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ABSTRACT
Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order self-energy approxi-
mation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of
relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the
overestimation ofΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation
and relaxation contributions to the vertical core-excited state energies, the concept of local and nonlocal core orbitals, and the consequences
of breaking symmetry are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100638

I. INTRODUCTION

X-ray spectroscopy is a powerful experimental technique for
elucidating the excited state physics of materials.1–10 The features
of the observed spectral profile create a “fingerprint” characteristic
of the atom or molecule under optical excitation. In particular, x-
ray absorption spectroscopy (XAS) is used to probe element specific
core-excited state properties in the soft x-ray region. Interpreta-
tions of x-ray spectra often rely on calculations based on ab initio
quantum chemical methods. As such, approaches based on density
functional and wavefunction theories have been developed for the
accurate simulation of various x-ray spectroscopies.11

The nature of a core-hole state generated by the excitation
of a K-shell electron must be described by dynamical quantum
many-body effects within the local electronic structure. The chal-
lenge for accurate and predictive simulation of these core-excited
states is to properly account for orbital relaxation and correlation.
State-of-the-art methods for the direct computation of core excita-
tion energies, such as the algebraic diagrammatic construction12–14

(ADC) and coupled cluster15,16 (EOM-CC, CCn), in the core-valence
separation (CVS) approximation, can reproduce x-ray spectra to a
high degree of accuracy. Recent developments of excited state mean
field theory17 (ESMF) and non-orthogonal configuration interac-
tion singles18 (NOCIS) have produced viable results for K-edge
excitation energies at reasonable cost. Multireference configuration
interaction calculations have been used to accurately describe core
excitations in small molecules.19–21 Additionally, the multiconfigu-
rational self-consistent field (MCSCF) class of methods along with
perturbative spin–orbit treatments has also seen successful appli-
cation in this area.22–24 However, the steep computational scaling
involved with such methods often limits their applicability to a small
set of modest-sized systems. For this reason, the computational cost
of self-consistent field (SCF) methods is especially attractive and
ΔSCF based models remain quite popular in computational studies
of core-excited states.

Historically, the ΔSCF approach with Hartree–Fock (HF) had
been employed in the computation of ionization energies.25,26 In
recent years, ΔSCF has been used in conjunction with maximum
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overlap methods for computing core excitation energies and bind-
ing energies due to the simplicity of separately optimizing the MOs
of two reference states.27–30 For weakly correlated systems, SCF
determinants are often a good approximation for the ground elec-
tronic state. The reference orbitals of a good HF wavefunction are
a viable guess basis for an excited SCF calculation. Through ΔSCF,
much of the orbital relaxation is accounted for—quite evidently so
with localized core ionizations and excitations.31–33 What remains
to be accounted for is the many-body correlation via two (or more)
particle interactions.

With HF lacking correlation, one may be inclined to use
Kohn–Sham density functional theory (DFT). However, the sen-
sitivity to the approximate functional makes it difficult to control
the inclusion of correlation in a ΔDFT calculation—possibly leading
to inconsistent results. Systems involving degenerate configurations
and transitions beyond a nondegenerate HOMO–LUMO gap can
also be challenging for DFT. The restricted open-shell Kohn–Sham
(ROKS) approach has been employed by Hait and Head-Gordon
for obtaining accurate vertical core excitation energies.34,35 Alter-
natively, we propose the adoption of Hartree–Fock solutions as a
fundamental, parameter-free starting point for computing excitation
gaps.

This work presents a composite model for computing vertical
core excitation energies with ΔHF and diagonal second-order cor-
relation corrections to Koopmans’ theorem for ionization potentials
using electron propagator theory (EPT). The combination of ΔSCF
and post-HF methods in the context of core-excited states is seldom
explored. However, an analogous method for computing binding
energies was developed and tested some time ago.36,37 It was pro-
posed that the total relaxation effects contained within the ΔSCF
result between the N and N − 1 determinants and that the corre-
lation contributions are contained in the second-order self-energy
for an electron detachment. With that observation in mind, this
work explores the potential for a similar reasoning applied to N-
conserving electronic excitations. As shown below, the quality of
excitation energies using this compound model chemistry approach
depends on the quality of EPT results for the core orbital. It is
also shown that the locality of core orbitals and non-equivalency of
neighboring atoms often lead to accurate results using only ΔHF.

