field
effects represents an important challenge for the future but has the potential to improve our understanding

of the large-scale dynamical evolution of the Earth.
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Appendix A: Change of Earth’s mean radius due to secular cooling

We consider here the derivation of a general mathematical expression that may be used to quantify
the change in Earth’s mean (i.e. horizontally averaged) radius due to the slow secular cooling of Earth’s
interior. In the following, we assume a cooling time scale, At ~ 10 years, which is at least 3 orders of
magnitude larger than the mantle-convection time scale (At ~ 10° years). We begin by considering (see
Fig. A1) a small (cubical) mass dM that, at some (arbitrary) time, t = t,, is located at position 7. At this

time, the density of the mass element is p and it occupies as small volume dV (ty) = dxdydz, such that

o
(C\Jyy\\i&) dy

(@(z + 82]) dz
z

X
dM(ty) = p dV(to).

Figure Al. A schematic representation of a small mass element, whose initial (t = t,), position and density are ¥ =
(x,v,z) and p, respectively. At a later time (t = to + 8t), the mass element is slightly displaced to position T + 67" =

(x + 8x,y + 6y,z + 62) and its density will undergo a small perturbation p + 8p. The initial volume is dV (t,) =

06t 8x) Q0+ 8) 2@+ 0D) 310

dxdydz and the volume after the displacement is dV (t, + 8t) = P % .

At some later time, t = ty + 6t, the mass element will have experienced a small displacement and
is located at position 7 + &7, and its density will have changed to p + 8p (Fig. Al). The displacement
field is a continuous function of position and time, 67 = 87 (7, t) and it will be assumed that all changes

are small, such that: ||67°/ 7|| < 1 and |6p/p| « 1. The displacement induces a volume change (Fig. A1):

d(x+ 6x) 0(y+ 6y) 0(z+ 62)
ox ay 0z

dV(ty + 6t) = dxdydz , such that the mass is dM(ty,+ 6t) = (p +

6p)dV (ty + 6t). Mass conservation requires that:
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dM(to) = dM(to + 8t) = p dxdydz = (p + 6p) 2522 2 (y;y‘”) 2D dxdydz (A1)

Assuming all perturbations (terms involving &) are small, expression (A1) yields:

(1+6p+66x+68y+662)_1
ox dy 0z )

= V.or = — — (A2)

where V - is the divergence operator. The Lagrangian or material time derivative of the displacement 57

defines the velocity v of each mass element in the mantle:
5=Lw(2) sr=(Lyw.)F
P T\og) 0T T\t )" (A3)

where 7, =1 (t,) is the initial position of each mass element, which is kept constant when calculating the

material time derivative, and 3¢ 18 the Eulerian or local time derivative, at a fixed spatial location (e.g.

Malvern, 1969). Therefore, the material time derivative, (%)g , of both sides of equation (A2) yields:
To

o 1d d d Jd _, =
Vv =———p, where—p=( )_6p=(—+v-V)p
To

pdt dt at at
(A4)
d - op =
S ap+pv-v=0<=a+v-pv=0

The last expression in (A4) is the differential, time-dependent representation of the principle of mass

conservation which is suited to fluid media (e.g. Malvern, 1969).

We revisited the mathematical derivation of this basic fluid-mechanical principle to underline the
critical importance of the explicit modelling of the time derivative of density a—f , which is necessary for

the accurate modelling of the time-dependent displacement field 67" and hence, as we show below, the
change of Earth’s mean radius due to secular cooling. The current numerical models for mantle convection,

notably CitcomS (Zhong et al., 2008) and ASPECT (Kronbichler et al. 2012, Heister et al. 2017), assume
either the Boussinesq approximation for mass conservation ( V-7 =0 ) or the anelastic-liquid
approximation (V- pv = 0). A recent critical evaluation of these approximations is presented by

Gassmoller et al. (2020). Neither of these commonly used approximations will permit the correct modelling
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of changes in mean radius of the Earth, and of other internal boundaries. Indeed, the Boussinesq
approximation necessarily leads to zero change of mean radius. Similarly, the most common
implementation (e.g. in CitcomS) of the anelastic-liquid approximation (V “po(r) v’ = 0, where py(r) is
the reference radial density profile) must yield zero change of mean radius, as also shown in the main text
(equation 16). The current mantle convection models must then be supplemented by an additional set of

calculations for mean radius change that are presented below.

