
Tunneling wave function proposal with loop quantum geometry effects

Meysam Motaharfar
*
and Parampreet Singh

†

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 9 January 2023; accepted 10 March 2023; published 30 March 2023)

In Vilenkin’s tunneling wave function proposal our expanding Universe is born via a tunneling through a

barrier from nothing at the zero scale factor. We explore the viability of this proposal for the spatially-closed

Friedmann-Lemaître-Robertson-Walker model with a positive cosmological constant including quantum

gravity modifications in the Planck regime. Our setting is the effective spacetime description of loop

quantum cosmology (LQC) which is known to replace the big bang singularity with a bounce due to the

holonomy modifications. Due to the bounce, the barrier potential of the Wheeler-DeWitt theory is replaced

by a steplike potential which makes the tunneling proposal incompatible. But for a complete picture of

singularity resolution, inverse scale-factor modifications from quantum geometry must be included which

play an important role at very small scale factors in the spatially closed models. We show that with

inclusion of inverse scale-factor modifications the resulting potential is again a barrier potential. The

Universe at the vanishing scale factor is dynamically nonsingular and in an Einstein staticlike phase. We

show that quantum geometric effects in LQC provide a nonsingular completion of Vilenkin’s tunneling

proposal. We also find that quantum geometric effects result in a possibility of a tunneling to a quantum

cyclic universe albeit for a very large value of cosmological constant determined by the quantum geometry.

DOI: 10.1103/PhysRevD.107.066026

I. INTRODUCTION

One of the oldest questions in cosmology is whether the

Universe had a beginning or was past-eternal. The singu-

larity theorems of Penrose, Hawking, and Geroch provide a

rigorous answer to this question in general relativity (GR)

proving that under certain reasonable assumptions, with

energy conditions as a key ingredient, the Universe must

begin from a singularity in the past [1–3]. An implication of

these theorems is that in the cosmological dynamics if the

weak-energy condition is violated then one can in principle

resolve the big bang singularity. Though the process gen-

erally requires a very careful choice of initial conditions and/

or a fine-tuning of parameters, bypassing singularity theo-

rems via violation of energy conditions opened a window to

construct nonsingular models. As an example, it was

believed that inflationary models can be past eternal if weak

energy condition can be violated due to quantum effects.

However, Borde, Guth, and Vilenkin (BGV) using just

kinematic arguments and assuming that the Universe was

on average expanding in the past, proved that inflationary

cosmology is past incomplete [4]. Although there exist

counterexamples of the BGV theorem, such as the emergent

universe scenario [5] and the oscillating universe [6], where

the average expansion is zero, it has been shown that such

models even if they can be built without fine-tuning, are

quantum mechanically unstable [7–9]. It turns out that in

classical gravity, it is difficult to construct cosmological

models which can bypass the BGV theorem and be

internally consistent. Thus, it is inescapable that a classical

universe had a beginning in the past. But classical GR is an

incomplete theory where the singularities act as the boun-

daries of classical spacetime where the geodesic evolution

ends. It has been long expected that a quantum theory of

gravity would result in important insights on the question of

resolution of cosmological singularities, past incompleteness

as well as the boundary conditions and the dynamical laws

valid at the birth of our Universe.

These fundamental questions about the boundary con-

ditions and the wave function of our Universe have been

explored in detail and debated in quantum cosmology. Two

popular proposals to specify the boundary condition of the

wave function of the universe are the Vilenkin’s tunneling

proposal [10,11] and Hartle-Hawking’s no-boundary pro-

posal [12,13]. In a one-dimensional minisuperspace setting

the underlying physics of both of these proposals can be

understood via a quantum tunneling through a classical

barrier [14]. An example of such a setting arises in a

spatially closed Friedmann-Lemaître-Robertson-Walker

(FLRW) universe with a positive cosmological constant.

In this model, a barrier resulting from an interplay of the

intrinsic curvature and the positive cosmological constant

has a form determined from an effective minisuperspace

potential in the Wheeler-DeWitt equation. Recall that the

Wheeler-DeWitt equation is the quantum Hamiltonian
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constraint which in the classical theory yields the

Friedmann equation. In the Wheeler-DeWitt theory, states

which are sharply peaked in a macroscopic universe at late

times when evolved backwards towards the big bang follow

the classical trajectories determined from Friedmann

dynamics to a great accuracy when the quantum fluctua-

tions remain small throughout the evolution [15]. Due to

this correspondence, as in the classical mechanical prob-

lems, the allowed and forbidden regions of the barrier

obtained from the effective minisuperspace potential in the

Wheeler-DeWitt equation can also be determined using the

classical dynamical equations, in the present case the

Friedmann equation for the k ¼ 1 FLRW model. More

precisely, the effective minisuperspace potential deter-

mined from the Wheeler-DeWitt equation can also be

extracted from the Friedmann equation using an overall

scaling by a term proportional to a power of the scale factor.

In the classical theory, for a spatially closed FLRW

model sourced with a positive cosmological constant, the

universe contracting from a very large size bounces at

turnaround radius a ¼
ffiffiffiffiffiffiffiffiffi

3=Λ
p

, and then reexpands. The

region below this scale factor is classically forbidden if no

other energy or matter content is present. If we consider the

analogy of tunneling through the barrier for both boundary

proposals, in Vilenkin’s tunneling proposal the wave

function is composed of a subdominant growing and a

dominant decaying mode under the barrier, and a spatially

compact universe spontaneously nucleates out of a barrier.

The tunneling wave function at the large scale factor can be

seen as just outgoing waves (expanding universe), like a

wave function of a particle escaping a radioactive nucleus.

An expanding universe is born from ‘nothing’ where

‘nothing’ refers to a state with no classical space and time

at the big bang [14]. On the other hand, in the Hartle-

Hawking’s no-boundary proposal, the wave function is a

fine-tuned superposition of ingoing and outgoing waves

(contracting and expanding universe) with equal ampli-

tudes such that wave function is real and decreases towards

a big bang singularity under the barrier. For a given positive

cosmological constant Λ, the amplitude of wave function

scales as

Ψ ∼ exp

�

� c

Λ

�

ð1:1Þ

with c being a positive constant and a positive sign in the

exponential for the no-boundary proposal, and a negative

sign for the Vilenkin’s proposal of tunneling. Since the

amplitude for tunneling wave function peaks at a large

value of cosmological constant, it prefers tunneling to

smaller expanding universe. In contrast, the amplitude of

the wave function is larger for a smaller cosmological

constant in case of the no-boundary proposal which means

it prefers tunneling to a larger expanding universe.

