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Based on the effective dynamics in the μ̄ scheme of the spherical symmetry reduced model in the reduced

phase space formulation of loop quantum gravity (LQG), we investigate the gravitational collapse of a

homogeneous dust cloud, with Gaussian dust serving as both the reference field and the source of the

gravitational collapse. The effective dynamics from the considered model for a homogeneous dust cloud

reduces precisely to the effective dynamics of loop quantum cosmology (LQC) with extrinsic curvature

based K-quantization, indicating that the LQC effective dynamics lives as a subsector of the model

presented here. In both the marginally bound and the bound cases of the collapse in effective dynamics,

the singularity is resolved and replaced by a bounce. Though quantum geometric modification from

spatial curvature is not directly included in the K-quantization it does affect the qualitative dynamics of

the collapsing dust cloud in the sense that on the one hand for the marginally bound case, the dust cloud

bounces once at fixed maximum energy density and on the other hand for the bound case, the dust

cloud undergoes infinite cycles of contraction and expansion at energy densities dependent on the dust

mass. Finally, the mass threshold for the formation of a trapped surface in each case is found and the

matching conditions between the interior collapsing spacetime and an effective exterior static solution are

discussed.

DOI: 10.1103/PhysRevD.107.044047

I. INTRODUCTION

Nonperturbative quantum gravitational effects in LQG

signal that the classical differential geometry of Einstein’s

gravity is replaced by a discrete quantum geometry at the

Planck scale. The resulting quantum dynamics is expected

to provide an upper bound on spacetime curvature and

result in resolution of singularities. A rigorous demonstra-

tion of this happens in cosmological spacetimes in the

context of loop quantum cosmology (LQC) where the

classical big bang is replaced by a quantum big bounce [1]

and a generic resolution of strong curvature cosmological

singularities occurs [2,3]. In recent years, investigations on

similar lines have been carried out for black hole space-

times (see e.g. [4–27], see also [28] for a review). The goal

of most of these works is to capture the discreteness of

quantum spacetime understood in LQG in an effective

spacetime description which using high performance com-

puting has proved to be reliable tool to understand quantum

evolution using a set of quantum gravity modified dynami-

cal equations [29–31]. As in many above works, our

work will be based on assuming validity of this effective

spacetime description.

Themodels for describing black holes in the framework of

LQG aremostly based on symmetry reducedmodels. Instead

of the full quantum theory of gravity, thesemodels reduce the

degrees of freedom (DOFs) by implementing spherical

symmetry at the classical level and quantize only the reduced

set ofDOFs satisfying this symmetry. Such kindof symmetry

reducedmodels have been successful in the studyof quantum

cosmology, see for instance [32] for a recent review. The

existing models of LQG black holes fall into two categories:

the first category of models aims to quantize Schwarzschild

black hole using isometry with Kantowski-Sachs vacuum

cosmology [4–6,9–11,13–15,17,19,33–35]. These models

quantize only a finite number of DOFs that result from
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requiring spherical symmetry as well as homogeneity.

On the other hand the second category of models e.g.

[7,8,18,22,23,36–39] performs a symmetry reduction with

respect to spherical symmetry only. These models give 1þ1

dimensional field theories, which still contain infinitely

many DOFs. Furthermore, both the black hole interior and

exterior are treated in a unified manner in the second

category. The model presented in this work belongs to

the second category which is then reduced to explore the

effects of quantum geometry on the collapse of a homo-

geneous dust cloud. In particular, our model is developed

from the reduced phase space formulation of LQG. At the

classical level and before the symmetry reduction, the

gravitational field is coupled to Gaussian dust, which serves

as reference fields to deparametrize gravity [40,41] and

obtain the reduced phase space of the gravitational degrees

of freedom in terms of elementary Dirac observables. This

allows us to formulate general relativity (GR) in a mani-

festly gauge invariant manner where the Hamiltonian and

diffeomorphism constraints are solved classically and the

dynamics of these Dirac observables is generated by a so-

called physical Hamiltonian that is nonvanishing in the

physical sector of the theory. The symmetry reduction with

respect to spherically symmetry is then performed at the

level of the reduced phase space and the Gauss constraint is

solved with a gauge fixing leading to the constraint-free

phase space P of spherical symmetric physical DOFs.

The quantization of the model is then applied to the

reduced phase space and the algebra of Dirac observables

directly. Therefore, the model is free of any complication

arising from quantization of constraints. In fact, the

quantum dynamics encoded in the physical Hamiltonian

operator is manifestly unitary when passing to the quantum

theory [39].

In this work, we apply the effective dynamics of the

above physical HamiltonianHΔ to study the gravitational

collapse for a homogeneous dust cloud. With dynamically

coupling Gaussian dust to gravity we have on one hand

the necessary reference fields in the system to construct

the reduced phase space and on the other hand we can

consider nonvacuum solutions such as the gravitational

collapse involving dust as the source. The reduced phase

space is derived in classical GR where for the Gaussian

dust model the Dirac observable corresponding to the

lapse function is unity and the shift vector is zero. A

question that arises when working at the effective level is

how to carry over the form of the classical lapse and shift

to the effective model. The strategy for this discussed

recently in [42] considers criteria that should be satisfied

such that the effective versions for lapse and shift are

consistent with the effective dynamics. In general this

means, that the effective lapse and shift are not just given

by the polymerization of their classical counterparts [42].

However, for the class of matter reference fields, includ-

ing the Gaussian dust model, this is valid and it turns

out that choosing the effective lapse and shift to be

one and zero respectively is a consistent choice in this

model.
1

Let us note that every quantization strategy is fraught

with quantization ambiguities, and unlike the case of

isotropic LQC, where mathematical and phenomenological

considerations result in a unique quantization [44,45]—the

so-called μ̄ scheme or the improved dynamics [46] and

ruling out the old μo scheme in LQC. However, different

quantization prescriptions have been put forth for black

hole spacetimes. A priori there is no guarantee which

scheme would be successful unless one probes the resulting

physical implications in detail. Thus, a closer look at any of

these prescriptions is necessary. For the Schwarzschild

black hole this task has been carefully carried out in the

case of the interior spacetime where a recent study

discussed inherent deficiencies of some of the schemes,

including one based on quantizing Schwarzschild interior

with a μ̄ scheme, and proposed a quantization prescription

for Schwarzschild interior [14]. The situation for a gravi-

tational collapse scenarios, which unlike Schwarzschild

case, is a dynamical case as in cosmology is still to be

settled. Results for homogeneous collapse in LQC setting

rule out the μo scheme unless the Barbero-Immrizi param-

eter decreases almost four times [26]. It turns out that inside

the dust cloud, the μ̄ effective dynamics improves the

Oppenheimer-Snyder (OS) model by resolving the singu-

larity with a nonsingular bounce, where the curvature is

Planckian. Although a large part of our discussion treats

k ¼ 0;�1 in general, we indeed focus on the improved

OS models with k ¼ 1 (the bound case) and k ¼ 0 (the

marginally bound case). The results on the marginally

bound case with k ¼ 0 are consistent with those obtained in

[47], which uses a different symmetry reduction scheme.

