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In Vilenkin’s tunneling wave function proposal our expanding Universe is born via a tunneling through a
barrier from nothing at the zero scale factor. We explore the viability of this proposal for the spatially-closed
Friedmann-Lemaitre-Robertson-Walker model with a positive cosmological constant including quantum
gravity modifications in the Planck regime. Our setting is the effective spacetime description of loop
quantum cosmology (LQC) which is known to replace the big bang singularity with a bounce due to the
holonomy modifications. Due to the bounce, the barrier potential of the Wheeler-DeWitt theory is replaced
by a steplike potential which makes the tunneling proposal incompatible. But for a complete picture of
singularity resolution, inverse scale-factor modifications from quantum geometry must be included which
play an important role at very small scale factors in the spatially closed models. We show that with
inclusion of inverse scale-factor modifications the resulting potential is again a barrier potential. The
Universe at the vanishing scale factor is dynamically nonsingular and in an Einstein staticlike phase. We
show that quantum geometric effects in LQC provide a nonsingular completion of Vilenkin’s tunneling
proposal. We also find that quantum geometric effects result in a possibility of a tunneling to a quantum
cyclic universe albeit for a very large value of cosmological constant determined by the quantum geometry.
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I. INTRODUCTION

One of the oldest questions in cosmology is whether the
Universe had a beginning or was past-eternal. The singu-
larity theorems of Penrose, Hawking, and Geroch provide a
rigorous answer to this question in general relativity (GR)
proving that under certain reasonable assumptions, with
energy conditions as a key ingredient, the Universe must
begin from a singularity in the past [1-3]. An implication of
these theorems is that in the cosmological dynamics if the
weak-energy condition is violated then one can in principle
resolve the big bang singularity. Though the process gen-
erally requires a very careful choice of initial conditions and/
or a fine-tuning of parameters, bypassing singularity theo-
rems via violation of energy conditions opened a window to
construct nonsingular models. As an example, it was
believed that inflationary models can be past eternal if weak
energy condition can be violated due to quantum effects.
However, Borde, Guth, and Vilenkin (BGV) using just
kinematic arguments and assuming that the Universe was
on average expanding in the past, proved that inflationary
cosmology is past incomplete [4]. Although there exist
counterexamples of the BGV theorem, such as the emergent
universe scenario [5] and the oscillating universe [6], where
the average expansion is zero, it has been shown that such
models even if they can be built without fine-tuning, are
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quantum mechanically unstable [7-9]. It turns out that in
classical gravity, it is difficult to construct cosmological
models which can bypass the BGV theorem and be
internally consistent. Thus, it is inescapable that a classical
universe had a beginning in the past. But classical GR is an
incomplete theory where the singularities act as the boun-
daries of classical spacetime where the geodesic evolution
ends. It has been long expected that a quantum theory of
gravity would result in important insights on the question of
resolution of cosmological singularities, past incompleteness
as well as the boundary conditions and the dynamical laws
valid at the birth of our Universe.

These fundamental questions about the boundary con-
ditions and the wave function of our Universe have been
explored in detail and debated in quantum cosmology. Two
popular proposals to specify the boundary condition of the
wave function of the universe are the Vilenkin’s tunneling
proposal [10,11] and Hartle-Hawking’s no-boundary pro-
posal [12,13]. In a one-dimensional minisuperspace setting
the underlying physics of both of these proposals can be
understood via a quantum tunneling through a classical
barrier [14]. An example of such a setting arises in a
spatially closed Friedmann-Lemaitre-Robertson-Walker
(FLRW) universe with a positive cosmological constant.
In this model, a barrier resulting from an interplay of the
intrinsic curvature and the positive cosmological constant
has a form determined from an effective minisuperspace
potential in the Wheeler-DeWitt equation. Recall that the
Wheeler-DeWitt equation is the quantum Hamiltonian
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constraint which in the classical theory yields the
Friedmann equation. In the Wheeler-DeWitt theory, states
which are sharply peaked in a macroscopic universe at late
times when evolved backwards towards the big bang follow
the classical trajectories determined from Friedmann
dynamics to a great accuracy when the quantum fluctua-
tions remain small throughout the evolution [15]. Due to
this correspondence, as in the classical mechanical prob-
lems, the allowed and forbidden regions of the barrier
obtained from the effective minisuperspace potential in the
Wheeler-DeWitt equation can also be determined using the
classical dynamical equations, in the present case the
Friedmann equation for the k =1 FLRW model. More
precisely, the effective minisuperspace potential deter-
mined from the Wheeler-DeWitt equation can also be
extracted from the Friedmann equation using an overall
scaling by a term proportional to a power of the scale factor.

In the classical theory, for a spatially closed FLRW
model sourced with a positive cosmological constant, the
universe contracting from a very large size bounces at
turnaround radius @ = 1/3/A, and then reexpands. The
region below this scale factor is classically forbidden if no
other energy or matter content is present. If we consider the
analogy of tunneling through the barrier for both boundary
proposals, in Vilenkin’s tunneling proposal the wave
function is composed of a subdominant growing and a
dominant decaying mode under the barrier, and a spatially
compact universe spontaneously nucleates out of a barrier.
The tunneling wave function at the large scale factor can be
seen as just outgoing waves (expanding universe), like a
wave function of a particle escaping a radioactive nucleus.
An expanding universe is born from °‘nothing’ where
‘nothing’ refers to a state with no classical space and time
at the big bang [14]. On the other hand, in the Hartle-
Hawking’s no-boundary proposal, the wave function is a
fine-tuned superposition of ingoing and outgoing waves
(contracting and expanding universe) with equal ampli-
tudes such that wave function is real and decreases towards
a big bang singularity under the barrier. For a given positive
cosmological constant A, the amplitude of wave function

scales as
c
Y~ +—
exp ( A)

with ¢ being a positive constant and a positive sign in the
exponential for the no-boundary proposal, and a negative
sign for the Vilenkin’s proposal of tunneling. Since the
amplitude for tunneling wave function peaks at a large
value of cosmological constant, it prefers tunneling to
smaller expanding universe. In contrast, the amplitude of
the wave function is larger for a smaller cosmological
constant in case of the no-boundary proposal which means
it prefers tunneling to a larger expanding universe.