Above analogy between the tunneling wave function

proposal and the no-boundary wave function breaks down

in the higher-dimensional minisuperspace setting and one

resorts to the path-integral formulation of these boundary

proposals [16]. In the path-integral formulation, it is

conjectured that tunneling wave function can be expressed

as a path integral over Lorentzian histories interpolating

between a vanishing 3-geometry and a given configuration

in the superspace [11]

ΨV ¼
Z ðg;ϕÞ

∅

DgDϕeiS; ð1:2Þ

while the Hartle-Hawking wave function is defined as a

path integral over compact Euclidean histories bounded by

a given 3-geometry and matter field configuration [12]

ΨHH ¼
Z ðg;ϕÞ

DgDϕe−SE ; ð1:3Þ

where SE is the Euclidean action obtained by the standard

Wick rotation t → −iτ. There have been interesting devel-

opments in this setting recently. Using Lorentzian path

integral and Picard-Lefschetz theory, a saddle point analy-

sis shows that the no-boundary proposal results in the same

prediction as the tunneling wave function [17] whose

implications, including perturbations, have been studied

in detail [18–26]. Despite these remarkable results, the

above mentioned works are based on using a semiclassical

description of gravity while resolving the singularity by

closing off the geometry at the bottom through a Euclidean

continuation. Hence, it is pertinent to ask in what way these

predictions about the initial state of the Universe, and as a

result the tunneling and the no-boundary proposals might

be affected when one includes nonperturbative quantum

gravity effects resulting in a nonsingular dynamics. One

way to answer this question is via the modifications to the

effective minisuperspace potential which can be obtained if

the details of the modified dynamics near the classical

singularity are available.

An arena to understand effects of underlying quantum

gravity on these proposals which allows to understand

quantum geometry effects via modifications to the effective

minisuperspace potential is loop quantum cosmology

(LQC) [27] which is a canonical quantization of cosmo-

logical spacetimes using techniques of loop quantum gravity

(LQG) for homogeneous spacetimes. Here quantum geom-

etry results in a generic resolution of singularities in isotropic

as well as anisotropic spacetimes [28–34]. Quantum gravi-

tational effects in LQC for spatially curved models can arise

in two ways; via holonomies of the connection variables

which lead to modifications when the spacetime curvature

becomes Planckian, and also through modifications to the

inverse scale-factor terms. The latter becomes prominent
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only close to Planck length. In the cosmological context, the

Wheeler-DeWitt equation is replaced by a quantum differ-

ence equation arising from the loop quantization of the

Hamiltonian constraint. The underlying discrete quantum

geometry is directly responsible for an upper bound on the

spacetime curvature causing a nonsingular bounce when the

energy density of the matter content reaches a maximum

value [35,36]. For a spatially-flat model the expectation

value of volume is bounded above zero in the physical

Hilbert space [37] and the probability of bounce at nonzero

volume is unity [38]. In the presence of spatial curvature,

holonomy modifications play the most significant role in

singularity resolution [39], nevertheless the role of the

inverse scale-factor modifications can become important

especially when spatial curvature and anisotropies are

present together [40]. The nonsingular bounce has been

rigorously confirmed in various models using high-

performance computing [41,42], including anisotropic

vacuum spacetimes [43], and these studies reveal that

one can capture the underlying quantum discrete evolution

in an effective spacetime description where quantum

geometry effects are encoded in an effective Hamil-

tonian constraint [44] which allows to obtain a modified

Friedmann equation with quantum gravity corrections [45].
1

Interestingly, the modified Friedmann equation captures the

underlying quantum evolution to an excellent accuracy if

the quantum fluctuations are small [41,42]. Using these

modified Friedmann dynamics one can obtain the quantum

geometric modifications to the effective minisuperspace

potential, and analyze the affects on the tunneling proposal.

In the bouncing models in quantum cosmology, one

often interprets the singularity resolution as arising from

some sort of repulsive character of modifications to

classical gravity. As an example, in some works the

repulsive force near the classical singularities can be

obtained from effective minisuperspace potential which

diverges to infinity near the zero scale factor [46–48]. The

big bang is protected by an infinite hard-wall wall in such a

case. It turns out that there is a similar, but a finite wall or a

steplike potential in LQC if one considers holonomy

modifications. The situation is similar to a hard-wall

problem in ordinary quantum mechanics as a result of

which the wave function of the universe should vanish at

the big bang and the decaying mode is no longer dominant.

This seems to put the tunneling wave function proposal at

an incompatible footing with such bouncing models. With

the above analogy one may conclude that the no-boundary

proposal is favored to explain the beginning of the

Universe.
2
But this picture, at least in LQC, as we will

see is far from complete unless one takes into account all

potential quantum gravitational modifications which can

potentially change the details of singularity resolution.

In this manuscript our goal is to understand the above

issue taking into account the role of inverse scale-factor

modifications which must be included to understand the

complete picture of singularity resolution in the presence of

spatial curvature in LQC. To understand the quantum

geometric modifications to the effective minisuperspace

potential we use the modified Friedmann equation in LQC.

We assume its validity throughout the evolution. When

only holonomy modifications are considered the bounce

happens at a nonvanishing scale factor and the resulting

effective minisuperspace potential turns out to be a wall

with a large Planckian magnitude. This makes the tunneling

proposal incompatible as in other bouncing models.

However, when we consider a more complete picture of

the singularity resolution by including inverse scale-factor

modifications then the effective minisuperspace potential

near a ¼ 0 is modified in such a way that a quantum barrier

as in Wheeler-DeWitt appears but with a much larger

magnitude. In contrast to the Wheeler-DeWitt theory the

underlying quantum evolution and modified Friedmann

dynamics is nonsingular. The universe in LQC can tunnel

from a ¼ 0 where both _a and ä vanish and there is no

singularity. As a result, we find that quantum geometric

effects in LQC through inverse scale-factor modifications

actually make the tunneling wave function proposal com-

plete by resolving its singularity at a ¼ 0. It also turns out

that there exists a critical value of cosmological constant

above which the universe can tunnel to a quantum cyclic

universe. This value determined by quantum geometry is

quite large, Λ > 10.2887 in Planck units. It is important to

note a caveat of our analysis. The inverse scale-factor

effects only become important in the deep Planck regime

when the scale factor approaches values close to Planck

length. In this regime one expects fluctuations to be large

and one might suspect the validity of the effective space-

time description. However, it turns out that the effect of

large fluctuations translates to a lower bounce density

[49,50] and even in such cases the form of the modified

Friedmann equation does not change except that the bounce

density decreases [51]. One expects these results to hold

true also for the k ¼ 1 model, and if so this would amount

to a decrease in the height of the barrier potential without

qualitatively affecting any results.