II. METHODS
To compute core excitation energies, we propose a compos-

ite model combining quantum chemical methods with ΔSCF that
treat dynamical correlation, corrected spin state energetics from an
approximate spin projection method, and relativistic effects.

A. Electron propagator theory
The electron propagator formalism31,38–45 provides a system-

atic framework for the inclusion of correlation in the one-electron
picture of molecular electronic structure. EPT calculations gener-
ate Dyson orbitals as well as correlated binding and detachment
energies without the need for determining wavefunctions and eigen-
values of total electronic states. The electron propagator, or one-
electron Green’s function, provides an approach for obtaining both
qualitative and quantitative descriptions of chemical bonding and
interpretation of spectra. In this section, we will briefly cover the

basics of EPT and the approximate methods selected for computing
the results featured in this work.

1. One-electron Green’s function
Beginning with the Møller–Plesset partitioning of the nonrela-

tivistic molecular Hamiltonian H,

H = H0 +V , (1)

whereH0 is taken to be the Fock operator and the fluctuation poten-
tial V is approximated as an energy dependent effective potential
Σ(E), coined the “self-energy,” which can be expanded as a pertur-
bative series to arbitrary order. We aim to solve the inverse Dyson
equation for the electron propagator matrix G(E),

(G(E))−1 = (G0(E))−1 − Σ(E). (2)

By taking the Fock operator resolvent G0(E) (the HF Green’s
function) in a spin–orbital basis,

G0(E) = (E𝟙 −H0)
−1, (3)

one can obtain the real-valued simple poles of the propagator. The
poles, or energies where the singularities of one-electron Green’s
function G0(E) lie, occur at the HF eigenvalues ϵ. By requiring
(G(E))−1 = 0, we can recast the problem into a system of linear
equations and solve

det((E𝟙 − ϵ − Σ(E)) = 0. (4)

Since the lowest-order corrections to the orbital energies ϵi involve
only the diagonal elements of the self-energy matrix, the above
expression simplifies to

∏
i
((E − ϵi − Σii(E)) = 0. (5)

For each correction to ϵi, we solve for E,

E = ϵi + Σii(E). (6)

This is done iteratively by first evaluating Σii(E) at a guess pole
E = ϵi. The corrected HF orbital energies are, thus,

ω = ϵi + Σii(E). (7)

Σii(E) is evaluated at ω and Eq. (7) is solved iteratively until the con-
vergence criteria is met. When the ith orbital is occupied, ω is an
electron detachment energy; when it is unoccupied, ω is an electron
attachment energy. The energies obtained arise from the diagonal
quasiparticle equation,

[F + Σii(Ei)]CDyson
i = CDyson

i ωi. (8)

The minimum approximation to the self-energy that recovers the
qualitative correlation correction to Koopmans’ theorem is per-
formed at diagonal second-order, Σ(2)ii (E). Explicit matrix elements
of Σ(2)ii (E) are generated through electron field operator couplings.
The manifold, h, of elements from the linear space of field operators
separated into two orthogonal subspaces, a† (primary) and f (sec-
ondary), is applied to superoperator energymatrixH using Löwdin’s
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partitioning method.46 The elements of G(E) for the primary space
are then

G(E) ≡ ⟨⟨a; a†⟩⟩E = (a†∣(E𝟙 −H)−1a†). (9)

Through inner projection of h, we obtain another form of the
propagator matrix,

G(E) = (a†∣h)(h∣(E𝟙 −H)h)−1(h∣a†). (10)

The partitioned form of the propagator matrix becomes

G(E) = [(a†∣a†) (a†∣f)]
⎡
⎢
⎢
⎢
⎢
⎢
⎣

(a†∣(E𝟙 −H)a†) (a†∣(E𝟙 −H)f)

(f∣(E𝟙 −H)a†) (f∣(E𝟙 −H)f)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(a†∣a†)

(a†∣f)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

Given the orthogonality conditions (a†∣f) = 0, this simplifies to

G(E) = [𝟙 0]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E𝟙 − (a†∣Ha†) −(a†∣Hf)

−(f∣Ha†) (f∣Hf)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝟙

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

The poles of the electron propagator, occurring at values E = ω, are
determined through the following eigensystem:

Uω = HU. (13)

Here,H is the superoperator Hamiltonianmatrix andU contains the
residues connected to the jth pole ωj. The matrix elements of U can
be used to compute the Dyson orbitals of a particular pole,

ϕDysonj =∑
i
ϕiU∗ij . (14)

The probability factor, or pole strength, is given by

πj =∑
i
∣Uij∣

2. (15)

In the diagonal approximation, a value of π ≥ 0.85 is typically taken
as an indication that the HF orbitals are a good reference for the
Dyson orbitals.47 Again, due to the orthogonality between primary
and secondary spaces, the diagonal of (h∣(E𝟙 −H)h)−1 is needed.
The inverse propagator matrix is given by

(G(E))−1 = (a†∣(E𝟙 −H)a†) − (a†∣Hf)(f∣(E𝟙 −H)f)−1(f∣Ha†),
(16)

which reduces further to

(G(E))−1 = E𝟙a −Haa −Haf(E𝟙a −Hff)
−1Hfa. (17)

The set {fn} represents vectors of length n containing creation
operators exceeding annihilation operators by one for either par-
ticles (p) or holes (h). For example, with general orbital indices

p, q, r, s, t, . . ., we have f1 ≡ a†
p (h/p), f3 ≡ a†

pa
†
qar (2hp/2ph), f5

≡ a†
pa

†
qa

†
r asat (3h2p/3p2h), and so on. These operator “strings”

generate the N ± 1 states in a type of configuration interaction
expansion in Hilbert space.

The set of field operators in the primary subspace a† can be
taken to be the creation operator product f1 acting on the HF
vacuum to generate a HF reference. Because one can choose the
basis representation of the primary subspace, the first two terms
in Eq. (17) result in the inverse HF Green’s function (G(E))−10 .
The final term is, thus, the energy dependent part of the self-energy
matrix σ(E) and the total self-energy is

Σ(E) = σ(E) + Σ(∞). (18)

As E Ð→∞, σ(E) vanishes to leave the constant, or energy
independent, form of the self-energy given by

Σ(∞)pq =∑
rs
⟨pr∣∣qs⟩ρcrs, (19)

where ρc is the correction to the HF one-particle density ρHF .

2. Self-energy approximations
The simplest approximation to the self-energy within EPT

selects the f3 operators to constitute the secondary space. This
first-order approximation leads to the second-order self-energy
matrix,

Σ(2)(E) = (a∣Hf3)(1)(E𝟙 − (f3∣Hf3)(0))
−1
(f3∣Ha)(1). (20)

The superscripts represent the nth order correction to the self-
energy. The first correction n = 1, thus, begins at second-order
perturbation. Diagonalizing the superoperator Hamiltonian,H,

H(1) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

(a∣Ha)(0) (a∣Hf3)(1)

(f3∣Ha)(1) (f3∣Hf3)(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (21)

gives the poles of Σ(2)
(E). Note that the matrix elements (a∣Ha)(0)

and (f3∣Hf3)(0) rely on just the Fock operator. Terms in the primary-
secondary coupling blocks that also rely on the Fock operator are
omitted to preserve the Hermiticity of H(1); otherwise, these spu-
rious terms will vanish as the reference configuration is improved
to a sufficient order. Algebraic or diagrammatic derivation of the
second-order self-energy-matrix elements yields

Σ(2)pq (E) =
1
2∑aij

⟨ij∣∣qa⟩⟨pa∣∣ij⟩
E + ϵa − ϵi − ϵj

+
1
2∑iab

⟨pi∣∣ab⟩⟨ab∣∣qi⟩
E + ϵi − ϵa − ϵb

. (22)

The hole indices {i, j, . . .} represent occupied spin–orbitals and
particle indices {a, b, . . .} represent virtual spin–orbitals. The first
and second summations of Eq. (22) are the 2hp and 2ph terms.
If the canonical HF orbitals are sufficient approximations to the
Dyson orbitals, we only need to evaluate the diagonal of Σ(2)