(1.1)

Above analogy between the tunneling wave function
proposal and the no-boundary wave function breaks down
in the higher-dimensional minisuperspace setting and one
resorts to the path-integral formulation of these boundary
proposals [16]. In the path-integral formulation, it is
conjectured that tunneling wave function can be expressed
as a path integral over Lorentzian histories interpolating
between a vanishing 3-geometry and a given configuration
in the superspace [11]

(94) .
y, = / " DD, (1.2)
(%]

while the Hartle-Hawking wave function is defined as a
path integral over compact Euclidean histories bounded by
a given 3-geometry and matter field configuration [12]

(9.9)
lI’HH:/q DgDge™5, (1.3)

where Sg is the Euclidean action obtained by the standard
Wick rotation ¢ — —iz. There have been interesting devel-
opments in this setting recently. Using Lorentzian path
integral and Picard-Lefschetz theory, a saddle point analy-
sis shows that the no-boundary proposal results in the same
prediction as the tunneling wave function [17] whose
implications, including perturbations, have been studied
in detail [18-26]. Despite these remarkable results, the
above mentioned works are based on using a semiclassical
description of gravity while resolving the singularity by
closing off the geometry at the bottom through a Euclidean
continuation. Hence, it is pertinent to ask in what way these
predictions about the initial state of the Universe, and as a
result the tunneling and the no-boundary proposals might
be affected when one includes nonperturbative quantum
gravity effects resulting in a nonsingular dynamics. One
way to answer this question is via the modifications to the
effective minisuperspace potential which can be obtained if
the details of the modified dynamics near the classical
singularity are available.

An arena to understand effects of underlying quantum
gravity on these proposals which allows to understand
quantum geometry effects via modifications to the effective
minisuperspace potential is loop quantum cosmology
(LQC) [27] which is a canonical quantization of cosmo-
logical spacetimes using techniques of loop quantum gravity
(LQG) for homogeneous spacetimes. Here quantum geom-
etry results in a generic resolution of singularities in isotropic
as well as anisotropic spacetimes [28—34]. Quantum gravi-
tational effects in LQC for spatially curved models can arise
in two ways; via holonomies of the connection variables
which lead to modifications when the spacetime curvature
becomes Planckian, and also through modifications to the
inverse scale-factor terms. The latter becomes prominent
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only close to Planck length. In the cosmological context, the
Wheeler-DeWitt equation is replaced by a quantum differ-
ence equation arising from the loop quantization of the
Hamiltonian constraint. The underlying discrete quantum
geometry is directly responsible for an upper bound on the
spacetime curvature causing a nonsingular bounce when the
energy density of the matter content reaches a maximum
value [35,36]. For a spatially-flat model the expectation
value of volume is bounded above zero in the physical
Hilbert space [37] and the probability of bounce at nonzero
volume is unity [38]. In the presence of spatial curvature,
holonomy modifications play the most significant role in
singularity resolution [39], nevertheless the role of the
inverse scale-factor modifications can become important
especially when spatial curvature and anisotropies are
present together [40]. The nonsingular bounce has been
rigorously confirmed in various models using high-
performance computing [41,42], including anisotropic
vacuum spacetimes [43], and these studies reveal that
one can capture the underlying quantum discrete evolution
in an effective spacetime description where quantum
geometry effects are encoded in an effective Hamil-
tonian constraint [44] which allows to obtain a modified
Friedmann equation with quantum gravity corrections [45].!
Interestingly, the modified Friedmann equation captures the
underlying quantum evolution to an excellent accuracy if
the quantum fluctuations are small [41,42]. Using these
modified Friedmann dynamics one can obtain the quantum
geometric modifications to the effective minisuperspace
potential, and analyze the affects on the tunneling proposal.

In the bouncing models in quantum cosmology, one
often interprets the singularity resolution as arising from
some sort of repulsive character of modifications to
classical gravity. As an example, in some works the
repulsive force near the classical singularities can be
obtained from effective minisuperspace potential which
diverges to infinity near the zero scale factor [46—48]. The
big bang is protected by an infinite hard-wall wall in such a
case. It turns out that there is a similar, but a finite wall or a
steplike potential in LQC if one considers holonomy
modifications. The situation is similar to a hard-wall
problem in ordinary quantum mechanics as a result of
which the wave function of the universe should vanish at
the big bang and the decaying mode is no longer dominant.
This seems to put the tunneling wave function proposal at
an incompatible footing with such bouncing models. With
the above analogy one may conclude that the no-boundary
proposal is favored to explain the beginning of the

'"The usage of “effective” in LQC part of this manuscript
should not be confused with the “effective potential” obtained
either from the Wheeler-DeWitt equation or the Friedmann
dynamics in classical theory or LQC. For both, the Wheeler-
DeWitt theory and LQC, the potential is labeled as “effective
potential”.

Universe.” But this picture, at least in LQC, as we will
see is far from complete unless one takes into account all
potential quantum gravitational modifications which can
potentially change the details of singularity resolution.