The outline of the paper is as follows. In Sec. II, we will

review boundary proposals and discuss how to obtain the

effective minisuperspace potential from the Friedmann

equation in classical cosmology. In Sec. III, we will obtain
1
The usage of “effective” in LQC part of this manuscript

should not be confused with the “effective potential” obtained
either from the Wheeler-DeWitt equation or the Friedmann
dynamics in classical theory or LQC. For both, the Wheeler-
DeWitt theory and LQC, the potential is labeled as “effective
potential”.

2
Having infinite barrier is also consistent with DeWitt boun-

dary condition which requires wave function of the universe
vanishes at zero scale factor, i.e., ψða ¼ 0Þ ¼ 0.
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the effective Friedmann and Raychaudhuri equations con-

taining both holonomy and inverse scale-factor corrections

and discuss the fate of the universe at a ¼ 0which turns out

to be nonsingular. Then, we find the effective minisuper-

space potential from the effective Friedmann equation and

discuss implications of quantum geometry effects for the

tunneling wave function proposal in Sec. IV. Here we note

differences in potential when one just includes the hol-

onomy modification and when one includes both. We

discuss these cases for different values of cosmological

constant and show that it is possible to tunnel to a large

expanding universe as well as to a cyclic quantum universe.

We conclude with a summary in Sec. V. We use Planck

units in all the figures.

II. WHEELER-DEWITT QUANTUM COSMOLOGY

AND BOUNDARY PROPOSALS

In this section we briefly review Wheeler-DeWitt quan-

tum cosmology, boundary proposals, the no-boundary and

the tunneling wave functions, and finally discuss how to

obtain the effective minisuperspace potential from

Friedmann equation in classical cosmology. We consider

a spatially closed universe sourced with a positive cosmo-

logical constant given by the following action

S ¼ 1

2κ

Z

ffiffiffiffiffiffi

−g
p

d4xðR − 2ΛÞ; ð2:1Þ

where κ ¼ 8πG and Λ is cosmological constant.

Considering that the universe is isotropic and homo-

geneous, the metric is given by

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdΩ2
3
; ð2:2Þ

in which aðtÞ is scale factor,NðtÞ is lapse function, and dΩ3

is the metric on unit 3-sphere. Inserting metric (2.2) into

action (2.1) and considering _N ¼ 0, one can find the

following Lagrangian density

L ¼ 1

κ

�

−3a _a2

N
þ 3Na − Na3Λ

�

: ð2:3Þ

Taking the derivative with respect to the lapse function

from Lagrangian (2.3) and choosing N ¼ 1 results in

Friedmann equation we get

H2 ¼ Λ

3
−

1

a2
; ð2:4Þ

with H ¼ _a=a being Hubble parameter. The classical

solution for Eq. (2.4) is de Sitter space, i.e., a ¼
ffiffiffiffiffiffiffiffiffi

3=Λ
p

coshð
ffiffiffiffiffiffiffiffiffi

Λ=3
p

tÞ which means that the universe start-

ing from an infinite size, contracts, bounces and reexpands.

See Fig. 1 for the plot of the effective minisuperspace

potential which denotes the bounce point (B) at

a ¼
ffiffiffiffiffiffiffiffiffi

3=Λ
p

. Note that the classical Friedmann dynamics,

as well as the Wheeler-DeWitt equation, is singular at

a ¼ 0. The singularity at the vanishing scale factor is

separated from the classical bounce point by a barrier.

The Hamiltonian constraint for this minisuperspace

model can be obtained using Lagrangian density (2.3),

which is given by

H ¼ −
κ

12a

�

p2
a þ

36a2

κ2

�

1 −
Λ

3
a2
��

¼ 0; ð2:5Þ

where pa ¼ −6a _a=κ is the conjugate momentum of the

scale factor. Upon quantization, by replacing pa → −id=da,
one obtains the Wheeler-DeWitt equation

�

a−n
d

da
an

d

da
− UðaÞ

�

ΨðaÞ ¼ 0; ð2:6Þ

where the parameter n represents factor-ordering ambiguity

and UðaÞ is the effective minisuperspace potential

B

V

2 4 6 8
a

�0.5

0.0

0.5

U(a)

B

HH

2 4 6 8
a

�0.5

0.0

0.5

U(a)

FIG. 1. Schematic behavior of tunneling (left) and no-boundary (right) wave function proposals in Wheeler-DeWitt quantum

cosmology. Point B indicates the bouncing turnaround point in classical cosmology for a large contracting universe. We set Λ ¼ 0.1 in

Planck units.
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UðaÞ ¼ 36

κ2
a2
�

1 −
Λ

3
a2
�

: ð2:7Þ

From Eq. (2.6) one can immediately see that it is

Schrödinger equation with potential UðaÞ given by

Eq. (2.7) and zero-energy eigenvalue. From Fig. 1 in which

we plot the effective minisuperspace potential (solid blue

curve), one sees that the effective minisuperspace potential

has two classical regimes for zero energy which corresponds

to the Hamiltonian constraint (2.5); a single point at zero

scale factor, i.e., a ¼ 0, and for scale factors larger than

bouncing turnaround point; a >
ffiffiffiffiffiffiffiffiffi

3=Λ
p

. Hence, Wheeler-

DeWitt quantum cosmology is analogous to the quantum

mechanical problem with potential barrier in which the

universe can start from zero size and zero energy, which

means no classical spacetime and matter, and tunnel through

the barrier to a classically expanding universe. As we

discussed in the introduction, although no-boundary and

tunneling wave function proposals were formulated in

different way, they can be understood using this quantum

tunneling analogy [14]. In the left panel of Fig. 1, the dashed

(green) curve illustrates the Vilenkin’s wave function in

which the wave function decreases under the barrier and it

has just an outgoing wave mode in the classical region

similar to the wave function of a particle escaping a

radioactive nucleus. The subdominant decaying mode is

not shown for visual clarity. While the dashed (red) curve in

the right panel of Fig. 1 illustrates the no-boundary proposal

in which the universe is in superposition of ingoing

(contracting universe) and outgoing (expanding universe)

wave modes in classical region, i.e., a >
ffiffiffiffiffiffiffiffiffi

3=Λ
p

in such a

way that the wave function decreases towards the big bang

singularity under the barrier. So the corresponding nucle-

ation probability for these two proposals is given by

modulus of wave function in Eq. (1.1).