An important caveat of our analysis is that we only consider

quantum geometric effects via polymerization of the

extrinsic curvature and ignore the same for the intrinsic

curvature. Basically we follow the so-called K-quantiza-

tions (where K denotes extrinsic curvature) [48]. The

bounce obtained here is time-reversal symmetric because

of the simplification of ignoring quantum geometric effects

to intrinsic curvature.

The dust cloud is assumed in our analysis to have a finite

radius. The spacetime geometry outside the cloud is also

needed in order to obtain a full description of the gravi-

tational field. The effective spacetime outside the dust

1
The situation changes if one chooses geometric clocks as has

for instance be done in [22,43]. Then it depends whether the gauge
fixing conditions involve variables that are or are not polymerized
at the effective level. A procedure to obtain an effective lapse and
shift consistent with the effective dynamics has been presented in
[42] and the analysis there shows that neither the model in [22] nor
the model in [43] chooses a consistent lapse and shift if we assume
that the gauge fixing conditions are just the polymerizations of
their classical counterparts.
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cloud should be governed by the same set of EOMs from

HΔ, and is matched to the Schwarzschild geometry far

away from the dust cloud in [38]. Note that other matching

conditions such as generalized Vaidya are also possible (see

for e.g. [49]). In this paper we make the same assumption as

in [38] for the exterior to investigate the matching condition

on the dust shell between the effective spacetimes inside

and outside the dust cloud, and we show that the matching

condition is approximately satisfied except for the regime

where quantum geometric effects become significant. The

matching condition is not satisfied in the strong quantum

regime due to quantum corrections to the Lemaitre-

Tolman-Bondi (LTB) conditions, that restrict the spherical

symmetric sector to the LTB solution, in the effective

spacetime outside the dust cloud, while the LTB conditions

are satisfied without correction for the effective spacetime

inside the dust cloud.

There exists former results in the literature on the mass

threshold of forming a horizon in the gravitational collapse

with quantum geometric effects in different settings

[47,50,51]. For a dust shell mass below a certain threshold,

no horizon will form. With the model considered in this

work, we confirm a mass threshold at the order of

Planckian mass for both the marginally bound k ¼ 0 and

the bound case k ¼ 1. In our results, for a dust shell mass

larger than the threshold, as the dust profile falls inward, a

pair of apparent horizon forms before the bounce. There is

no shock wave after the bounce, in contrast to the result in

[51]. For an observer that sits inside or on the dust shell, the

trapped region will be reached first near the Schwarzschild

radius. With the collapse continuing in the trapped region,

an inner apparent horizon will be reached at the Planck

curvature scale before the bounce, where the space-time

region becomes untrapped. After that, matter bounces

outward symmetrically. The observer will enter the anti-

trapped white-hole region and finally moves out after

crossing the white-hole horizon. The result here in the

k ¼ 0 case agrees with the earlier result in [47].

The paper is organized as follows. After the introduction

in Sec. I we review in Sec. II the relational dynamics of the

Gaussian dust model (Sec. II A) as well as its symmetry

reduction to spherical symmetry at the classical level

(Sec. II B). In addition in Sec. II C we briefly review the

effective dynamics in the μ̄-scheme following from the

models in [52,53]. Section III introduces the collapsing dust

model of this work by further imposing two LTB conditions

that restrict the spherical symmetric effective dynamics to

the LTB sector. We start in Sec. III Awith a brief summary

on the LTB dust shell model from [47] for which the

symmetry reduction has been performed at the classical

level along the lines of [54] before effective techniques have

been applied. In Sec. III B we analyse the case of a

homogeneous dust cloud with analytical methods. The

model can be understood as an Oppenheimer-Snyder

dust collapsing model, for the marginally bound case

(k ¼ 0) and bound case with k ¼ 1. Further, we discuss

in subsection III C the effective Hamiltonian as well as the

resulting modified Friedmann-like equations for the k ¼ 0

and k ¼ 1 model and we obtain a qualitatively different

behavior of the two cases. Subsection III D analyses the

formation of trapped surfaces in the model and derives the

resulting value for the threshold mass that agrees for the

k ¼ 0 with one found in [47]. Possible matching conditions

for gluing the interior spacetime to an exterior stationary

spacetime are given in Sec. III E. In Sec. IVwe present some

numerical results for the model.

II. REDUCED PHASE SPACE QUANTIZATION,

SPHERICAL SYMMETRY REDUCTION, AND

EFFECTIVE DYNAMICS

In this section, we give a brief review on the reduced

phase space formulation for gravity coupled to Gaussian

dust and the spherical symmetry reduction. We also review

briefly the μ̄-scheme effective dynamics of spherical

symmetric LQG developed recently in [38].

A. Reduced phase space of the Gaussian dust model

Usage of reference fields in GR in order to access

the physical phase space and after quantization the

physical Hilbert space respectively has been studied earlier

[40,55–61]. In particular, a classification of the existing

scalar field reference models in the context of LQG can be

found in [41]. The individual models differ by the number

and kind of reference fields that one couples dynamically to

GR. In full GR in one type of models one has four

additional reference fields that can be used to reduce the

Hamiltonian as well as the spatial diffeomorphism con-

straint at the classical level. The other kind of models

involve only one reference field that is typically used to

reduce the Hamiltonian constraint, whereas the spatial

diffeomorphism constraint is then solved in the quantum

theory. In this work we will focus on models that allow to

reduce the Hamiltonian as well as the diffeomorphism

constraint and these models have in common that one

obtains a system with second class constraints. In these

models one couples eight or seven additional fields to

gravity and after reduction with respect to the second class

constraints one ends up with a first class systems which has

four additional fields to the geometric degrees of freedom.