In this manuscript our goal is to understand the above
issue taking into account the role of inverse scale-factor
modifications which must be included to understand the
complete picture of singularity resolution in the presence of
spatial curvature in LQC. To understand the quantum
geometric modifications to the effective minisuperspace
potential we use the modified Friedmann equation in LQC.
We assume its validity throughout the evolution. When
only holonomy modifications are considered the bounce
happens at a nonvanishing scale factor and the resulting
effective minisuperspace potential turns out to be a wall
with a large Planckian magnitude. This makes the tunneling
proposal incompatible as in other bouncing models.
However, when we consider a more complete picture of
the singularity resolution by including inverse scale-factor
modifications then the effective minisuperspace potential
near a = 0 is modified in such a way that a quantum barrier
as in Wheeler-DeWitt appears but with a much larger
magnitude. In contrast to the Wheeler-DeWitt theory the
underlying quantum evolution and modified Friedmann
dynamics is nonsingular. The universe in LQC can tunnel
from a = 0 where both ¢ and ¢ vanish and there is no
singularity. As a result, we find that quantum geometric
effects in LQC through inverse scale-factor modifications
actually make the tunneling wave function proposal com-
plete by resolving its singularity at @ = 0. It also turns out
that there exists a critical value of cosmological constant
above which the universe can tunnel to a quantum cyclic
universe. This value determined by quantum geometry is
quite large, A > 10.2887 in Planck units. It is important to
note a caveat of our analysis. The inverse scale-factor
effects only become important in the deep Planck regime
when the scale factor approaches values close to Planck
length. In this regime one expects fluctuations to be large
and one might suspect the validity of the effective space-
time description. However, it turns out that the effect of
large fluctuations translates to a lower bounce density
[49,50] and even in such cases the form of the modified
Friedmann equation does not change except that the bounce
density decreases [51]. One expects these results to hold
true also for the kK = 1 model, and if so this would amount
to a decrease in the height of the barrier potential without
qualitatively affecting any results.

The outline of the paper is as follows. In Sec. II, we will
review boundary proposals and discuss how to obtain the
effective minisuperspace potential from the Friedmann
equation in classical cosmology. In Sec. III, we will obtain

2Having infinite barrier is also consistent with DeWitt boun-
dary condition which requires wave function of the universe
vanishes at zero scale factor, i.e., w(a = 0) = 0.
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the effective Friedmann and Raychaudhuri equations con-
taining both holonomy and inverse scale-factor corrections
and discuss the fate of the universe at a = 0 which turns out
to be nonsingular. Then, we find the effective minisuper-
space potential from the effective Friedmann equation and
discuss implications of quantum geometry effects for the
tunneling wave function proposal in Sec. I'V. Here we note
differences in potential when one just includes the hol-
onomy modification and when one includes both. We
discuss these cases for different values of cosmological
constant and show that it is possible to tunnel to a large
expanding universe as well as to a cyclic quantum universe.
We conclude with a summary in Sec. V. We use Planck
units in all the figures.

II. WHEELER-DEWITT QUANTUM COSMOLOGY
AND BOUNDARY PROPOSALS

In this section we briefly review Wheeler-DeWitt quan-
tum cosmology, boundary proposals, the no-boundary and
the tunneling wave functions, and finally discuss how to
obtain the effective minisuperspace potential from
Friedmann equation in classical cosmology. We consider
a spatially closed universe sourced with a positive cosmo-
logical constant given by the following action

S = %{/ V—=9d*x(R = 2A), (2.1)

where x =8zG and A is cosmological constant.
Considering that the universe is isotropic and homo-
geneous, the metric is given by

ds? = —N?%(1)ds* + a?(1)dQ3, (2.2)
in which a(#) is scale factor, N(z) is lapse function, and d€3
is the metric on unit 3-sphere. Inserting metric (2.2) into

action (2.1) and considering N = 0, one can find the
following Lagrangian density

FIG. 1.

- (= (2.3)

1 (=3ad?
cz—( o +3Na—Na3A).
Taking the derivative with respect to the lapse function
from Lagrangian (2.3) and choosing N =1 results in
Friedmann equation we get

H?> = (2.4)

1
a?’

with H = a/a being Hubble parameter. The classical
solution for Eq. (2.4) is de Sitter space, ie., a =

v/3/A cosh(y/A/3t) which means that the universe start-
ing from an infinite size, contracts, bounces and reexpands.
See Fig. 1 for the plot of the effective minisuperspace
potential which denotes the bounce point (B) at

a = +/3/A. Note that the classical Friedmann dynamics,
as well as the Wheeler-DeWitt equation, is singular at
a = 0. The singularity at the vanishing scale factor is
separated from the classical bounce point by a barrier.

The Hamiltonian constraint for this minisuperspace
model can be obtained using Lagrangian density (2.3),
which is given by

K 5 36a? A,
=—— 1—— =0, (25
m 12a [Pa T < 3¢ (2:3)
where p, = —6aa/x is the conjugate momentum of the

scale factor. Upon quantization, by replacing p, - —id/da,
one obtains the Wheeler-DeWitt equation

Pﬁiwi—wﬂwwza (2.6)

da da

where the parameter n represents factor-ordering ambiguity
and U(a) is the effective minisuperspace potential

U(a)

Schematic behavior of tunneling (left) and no-boundary (right) wave function proposals in Wheeler-DeWitt quantum

cosmology. Point B indicates the bouncing turnaround point in classical cosmology for a large contracting universe. We set A = 0.1 in

Planck units.
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- (2.7)

U(a) —3—§a2<1 —%cﬂ).

From Eq. (2.6) one can immediately see that it is
Schrodinger equation with potential U(a) given by
Eq. (2.7) and zero-energy eigenvalue. From Fig. 1 in which
we plot the effective minisuperspace potential (solid blue
curve), one sees that the effective minisuperspace potential
has two classical regimes for zero energy which corresponds
to the Hamiltonian constraint (2.5); a single point at zero
scale factor, i.e., a = 0, and for scale factors larger than
bouncing turnaround point; @ > /3/A. Hence, Wheeler-
DeWitt quantum cosmology is analogous to the quantum
mechanical problem with potential barrier in which the
universe can start from zero size and zero energy, which
means no classical spacetime and matter, and tunnel through
the barrier to a classically expanding universe. As we
discussed in the introduction, although no-boundary and
tunneling wave function proposals were formulated in
different way, they can be understood using this quantum
tunneling analogy [14]. In the left panel of Fig. 1, the dashed
(green) curve illustrates the Vilenkin’s wave function in
which the wave function decreases under the barrier and it
has just an outgoing wave mode in the classical region
similar to the wave function of a particle escaping a
radioactive nucleus. The subdominant decaying mode is
not shown for visual clarity. While the dashed (red) curve in
the right panel of Fig. 1 illustrates the no-boundary proposal
in which the universe is in superposition of ingoing
(contracting universe) and outgoing (expanding universe)
wave modes in classical region, i.e., @ > y/3/A in such a
way that the wave function decreases towards the big bang
singularity under the barrier. So the corresponding nucle-
ation probability for these two proposals is given by
modulus of wave function in Eq. (1.1).