In summary, having the effective minisuperspace poten-

tial one can discuss the boundary conditions for the wave

function of the universe in a qualitative manner. Although

we obtained the effective minisuperspace potential from the

Hamiltonian constraint and its corresponding Wheeler-

DeWitt equation, one can also see that effective minisuper-

space potential can be obtained from the classical

Friedmann equation. In fact, multiplying both sides of

Friedmann equation by −36a4=κ2, the right-hand side is

just the effective minisuperspace potential term UðaÞ. The
importance of this correspondence is that it allows us to

capture the effective minisuperspace potential with quan-

tum geometric effects if a modified Friedmann equation

containing quantum gravity effects is known. In the

following section we first summarize the modified

Friedmann dynamics for the spatially closed model in

LQC and then consider the implications of the resulting

effective minisuperspace potential.

III. EFFECTIVE DYNAMICS IN k = 1 LOOP

QUANTUM COSMOLOGY

The canonical quantization in LQG is based on using

Ashtekar-Barbero variables; the connection Ai
a and con-

jugate triads Ea
i . In LQC, one performs a symmetry

reduction of these variables at the classical level and then

expresses the Hamiltonian constraint in terms of the

holonomies of the symmetry reduced connection c, and
the symmetry reduced triads p. For the k ¼ 1 FLRW

spacetime, the manifold is Σ ×R, where the spatial mani-

fold Σ has a topology of a three-sphere S3. This unit sphere

has a physical volume V ¼ jpj3=2 ¼ 2π2a3, where as

before a denotes the scale factor of the universe. The

connection and the triad variables satisfy

fc; pg ¼ κγ

3
; ð3:1Þ

where γ is the Barbero-Immirzi parameter whose value is

fixed by the black hole thermodynamics in LQG. As in

various other works in LQC, we will fix this value as

γ ¼ 0.2375. While the triad is related to the square of the

scale factor through a kinematical relation, the connection

is a measure of the time derivative of the scale factor but

this relation needs to be determined using Hamilton’s

equation. In the classical theory, up to the contribution

from the intrinsic curvature c is proportional to the extrinsic
curvature, but when the quantum geometric effects in the

Hamiltonian are included this relation becomes much more

nontrivial.

A key difference between LQC and the Wheeler-DeWitt

theory is that at the quantum level the Hamiltonian

constraint in LQC is a not a differential operator in volume

representation. Due to the underlying quantum geometry, it

turns out to be a difference operator with a uniform step in

the volume. Note that the lattice on which the difference

operator has support includes the vanishing volume. The

quantum geometric modifications enter the Hamiltonian

constraint in two distinct ways. The first is by expressing

the field strength of the connection in terms of the

holonomies of the connection which are computed over

a loop with a minimum area determined by the quantum

geometry. The second is via expressing the inverse scale-

factor terms in the Hamiltonian in terms of a Poisson

bracket between the holonomies and triads. The first

modification results in a nonlocal curvature operator, while

the second qualitatively modifies the behavior of the

inverse scale factor near the Planck scale. In the following,

as is the convention in LQC literature, we will denote the

first modification as holonomy based and the second as

inverse scale-factor based modifications.

If we consider a spatially-closed model sourced with a

massless scalar field, then using quantum Hamiltonian

constraint of LQC the backward evolution of states peaked

in a large classical universe result in a quantum bounce [39].
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Note that this quantum bounce is of completely different

origin than the classical bounce discussed in the previous

section. As in other approaches, there are quantization

ambiguities in the Hamiltonian constraint but the singularity

resolution is a robust phenomena [52,53] including for

different types of matter [54–56]. At late times the quantum

dynamics approximates the Wheeler-DeWitt evolution and

classical GR is recovered. At late times, when the closed

universe recollapses while the Wheeler-DeWitt evolution

results in a big crunch singularity, LQC results in another

quantum bounce leading to a nonsingular cyclic evolution.

It turns out that for values of scalar field momentum which

result in a large universe the inverse scale-factor modifica-

tions remain subdominant. The bounce is therefore often

attributed as resulting from the holonomy modifications.

However, the inverse scale-factor modifications by them-

selves can also result in a singularity resolution in LQC [57],

and the effect of these terms is effectively to make energy

density vanishing as the scale factor approaches zero [58].

The important point to note is that generally in numerical

simulations carried out in LQC the role of inverse scale-

factor modifications is masked by the holonomy modifica-

tions if one starts from a macroscopic universe which

generally bounces at a scale factor much larger than the

Planck length. But if one is interested in understanding the

quantum geometry near a ¼ 0 the role of inverse scale-

factor modifications is quite important as will become

evident from the effective potential.

Interestingly, the quantum dynamics in LQC can be

captured accurately using an effective Hamiltonian con-

straint which taking into account both holonomy and

inverse scale-factor corrections is given by [39]

Heff ¼
AðvÞ
16πG

½sin2 μ̄ðc − kÞ − kχ� þHM; ð3:2Þ

where HM ¼ ρV is the matter Hamiltonian and

χ ≔ sin2 μ̄ − ð1þ γ2Þμ̄2; ð3:3Þ

μ̄2p ¼ 4
ffiffiffi

3
p

πγl2Pl ≔ Δ; ð3:4Þ

where Δ is the minimum area gap obtained from LQG. In

this paper, we will assume that the effective spacetime

description is valid at all the scales. The holonomy

modifications are contained in the trigonometric terms,

while the inverse scale-factor modifications result in AðvÞ
term along with additional modifications to energy density

if it contains inverse scale factors. Since we consider only a

cosmological constant, the inverse scale-factor modifica-

tions appear only via AðvÞ term which is

AðvÞ ¼ −
27K

4

ffiffiffiffiffiffi

8π

6

r

lPl

γ
3

2

jvjjjv − 1j − jvþ 1jj; ð3:5Þ

with K ¼ 2=3
ffiffiffiffiffiffiffiffiffi

3
ffiffiffi

3
pp

and v is related to physical volume

V as

V ¼
�

8πγl2Pl
6

�3

2 v

K
; ð3:6Þ

To derive the modified Friedmann equation, one needs to

find the Hamilton’s equation for v, which is given by

_v ¼ fv;Heffg ¼ −
γμ̄AðvÞ

2

�

8πγl2Pl
6

�

−1

× K2=3jvj1=3 sin μ̄ðc − kÞ cos μ̄ðc − kÞ: ð3:7Þ

To obtain physical solutions we need to demand that the

effective Hamiltonian constraint vanishes. Using Heff ≈ 0,

one can eliminate dependence on variable c and obtain the

modified Friedmann equation containing both holonomy

and inverse scale-factor corrections as

H2¼
�

_v

3v

�

2

¼
�

8πG

3
ρþ ÃðvÞ kχ

γ2Δ

��

ÃðvÞ− ρ

ρc
− ÃðvÞkχ

�

¼8πG

3

�

ρ− ÃðvÞρ1
��

ÃðvÞρ2−ρ

ρc

�

; ð3:8Þ

where ρc ¼ 3=ð8πGγ2ΔÞ is critical energy density, and

ρ1 ¼ −ρckχ; ρ2 ¼ ρcð1 − kχÞ; ð3:9Þ

and absorbing some prefactors in AðvÞ, we define ÃðvÞ as
follows:

ÃðvÞ ¼ 1

2
jjv − 1j − jvþ 1jj: ð3:10Þ

We see from the modified Friedmann equation that there

are two turnarounds of the scale factor, the first at

ρ ¼ ÃðvÞρ1 and the second at ρ ¼ ÃðvÞρ2. The nature of

turnaround, whether it is a bounce or a recollapse can be

determined using Raychaudhuri equation. When the initial

conditions are such that the universe evolves to a large

macroscopic universe the first turnaround corresponds to

the classical recollapse of the universe while the second to

the quantum bounce, but these can reverse if one considers

a highly-quantum universe [53]. In such a case, the

quantum bounce occurs at the first turnaround and a

quantum recollapse occurs at the second turnaround.

Moreover, one can also find the Raychaudhuri equation

including both the holonomy and inverse scale-factor

corrections as follows (see Appendix for the derivation):
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ä

a
¼ −

4πG

3

��

ÃðvÞ − 3vÃ0ðvÞ
�

ρþ 3ÃðvÞP
�

þ 16πG

3

��

−
1

2
þ 3

2
ÃðvÞ

�

ρþ 3

2
P

��

ρ

ρc
þ ÃðvÞkχ

�

þ ÃðvÞ kχ

γ2Δ

�

ÃðvÞ þ 3vÃ0ðvÞ −
�

ÃðvÞ
�

2
�

þ
�

−1þ 2ÃðvÞ − 3
v

ÃðvÞ
Ã0ðvÞ

�

ÃðvÞ kχ

γ2Δ

�

ρ

ρc
þ ÃðvÞkχ

�

þ
�

2

�

ÃðvÞ −
�

ÃðvÞ
�

2
�

kχ

γ2Δ
− 2ÃðvÞ kζ

Δγ2

��

ρ

ρc
þ ÃðvÞkχ − 1

2
ÃðvÞ

�

; ð3:11Þ

where

ζ ¼ sin2 μ̄ − μ̄ sin μ̄ cos μ̄: ð3:12Þ

One can easily check from Eq. (3.10) that for v > 1,

ÃðvÞ → 1 and Ã0ðvÞ → 0, and Eq. (3.11) reduces to the

Eq. (32) in Ref. [28] if one considers just the holonomy

correction. Given the modified Raychaudhuri equation, one

can determine the nature of the turnaround points. In fact,

the turnaround point is bouncing turnaround point if ä > 0,

it is recollapsing turnaround point if ä < 0 and it is an

Einstein static universe when ä ¼ 0. In Fig. 2 we plot the

square of the Hubble parameter versus scale factor in which

the dashed (red) line represents classical cosmology and

the solid (blue) curve represents LQC with both holonomy

and inverse scale-factor corrections given in Eqs. (2.4)

and (3.8). One can see that the Hubble parameter diverges

to infinity at zero scale factor which means there is a

singularity at zero scale factor in classical cosmology.

However, in case of LQC including both holonomy and

inverse scale-factor corrections, the Hubble parameter is

zero at zero scale factor which means that _a vanishes. One

should note that the square of Hubble parameter is negative

between zero and the classical turnaround point ‘B’ (which
is a classical bounce for large contracting universe) which

means it is classically forbidden region. Furthermore, from

Eq. (3.11), one can see that in the small volume limit, i.e.,

v ≪ 1, ÃðvÞ ≃ v, and as a result all the terms will be zero at

right hand side of of Eq. (3.11) except the second term. But

the second term is a constant for cosmological constant

which implies that at vanishing scale factor ä vanishes.

Hence, one can conclude that at vanishing scale factor, _a ¼
ä ¼ 0 in LQC in presence of both holonomy and inverse

scale-factor corrections. The universe is in a Einstein

staticlike state albeit that it is a solution not of GR but

of LQC. Thus, in this case the universe can start from zero

size and zero energy, almost nothing, while the singularity

is resolved due to quantum gravity effects. This will has

important implication for tunneling wave function proposal

as we discuss in next section by capturing quantum gravity

effects in the effective minisuperspace potential.

IV. EFFECTIVE MINISUPERSPACE POTENTIAL

As we discussed in the introduction, tunneling and no-

boundary proposals explain the boundary conditions for the

universe, however, they do not resolve the singularity in a

dynamical way. In fact, since the Lorentzian geometry is

singular, Euclidean continuation is used to close off the

geometry from bottom making it nonsingular. In this

section we are going to discuss what happens if one takes

into account the quantum gravity effects which generally

result in nonsingular Lorentzian geometry. In doing so,

having effective Friedmann equation for k ¼ 1 LQC, we

read the effective minisuperspace potential capturing quan-

tum gravity effects as it was discussed in Sec. II. Then we

will discuss the results for three cases: first, tunneling to a

classical expanding universe including just holonomy

corrections, second, tunneling to a classical expanding

universe including both holonomy and inverse scale-factor

corrections, and finally tunneling to a quantum cyclic

universe when the cosmological constant is chosen to be

large in Planck units. In the first two cases the value of the

cosmological constant is such that the maximum of the

energy density is not reached in LQC, but in the third case

we choose a value of Λ such that the latter is reached and

there are two turnaround points—a quantum bounce and a

quantum recollapse. Unlike the first two cases, the third

case corresponds to a fully quantum universe both at the

bounce and the recollapse points.