Returning to (A2), this expression is generally used to determine local density (hence local volume)
perturbations that arise from a specified displacement field. In the following we proceed inversely and
determine the displacement field 67 corresponding to a specified perturbation of density 6p/p. This
determination is necessarily non-unique, since a single scalar input (density) cannot uniquely constrain all
3 components of the displacement vector. In the following, we explicitly identify the mathematical
character of this non-uniqueness and then demonstrate its irrelevance when modelling changes in mean

(horizontally averaged) radius of the Earth. We begin by first seeking the scalar function f (7, t) such that:

- 1 or*f 5p
. A: R = —_— — A5
VIt r2 or p (A5)
L (.,% ,
= [0.0.00 === | 2 L(t0.0.0 df (A6)
0

where T is the unit radial vector, and (7,8, @) are the radius, co-latitude and longitude in a spherical
coordinate system. From expressions (A2-A3), we note the most general expression for the displacement
field 87 is:

8T = ft+ 675 (A7)

where ST”S must necessarily satisfy the condition:

V-6r.=0 (A8)

Equation (A8) shows that &7 is an incompressible (solenoidal) displacement that produces no volume and

hence no density changes. Its most general mathematical representation, following Backus (1958), is:

Sro=VxASp+A8q , (A9)

where dp and dq are scalar potentials that represent the poloidal and toroidal components of the

— =

displacement, respectively, and A =7xV, where 7 is the radial position vector. The right-hand side of

equation (A9) can be rewritten as:
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N? -(1orépy -
T — N =~ AlO
(Srs—r—r 6p+rx/\(r pm )+A8q ( )

where f is a unit radial vector and A2 = A - A is the horizontal Laplacian operator. Both operators T x A=

VH , the horizontal gradient on a unit-radius sphere, and A describe only the horizontal components of &7.

We now consider the purely radial component of the displacement §7°. From expressions (A6-A7)

and (A10), we obtain:

1 (7,6 A?
6r(r,6,0,0) = —— f 72 ?'D(?'”,H,qo,t) dF +—p (A11)
0

If we now calculate the global horizontal average of all terms in (A11), we finally obtain:

1 (7., d8p
57 t) = — fo #2 f(?‘,t) dr (A12)

where we use the notation f to represent the global average of a function f:

_ 1
fr) = f f(r,6,¢)d%s (A13)
S1

where S; represents the surface of a unit-radius sphere. In arriving at (A12) we also employed the

mathematical identity (Backus 1958):

55 A’fd?S=0 (A14)

S1

In (A11) we note that the poloidal contribution (8p) to the radial displacement is completely undetermined.
Additional information is needed to uniquely constrain this laterally variable contribution to the radial
displacement, which may arise from other mantle processes, if such processes lead to volume preserving
(incompressible) displacements. The latter is not the case for mantle convection, where fluid motions are

compressible.

The density perturbations §p, which occur over a secular-cooling time interval At, may be
generated by changes in temperature (T), pressure (P), composition and/or phase (C):

0 _ o7+ K‘16P+1(ap)6c AlS
o p\aC (Al3)
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where « is the volume coefficient of thermal expansion and K is the incompressibility modulus, both of
which are assumed (for mathematical convenience) to be functions of radius only. In the following, we
focus only on the temperature- and pressure-induced changes to density associated with the secular cooling

of the Earth and, in particular, their global horizontal averages (A13) that only depends on radius r:

B — _
Fp(r' to+ At) = —a 6T(r,ty+ At) + K~1 6P(r, ty + At) (A16)

It is important to appreciate that in (A16), both ST and 6P are small changes in the global mean

temperature and pressure, which reflect the evolution (over a time interval At) of the average structure of

the Earth due to secular cooling. If we assume that convection processes efficiently stir both the mantle and
core, the mean radial structure in both regions will be close to adiabatic (excluding thermal boundary layers
at the top and bottom of the mantle), and therefore an isentropic incompressibility modulus should be
employed in (A16) for the bulk of the mantle and core: K = K. Substituting (A16) into (A12) and

setting r = 1,, the Earth’s external radius, yields:

Te

57, #*(a 8T — K, 6P) dr (A17)

e
Expression (A17), ignoring the pressure contribution (K;* — 0), is the same as that derived by Jeffi-eys
(1929, p. 280) in his treatment of thermal contraction of the Earth. In this case, if we simply assume that
the expansion coefficient and mean temperature change are approximately constant with depth, (A17) then

yields:

8Ty =T, = OT (A18)

Secular cooling, 8T < 0, will thus lead to thermal contraction of Earth’s mean radius: or, <O0.