In case one takes GR in terms of Ashtekar-Barbero

variables as a starting point as for instance has been done

in [59,62,63] the models involve an additional Gauss

constraint that is solved via Dirac quantization in the

quantum theory by working with gauge invariant spin

network functions. Another alternative is to gauge-fix the

Gauss constraint already at the classical level as it is often

done in symmetry reduced models. The different dust

models available in the literature for full GR and corre-

sponding quantum gravity models [40,41,56,60,62] carry
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different features at the level of full GR such as for instance

a different number of coupled dust fields and a different

form of the resulting physical Hamiltonian. Once sym-

metry reduced to Friedmann–Lemaître–Robertson–Walker

(FLRW) spacetimes most of the distinctive properties are

lost due to the simplicity of the models and in particular

because the spatial diffeomorphism constraint vanish trivi-

ally in these models, see for instance [49] where different

reference matter models have been analyzed in the cos-

mological context involving in addition to dust also Klein-

Gordon scalar fields as reference matter. This is no longer

the case for spherically symmetric models where more

distinguishable properties of the dust models are present. In

the current work we will focus on the Gaussian dust model

that was introduced in the seminal article [40] and see [62]

for the corresponding quantum model using a loop quan-

tization. If we choose dust as reference fields in spherically

symmetric models, we work in the framework of LTB

models. The main motivation for focusing on the Gaussian

dust model here is that its physical Hamiltonian has a

simpler form than in the Brown-Kuchař model.

The Gaussian dust model considers the following total

action

Stot ¼ Sgeo þ SGdust

with the geometric part described by the Einstein-Hilbert

action

Sgeo ¼
1

2κ

Z

M

d4x
ffiffiffiffiffiffi

−g
p

Rð4Þ ð2:1Þ

whereas the dust dynamics is encoded in the following

action

SGdust ¼ −

Z

d3x
ffiffiffiffiffiffi

−g
p �

ρ

2
½gμνT ;μT ;ν þ 1� þ gμνT ;μWjS

j
ν

�

;

ð2:2Þ

here κ ¼ 8πG with G being Newton’s constant and

ρ; T;Wj; S
j with j ¼ 1, 2, 3 denote eight dynamically

coupled scalar fields describing the Gaussian dust model.

After an ADM decomposition, the kinematical phase space

consists of the ADM variables of ðqab; pab; N; PN ; N
a; PaÞ

in the gravitational sector, where qab denotes the ADM

metric, N the lapse function and Na the shift vector. The

kinematical degrees of freedom in the dust sector are given

by ðρ; Pρ; T; PT ;Wj; PWj
; Sj; PjÞ so that in total the model

involves 36 phase space degrees of freedom at the kin-

ematical level. As far as the constraints of the Gaussian dust

model are concerned it is a second class constrained system

and as shown in [40,62] after the reduction of the second

class constraints the independent variables are given by the

set ðqab; pab; T; PT ; S
j; PjÞ and this partially reduced

system becomes first class for more details as well as

the explicit form of the constraints compatible with our

notation see [41]. We take this as a starting point for the

work in this article and consider the usual extension

of the gravitational phase space from ADM to Ashtekar-

Barbero variables denotes by ðAj
a; E

a
j Þ which are a SU(2)-

connection and a densitized triad respectively building a

canonical pair with the nonvanishing Poisson brackets

fAj
aðxÞ; Eb

kðyÞg ¼ κβ

2
δ
j
kδ

b
aδ

ð3Þðx; yÞ; κ ¼ 16πG:

Here A
j
a ≔ Γ

a
j þ βK

j
a where Γ

j
a is the spin connection, β the

Immmirzi parameter and K
j
a is related to the extrinsic

curvature via K
j
a ¼ ebjKab with e

j
b denoting the usual co-

triads. The remaining first class constraints are the

SU(2) Gauss constraint Gj, the spatial diffeomorphism

constraint ctota and the Hamiltonian constraint ctot. The total
Hamiltonian constraint consisting of the geometric and dust

contributions denoted by c and cdust respectively reads

ctot ¼ cþ cdust

c ¼ 1

2κ

εmn
j Ea

mE
b
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jdetðEa
j Þ

q

j
ðFj

ab − ð1þ β2ÞεjklKk
aK

m
b Þ

cdust ¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ea
mE

b
nδ

mnT ;aT ;b

detðEa
j Þ

s

þ Ea
mE

b
nδ

mn

detðEa
j Þ

T ;aPjS
j
;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ea
mE

b
nδ

mnT ;aT ;b

detðEa
j
Þ

r ; ð2:3Þ

where

F
j
ab ¼ ∂aA

j
b − ∂bA

j
a þ ϵjklA

k
aA

l

b

and K
j
a ¼ 1

β
ðAj

a − Γ
j
aÞ is considered as a function of

ðAj
a; E

a
j Þ. The total spatial diffeomorphism constraint is

given by

ctota ¼ ca þ cdusta with

ca ¼
1

κβ
F
j
abE

a
j cdusta ¼ 1

κβ
ðPT ;a þ PjS

j
;aÞ ð2:4Þ

and the total Gauss constraint takes the form

Gj ¼
1

κβ
ð∂aEa

j þ ϵljkA
k
aE

a
l
Þ:

As presented in [40,62] the Hamiltonian as well as the

diffeomorphism constraint can be solved for the dust

momenta P and Pj respectively allowing to work with
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an equivalent set of these constraints being all linear in the

dust momenta. As a consequence, the dust fields T and Sj

are canonically conjugate to the total Hamiltonian and

diffeomorphism constraint respectively and thus provide

good candidates for reference fields for these constraints.

Applying the observable map from [64–66] in the frame-

work of the relational formalism [67–69], as presented

in [62], we can construct Dirac observables corresponding

to the canonical pair ðAj
a; E

a
j Þ. Following the notation from

[41,62] we denote these Dirac observables by ðAJ
j ; E

j
JÞ.