B

2 4 6 8
a

�1000

�800

�600

�400

�200

0

H
2

FIG. 2. Square of Hubble parameter versus scale factor for

Λ ¼ 0.1. The red dashed line is for classical cosmology and the

blue curve is for LQC with both holonomy and inverse scale-

factor corrections. Point B is the bouncing turnaround point for a

large contracting universe as in the classical theory. Note that in

classical theory H2 and as a result the spacetime curvature

diverges, whereas it vanishes in LQC.
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A. Nontunneling to a classical expanding universe

without inverse scale-factor corrections

Let us consider the case of loop quantum cosmological

model with only holonomy modifications. In this case i.e.,

ÃðvÞ ¼ 1, and one can read the effective minisuperspace

potential from Eq. (3.8) as follows:

UeffðaÞ ¼ −
12

8πG
a4ðρ − ρ1Þ

�

ρ2 − ρ

ρc

�

; ð4:1Þ

in which ρ ¼ Λ=ð8πGÞ. In this case, the effective dynamics

results in a quantum bounce when the classical singularity

is approached. The effective minisuperspace potential in

Eq. (4.1) reduces to effective minisuperspace potential

obtained for Wheeler-DeWitt quantum cosmology in

Eq. (2.7) in the limit when the area gap Δ → 0. In

Fig. 3, we illustrate the effective minisuperspace potential

in case of a small cosmological constant. One can see that

the potential has classically allowed region only for scale

factor larger than the classical bouncing turnaround point,

i.e., a > B. Note that this point does not occur in the Planck
regime but rather corresponds to the bounce of a large

classical de Sitter universe as in the classical cosmology

and Wheeler-DeWitt theory. It should not be confused with

the point of quantum bounce for general matter in LQC. For

this particular value of cosmological constant, the bouncing

turnaround point, B, has different value from what obtained

in the Wheeler-DeWitt quantum cosmology and that is

due to quadratic term of energy density appearing in the

effective Friedmann Eq. (3.8). The LQC and the Wheeler-

DeWitt values for the classical bounce approach each other

if one chooses a much smaller cosmological constant. In

such a case, the effective minisuperspace potential in

Eq. (4.1) matches the effective minisuperspace potential

in Eq. (2.7) at large scale factor. Note that in contrast to

Fig. 1, the shape of potential (blue curve) has changed from

a barrier to a steplike barrier near to zero scale factor due to

quantum geometry effects. In other words, zero scale factor

is forbidden in LQC for this case because of the quantum

bounce and is not classically allowed unlike the case in

Wheeler-DeWitt quantum cosmology. Furthermore, the

height of the potential is also larger than the effective

minisuperspace potential in Eq. (2.7) and which affects the

nucleation probability rate in Eq. (1.1). From the behavior

of eigenfunctions in loop quantization of k ¼ 1 model

where holonomy modifications result in a quantum bounce

one finds an exponential suppression of eigenfunctions

for values of scale factor less than the bounce [39].
3
Thus,

the wave function in LQC must decrease towards the big

bang under barrier (red dashed curve in above figure) in

case of a steplike potential. Hence, in this case the loop-

quantum universe cannot nucleate from nothing to classical

expanding universe if the wave function is defined using

the tunneling boundary conditions. In fact, in this case, the

tunneling boundary conditions are not satisfied since the

decaying mode cannot be dominant wave mode. So in this

case, tunneling wave function proposal is incompatible

with quantum gravity effects coming from just holonomy

corrections. Rather, the allowed wave function would have

features as in the no-boundary proposal. For this reason we

have labeled this wave function as “ΨHH” even though the

above picture is different from the original Hartle and

Hawking’s no-boundary proposal.

It is to be noted that above conclusion is valid for LQC in

the situation when the holonomy effects resolve the

singularity by a bounce. In the Wheeler-DeWitt case a

scenario on similar lines which converts the barrier poten-

tial to a steplike potential due to the Casimir effect was

studied in [60]. In this case it was possible to impose

boundary conditions with WKB approximations in such a

way that one can obtain an increasing wave mode towards

the zero scale factor under the step potential thus making

tunneling wave function proposal viable. Such a strategy

can not work for LQC where the singularity at a ¼ 0 is

never reached in presence of holonomy effects and the

wave function is suppressed as one probes smaller scale

factors than the bounce.

B. Tunneling to a classical expanding universe

with inverse scale-factor modifications

Now we consider both the holonomy and inverse scale-

factor corrections in the effective potential which is now

given by

UeffðaÞ ¼ −
12

8πG
a4
�

ρ − ÃðvÞρ1
��

ÃðvÞρ2 − ρ

ρc

�

; ð4:2Þ

B

HH

2 4 6 8 10
a

�5
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FIG. 3. Effective minisuperspace potential and schematic

behavior of wave function of the universe considering only

holonomy corrections in LQC for Λ ¼ 0.1 in Planck units. Point

B denotes the bouncing turnaround point for a large contracting

classical universe.

3
This can also be shown analytically for an exactly solvable

model in LQC [59].
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where it reduces to effective minisuperspace potential

Eq. (2.7) in the limit ÃðvÞ → 1 and Δ → 0. In Fig. 4,

we illustrate the effective minisuperspace for small cos-

mological constant, again choosing Λ ¼ 0.1 in Planck

units. In this case, one can see that there are two allowed

regions for the effective minisuperspace potential similar to

Wheeler-DeWitt quantum cosmology. Due to singularity

resolution at a ¼ 0 where _a ¼ ä ¼ 0, there is an allowed

region for a single point at a ¼ 0. At large scale factors,

since one recovers classical theory there is a classically

allowed region also for a > B. We find that the effective

minisuperspace potential (blue curve) recovers its barrier

shape similar to Wheeler-DeWitt quantum cosmology

taking into account both holonomy and inverse scale-factor

corrections. Note that the classical bouncing turnaround

point has different value in comparison to the value in

Wheeler-DeWitt quantum cosmology due to quantum

geometry effect and also the height of the potential is

larger than effective minisuperspace potential in Eq. (2.7).

In this case, the universe can nucleate out of nothing to a

classical expanding universe while the wave function of the

universe is uniquely defined either by a tunneling wave

functionlike scenario modified with quantum geometric

effects (green curve in the left panel of Fig. 4) or a no-

boundarylike scenario with LQC modifications (red curve

in the right panel of Fig. 4). As we discussed in Sec. III, the

universe at zero scale factor is in a Einstein staticlike

universe with zero size while the singularity is resolved due

to quantum geometry effects. Unlike the Wheeler-DeWitt

theory, the spacetime curvature vanishes at this scale factor

in LQC. Therefore, in this case one does not need to use a

Euclidean continuation to resolve the singularity. In fact,

quantum gravity effects coming from both holonomy and

inverse scale-factor corrections result in a nonsingular

version of tunneling wave function where singularity is

resolved dynamically due to quantum gravity effects.

However, one should point out that although quantum

gravity effects may also result in nonsingular version of no-

boundary proposal, one needs to use Wick rotation in order

to make the path integral convergent as it is the case in the

original proposal.