(E) by
requiring pole index p = q,

Σ(2)pp (E) =
1
2∑aij

∣⟨pa∣∣ij⟩∣2

E + ϵa − ϵi − ϵj
+
1
2∑iab

∣⟨pi∣∣ab⟩∣2

E + ϵi − ϵa − ϵb
. (23)
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If we take the second sum in Eq. (22) and separate terms with no
dependency on E and set either a or b equal to i, we recover the con-
tribution of single-particle excitations in the second-order energy.
These singles substitutions are meant to improve the occupied space
of the N − 1 system toward a more optimal set of one-electron
orbitals. This amounts to the orbital relaxation term

ΣR(2)
pp =∑

ai

∣⟨ap∣∣ip⟩∣2

ϵa − ϵi
. (24)

Note that a ≠ i. The relaxation term ΣR(2)
pp is the second-order

contribution to the ionization energy of orbital p from a ΔSCF
calculation,

−Ip(ΔSCF) = EHF(N) − Ep
HF(N − 1). (25)

A generalization of relaxation contribution to the binding energy of
orbital p at the ΔSCF level is presented as a correction to the HF
eigenvalue ϵp,

−Ip(ΔSCF) ≃ ϵp − ΣR(2)
pp . (26)

Additionally, the correlation part of the diagonal second-order self-
energy can be extracted as follows:

ΣC(2)
pp (E) = Σ

(2)
pp (E) − Σ

R(2)
pp , (27)

which can be rewritten as

ΣC(2)
pp (E)=

1
2∑a
∑
i≠p
∑
j≠p

∣⟨pa∣∣ij⟩∣2

E + ϵa − ϵi − ϵj
+
1
2∑i≠p
∑
a
∑
b

∣⟨pi∣∣ab⟩∣2

E + ϵi − ϵa − ϵb
.

(28)

The first term in Eq. (28) describes the correlation contribution of
pair interactions of occupied i, j orbitals with unoccupied orbital a
and the new virtual p, which is analogous to orbital relaxation but
for the N − 1 state. The second term in Eq. (28), related to typical
second-order HF perturbation theory for theN-particle system, con-
tains the correlation effects of losing pairwise interactions due to the
removal of orbital p.31,48

B. ΔSCF + ΔΣ approach
Following the detailed protocol by Pickup and Goscinski31

together with developments36,37 in EPT by Öhrn, Ortiz, and oth-
ers, one can recover an expression for the lowest-order correction
to Koopmans’ theorem,

−I = −Ip(ΔSCF) + ΣC(2)
pp (E). (29)

This interpretation of the true binding energy retains a com-
plete second-order description of relaxation and correlation
contributions.

What has yet to be explored in great detail is the application
of this concept to excitation energies for one-electron transitions.
Following from the discussion above, we propose an approximation
of the excitation energy ωX given by

ωX ≃ E(ΔSCF) + ΔΣC(2)
(E), (30)

≃ [Ep→r(N) − E0(N)] + [ΣC(2)
rr (EN+1) − Σ

C(2)
pp (EN+1)], (31)

where E(ΔSCF) is the difference between the excited (Ep→r) and
ground state (E0) HF energies. ΔΣC(2)

(E) is the difference between
the correlation corrections to ϵr and ϵp. These terms are computed
for the N + 1 determinant, the propagator reference, where orbitals
p and r are both occupied. This anionic species is used to provide a
model configuration for obtaining correlation energy gaps.

Since core-hole configurations are often subject to variational
collapse in the SCF procedure, we make use of a maximum over-
lap algorithm to obtain representative single determinant excited
state solutions of the desired configuration. Here, we have chosen
the projected initial maximum overlap method (PIMOM).49 The
SCF excited states are unrestricted Hartree–Fock (UHF) solutions
obtained after an occupied-virtual orbital rotation.

As a consequence of the symmetry dilemma,50 these excited
state solutions often break spin and electronic state symmetry in
exchange for a lower energy. For closed-shell initial states, the core
excitation process should involve a linear combination of open-shell
configurations, since either the up-spin or down-spin electron can
be substituted. With a single unrestricted determinant, an estimate
for the energy of a proper spin eigenstate for the excited state is
computed using approximate projection (AP) according to51–53

EAP = aELS + (1 − a)EHS, (32)

where the weight or single annihilation parameter a is

a =
⟨S 2

HS⟩ − Sz,LS(Sz,LS + 1)
⟨S 2

HS⟩ − ⟨S 2
LS⟩

. (33)

Here, ELS is the energy of the spin contaminated core-hole config-
uration and EHS is the energy of its S + 1 counterpart. AP is then
applied for excited state ΔSCF calculations.