In summary, having the effective minisuperspace poten-
tial one can discuss the boundary conditions for the wave
function of the universe in a qualitative manner. Although
we obtained the effective minisuperspace potential from the
Hamiltonian constraint and its corresponding Wheeler-
DeWitt equation, one can also see that effective minisuper-
space potential can be obtained from the -classical
Friedmann equation. In fact, multiplying both sides of
Friedmann equation by —36a*/x?, the right-hand side is
just the effective minisuperspace potential term U(a). The
importance of this correspondence is that it allows us to
capture the effective minisuperspace potential with quan-
tum geometric effects if a modified Friedmann equation
containing quantum gravity effects is known. In the
following section we first summarize the modified
Friedmann dynamics for the spatially closed model in
LQC and then consider the implications of the resulting
effective minisuperspace potential.

III. EFFECTIVE DYNAMICS IN k=1 LOOP
QUANTUM COSMOLOGY

The canonical quantization in LQG is based on using
Ashtekar-Barbero variables; the connection Aé and con-
jugate triads EY. In LQC, one performs a symmetry
reduction of these variables at the classical level and then
expresses the Hamiltonian constraint in terms of the
holonomies of the symmetry reduced connection ¢, and
the symmetry reduced triads p. For the k =1 FLRW
spacetime, the manifold is £ x R, where the spatial mani-
fold X has a topology of a three-sphere S°. This unit sphere
has a physical volume V = |p|3/? =27%a’, where as
before a denotes the scale factor of the universe. The
connection and the triad variables satisfy

{e.r} =75 (3.1)
where y is the Barbero-Immirzi parameter whose value is
fixed by the black hole thermodynamics in LQG. As in
various other works in LQC, we will fix this value as
y = 0.2375. While the triad is related to the square of the
scale factor through a kinematical relation, the connection
is a measure of the time derivative of the scale factor but
this relation needs to be determined using Hamilton’s
equation. In the classical theory, up to the contribution
from the intrinsic curvature c is proportional to the extrinsic
curvature, but when the quantum geometric effects in the
Hamiltonian are included this relation becomes much more
nontrivial.

A key difference between LQC and the Wheeler-DeWitt
theory is that at the quantum level the Hamiltonian
constraint in LQC is a not a differential operator in volume
representation. Due to the underlying quantum geometry, it
turns out to be a difference operator with a uniform step in
the volume. Note that the lattice on which the difference
operator has support includes the vanishing volume. The
quantum geometric modifications enter the Hamiltonian
constraint in two distinct ways. The first is by expressing
the field strength of the connection in terms of the
holonomies of the connection which are computed over
a loop with a minimum area determined by the quantum
geometry. The second is via expressing the inverse scale-
factor terms in the Hamiltonian in terms of a Poisson
bracket between the holonomies and triads. The first
modification results in a nonlocal curvature operator, while
the second qualitatively modifies the behavior of the
inverse scale factor near the Planck scale. In the following,
as is the convention in LQC literature, we will denote the
first modification as holonomy based and the second as
inverse scale-factor based modifications.

If we consider a spatially-closed model sourced with a
massless scalar field, then using quantum Hamiltonian
constraint of LQC the backward evolution of states peaked
in a large classical universe result in a quantum bounce [39].
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Note that this quantum bounce is of completely different
origin than the classical bounce discussed in the previous
section. As in other approaches, there are quantization
ambiguities in the Hamiltonian constraint but the singularity
resolution is a robust phenomena [52,53] including for
different types of matter [54-56]. At late times the quantum
dynamics approximates the Wheeler-DeWitt evolution and
classical GR is recovered. At late times, when the closed
universe recollapses while the Wheeler-DeWitt evolution
results in a big crunch singularity, LQC results in another
quantum bounce leading to a nonsingular cyclic evolution.
It turns out that for values of scalar field momentum which
result in a large universe the inverse scale-factor modifica-
tions remain subdominant. The bounce is therefore often
attributed as resulting from the holonomy modifications.
However, the inverse scale-factor modifications by them-
selves can also result in a singularity resolution in LQC [57],
and the effect of these terms is effectively to make energy
density vanishing as the scale factor approaches zero [58].
The important point to note is that generally in numerical
simulations carried out in LQC the role of inverse scale-
factor modifications is masked by the holonomy modifica-
tions if one starts from a macroscopic universe which
generally bounces at a scale factor much larger than the
Planck length. But if one is interested in understanding the
quantum geometry near a = 0O the role of inverse scale-
factor modifications is quite important as will become
evident from the effective potential.

Interestingly, the quantum dynamics in LQC can be
captured accurately using an effective Hamiltonian con-
straint which taking into account both holonomy and
inverse scale-factor corrections is given by [39]

Alv) . 5
Mo = ) (Gt e — k) kel + Hyr. (32)
where H,; = pV is the matter Hamiltonian and
x = sin? i = (1 + ), (33)
BPp =43yl = A, (3.4)

where A is the minimum area gap obtained from LQG. In
this paper, we will assume that the effective spacetime
description is valid at all the scales. The holonomy
modifications are contained in the trigonometric terms,
while the inverse scale-factor modifications result in A(v)
term along with additional modifications to energy density
if it contains inverse scale factors. Since we consider only a
cosmological constant, the inverse scale-factor modifica-
tions appear only via A(v) term which is

27K (8wl
A(v) = —T\/—Lflvlllv— 1 =fv+1]],

3.5
6 (35)

with K = 2/31/3+/3 and v is related to physical volume
V as

(3.6)