C. Tunneling to a quantum cyclic universe

Now we will consider the case that cosmological con-

stant is large in Planck units. Note that for a very large value

of Λ, the second parenthesis in the modified Friedmann

equation (3.8) changes its sign. The allowed region in the

classical regime becomes forbidden. In this case the

universe will recollapse before it become classical, hence,

the universe is always in a quantum regime. In Fig. 5 we

illustrate the effective minisuperspace potential for consid-

ering just holonomy corrections with a large cosmological

constant. In this case, the universe has two distinct turn-

around points, bouncing and recollapsing turnaround

points. Hence, the universe can oscillate between these

two turnaround points. Both of these turnaround points are

quantum in nature. In particular, the quantum bounce

B

V

2 4 6 8 10
a

�5

0

5
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Ueff(a)
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FIG. 4. Schematic behavior of tunneling (left) and no-boundary (right) wave function proposals considering both the holonomy and

inverse scale-factor corrections in LQC for Λ ¼ 0.1. Point B denotes the classical bouncing turnaround point.

RB

HH

1 2 3 4
a0

2

4

6

Ueff(a)

FIG. 5. Schematic behavior of wave function of the universe

considering just holonomy corrections in LQC for Λ ¼ 12. Points

B and R denote the quantum bouncing and quantum recollapsing

turnaround points where the energy density is in the Planck

regime.
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(denoted withB) occurs at ρ ¼ ρ1 and a quantum recollapse

(denoted with R) at ρ ¼ ρ2. For the considered value of

cosmological constant, ρ1 ≈ ρ2 ≈ 0.477 in Planck units.

Moreover, the shape of the effective minisuperspace

potential is again similar to a steplike potential and it

has similar height as in the case of a small cosmological

constant. Therefore, there is only allowed region between

the quantum bounce and quantum recollapse points and the

universe can nucleate from nothing to quantum cyclic

universe instead of a classical expanding universe.

However, in this case, the wave function of the universe

cannot be defined considering tunneling boundary con-

ditions due to the steplike shape of the potential near the

zero scale factor. So we conclude that if one considers just

the holonomy correction, tunneling wave function proposal

is incompatible with quantum gravity effects.

In Fig. 6, we illustrate the effective minisuperspace

potential in case of considering both holonomy and inverse

scale-factor corrections with large cosmological constant.

Again, the effective minisuperspace has two distinct turn-

around points and there is an allowed region between

quantum bouncing and quantum recollapsing turnaround

points. Since under the barrier either of decaying or growing

mode can be chosen, one can conclude that the universe can

tunnel from nothing to a quantum cyclic universe while the

wave function of the universe is uniquely defined by either

the tunneling (green curve in left panel of Fig. 6) or the no-

boundary (red curve in right panel of Fig. 6) conditions with

quantum geometric modifications. The value of the cosmo-

logical constant at which a quantum cyclic universe can

become a possibility is found to be governed by the area gap

in quantum geometry. From the modified Friedmann

dynamics, one finds that it is for Λ > 3=γ2Δ that one

obtains such a cyclic behavior. Moreover, we should point

out there is a possibility that universe also tunnel back to a

zero scale factor in this case as pointed out in the case of

Wheeler-DeWitt quantization in Ref. [9]. In fact, as the

universe recollapses and reaches the bounce turnaround

point it can either bounce back or tunnel to zero scale factor,

stay there and tunnel back to a cyclic universe.
4

V. SUMMARY

In GR, the universe begins from the big bang singularity

which is the boundary of the classical spacetime. Several

proposals have been put forward to address the issue of

boundary conditions of the universe among which the

tunneling wave function proposal and the no-boundary

wave function proposal are the most popular ones. These

proposals attempt to define the boundary condition of the

universe in such a way that the entire universe is self-

contained explaining the initial conditions for the universe

and the singularity is avoided using a Euclideanization

procedure. However, these two proposals are based on the

semiclassical aspects of gravity employing the same con-

tinuum differential geometry as the Wheeler-DeWitt theory

and do not take into account nonperturbative quantum

gravity effects. On the other hand, it is generally believed

that the quantum spacetime resulting from nonperturbative

quantum gravity will take us beyond the limitations of

classical spacetime in GR as well as the Wheeler-DeWitt

theory and provide new insights on the boundary conditions

for the wave function of the universe.

In recent years, rigorous results from quantization of

various cosmological spacetimes in LQC indicate that the

big bang singularity is replaced by a big bounce [27]. The

underlying quantum dynamics in LQC can be understood

using an effective spacetime description whose validity is

assumed at all the scales in this work. This effective

dynamics results in an effective Hamiltonian from which

one can obtain a modified Friedmann dynamics. For

spatially closed models in LQC, quantum geometry can

result in two types of modifications for spatially-closed
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FIG. 6. Schematic behavior of tunneling (left) and no-boundary (right) wave function proposals considering both the holonomy and

inverse scale-factor corrections in LQC for Λ ¼ 12. Points B and R denote the quantum bounce and quantum recollapse points.

4
This result holds true in the presence of a massless scalar field

if one takes into account inverse scale-factor modifications to the
energy density [61].
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models. One of these, which plays the dominant role in