C. Relativistic corrections
To attain a proper description of core electron physics, rela-

tivistic effects need to be considered. Bethe and Salpeter defined
the relativistic shift in the ionization potential for a two-electron
atom as54

EJ = α2[−
1
8
Z4
+
1
4
⟨p41⟩ − πZ⟨δ

(3)
(r1)⟩ − π⟨δ(3)(r12)⟩] − E2. (34)

Extensions of this model to higher Z and formulas for the expec-
tation values above have been provided by Pekeris, Silverman, and
Scherr.55,56 For consistency, EJ for a particular atom is included in
our model in an ad hoc fashion to the computed nonrelativistic core
excitation energy to obtain ωX . Following this protocol, our calcu-
lated corrections for C, N, O, and F are 0.1, 0.2, 0.4, and 0.7 eV,
respectively. We note that these values agree with those previously
reported.14,57

III. RESULTS AND DISCUSSION
A test set has been selected from the Chong-Gritsenko-

Baerends (CGB) dataset, which has been reported in prior
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publications.58,59 These structures were optimized using coupled-
cluster with singles, doubles, and perturbative triples [CCSD(T)]
model with the aug-cc-pVTZ basis set. Additional molecules were
selected from the NIST CCCBDB60 and were optimized using the
same level of theory. All calculations were performed with a devel-
opment version of GAUSSIAN.61 Reference single-point SCF cal-
culations used the aug-cc-pVTZ basis. Diagonal second-order (D2)
calculations used the cc-pVTZ basis with a full MO integral trans-
formation window. Neutral and anion reference determinants were
generally eigenstates of the total spin-squared operator S 2, except
for the heterocyclic molecules. Furan, imidazole, tetrazine, pyridine,
and thiophene anions possess ⟨S 2

⟩ values that deviate from S(S + 1)
by ∼10%–18%. Mean pole strengths for core and valence electron
detachments are 0.73 and 0.92, respectively.

Table I reports the vertical excitation energies obtained with
only ΔSCF. The absence of degenerate or quasi-degenerate core
orbitals for a particular atom tends to minimize the interactions
of configurations relevant for describing the excited state, meaning
that the correlation contribution to the energy is much less than
the orbital relaxation in these cases. As such, it is not surprising
that the computed ΔSCF energies with relativistic corrections are

TABLE I. ΔSCF vertical excitation energies ωX for the lowest symmetry-allowed core
to valence transition.

Molecule Core ΔSCF (eV) ωX (eV) Expt. (eV)

Acetone C (C–O) 287.3 287.4 286.467
Acetone O 531.0 531.4 531.467
Acrolein C (C–O) 286.7 286.8 286.168
Acrolein O 530.2 530.6 530.668
CH4 C 289.8 289.9 288.069
CO C 288.4 288.5 287.470
CO O 533.7 534.1 534.270
Furan O 535.1 535.5 535.271
H2CO C 286.5 286.6 285.672
H2CO O 530.6 531.0 530.872
H2O O 534.3 534.7 534.069
HF F 687.3 688.0 687.473
NH3 N 401.1 401.3 400.869
Pyridine N 398.8 399.0 398.874
CO2 C 292.4 292.5 290.875
Imidazole N (N–H) 403.2 403.4 402.376
Imidazole N 400.4 400.6 399.976
N2O N (N–N) 401.2 401.4 401.075
N2O N (N–O) 404.7 404.9 404.675
N2O O 534.1 534.5 534.675
HCN C 286.9 287.0 286.477
HCN N 400.0 400.2 399.777
CF2O C 292.2 292.3 290.978
CF2O O 532.7 533.1 532.778
NO N 400.0 400.2 399.779
NO O 532.2 532.6 532.779
CH3OH C 289.0 289.1 288.180
CH3OH O 534.3 534.7 534.167
CH3NH2 C 288.2 288.3 287.580
CH3NH2 N 401.2 401.4 400.680

TABLE II. Mean absolute error (MAE) and root-mean-square error (RMSE) in eV.