Here j is the index labeling coordinates on the dust

manifold S with coordinates σj being those values the

dust field Sj take under the observable map and J is a su(2)-
index both running from 1 to 3. As shown in [41] the

algebra of the Dirac observables has a standard canonical

form with

fAJ
j ðσ; τÞ; Ek

Kðσ0; τÞg ¼ κβ

2
δkjδ

J
Kδ

ð3Þðσ; σ0Þ;

where τ denotes physical time related to the reference

field T and all remaining Poisson bracket vanish. ðAJ
j ; E

j
JÞ

are the elementary variables of the reduced phase space.

The dynamics of these Dirac observables is generated

by a so-called physical Hamiltonian, that is itself a Dirac

observable and not vanishing on the constraint hypersur-

face. For the Gaussian dust model it has the following

form [41]

H
G
phys ¼

Z

S

d3σCðσÞ

where CðσÞ denotes the Dirac observable of cðxÞ given by

C ¼ 1

2κ

εMN
J E

j
ME

k
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detðEj
JÞ

q

j
ðFJ

jk − ð1þ β2ÞεJKLKK
j K

M
k Þ:

Here FJ
jk is the curvature associated with the connection A

J
j

FJ
jk ¼ ∂jA

J
k − ∂kA

J
j þ ϵJKLA

K
j A

L
k

and KJ
j ¼ 1

β
ðAJ

j − Γ
J
j Þ is considered as a function of the

elementary Dirac observables ðAJ
j ; E

j
JÞ. To obtain the Dirac

observable C we took advantage of the fact that for the

observable map we have C ¼ cðAJ
j ; E

j
JÞ and likewise for

any other function on the reduced phase space as for

instance ca andGj, a derivation of the detailed properties of

the observable can be found in [65,66,70]. This reduced

phase space as well as the dynamics encoded inHG
phys at the

classical level will be our starting point for considering a

spherically symmetric symmetry reduction in the next

subsection.

B. Spherical symmetry reduction

In this work, we focus only on the sector of spherical

symmetrical degrees of freedom in the reduced phase

space, and restrict the LQG dynamics to the spherical

symmetrical degrees of freedom. Our scheme is similar to

e.g. [4,7,8,36,38,39]. For obtaining the spherically sym-

metric midisuperspace we assume the dust space S ≃

R × S2 and define the spherical coordinate σ ¼ ðx; θ;ϕÞ.
We restrict the reduced phase space to the phase space Γred

of spherical symmetric field configurations. In spherically

symmetric spacetimes, one only considers ðAI
j; E

j
IÞ that are

invariant under rotations up to gauge transformations. The

general forms are given by

AI
jτIdσ

a ¼ A1ðxÞτ1dxþ
1
ffiffiffi

2
p ðA2ðxÞτ2 þ A3ðxÞτ3Þdθ

þ 1
ffiffiffi

2
p ðA2ðxÞτ3 − A3ðxÞτ2Þ sinðθÞdφ

þ cosðθÞτ1dφ;

E
j
Iτ

I
∂

∂σa
¼ E1ðxÞ sinðθÞτ1∂x

þ 1
ffiffiffi

2
p ðE2ðxÞτ2 þ E3ðxÞτ3Þ sinðθÞ∂θ

þ 1
ffiffiffi

2
p ðE2τ3 − E3τ2Þ∂φ; ð2:5Þ

where τI ¼ −
i
2
σI with σI denoting Pauli matrices. We

denote by Γred the reduced phase space of the spherically

symmetric ðAI
j; E

j
IÞ. The symplectic form Ω on Γred reads

Ωðδ1; δ2Þ ¼ −
2

κβ

Z

d3σδ1A
I
jðσÞ ∧ δ2E

j
IðσÞ

¼ −
1

2Gβ

Z

ðδ1A1ðxÞ ∧ δ2E
1ðxÞ

þ δ1A2ðxÞ ∧ δ2E
2ðxÞ

þ δ1A3ðxÞ ∧ δ2E
3ðxÞÞdx; ð2:6Þ

where δ1 and δ2 are differentials onΓred. The Poisson bracket

from Ω implies fAjðxÞ; Ekðx0Þg ¼ 2Gβδðx; x0Þδkj , with j,

k ¼ 1, 2, 3. The symmetry-reduced theory is an (1þ 1)-

dimensional field theory with infinite-dimensional Γred.

We still need to impose the Gauss constraint to Γred.

Equation (2.5) reduce the Gauss constraint to only one

constraint:

G½λ� ¼ 4π

Z

dxλðxÞ½A2ðxÞE3ðxÞ−A3ðxÞE2ðxÞ þ ∂xE
1ðxÞ�;

ð2:7Þ

while other two components become trivial. Corres-

pondingly, the SU(2) gauge group is reduced to U(1).
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Under the gauge transformation generated by G½λ�, A1

and E1 transform as a U(1) gauge field and electric field,

while A2 þ iA3 and E2 þ iE3 transform as U(1) scalar

fields:

A1ðxÞ → A1ðxÞ − κβ∂xλ
1ðxÞ; E1ðxÞ → E1ðxÞ; ð2:8Þ

A2ðxÞþ iA3ðxÞ→ eiκβλ
1ðxÞðA2ðxÞþ iA3ðxÞÞ;E2ðxÞþ iE3ðxÞ

→ eiκβλ
1ðxÞðE2ðxÞþ iE3ðxÞÞ: ð2:9Þ

One can always gauge transform ðAI; E
IÞ ∈ Γred to make

E3 vanish. Thus we introduce the following gauge fixing

condition

E3ðxÞ ¼ 0: ð2:10Þ

Then we solve the Gauss constraint (2.7) for A3ðxÞ

A3ðxÞ ¼
∂xE

1ðxÞ
E2ðxÞ : ð2:11Þ

Equations (2.10) and (2.11) remove ðA3; E
3Þ from the

canonical pairs. Following [8,38,39], we introduce the

following variables

KxðxÞ ≔
1

2β
A1ðxÞ; KφðxÞ ≔

1
ffiffiffi

2
p

β
A2ðxÞ;

ExðxÞ ¼ E1ðxÞ; EφðxÞ ¼ 1
ffiffiffi

2
p E2ðxÞ: ð2:12Þ

The gauge-fixed reduced phase space, denoted byP, consists

of canonical pairs ðKxðxÞ; ExðxÞÞ and ðKφðxÞ; EφðxÞÞ with
the Poisson brackets

fKjðxÞ; Ekðx0Þg ¼ Gδkjδðx; x0Þ; j; k ¼ x;φ: ð2:13Þ

In terms of these variables, the metric is given by

ds2 ¼ −dt2 þ ðEφÞ2
jExj dx2 þ jExjdΩ2; ð2:14Þ

where the angular part dΩ2 ¼ dθ2 þ sin2 θdφ2.