We now evaluate whether the change in mean pressure, 6P in (A17), provides a significant
contribution to the change of mean radius. To address this issue, we must consider how internal pressure
(P), density (p) and gravity (g) are maintained in balance with each other, via the coupled equations of
hydrostatic equilibrium and gravitation (the differential form of Newton’s law of gravity):

~VP+ pg=0
(A19)
V-§= —4nGp
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where G is the universal constant of gravitation. Jaupart et al. (2007) provide an approximate solution to
these coupled equations, assuming a purely radial Earth structure with an adiabatic temperature profile.
Using their solution for the radial variation of global mean density and gravity, a straightforward integration
(using the 1% equation in A19) yields the mean hydrostatic pressure field:

(4m)?
90

_ 4n
P(r)=K;e {?(1 - )+ ¢ [5(1—-7%)—2(1— f‘*)]}

(A20)

where #=71/r, and = K, G pZ 12,

in which p, is the mean surface density. In Jaupart et al. (2007) the following values are employed: K =

150 GPa (assumed constant) and p, = 3300 kg/m3, which yield € = 0.2. This choice of parameters does
not yield a match to Earth’s total mass, which is not unexpected given the simplified 1%'-order modelling of
p(r) by Jaupart et al. (2007), which also assumes constant K and does not include an explicit treatment
of density in the metallic core. The total mass constraint can be satisfied by changing the value of the surface
density to p, = 4302 kg/m3, assuming K; = 150 GPa, which yields ¢ = 0.334. Adopting this revised
value in expression (A20) yields a mean pressure at the CMB (7 = 0.546) P,z = 123 GPa, which
compares reasonably well with P.yz = 136 GPa in PREM (Dziewonski and Anderson 1981).

Perturbations to the mean pressure, 6P, will arise when the mean density (and hence gravity)
profile of the Earth changes in response to changes in mean temperature. This can be modelled, in the

context of expression (A20), by perturbing ¢ as follows:

épy  Or, — A — 4 __
S = 2 <?+ T—g) ~ 2¢ (~adT + 3 5T) = —e 5 adT (A21)

where we used approximation (A18) for 81, /7., retaining only terms up to 1% order in € (noting that

K S_l 8P ~ 0(¢) as is evident in A20). Expressions (A20, A21) thus yield, to 1% order in &:

__ 4 —1lé6m
K, ' 6P ~ 55?(1 — 7)) =—¢ a6T§(1 - ) (A22)
Substituting (A22) into (A17) finally yields:
ore 25T (1 + 16”) A23
re 3 £45 (A23)

which is identical to the expression for mean radius change that was obtained by Jaupart et al. (2007), who
used a different approach involving consideration of the total mass of the Earth. Result (A23) thus

demonstrates that gravity in conjunction with the finite compressibility of the mantle, both implying € > 0,
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will enhance the contraction of mean radius due to secular cooling of the Earth. For the value ¢ = 0.334,

which matches the total mass of the Earth, the enhancement is 37%.
Appendix B: Extending isostasy to the mantle — Implications for topography and gravity

Here we consider the implications of extending the concept of isostatic equilibrium, which was
developed for the crust in expression (22), to a shallow heterogeneous layer within the underlying
lithospheric mantle and asthenosphere. This formulation of isostasy will be based on the assumption that
the lateral variations in density be confined to a shallow layer at the top of the mantle. Moreover, and most
importantly, this formulation must satisfy the same key constraint that was applied to the crust: that all
lateral variations in pressure below this shallow-mantle layer must vanish, thereby ensuring the
maintenance of hydrostatic equilibrium in the underlying mantle. A critical examination of this requirement
was presented in the main text (see Fig. 15 and associated discussion), where it was found that the condition
of no horizontal pressure variations cannot be rigorously satisfied for a shallow layer within the viscous
mantle. Indeed, it was found to be only approximately satisfied, depending on the thickness of the layer in
question (see Table 1 in the main text). In the following we intentionally ignore this difficulty and again
assume that classical isostasy can be applied to the mantle. The objective is to quantify the departure from
fluid dynamical consistency and to consider the implications of assuming mantle isostasy for surface

topography and gravity anomalies.