ΔSCF with rel. ΔSCF

MAE 0.6 0.6
RMSE 0.8 0.7

well in the vicinity of experimental values (see Table II) since the
atomic cores of interest are unique and other core orbitals belonging
to atoms of the same bonding class are not present. The differences
in the measure of errors between excitation energies computed with
(MAE: 0.6 eV, RMSE: 0.8 eV) and without relativistic effects (MAE:
0.6 eV, RMSE: 0.7 eV) are shown to be minimal for this dataset.

Systems for which core excitations are poorly described using
ΔSCF are thus candidates for treatment with EPT based models. To
avoid double counting of orbital relaxation recovered with ΔSCF,
ΔΣR(2) must be removed from the self-energy correction to binding
energies obtained with Koopmans’ theorem. Results using the ΔSCF
+ ΔΣC(2) method are given in Tables III and IV. ΔSCF results for
core excitations in the set of molecules with equivalent atoms highly
overestimate experimental values—with errors exceeding 10 eV. Sig-
nificant improvements are made when ΔΣC(2) is added along with
relativistic corrections for each atom type (MAE: 1.3 eV, RMSE:
1.7 eV). Errors here slightly increase when relativistic effects are
ignored.

Although the ΔSCF method is satisfactory for the molecules
in Table I, an evaluation of changes in the data with the introduc-
tion of D2 self-energy corrections is performed for completeness
and summarized in Tables V and VI. The addition of ΔΣC(2) consis-
tently underestimates experiment and overcorrects ΔSCF energies.
This is a residual, nonphysical effect of using the difference in the

TABLE III. ΔSCF + ΔΣC(2) vertical excitation energies ωX for the lowest symmetry-
allowed core to valence transition.

Molecule Core
ΔSCF
(eV)

ΔΣC(2)

(eV)
ωX
(eV)

Expt.
(eV)

C2H2 C 294.0 −9.3 284.8 285.981
C2H4 C 293.0 −9.2 283.8 284.781
C2H6 C 294.5 −8.6 286.0 286.981
C2N2 C 293.3 −8.5 284.9 286.377
C2N2 N 410.4 −11.6 398.9 398.977
F2 F 695.2 −13.5 682.3 682.273
N2 N 410.5 −10.5 400.2 400.982
O2 O 542.0 −11.9 530.5 530.879
Pyridine C 294.6 −9.7 285.0 285.374
Tetrazine N 413.6 −14.4 399.4 398.883
Tetrazine C 293.8 −7.6 286.3 285.283
Thiophene C (C–S) 294.4 −8.5 286.0 285.484
CO2 O 546.6 −14.4 532.6 535.475
Furan C 295.8 −8.2 287.7 286.671
CF2O F 700.9 −16.4 685.3 689.278
C2F4 C 298.7 −10.8 287.9 290.185
C2F4 F 708.4 −21.8 687.3 690.785
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TABLE IV. Mean absolute error (MAE) and root-mean-square error (RMSE) in eV.

ΔSCF + ΔΣC(2)

with rel. ΔSCF + ΔΣC(2)
ΔSCF
with rel. ΔSCF

MAE 1.3 1.4 10.6 10.4
RMSE 1.7 1.9 11.0 10.7

correlation terms of the D2 approximation for two independent
ionizations in the anions.

Reducing point group symmetry or applying effective core
potentials (ECP) can localize the core orbital and improve esti-
mates to ωX . Table VII contains energies computed with ΔSCF
alone for the dataset in Table III but with broken molecular symme-
try. For molecules with D∞h, D3d, or D2h symmetry, multi-electron
Wood–Boring ECPs (MWB2) are applied to all atoms except
hydrogen and the atom of interest. For all other molecules, the sym-
metries are reduced to C1. With this pragmatic approach, errors (see
Table VIII) are reduced to about half of an electron volt (MAE:

TABLE V. ΔSCF + ΔΣC(2) vertical excitation energies ωX for the lowest symmetry-
allowed core to valence transition.