To derive the modified Friedmann equation, one needs to
find the Hamilton’s equation for », which is given by

yRA(v) (8ayly )™
2 6

x K23|v|'3 sin fi(c — k) cos ji(c — k).

b= {0. Hegt} = -

(3.7)

To obtain physical solutions we need to demand that the
effective Hamiltonian constraint vanishes. Using H.; = 0,
one can eliminate dependence on variable ¢ and obtain the
modified Friedmann equation containing both holonomy
and inverse scale-factor corrections as

H = (%)2— (%”A(”);_XA) <A(v)—£—fl(v)k)(>

_8rG [p—iuv)m] [w}

. » (3.8)

where p. = 3/(82Gy*A) is critical energy density, and

pr==pky,  pr=p(1—=ky), (3.9)

and absorbing some prefactors in A(v), we define A(v) as
follows:

1
A@) =3l =11 = lp+ 1]l (3.10)

We see from the modified Friedmann equation that there
are two turnarounds of the scale factor, the first at
p = A(v)p, and the second at p = A(v)p,. The nature of
turnaround, whether it is a bounce or a recollapse can be
determined using Raychaudhuri equation. When the initial
conditions are such that the universe evolves to a large
macroscopic universe the first turnaround corresponds to
the classical recollapse of the universe while the second to
the quantum bounce, but these can reverse if one considers
a highly-quantum universe [53]. In such a case, the
quantum bounce occurs at the first turnaround and a
quantum recollapse occurs at the second turnaround.
Moreover, one can also find the Raychaudhuri equation
including both the holonomy and inverse scale-factor
corrections as follows (see Appendix for the derivation):
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where

¢ = sin® ji — fisin Ji cos ji. (3.12)

One can easily check from Eq. (3.10) that for v > 1,
A(v) = 1 and A'(v) = 0, and Eq. (3.11) reduces to the
Eq. (32) in Ref. [28] if one considers just the holonomy
correction. Given the modified Raychaudhuri equation, one
can determine the nature of the turnaround points. In fact,
the turnaround point is bouncing turnaround point if & > 0,
it is recollapsing turnaround point if ¢ < O and it is an
Einstein static universe when d = 0. In Fig. 2 we plot the
square of the Hubble parameter versus scale factor in which
the dashed (red) line represents classical cosmology and
the solid (blue) curve represents LQC with both holonomy
and inverse scale-factor corrections given in Egs. (2.4)
and (3.8). One can see that the Hubble parameter diverges
to infinity at zero scale factor which means there is a
singularity at zero scale factor in classical cosmology.
However, in case of LQC including both holonomy and
inverse scale-factor corrections, the Hubble parameter is
zero at zero scale factor which means that @ vanishes. One
should note that the square of Hubble parameter is negative
between zero and the classical turnaround point ‘B’ (which
is a classical bounce for large contracting universe) which
means it is classically forbidden region. Furthermore, from
Eq. (3.11), one can see that in the small volume limit, i.e.,
v <1, A(v) ~ p, and as a result all the terms will be zero at
right hand side of of Eq. (3.11) except the second term. But
the second term is a constant for cosmological constant
which implies that at vanishing scale factor & vanishes.
Hence, one can conclude that at vanishing scale factor, ¢ =
d =0 in LQC in presence of both holonomy and inverse
scale-factor corrections. The universe is in a Einstein
staticlike state albeit that it is a solution not of GR but
of LQC. Thus, in this case the universe can start from zero
size and zero energy, almost nothing, while the singularity
is resolved due to quantum gravity effects. This will has
important implication for tunneling wave function proposal
as we discuss in next section by capturing quantum gravity
effects in the effective minisuperspace potential.

IV. EFFECTIVE MINISUPERSPACE POTENTIAL

As we discussed in the introduction, tunneling and no-
boundary proposals explain the boundary conditions for the

Z _ _4”TG ((A(U) - 3vA’(v)>p + 3A(U)P) 4 162G ((__+§A(v)>ﬂ

+ %P) (pﬁc + A(v)k;(>
v A/(v))ix(v)k—” <pﬁ +A(v)k;()

(3.11)

universe, however, they do not resolve the singularity in a
dynamical way. In fact, since the Lorentzian geometry is
singular, Euclidean continuation is used to close off the
geometry from bottom making it nonsingular. In this
section we are going to discuss what happens if one takes
into account the quantum gravity effects which generally
result in nonsingular Lorentzian geometry. In doing so,
having effective Friedmann equation for £k = 1 LQC, we
read the effective minisuperspace potential capturing quan-
tum gravity effects as it was discussed in Sec. II. Then we
will discuss the results for three cases: first, tunneling to a
classical expanding universe including just holonomy
corrections, second, tunneling to a classical expanding
universe including both holonomy and inverse scale-factor
corrections, and finally tunneling to a quantum cyclic
universe when the cosmological constant is chosen to be
large in Planck units. In the first two cases the value of the
cosmological constant is such that the maximum of the
energy density is not reached in LQC, but in the third case
we choose a value of A such that the latter is reached and
there are two turnaround points—a quantum bounce and a
quantum recollapse. Unlike the first two cases, the third
case corresponds to a fully quantum universe both at the
bounce and the recollapse points.