We begin by extending the isostatic equilibrium equation (22) to the shallow mantle. For simplicity
we will treat the crust as mechanically coupled to and passively responding to the movements of the
lithosphere. The crust + lithosphere will thus be treated as a single layer. From the PREM reference model
(Dziewonski & Anderson 1981), the average density of the crust + lithosphere layer (yielding same total
mass) is 3200 kg/m?. Following equation (22), shallow-mantle isostasy may then be expressed by the
following relation:

8Protar ={Ap 615+ 0m — 01 } g =0
g (BI)
where o, — 0, = f 6p (r,0,p) dr
m
where Ap is the density jump at the surface (air/water relative to average crust+lithosphere density),
6p(r, 0, @) are the lateral density variations in the shallow mantle layer whose bottom radius is 73, and
whose surface radius (at the top of crust+lithosphere) is 75, and &75(0, ) are the laterally variable
undulations of the solid surface. In (B1), the global average of the lateral density variations §p is zero,

because they do not include the mean (horizontal average) density change associated with secular changes
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in the geotherm. The latter is handled separately, as described in Appendix A. This implies that the global
average of the surface undulations 875 must therefore vanish, implying no change in mean radius of the
surface, in accord with expression (16) in the main text. We note here that the surface undulations 75 due
to heterogeneity in the shallow mantle coexist with, and are additive to, the surface undulations due to
isostatically compensated crustal heterogeneity. Indeed, the isostatic requirement that there be no lateral
pressure variations in the underlying mantle are satisfied when expressions (22) and (Bl) are
simultaneously satisfied. Strictly speaking, then, the radial integral of lateral density variations in (B1)

extends only to the radius of the Moho: 73, < 7 < Tyono (< 15) -

Expression (B1) then yields

T

1 S
13(6,9) = ~ 5> j 5p(r,0,9) dr B2)
Tm

From (B2) we obtain the following relationship between the spherical harmonic coefficients of the mantle

density anomalies and surface topography:

1 (s
Grat == | ek ar (B3)

where £, m are the harmonic degree and azimuthal order, respectively, of the corresponding spherical

harmonic basis function Y;™ (0, ¢) such that, in the case of the surface topography:

oo +4

or0,9)= ) D Gr)F V6,0 B4)

=0 m=—¢

and a similar harmonic expansion applies to the lateral density variations dp(7, 8, ¢). A direct relationship
exists between the harmonic degree £ and horizontal wavelength A, that characterizes the spatial

oscillations of the spherical harmonics:

2T
Ao = —— (B5)

JIE+ 1)

where r is the radius of the surface in consideration (e.g. r = 75).

We compare expression (B3) with the following general expression (e.g. Forte et al. 1993) for

dynamic topography generated by density anomalies in a viscous, flowing mantle:
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1 Ts
@7 =55 f T,(r) SpP(r) dr (B6)

Tcmb

where T, (7) is a dynamic topography kernel that depends on radius, harmonic degree, and the rheological
structure (i.e. viscosity) of the mantle. Comparing expressions (B3) and (B6), we conclude that the dynamic

topography kernels for an isostatic shallow-mantle layer are simply

T,5°(r) = —1,forr >, (B7)

In other words, the isostatic topography kernels do not change with depth in the shallow-mantle layer (but
vanish below it), nor do they change with horizontal wavelength A, as defined in (BYS). Finally, the isostatic

kernels are not dependent on the viscosity structure of the mantle.

We next consider the perturbations to the gravitational potential, U (8, ¢), due to the density
anomalies in the shallow mantle layer, §U;,,; (6, @), plus the gravitational perturbation produced by the

laterally variable vertical displacement of the surface, Uy, (6, ¢):

6U(0,9) = 6Uine(6,9) + 6Upop(0,9) = U = (6Uine)7" + (6Utop)y (B8)

The spherical harmonic coefficients of the potential perturbations due to the mantle density anomalies and

the isostatic surface topography are, respectively, given by the following expressions (e.g. Forte & Peltier

1987):

4G TS t+2 AT G T
(SUmT =02 [ (5) 0o (r)dr and (8Uiop)} = 22 Ap (517 (BY)
Combining expressions (B3), (B8) and (BY) yields:
Ts
TG, r\¢*+2 .
U7 = T 15 j l<7"_) - 1] Spyt(r)dr = (SUS°)T (B10)
S

m

where the geopotential perturbation in (B10) is identified as an ‘isostatic anomaly’, SU'°, since it
incorporates an isostatic treatment for surface topography given by expression (B3). If, rather than radius,
we employ depth z = r; — r and assume a thin layer, such that (r; — 1) /75 < 1, expression (B10) can then

be approximated as follows:
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. £+ 2
(BUS =4 G

m
T 1 fzc?pg (z)dz (B11)