Molecule Core
ΔSCF
(eV)

ΔΣC(2)

(eV)
ωX
(eV)

Expt.
(eV)

Acetone C (C–O) 287.3 −3.5 283.9 286.467
Acetone O 531.0 −1.6 529.8 531.467
Acrolein C (C–O) 286.7 −3.4 283.5 286.168
Acrolein O 530.2 −2.2 528.4 530.668
CH4 C 289.8 −3.5 286.3 288.069
CO C 288.4 −3.5 285.1 287.470
CO O 533.7 −2.5 531.6 534.270
Furan O 535.1 −2.4 533.1 535.271
H2CO C 286.5 −4.5 282.1 285.672
H2CO O 530.6 −3.1 527.8 530.872
H2O O 534.3 −5.2 529.5 534.069
HF F 687.3 −5.5 682.6 687.473
NH3 N 401.1 −2.7 398.6 400.869
Pyridine N 398.8 −3.6 395.3 398.874
CO2 C 292.4 −5.3 287.2 290.875
Imidazole N (N–H) 403.2 −1.4 402.0 402.376
Imidazole N 400.4 −2.5 398.1 399.976
N2O N (N–N) 401.2 −1.5 399.9 401.075
N2O N (N–O) 404.7 −2.4 402.5 404.675
N2O O 534.1 −1.4 533.1 534.675
HCN C 286.9 −3.2 283.8 286.477
HCN N 400.0 −2.6 397.6 399.777
CF2O C 292.2 −4.7 287.6 290.978
CF2O O 532.7 −4.7 528.4 532.778
NO N 400.0 −3.2 397.0 399.779
NO O 532.2 −2.1 530.4 532.779
CH3OH C 289.0 −3.6 285.4 288.180
CH3OH O 534.3 −4.6 530.1 534.167
CH3NH2 C 288.2 −3.1 285.1 287.580
CH3NH2 N 401.2 −3.7 397.7 400.680

TABLE VI. Mean absolute error (MAE) and root-mean-square error (RMSE) in eV.

ΔSCF + ΔΣC(2)

with rel. ΔSCF + ΔΣC(2)
ΔSCF
with rel. ΔSCF

MAE 2.6 2.9 0.6 0.6
RMSE 2.8 3.1 0.8 0.7

TABLE VII. ΔSCF vertical excitation energies ωX for the lowest symmetry-allowed
core to valence transition with core localization.

Molecule Core ΔSCF (eV) ωX (eV) Expt. (eV)

C2H2 C 286.0 286.1 285.981
C2H4 C 285.0 285.1 284.781
C2H6 C 287.2 287.3 286.981
C2N2 C 286.3 286.4 286.377
C2N2 N 398.6 398.8 398.977
F2 F 680.7 681.4 682.273
N2 N 400.7 400.9 400.982
O2 O 530.9 531.3 530.879
Pyridine C 285.9 286.0 285.374
Tetrazine N 398.2 398.4 398.883
Tetrazine C 286.2 286.3 285.283
Thiophene C (C–S) 286.1 286.2 285.484
CO2 O 535.1 535.5 535.475
Furan C 287.0 287.1 286.671
CF2O F 689.2 689.9 689.278
C2F4 C 290.5 290.6 290.185
C2F4 F 690.4 691.1 690.785

0.5 eV, RMSE: 0.5 eV). This remarkable but well-known effect
ameliorates the problems that arise from quasi-degeneracy and delo-
calization at the cost of losing symmetry and its usefulness for
theoretical assignment spectral signatures.

A qualitative effect of adding correlation corrections to
Hartree–Fock energy gaps is apparent. However, quantitative pre-
dictions of vertical core excitation energies with this method can
vary as there are multiple factors at play. For example, modeling
excited states of neutral molecules through electron detachments
within the N + 1 configurations lacks a one-to-one correspondence
with respect to the relaxation of the targetN electron core-hole state.
For errors that manifest in ΔSCF calculations, different non-Aufbau
SCF solutions representing an excited state configuration can be
obtained depending on basis projections, overlap metrics, and con-
vergence criteria—all of which can alter the ΔSCF result. Since the
quality of the poles is dependent on the quality of the reference deter-
minant, it is important to note an additional layer of error is present

TABLE VIII. Mean absolute error (MAE) and root-mean-square error (RMSE) in eV.