bounce, arises because of holonomies of the connection

taken over loops which have a minimum area determined

by quantum geometry. Apart from the holonomy modifi-

cations in LQC there are also inverse scale-factor mod-

ifications resulting from the underlying quantum geometry

which become significant only at very small scale factors. If

one is interested in the backward evolution of a large

macroscopic universe, quantum bounce happens at a

Planckian curvature scales but at scale factors much larger

than the Planck length, then the inverse scale factor

modifications remain subdominant. However, if one is

interested in obtaining the detailed picture of quantum

spacetime, especially near the vanishing scale factor, we

need to include both the holonomy and inverse scale-factor

modifications. Since in a bouncing universe the vanishing

scale factor is excluded one may be tempted to conclude

that LQC is incompatible with the tunneling wave function

proposal. The goal of this manuscript was to explore this

issue in detail including both the holonomy and inverse

scale-factor modifications to understand the viability of

tunneling wave function proposal.
5

To investigate this issue we used the correspondence

between Wheeler-DeWitt equation and Friedmann equa-

tion in one-dimensional minisuperspace. We used the fact

that the effective minisuperspace potential can be extracted

from the modified Friedmann equation in LQC by an

overall scaling by a term proportional to a power of scale

factor. Then, deriving the effective minisuperspace poten-

tial capturing quantum geometry effects, we found that the

latter modify the qualitative picture of creation of the

universe out of nothing or tunneling wave function pro-

posal in several different ways. First, we find that if one

considers just the holonomy corrections in LQC, the shape

of the barrier changes to a steplike potential in the zero

scale-factor regime. Hence, zero scale-factor regime is not

allowed and the universe cannot tunnel from nothing to an

expanding universe satisfying tunneling boundary condi-

tions. However, when one takes into accounts holonomy

and inverse scale-factor corrections together, as it should be

the case for spatially closed models in LQC, the effective

minisuperspace potential recovers its barrier shape as in

Wheeler-DeWitt quantum cosmology. In fact we found that

the zero scale factor is allowed where the universe is in

Einstein staticlike phase. Therefore, we find that the

universe can tunnel from an Einstein staticlike phase with

zero size to a classical expanding universe while the wave

function can be uniquely defined using tunneling boundary

conditions. In this case, the zero scale factor is accessible

while the singularity is resolved without complexifying the

metric as it is the case in Vilenkin’s original proposal. More

precisely, quantum geometry effects with both holonomy

and inverse scale-factor corrections result in a nonsingular

version of tunneling wave function proposal without

introducing any additional method to overcome the singu-

larity. Second, we find that if the cosmological constant is

small, the quantum gravity effects are negligible and the

universe starts from infinite size, collapses, bounces back in

the classical regime and reexpands similar to as in classical

cosmology. However, when the cosmological constant is

large the energy density of the universe can reach the

maximum energy density for which the universe recol-

lapses, as result of which the universe will go through a

cyclic evolution. In the latter case, the universe experience

two turnarounds—one quantum bounce and another as a

quantum recollapse. The critical value of cosmological

constant above which this behavior occurs is determined by

the quantum geometry. Hence, the universe can tunnel from

nothing at the vanishing scale factor to either a classical

expanding universe or a quantum cyclic universe in pure de

Sitter cosmology in LQC depending on the value of

cosmological constant. Finally, we also found that the

height of the barrier is larger when one takes into account

quantum gravity effects which can change the rate for

nucleation probability. However, what is important is that

the universe will tunnel through the barrier no matter how

small this probability rate is. An open question in this

analysis is the way these predictions get affected if one

considers a full-quantum treatment using the quantum

Hamiltonian constraint in LQC rather than the effective

dynamics. Such an analysis is expected to yield further

insights on the viability of tunneling wave function

boundary conditions from the perspective of the physical

Hilbert space in LQC.
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APPENDIX: DERIVATION OF RAYCHAUDHURI

EQUATION INCLUDING AðvÞ TERM
In this appendix we derive the Raychaudhuri equation

including both holonomy and inverse scale-factor terms.

Starting with Hamiltonian constraint Eq. (3.2), one can find

the Hamilton’s equation for p,

_p ¼ fp;Heffg ¼ −
γμ̄

3
AðvÞ sinðμ̄ðc − kÞÞ cosðμ̄ðc − kÞÞ:

ðA1Þ

Taking time derivative from Eq. (A1), we have

5
There have been works investigating the no-boundary pro-

posal in LQC but the viability of tunneling proposal was so far
not explored [62–64].
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p̈ ¼
�

γμ̄

6

_p

p
AðvÞ − γμ̄

3
A0ðvÞ_v

�

sinðμ̄ðc − kÞÞ cosðμ̄ðc − kÞÞ

−
γμ̄

3
AðvÞð _̄μðc − kÞ þ μ̄ _cÞ½cos2ðμ̄ðc − kÞÞ − sin2ðμ̄ðc − kÞÞ� ðA2Þ

¼
�

2þ 3
v

ÃðvÞ
Ã0ðvÞ − ÃðvÞ þ 2ÃðvÞ sin2 μ̄ðc − kÞ

�

2pH2 þ 2
ffiffiffiffi

p
p

γ
ÃðvÞ_c½1 − 2 sin2ðμ̄ðc − kÞÞ�; ðA3Þ

where prime means derivative with respect to v and we used AðvÞ ¼ −
27K
2

ffiffiffiffi

8π
6

q

lPl

γ
3

2

jvjÃðvÞ to reach the last equation. Using

Eq. (3.6), one can find that

ä

a
¼ p̈

2p
−H2

¼
�

1þ 3
v

ÃðvÞ
Ã0ðvÞ − ÃðvÞ þ 2ÃðvÞsin2μ̄ðc − kÞ

�

H2 þ ÃðvÞ _c

γ
ffiffiffiffi

p
p ½1 − 2sin2ðμ̄ðc − kÞÞ�: ðA4Þ

Therefore, we need to find _c to determine the modified Raychaudhuri equation. Using the Hamilton’s equation for c, we get

_c ¼ fc;Heffg ¼ 8πGγ

3

∂Heff

∂p

¼ γ

6
A0ðvÞ½sin2ðμ̄ðc − kÞÞ − kχ� ∂v

∂p
þ 4πGγ

ffiffiffiffi

p
p ∂HM

∂V
ðA5Þ

þ γ

6
AðvÞð2ðc − kÞsin μ̄ðc − kÞ cos μ̄ðc − kÞ − 2k sin μ̄ cos μ̄þ 2kμ̄ð1þ γ2ÞÞ ∂μ̄

∂p
ðA6Þ

¼ γ
ffiffiffiffi

p
p �

−4πGρ

�

1þ v

ÃðvÞ
Ã0ðvÞ

�

− 4πGPþH2 þ ÃðvÞ 1

γ2Δ
ð−kχ þ kζÞ

�

: ðA7Þ

Moreover, using Hamiltonian constraint Heff ≈ 0, we obtain

sin2 μ̄ðc − kÞ ¼ 1

ÃðvÞ
ρ

ρc
þ kχ: ðA8Þ

Then, using Eqs. (A4), (A7), and (A8), one finds

ä

a
¼

�

1þ 3
v

ÃðvÞ
Ã0ðvÞ − ÃðvÞ þ 2

�

ρ

ρc
þ ÃðvÞkχ

���

8πG

3
ρþ ÃðvÞ kχ

γ2Δ

�

×

�

ÃðvÞ − ρ

ρc
− ÃðvÞkχ

�

þ
�

ÃðvÞ − 2
ρ

ρc
− 2ÃðvÞkχ

�

×

�

−4πGρ

�

1þ v

ÃðvÞ
Ã0ðvÞ

�

−4πGPþ
�

8πG

3
ρþ ÃðvÞ kχ

γ2Δ

��

ÃðvÞ − ρ

ρc
− ÃðvÞkχ

�

þ ÃðvÞ 1

γ2Δ
ð−kχ þ kζÞ

�

: ðA9Þ

After some simplification, one reaches the following modified Raychaudhuri equation including both holonomy and

inverse scale-factor corrections
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�

ρþ 3ÃðvÞP
�

þ 16πG

3

��

−
1

2
þ 3

2
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It is easily checked that this equation has the correct classical limit in the regime when volume is much greater than Planck

volume and ρ ≪ ρc.
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