H2

[ Xos)

On=

—-200

-400

-600

-800

—-1000¢

FIG. 2. Square of Hubble parameter versus scale factor for
A = 0.1. The red dashed line is for classical cosmology and the
blue curve is for LQC with both holonomy and inverse scale-
factor corrections. Point B is the bouncing turnaround point for a
large contracting universe as in the classical theory. Note that in
classical theory H? and as a result the spacetime curvature
diverges, whereas it vanishes in LQC.
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A. Nontunneling to a classical expanding universe
without inverse scale-factor corrections

Let us consider the case of loop quantum cosmological
model with only holonomy modifications. In this case i.e.,

A(v) = 1, and one can read the effective minisuperspace
potential from Eq. (3.8) as follows:

__ 12 (P2
S LTl G

Uete(a)

in which p = A/(8zG). In this case, the effective dynamics
results in a quantum bounce when the classical singularity
is approached. The effective minisuperspace potential in
Eq. (4.1) reduces to effective minisuperspace potential
obtained for Wheeler-DeWitt quantum cosmology in
Eq. (2.7) in the limit when the area gap A — 0. In
Fig. 3, we illustrate the effective minisuperspace potential
in case of a small cosmological constant. One can see that
the potential has classically allowed region only for scale
factor larger than the classical bouncing turnaround point,
i.e., a > B. Note that this point does not occur in the Planck
regime but rather corresponds to the bounce of a large
classical de Sitter universe as in the classical cosmology
and Wheeler-DeWitt theory. It should not be confused with
the point of quantum bounce for general matter in LQC. For
this particular value of cosmological constant, the bouncing
turnaround point, B, has different value from what obtained
in the Wheeler-DeWitt quantum cosmology and that is
due to quadratic term of energy density appearing in the
effective Friedmann Eq. (3.8). The LQC and the Wheeler-
DeWitt values for the classical bounce approach each other
if one chooses a much smaller cosmological constant. In
such a case, the effective minisuperspace potential in
Eq. (4.1) matches the effective minisuperspace potential
in Eq. (2.7) at large scale factor. Note that in contrast to
Fig. 1, the shape of potential (blue curve) has changed from
a barrier to a steplike barrier near to zero scale factor due to
quantum geometry effects. In other words, zero scale factor
is forbidden in LQC for this case because of the quantum
bounce and is not classically allowed unlike the case in
Wheeler-DeWitt quantum cosmology. Furthermore, the
height of the potential is also larger than the effective
minisuperspace potential in Eq. (2.7) and which affects the
nucleation probability rate in Eq. (1.1). From the behavior
of eigenfunctions in loop quantization of k =1 model
where holonomy modifications result in a quantum bounce
one finds an exponential suppression of eigenfunctions
for values of scale factor less than the bounce [39].3 Thus,
the wave function in LQC must decrease towards the big
bang under barrier (red dashed curve in above figure) in
case of a steplike potential. Hence, in this case the loop-
quantum universe cannot nucleate from nothing to classical

3This can also be shown analytically for an exactly solvable
model in LQC [59].

Uef'f (a)
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FIG. 3. Effective minisuperspace potential and schematic
behavior of wave function of the universe considering only
holonomy corrections in LQC for A = 0.1 in Planck units. Point
B denotes the bouncing turnaround point for a large contracting
classical universe.

expanding universe if the wave function is defined using
the tunneling boundary conditions. In fact, in this case, the
tunneling boundary conditions are not satisfied since the
decaying mode cannot be dominant wave mode. So in this
case, tunneling wave function proposal is incompatible
with quantum gravity effects coming from just holonomy
corrections. Rather, the allowed wave function would have
features as in the no-boundary proposal. For this reason we
have labeled this wave function as “Wy” even though the
above picture is different from the original Hartle and
Hawking’s no-boundary proposal.

It is to be noted that above conclusion is valid for LQC in
the situation when the holonomy effects resolve the
singularity by a bounce. In the Wheeler-DeWitt case a
scenario on similar lines which converts the barrier poten-
tial to a steplike potential due to the Casimir effect was
studied in [60]. In this case it was possible to impose
boundary conditions with WKB approximations in such a
way that one can obtain an increasing wave mode towards
the zero scale factor under the step potential thus making
tunneling wave function proposal viable. Such a strategy
can not work for LQC where the singularity at a = 0 is
never reached in presence of holonomy effects and the
wave function is suppressed as one probes smaller scale
factors than the bounce.

B. Tunneling to a classical expanding universe
with inverse scale-factor modifications

Now we consider both the holonomy and inverse scale-
factor corrections in the effective potential which is now
given by

Uarla) = ~ gvca (p —A(vm) (M) 42)
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FIG. 4. Schematic behavior of tunneling (left) and no-boundary (right) wave function proposals considering both the holonomy and
inverse scale-factor corrections in LQC for A = 0.1. Point B denotes the classical bouncing turnaround point.

where it reduces to effective minisuperspace potential
Eq. (2.7) in the limit A(v) = 1 and A — 0. In Fig. 4,
we illustrate the effective minisuperspace for small cos-
mological constant, again choosing A = 0.1 in Planck
units. In this case, one can see that there are two allowed
regions for the effective minisuperspace potential similar to
Wheeler-DeWitt quantum cosmology. Due to singularity
resolution at a = 0 where a = d = 0, there is an allowed
region for a single point at @ = 0. At large scale factors,
since one recovers classical theory there is a classically
allowed region also for @ > B. We find that the effective
minisuperspace potential (blue curve) recovers its barrier
shape similar to Wheeler-DeWitt quantum cosmology
taking into account both holonomy and inverse scale-factor
corrections. Note that the classical bouncing turnaround
point has different value in comparison to the value in
Wheeler-DeWitt quantum cosmology due to quantum
geometry effect and also the height of the potential is
larger than effective minisuperspace potential in Eq. (2.7).
In this case, the universe can nucleate out of nothing to a
classical expanding universe while the wave function of the
universe is uniquely defined either by a tunneling wave
functionlike scenario modified with quantum geometric
effects (green curve in the left panel of Fig. 4) or a no-
boundarylike scenario with LQC modifications (red curve
in the right panel of Fig. 4). As we discussed in Sec. III, the
universe at zero scale factor is in a Einstein staticlike
universe with zero size while the singularity is resolved due
to quantum geometry effects. Unlike the Wheeler-DeWitt
theory, the spacetime curvature vanishes at this scale factor
in LQC. Therefore, in this case one does not need to use a
Euclidean continuation to resolve the singularity. In fact,
quantum gravity effects coming from both holonomy and
inverse scale-factor corrections result in a nonsingular
version of tunneling wave function where singularity is
resolved dynamically due to quantum gravity effects.
However, one should point out that although quantum
gravity effects may also result in nonsingular version of no-
boundary proposal, one needs to use Wick rotation in order

to make the path integral convergent as it is the case in the
original proposal.