ΔSCF with rel. ΔSCF

MAE 0.5 0.4
RMSE 0.5 0.6
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when there is spin contamination in the anions. Whenever possible,
propagator references with good intrinsic spin quantum numbers
are preferred.62,63

Finally, the choice of relativistic correction may vary the mag-
nitude of ωX significantly with increasing atomic number and
heightened many-electron correlation in the core region. In addi-
tion to the technique applied in this study, there many other
methods in relativistic quantum chemistry to choose from.64–66

Nonetheless, the composite model introduced here provides a rea-
sonable estimate to core excitation energies and appears to bal-
ance static and dynamic correlation effects well with affordable
computational cost.

The qualitative utility of the ΔSCF + ΔΣ model for pre-
dicting vertical core excitation energies is reflected in the mod-
erate deviations from experimental values. The “relaxation error”
is pronounced for K-shell ionizations or excitations, more so
when the core orbitals are delocalized, and the relative impor-
tance of relaxation ΣR and correlation ΣC contributions varies
between the core and valence regimes.86,87 For ionizations of
local, nonequivalent cores, ΔSCF recovers the bulk of the
relaxation effects.88,89

Lone pairs and double bonds between equivalent atoms (which
give rise to degenerate orbitals) enhance the correlation effects
involving the interaction of degenerate configurations. In cases of
strong correlation, ΔHF tends to overestimate the excitation energy.
Cederbaum and Domcke90 have explained that when there are no
degenerate or closely degenerate core orbitals, the correlation energy
becomes very small in comparison to the relaxation energy found in
Σ(2)pp (E). In the case of homonuclear diatomics (e.g., N2), they have
shown that the degeneracy of the delocalized orbitals with gerade
and ungerade symmetry, σ g and σu, causes the correlation contri-
bution to the self-energy to become competitive in magnitude to
the relaxation component. With two delocalized, symmetry orbitals
close in energy, ΔHF results will not include the now increased
correlation effects.

If one lifts the symmetry constraints (i.e., reduce the molecular
symmetry) and localizes the basis for the cores, the total SCF relax-
ation energy becomes a mixture of orbital relaxation and pair corre-
lation in the relaxed N − 1 state. This explains why ΔSCF for K-shell
electron detachments often yields good agreement with experiment
when the core orbitals are localized. However, by breaking symme-
try, the admixture of orbital relaxation and correlation effects in the
excited SCF solutions obtained with HF or Kohn-Sham DFT lim-
its systematic improvements with perturbation theory. More recent
studies have further explored the errors that arise from using local-
ized/delocalized core orbitals with a variety of methods for modeling
x-ray spectroscopy.91

Computing core excitation energies using ΔSCF + ΔΣC(2)

requires a balanced treatment of orbital relaxation and correla-
tion effects. Correlation corrections to ΔSCF are heavily modulated
by the quality of the pole of the excited core orbital. Higher-
order approximations to the self-energy beyond D2 may be needed
to obtain accurate core binding energies. Computing self-energy
gaps with electron affinities starting from a core-hole cation refer-
ence state may be an alternative to an ionization-based approach,
although, some precautions must be taken to deal with numerical
instabilities that may accompany a non-Aufbau core-hole refer-
ence with post-HF methods.92 Additionally, varying the occupation

number of the target core orbital via the transition operator
method93,94 may also be a relevant approach toward increasing the
quality of the self-energy.

IV. CONCLUSIONS
We have presented computational results for core excitation

energies using ΔHF and the diagonal second-order self-energy
approximation. The efficacy of obtaining accurate excitation ener-
gies with only ΔHF when core orbitals are localized is reaffirmed.
Without reducing molecular symmetry, the results calculated with
the proposed ΔSCF + ΔΣ composite method for chemical species
with degenerate C, N, O, and F core orbitals are in good agreement
with experimental energies. Separating the orbital relaxation energy
recovered with ΔSCF and correlation energy gaps determined with
the D2 self-energy approximation provides a step toward a system-
atic approach for estimating vertical core excitation energies. With a
limiting step of generating theMO integrals, theO(OV2

) arithmetic
scaling of diagonal second-order EPT is indeed a low-cost choice as a
post-HFmethod to be used withΔSCF for calculating core excitation
energies.

Studies of K- and L-edge transitions beyond second period ele-
ments and computation of cross sections for simulating spectra will
be important diagnostics for this model and will be examined in a
future work. Further exploration of practical, low-scaling compos-
ite models for computing excitation energies with different electron
propagator methods is also underway.
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