The classical physical Hamiltonian H
G
phys reduced to the

(gauge-fixed) spherical symmetrical sector P gives

H0 ¼
Z

dxCðxÞ þ boundary term; ð2:15Þ

CðxÞ ¼ 4π

κ

sgnðEφÞ
ffiffiffiffiffiffiffiffi

jExj
p

�

−
2ExEx0Eφ0

Eφ2
þ 4ExEx00 þ Ex02

2Eφ

− 8ExKxKφ − 2Eφ½K2
φ þ 1�

�

: ð2:16Þ

where Ex0 ¼ ∂xE
x. For completeness we also mention the

total diffeomorphism constraint that will be needed for the

later discussion in Sec. III and is given by

Ctotx ðxÞ ¼ PxðxÞ þ CxðxÞ
¼ PxðxÞ þ EφðxÞK0

φðxÞ − KxðxÞEx0ðxÞ ≈ 0 ð2:17Þ

where Px denotes the dust momentum conjugate to the

reference field Sx. Here CxðxÞ for all x are infinitely many

conserved charges satisfying fCxðxÞ;H0g ¼ 0.

A boundary term in terms of Ashtekar-Barbero vari-

ables in the case of asymptotically flat spacetimes has been

discussed in the literature [71–73]. In the following we

briefly discuss how the boundary term for spherically

symmetric spacetimes given in (2.15) can be obtained:

When deriving EOMs from H0, the variation δ
R

dxCðxÞ
and the integration by parts result in the following

boundary terms

8πExδEx0

κ
ffiffiffiffiffiffiffiffi

jExj
p

jEφj
−
8πExδEφjEφjEx0

κEφ3
ffiffiffiffiffiffiffiffi

jExj
p : ð2:18Þ

These boundary variations should be canceled by the

variation of the boundary term in (2.15) with certain

boundary condition, in order to have the well-defined

variation. We are interested in the following boundary

conditions:

(i) The LTB conditions (see (3.1) and set Px ¼ 0)

restricts the spherical symmetric spacetimes to

LTB spacetimes, and here the boundary condition

involves one of the LTB condition Ex0 ¼ 2fðxÞEφ

for a given function fðxÞ, see Sec. III for details.

Since we are going to study the LTB dust shell

model, we are interested in this LTB boundary

condition. The boundary can be of finite distance

or at infinity. The LTB condition implies

½δEx0 − 2fðxÞδEφ�bdy ¼ 0. In this case, the two

terms in (2.18) cancel each other in any variation

δ
R

dxCðxÞ satisfying the LTB boundary condition.

So we can set the boundary term to be zero in (2.15).

(ii) When we study the dynamics of spherical symmetric

black hole, we consider Ex; Eφ to behave asymp-

totically as the Schwarzschild geometry in the

Lemaître coordinates as x → ∞
2
:

Ex ∼

�

3

2

ffiffiffiffiffi

Rs

p

x

�

4=3

;

Eφ ∼
ffiffiffiffiffi

Rs

p

�

3

2

ffiffiffiffiffi

Rs

p

x

�

1=3

; ð2:19Þ

2
The Schwarzschild spacetime in the Lemaître coordinates

ðt; x; θ;φÞ is given by (2.14) with Ex ¼ ð3
2

ffiffiffiffiffi

Rs

p ðx − tÞÞ4=3;
Eφ ¼ ffiffiffiffiffi

Rs

p ð3
2

ffiffiffiffiffi

Rs

p ðx − tÞÞ1=3.
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where Rs is the Schwarzschild radius. The LTB

boundary condition Ex0 ¼ 2Eφ is satisfied asymp-

totically. So we have again zero boundary term in

(2.15) at x → ∞ for the asymptotic Schwarzschild

boundary condition.

(iii) Alternatively, we may consider an infrared cutoff of

the dust space at boundary (bdyÞ ¼ fx ¼ L ≫ 1g
and impose the Dirichlet boundary condition

δExjbdy ¼ 0. In this case,wehave to add the following

boundary term to the physical Hamiltonian

H0 ¼
Z

∞

−∞

dxCðxÞ þHbdy;

Hbdy ¼ −
8π

κ

�

ffiffiffiffiffiffi

Ex
p

Ex0

Eφ
− 2fðxÞ

ffiffiffiffiffiffi

Ex
p ��

�

�

�

bdy

; ð2:20Þ

for any function fðxÞ. δEφðxÞHbdy cancels the boun-

dary terms from δEφðxÞ
R

∞

−∞
dxCΔðxÞ, while δExðxÞHbdy

cancels the boundary term from δExðxÞ
R

∞

−∞
dxCΔðxÞ

up to a term proportional to δExwhich vanishes by the

Dirichlet boundary condition.

(iv) The Neumann boundary condition Ex0jbdy ¼ 0;
δEx0jbdy ¼ 0 is interesting in the discussion in

[38] as x → −∞ as a part of the Nariai limit. Both

terms in (2.18) vanish by this boundary condition, so

no boundary term is needed.

C. Review of the effective dynamics in the μ̄ scheme

For studying the LQG corrections to the spherical

symmetrical spacetimes, the effective dynamics improved

from the classical dynamics by H0 is developed in [38,39],

where a μ̄-scheme improved HamiltonianHΔ is defined by

implementing the LQG holonomy corrections toH0. In the

following, we briefly discuss a few key points in con-

structing HΔ and readers can refer to [38,39] for details.

(i) Spherical symmetry reduction and gauge fixing

before quantization: The starting point of the con-

struction is the spherical symmetric form (2.5) of

ðAI
j; E

j
IÞ on the dust space. The classical phase space

of the full theory is reduced to a subspace Γred of

spherical symmetrical fields. Γred is further reduced

to P by the gauge fixing E3 ¼ 0 and solving the

Gauss constraint. In particular, E
j
I is diagonal in this

gauge. All the further development, including the

improved Hamiltonian and quantization, are based

on P.