C. Tunneling to a quantum cyclic universe

Now we will consider the case that cosmological con-
stant is large in Planck units. Note that for a very large value
of A, the second parenthesis in the modified Friedmann
equation (3.8) changes its sign. The allowed region in the
classical regime becomes forbidden. In this case the
universe will recollapse before it become classical, hence,
the universe is always in a quantum regime. In Fig. 5 we
illustrate the effective minisuperspace potential for consid-
ering just holonomy corrections with a large cosmological
constant. In this case, the universe has two distinct turn-
around points, bouncing and recollapsing turnaround
points. Hence, the universe can oscillate between these
two turnaround points. Both of these turnaround points are
quantum in nature. In particular, the quantum bounce

FIG. 5. Schematic behavior of wave function of the universe
considering just holonomy corrections in LQC for A = 12. Points
B and R denote the quantum bouncing and quantum recollapsing
turnaround points where the energy density is in the Planck
regime.
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FIG. 6. Schematic behavior of tunneling (left) and no-boundary (right) wave function proposals considering both the holonomy and
inverse scale-factor corrections in LQC for A = 12. Points B and R denote the quantum bounce and quantum recollapse points.

(denoted with B) occurs at p = p; and a quantum recollapse
(denoted with R) at p = p,. For the considered value of
cosmological constant, p; = p, = 0.477 in Planck units.
Moreover, the shape of the effective minisuperspace
potential is again similar to a steplike potential and it
has similar height as in the case of a small cosmological
constant. Therefore, there is only allowed region between
the quantum bounce and quantum recollapse points and the
universe can nucleate from nothing to quantum cyclic
universe instead of a classical expanding universe.
However, in this case, the wave function of the universe
cannot be defined considering tunneling boundary con-
ditions due to the steplike shape of the potential near the
zero scale factor. So we conclude that if one considers just
the holonomy correction, tunneling wave function proposal
is incompatible with quantum gravity effects.

In Fig. 6, we illustrate the effective minisuperspace
potential in case of considering both holonomy and inverse
scale-factor corrections with large cosmological constant.
Again, the effective minisuperspace has two distinct turn-
around points and there is an allowed region between
quantum bouncing and quantum recollapsing turnaround
points. Since under the barrier either of decaying or growing
mode can be chosen, one can conclude that the universe can
tunnel from nothing to a quantum cyclic universe while the
wave function of the universe is uniquely defined by either
the tunneling (green curve in left panel of Fig. 6) or the no-
boundary (red curve in right panel of Fig. 6) conditions with
quantum geometric modifications. The value of the cosmo-
logical constant at which a quantum cyclic universe can
become a possibility is found to be governed by the area gap
in quantum geometry. From the modified Friedmann
dynamics, one finds that it is for A > 3/y?>A that one
obtains such a cyclic behavior. Moreover, we should point
out there is a possibility that universe also tunnel back to a
zero scale factor in this case as pointed out in the case of
Wheeler-DeWitt quantization in Ref. [9]. In fact, as the
universe recollapses and reaches the bounce turnaround

point it can either bounce back or tunnel to zero scale factor,
stay there and tunnel back to a cyclic universe.”

V. SUMMARY

In GR, the universe begins from the big bang singularity
which is the boundary of the classical spacetime. Several
proposals have been put forward to address the issue of
boundary conditions of the universe among which the
tunneling wave function proposal and the no-boundary
wave function proposal are the most popular ones. These
proposals attempt to define the boundary condition of the
universe in such a way that the entire universe is self-
contained explaining the initial conditions for the universe
and the singularity is avoided using a Euclideanization
procedure. However, these two proposals are based on the
semiclassical aspects of gravity employing the same con-
tinuum differential geometry as the Wheeler-DeWitt theory
and do not take into account nonperturbative quantum
gravity effects. On the other hand, it is generally believed
that the quantum spacetime resulting from nonperturbative
quantum gravity will take us beyond the limitations of
classical spacetime in GR as well as the Wheeler-DeWitt
theory and provide new insights on the boundary conditions
for the wave function of the universe.

In recent years, rigorous results from quantization of
various cosmological spacetimes in LQC indicate that the
big bang singularity is replaced by a big bounce [27]. The
underlying quantum dynamics in LQC can be understood
using an effective spacetime description whose validity is
assumed at all the scales in this work. This effective
dynamics results in an effective Hamiltonian from which
one can obtain a modified Friedmann dynamics. For
spatially closed models in LQC, quantum geometry can
result in two types of modifications for spatially-closed

“This result holds true in the presence of a massless scalar field
if one takes into account inverse scale-factor modifications to the
energy density [61].
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models. One of these, which plays the dominant role in
bounce, arises because of holonomies of the connection
taken over loops which have a minimum area determined
by quantum geometry. Apart from the holonomy modifi-
cations in LQC there are also inverse scale-factor mod-
ifications resulting from the underlying quantum geometry
which become significant only at very small scale factors. If
one is interested in the backward evolution of a large
macroscopic universe, quantum bounce happens at a
Planckian curvature scales but at scale factors much larger
than the Planck length, then the inverse scale factor
modifications remain subdominant. However, if one is
interested in obtaining the detailed picture of quantum
spacetime, especially near the vanishing scale factor, we
need to include both the holonomy and inverse scale-factor
modifications. Since in a bouncing universe the vanishing
scale factor is excluded one may be tempted to conclude
that LQC is incompatible with the tunneling wave function
proposal. The goal of this manuscript was to explore this
issue in detail including both the holonomy and inverse
scale-factor modifications to understand the viability of
tunneling wave function proposal.5