Zm

where z,,, = 1; — 1;,. In the limit of short horizontal wavelength, 1, — 0 corresponding to £ — oo, (B11)
yields the following expression for isostatic perturbations of the geoid, 6N = 6U/g, (g, is the mean

surface gravitational acceleration):
0

sUsoOYr 21 G
( ) _ fz 8p7*(z) dz, when ¢ - o, (B12)

9, 9,

(SNS0)F =

Zm

which is the classic short-wavelength expression for isostatic geoid anomalies on a flat Earth derived by

Haxby & Turcotte (1978). Returning to (B10), the isostatic geoid anomalies may be expressed as follows:
Ts
iso\m 3 1 iso m iso AN
(ON¥OYT = 20+15 j G;°(r) dpyt(r)dr where G;°°(r) = [(E) — 1] (B13)

Tm

where p is the average density of the Earth and G {‘;S" (r) are the isostatic geoid kernels. The free-air gravity
anomalies, § G, may be obtained from the geoid anomalies, N, using the following expression:
g
(6G)7" = r—o (£ —1) (N)7* (B14)
0

where 1y is the Earth’s mean radius.

In Fig. Bl (panel a & b) we plot the isostatic topography and gravity kernels, T,(r) and
G, (r) respectively, and compare them with ‘dynamic’ kernels for a viscous, compressible mantle in which
the effects of self-gravitation are fully incorporated (Forte 2007). We note the isostatic kernels best match
the viscous-flow kernels that assume a no-slip surface boundary condition, but the differences rapidly
increase for depths greater than ~100 km. The isostatic kernels in (B7) and (B13) are then employed to
predict isostatic topography and free-air gravity anomalies using mantle density anomalies given by the
tomography model of (Lu, Forte et al. 2020). In this calculation, we consider two different thickness for the
shallow-mantle layer: 200 and 400 km. The amplitude spectrum of the predicted topography and gravity
fields (panel ¢ & d in Fig. B1), shows that the density anomalies in a 400km-thick layer yield a fairly good
match to the crust-corrected FR2021 dynamic topography amplitude (Fig. 7), especially for harmonic
degrees £ > 4, but the amplitude of the predicted gravity anomalies, for harmonic degrees £ > 9, are too
large compared to the data. A 200km-thick isostatic layer follows the trend of the amplitude spectrum of
both the topography and gravity data, but the predicted amplitudes are systematically too small.
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We finally consider the wavelength-dependent, spatial (‘degree’) correlations of the predicted
isostatic topography and gravity anomalies with the corresponding data (panel e and f in Fig. B1). The
correlations with the topography data are highly significant for harmonic degrees £ > 4 for both the
200km- and 400km-thick shallow-mantle layers, albeit with a slow degradation in correlation as harmonic
degree increases. In marked contrast, the correlations with the gravity data are poor for degrees £ < 12,
and strongly increase to highly significant levels at higher degrees (£ = 13) for both the 200km- and
400km-thick mantle layers. We recall, however, that the 400km-thick isostatic layer yields spectral
amplitudes that strongly exceed the gravity data when £ > 9. In conclusion, it appears that a purely isostatic
treatment of shallow-mantle heterogeneity yields surface topography predictions that match the data fairly
well, but does not yield an adequate match to the free-air gravity data when the thickness of the shallow-

mantle layer exceeds 200km, mainly due to the excessive amplitude of the gravity prediction (Fig. B1).
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Figure B1. Modelling isostatic topography and free-air gravity anomalies. (a) & (b) display the topography and gravity
kernels (see expressions B7 and B13) for both an isostatic mantle and a (dynamic) viscous, compressible, self-gravity
mantle. The viscous-flow kernels were calculated using a radial viscosity profile, derived by Mitrovica & Forte (2004)
referred to as the ‘VI1’ viscosity profile (Forte et al. 2010). Both free-slip and no-slip surface boundary conditions were
employed to calculate the viscous-flow kernels. (¢) & (d) display the amplitude spectra of both the isostatic topography
and gravity predictions, respectively, that use shallow-mantle density anomalies extracted from the (Lu, Forte et al.
2020) tomography model. Shallow layers that are 200 and 400km thick are considered here. The predictions are
compared to the amplitude spectra of the FR2021 topography data (Fig. 7, main text) and the GRACE gravity data. (e)
& (p) display the spatial correlation, at each degree, of the predicted isostatic topography and gravity fields with the
corresponding data: FR2021 and GRACE, respectively (panel ¢ &d). Degree correlations and their significance levels
are defined in O’Connell (1971).
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