(ii) The U(1) holonomy of A1, and the point holonomy of

A2: The triad variables E
j
I reduces to E1, E2 on P.

We choose A1 and A2 to be their conjugate variables,

and define e
iλ
R

e
dxA1 and eiμA2 as the basic variables

in the quantization and the regularization of the

Hamiltonian [39]. The choice of the U(1) holonomy

e
iλ
R

e
dxA1 is natural since A1 transforms as the U(1)

gauge field, see (2.8). However, the component of AI
j

perpendicular to x-direction can only give the

holonomy supported at a point in the space of x.

For simplicity, we choose the point holonomy eiμA2

of A2 as the other basic variable.
3

(iii) The μ̄-scheme regularization of the Hamiltonian with

holonomies of fixed lengths: When constructingHΔ,

the U(1) holonomy and point holonomies are repre-

sented as belonging to U(1) subgroups in SU(2):

e

R

e
dxλ̄A1τ1 and eμ̄A2τ2 ; eμ̄A2τ3 . Here τ1, τ2, τ3 generate

the U(1) subgroups of SU(2). These SU(2) holono-

mies are used for regularizing the SU(2) curvature:

F ≃
1

Δ
½hΔð□Þ − 1�. hΔð□Þ is the SU(2) loop holon-

omy around the plaquette□whose area is fixed to be

Δ. We express hΔð□Þ in terms of holonomies along

edges of fixed length
ffiffiffiffi

Δ
p

[38]

h1
Δ
¼ e

R

e
dxλ̄A1τ1 ≃ e

ffiffi

Δ

p ffiffiffiffiffi

jEx j
p
jEφ j 2βKxτ1 ;

h2
Δ
¼ eμ̄A2τ2 ¼ e

ffiffi

Δ

p
ffiffiffiffiffi

jEx j
p βKφτ2

; ð2:21Þ

h3
Δ
¼ eμ̄A2τ3 ¼ e

ffiffi

Δ

p
ffiffiffiffiffi

jEx j
p βKφτ3

;

hΔð□jkÞ ¼ h
j
Δ
hk
Δ
ðhj

Δ
Þ−1ðhk

Δ
Þ−1; j; k ¼ 1; 2; 3:

ð2:22Þ

We can regularize the K-dependent terms in H0 in

terms of these holonomies and construct

HΔ ¼ 2

β2κΔ

Z

d3x
X

j;k

eð□jkÞTr
�

hΔð□jkÞ
½Ej;Ek�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞ
p

�

þ terms independent of K: ð2:23Þ

As the result from the above discussion, we obtain

the following expression of the μ̄-scheme improved

Hamiltonian HΔ defined on P [38]

HΔ ¼
Z

dxCΔðxÞ þ boundary term; ð2:24Þ

3
Although we focus on this choice in the present paper, we

would like to mention that the alternative choice may be to use

eiμ½A2þfðEÞ� for a certain nontrivial function fðEÞ of Ej. The
alternative choice may lead to a more complicated expression
of HΔ.
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CΔðxÞ ¼
1

4G

sgnðEφÞ
ffiffiffiffiffiffiffiffi

jExj
p

�

−
2ExEx0Eφ0

Eφ2
þ 4ExEx00 þ Ex02

2Eφ
−
4ExEφ

β2Δ
sin

�

ffiffiffiffi

Δ
p ffiffiffiffiffiffiffiffi

jExj
p

Eφ
2βKxðxÞ

�

sin

�

ffiffiffiffi

Δ
p
ffiffiffiffiffiffiffiffi

jExj
p βKφðxÞ

�

−
2EφjExj
β2Δ

sin2
�

ffiffiffiffi

Δ
p
ffiffiffiffiffiffiffiffi

jExj
p βKφðxÞ

�

− 2Eφ

�

: ð2:25Þ

Effectively, HΔ improves the classical spherical symmetric

HamiltonianH0 by implementing the holonomy corrections

KφðxÞ →
ffiffiffiffiffiffiffiffi

jExj
p

β
ffiffiffiffi

Δ
p sin

�

ffiffiffiffi

Δ
p
ffiffiffiffiffiffiffiffi

jExj
p βKφðxÞ

�

;

KxðxÞ →
Eφ

2β
ffiffiffiffiffiffiffiffiffiffiffiffi

ΔjExj
p sin

�

ffiffiffiffiffiffiffiffiffiffiffiffi

ΔjExj
p

Eφ
2βKxðxÞ

�

; ð2:26Þ

where the deformation parameter Δ is assumed to be the

same order of magnitude as the minimal area gap in LQG.

Clearly as Δ → 0, (2.26) reduces to Kx; Kφ. It is straight-

forward to check fCxðxÞ;HΔg ¼ 0, thus the conservation

of CxðxÞ carries over to the improved dynamics. Here the

conserved CxðxÞ ¼ EφðxÞK0
φðxÞ − KxðxÞEx0ðxÞ does not

contain any holonomy correction. The discussion of the

boundary term in HΔ is exactly the same as the discussion

for H0, since the boundary terms from δ
R

dxCΔðxÞ is the
same as (2.15).

The effective dynamics of the spherical symmetric

gravity-dust system is given by the Hamiltonian equations

from HΔ [38]:

∂tKx ¼ −
∂xE

x
∂xE

φ

4
ffiffiffiffiffiffi

Ex
p

Eφ2
−

ð∂xExÞ2
16Ex3=2Eφ

þ ∂
2
xE

x

4
ffiffiffiffiffiffi

Ex
p

Eφ
þ Eφ

4Ex3=2
−

Eφ sin

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

sin

�

2β
ffiffiffi

Δ

p ffiffiffiffi

Ex
p

Kx

Eφ

�

2β2Δ
ffiffiffiffiffiffi

Ex
p

−

Kx sin

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

cos

�

2β
ffiffiffi

Δ
p ffiffiffiffi

Ex
p

Kx

Eφ

�

β
ffiffiffiffi

Δ
p þ

EφKφ cos

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

sin

�

2β
ffiffiffi

Δ
p ffiffiffiffi

Ex
p

Kx

Eφ

�

2β
ffiffiffiffi

Δ
p

Ex
−

Eφsin2
�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

4β2Δ
ffiffiffiffiffiffi

Ex
p

þ
EφKφ sin

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

cos

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

2β
ffiffiffiffi

Δ
p

Ex
; ð2:27Þ

∂tKφ ¼ ð∂xExÞ2
8

ffiffiffiffiffiffi

Ex
p

Eφ2
−

ffiffiffiffiffiffi

Ex
p

sin

�

β
ffiffiffi

Δ
p

Kφ
ffiffiffiffi

Ex
p

�

sin

�

2β
ffiffiffi

Δ

p ffiffiffiffi

Ex
p

Kx

Eφ

�

β2Δ

þ
2ExKx sin

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

cos

�

2β
ffiffiffi

Δ
p ffiffiffiffi

Ex
p

Kx

Eφ

�

β
ffiffiffiffi

Δ
p

Eφ
−

ffiffiffiffiffiffi

Ex
p

sin2
�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

2β2Δ
−

1

2
ffiffiffiffiffiffi

Ex
p ; ð2:28Þ

∂tE
x ¼

2Ex sin

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

cos

�

2β
ffiffiffi

Δ

p ffiffiffiffi

Ex
p

Kx

Eφ

�

β
ffiffiffiffi

Δ
p ; ð2:29Þ

∂tE
φ ¼

Eφ cos

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

sin

�

2β
ffiffiffi

Δ

p ffiffiffiffi

Ex
p

Kx

Eφ

�

β
ffiffiffiffi

Δ
p þ

Eφ sin

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

cos

�

β
ffiffiffi

Δ

p
Kφ
ffiffiffiffi

Ex
p

�

β
ffiffiffiffi

Δ
p : ð2:30Þ

when Ex; Eφ > 0 are assumed.

The polymer quantization of the phase space P is carried out in [39], where the Hamiltonian HΔ is quantized on

an 1-dimensional lattice along the x-direction. The U(1) holonomy e
iλ
R

dxA1 and the point holonomy eiμA2 are among the

basic variables in the quantization. The matrix elements of the time-evolution operator e−
iT
ℏ
ĤΔ is expressed as a phase space

path integral:
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hψ1je−iTĤΔ jψ2i ¼
Z

Dμ½Kx; Kφ; E
x; Eφ�e i

ℏ
SΔ½Kx;Kφ;E

x;Eφ�:

ð2:31Þ

The detailed expressions of the action SΔ½Kx; Kφ; E
x; Eφ�

and the path integral measure Dμ can be found in [39]. The

effective dynamics (2.27)–(2.30) is reproduced at the lead-

ing order in the ℏ-expansion of the path integral formula by

the stationary phase approximation. Here Δ is viewed as

independent from ℏ in the expansion, although Δ ∼Gℏβ.
This indicates that from the path integral point of view, the

validity regime of the effective dynamics is given by scaling

ℏ small and β large while keeping Δ fixed. This regime is

similar to the earlier path integral approach in LQC [74].

III. HOMOGENEOUS REDUCTION OF THE

EFFECTIVE DYNAMICS AND ITS

PHENOMENOLOGICAL IMPLICATIONS

In this section, we discuss the homogeneous reduction of

our loop quantized model for the collapsing LTB spacetime

and conclude that our model can reduce to the well-known

Oppenheimer-Snyder (OS) model with effective dynamics

coinciding with μ̄-LQC for the homogeneous collapsing

dust cloud with a nonvanishing dust energy density [47].

For both the marginally bound case and the bound case, we

analyze in detail the reduction ansatz, the dynamical

equations as well as the formation of the trapped surfaces

at the boundary in the resulting OS model.

A. LTB dust shell model

One approach to quantize LTB models is to start with a

spherically symmetric spacetime, gauge-fix the Gauss

constraint at the classical level and then apply LTB

conditions that specialize the classical spherically sym-

metric spacetime to an LTB form and use this as the

classical model for the quantization. This strategy was for

instance followed in [54,47]. The work in [54] presents a

Schrödinger quantization of model describing the dynamics

of outermost dust shell for a homogeneous dust energy

density and [47] considers such a model for a different kind

of loop quantization at the effective level. Both works

restrict their discussion to the marginally bound case. In

this subsection we want to briefly review the main proper-

ties of the model [47] because in the later part of this work

we want to compare it with the results obtained from the

path integral formalism presented here. We assume that the

Gauss constraint has already been gauge-fixed and consider

the metric in (2.14) as well as the Poisson bracket in (2.13)

as the starting point. The LTB conditions for the marginally

bound case in Ashtekar-Barbero variables read
4

I: 2Eφðt; xÞ − j∂xExjðt; xÞ ≈ 0

II: ∂xKφðt; xÞ − 2sgnðExÞKxðt; xÞ ≈ 0: ð3:1Þ

As can be seen from (2.17) the combination of the LTB

conditions in I and II together with the condition Px ¼ 0 in

(2.17) yield a vanishing contribution to the spatial diffeo-

morphism constraint at the classical level. As a conse-

quence, the Brown-Kuchar dust model considered in

[47,54] reduces to the case of nonrotational dust where

as in the case of the Gaussian dust model the lapse is given

by N ¼ 1 and the shift vector vanishes. For this reason it is

reasonable to compare the model in [47] with the results

obtained here using Gaussian dust. Because the LTB

conditions are applied in the classical model in [47] one

is left with one set of canonical variables only, that is

ðKxðt; xÞ; Exðt; xÞÞ. As shown in [54], if one imposes the

assumption that the individual shells decouple at the

classical level, an action for the outermost shell can

be derived. In [47] this shell model was used in connec-

tion variables and following their notation we denote the

densitized triad of the outermost shell by ẼxðtÞ ≔ Exðt; xsÞ,
where xs in the radial coordinate of the shell and the

conjugate connection variable by K̃xðtÞ ≔ Kxðt; xsÞ that

satisfy fK̃x; Ẽ
xg ¼ G and whose classical dynamics is

described by the following action

S ¼ 1

G

Z

dτLshell ≔ −
1

8G

Z

dτ
ðdẼx

dτ
Þ2

ffiffiffiffiffiffiffiffi

jẼxj
p with

Hs ¼ −
2

G
K̃2

x

ffiffiffiffiffiffiffiffi

jẼxj
q

¼ −ms; ð3:2Þ

where H denotes the corresponding physical Hamiltonian

and ms stands for the dust mass enclosed by the outermost

dust shell. The work in [47] considers the usual loop

quantization of the shell model based on holonomies and

triads as well as a loop quantization involving in addition

gauge covariant fluxes [76]. As we will not consider gauge

covariant fluxes in our work here in the further discussion

we will briefly summarize the effective model where gauge

covariant fluxes are absent. The effective Hamiltonian

involving holonomy corrections reads [47]