To investigate this issue we used the correspondence
between Wheeler-DeWitt equation and Friedmann equa-
tion in one-dimensional minisuperspace. We used the fact
that the effective minisuperspace potential can be extracted
from the modified Friedmann equation in LQC by an
overall scaling by a term proportional to a power of scale
factor. Then, deriving the effective minisuperspace poten-
tial capturing quantum geometry effects, we found that the
latter modify the qualitative picture of creation of the
universe out of nothing or tunneling wave function pro-
posal in several different ways. First, we find that if one
considers just the holonomy corrections in LQC, the shape
of the barrier changes to a steplike potential in the zero
scale-factor regime. Hence, zero scale-factor regime is not
allowed and the universe cannot tunnel from nothing to an
expanding universe satisfying tunneling boundary condi-
tions. However, when one takes into accounts holonomy
and inverse scale-factor corrections together, as it should be
the case for spatially closed models in LQC, the effective
minisuperspace potential recovers its barrier shape as in
Wheeler-DeWitt quantum cosmology. In fact we found that
the zero scale factor is allowed where the universe is in
Einstein staticlike phase. Therefore, we find that the
universe can tunnel from an Einstein staticlike phase with
zero size to a classical expanding universe while the wave
function can be uniquely defined using tunneling boundary
conditions. In this case, the zero scale factor is accessible
while the singularity is resolved without complexifying the
metric as it is the case in Vilenkin’s original proposal. More

>There have been works investigating the no-boundary pro-
posal in LQC but the viability of tunneling proposal was so far
not explored [62—-64].

precisely, quantum geometry effects with both holonomy
and inverse scale-factor corrections result in a nonsingular
version of tunneling wave function proposal without
introducing any additional method to overcome the singu-
larity. Second, we find that if the cosmological constant is
small, the quantum gravity effects are negligible and the
universe starts from infinite size, collapses, bounces back in
the classical regime and reexpands similar to as in classical
cosmology. However, when the cosmological constant is
large the energy density of the universe can reach the
maximum energy density for which the universe recol-
lapses, as result of which the universe will go through a
cyclic evolution. In the latter case, the universe experience
two turnarounds—one quantum bounce and another as a
quantum recollapse. The critical value of cosmological
constant above which this behavior occurs is determined by
the quantum geometry. Hence, the universe can tunnel from
nothing at the vanishing scale factor to either a classical
expanding universe or a quantum cyclic universe in pure de
Sitter cosmology in LQC depending on the value of
cosmological constant. Finally, we also found that the
height of the barrier is larger when one takes into account
quantum gravity effects which can change the rate for
nucleation probability. However, what is important is that
the universe will tunnel through the barrier no matter how
small this probability rate is. An open question in this
analysis is the way these predictions get affected if one
considers a full-quantum treatment using the quantum
Hamiltonian constraint in LQC rather than the effective
dynamics. Such an analysis is expected to yield further
insights on the viability of tunneling wave function
boundary conditions from the perspective of the physical
Hilbert space in LQC.
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APPENDIX: DERIVATION OF RAYCHAUDHURI
EQUATION INCLUDING A(v) TERM

In this appendix we derive the Raychaudhuri equation
including both holonomy and inverse scale-factor terms.
Starting with Hamiltonian constraint Eq. (3.2), one can find
the Hamilton’s equation for p,

b= {p. Har} = =2 A(0) sinale - k) cos(a(e - 1))
(A1)

Taking time derivative from Eq. (A1), we have
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p= (22 a0) =2 4(0)0) sin(c = ) cos(a(c - )

6 p
YH - . _ e
T A) e ~ ) + R )eos2 (a(e ~ ) = sin? (e ~ k)] (A2)
~ ~ ~ 2 -
= <2 + 3;1(0 )A’(v) —A(v) + 2A(v) sin® fi(c — k)) 2pH?* + ﬁA(v)é[l — 2sin®((c — k)], (A3)
v 4
where prime means derivative with respect to v and we used A(v) = — 22K \/%% |v|A(v) to reach the last equation. Using

Eq. (3.6), one can find that

P _ip

a 2p

= (1 + 3Aéjv) A'(v) — A(v) + 2A(v)sin®fi(c — k))H2 +A(v)

T [1 — 2sin(a(c — k))]. (Ad)

Therefore, we need to find ¢ to determine the modified Raychaudhuri equation. Using the Hamilton’s equation for ¢, we get

¢ ={e, Ha} = 8”3G ! a?;ff
- g A (0)[sin2 (i — k) — ky] 22 o "t 4nG \r (A5)
—I—%A(v)(Z(c — k)sin fi(c — k) cos fic — k) — 2k sin ficos fi + 2ka(1 + 72)) Z‘; (A6)
= y\f{ 471'Gp< i v)fl’(v)) 47GP + H?> + A(v )ylA( ky +kC) |- (A7)

Moreover, using Hamiltonian constraint H.¢ =~ 0, we obtain

1
sin? ji(c — k) = —+ky. (A8)

Then, using Egs. (A4), (A7), and (A8), one finds

<1+3A(U) (v )_A(y)+2(£+2x(v)kx>>(%HA( ) "”)

N
x <A(v) —p—C—A(v)k;{> + (A(v) —2/%—2A(v)k;(> x [ ( )A’(v))
1
A

—47GP + (%p—kfl( ) ><A(U)—pﬁ—/1(v)kx> +A) 5 (- k)(+kcf)} (A9)

Cc

After some simplification, one reaches the following modified Raychaudhuri equation including both holonomy and
inverse scale-factor corrections
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Z: —‘“’TG ((A(U) - 3v;v(v)>p 4 3A(U)P) 4 16;”(; ((
+A<y)y’§—"A (A(v) +30A/ (1) - <A<v)>2) + (-1 424
+ [2<A(v)— <A(v)>2> M _aaw) ﬁ} <§+A(v)k)(—%;1(v)>.

A Ay?

c

-—+ §A(v)>p

+ %P) (pﬁc + A(v)kx)

v A/(y))A(v);—”A <£ +Z\(v)k;()

(A10)

It is easily checked that this equation has the correct classical limit in the regime when volume is much greater than Planck

volume and p < p,.
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