HΔ
s ¼ −

ðẼxÞ3=2
2GΔβ2

sin2
�

2β
ffiffiffiffi

Δ
p

K̃x
ffiffiffiffiffiffi

Ẽx
p

�

¼ −ms; ð3:3Þ

with Δ ¼ 4
ffiffiffi

3
p

πβl2pl fixed by the minimum nonzero

eigenvalue of area operator in LQG. The corresponding

equations of motion take the form

4
Note that compared to [47,75] the Poisson bracket in (2.13)

involves an additional factor of 1
2
and this results in anadditional factor

of 2 in the second LTB condition in the notation used in this work.
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_̃Ex ¼ Ẽx

β
ffiffiffiffi

Δ
p sin

�

4
ffiffiffiffi

Δ
p

βK̃x
ffiffiffiffiffiffi

Ẽx
p

�

;

_̃Kx ¼
K̃x

2
ffiffiffiffi

Δ
p

β
sin

�

4
ffiffiffiffi

Δ
p

βkx
ffiffiffiffi

εx
p

�

−
3

ffiffiffiffiffiffi

Ẽx
p

4β2Δ
sin2

�

2
ffiffiffiffi

Δ
p

βK̃x
ffiffiffiffiffiffi

Ẽx
p

�

:

ð3:4Þ

Taking into account that R̃ ¼
ffiffiffiffiffiffiffiffi

jẼxj
p

one can derive an

effective equation for _̃R=R̃ yielding a modified Friedmann

equation given by

� _̃R

R̃

�2

¼ 8πG

3
ρ

�

1 −
ρ

ρ0max

�

ð3:5Þ

with ρ ¼ 3ms

4πR̃3 and where ρ0max ¼ 3=ð8πGβ2ΔÞ denotes the
maximum energy density enclosed by the outermost dust

shell that is allowed in this model. That (3.5) corresponds to

a quantum gravity modified Friedmann equation with zero

spatial curvature (k ¼ 0) reflects again the fact that the

model corresponds to the marginally bound case. The

effective dynamics for the homogeneous dust collapse

involves a quantum geometric correction term causing

the right-hand side of this equation to vanish when the

density of the dust cloud reaches its maximum ρ0max.

The numerical results in [47] show that for a generic set

of chosen initial conditions the singularity at R̃ ¼ 0 is

replaced by a symmetric bounce. Furthermore, in the

k ¼ 0 case, independent of the initial conditions, there

exists a threshold for the dust mass below which no trapped

surfaces will form in the dust collapse. In case the dust mass

is larger than this threshold mass, then a pair of a dynamical

black and white hole forms symmetrically around the

bounce. Because in the model in [47] the LTB conditions

are implemented at the classical level where these are stable

under the classical evolution [75] and one only considers

the LTB canonical pair ðKx; E
xÞ, the LTB sector is

preserved by construction. In contrast to above analysis,

in this work here we consider the effective spherically

symmetric model obtained from the path integral formalism

in [38] and therefore going to the LTB sector requires

corresponding LTB conditions to be implemented. In

general these are not stable under the effective dynamics

and for this reason the strategy followed in [75] is to modify

the LTB conditions by additional functions depending on

the triads chosen such that the stability is ensured and the

geometric part of the spatial diffeomorphism constraint is

vanishing. As shown below, in the homogeneous reduction

the corresponding LTB conditions are stable under the

effective dynamics of the model in this work. More general

will be considered elsewhere [77].

B. A homogeneous reduction to the Oppenheimer-

Snyder dust collapsing model

The Oppenheimer-Snyder (OS) model describes the

gravitational collapse of a homogeneous matter cloud

whose interior spacetime is isometric to the cosmological

spacetimes and correspondingly its metric is given by

ds2 ¼ −dt2 þ aðtÞ2
1 − kx2

dx2 þ x2aðtÞ2dΩ2; ð3:6Þ

where aðtÞ denotes the scale factor and the constant k is

used to describe two distinct cases with k ¼ 0 correspond-

ing to the marginally bound case and k ¼ 1 to the bound

case. Comparing this metric with (2.14), we obtain

Exðt; xÞ ¼ x2aðtÞ2; Eφðt; xÞ ¼ xaðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p ; ð3:7Þ

which satisfy the LTB condition [47,75]

Ex0ðt; xÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

Eφðt; xÞ: ð3:8Þ

Here without loss of generality we assume Ex ≥ 0 and (3.8)

reduces to (3.1) for the marginally bound case. The results

for Ex < 0 can be obtained from the symmetry of the

equations of motion (2.27)–(2.30). Furthermore, Eq. (3.7)

can be regarded as a homogeneous reduction of the

variables Exðt; xÞ and Eφðt; xÞ as their spatial dependence
is clearly spelled out. Therefore, the only dynamical

variable is the scale factor which is a constant at any

comoving radius x at a given time.

A corresponding homogeneous reduction of the con-

jugate momenta Kxðt; xÞ and Kφðt; xÞ can be derived by

requiring the consistency of the equations of motion of

Exðt; xÞ and Eφðt; xÞ. Plugging (3.7) into Eqs. (2.29) and

(2.30), these two equations reduce to

_aðtÞ
aðtÞ ¼

sin
�

β
ffiffiffi

Δ
p

Kφðt;xÞ
xaðtÞ

	

cos
�

2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δð1−kx2Þ
p

Kxðt;xÞ
aðtÞ

	

β
ffiffiffiffi

Δ
p ; ð3:9Þ

_aðtÞ
aðtÞ ¼

cos
�

β
ffiffiffi

Δ

p
Kφðt;xÞ

xaðtÞ

	�

sin
�

2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δð1−kx2Þ
p

Kxðt;xÞ
aðtÞ

	

þ sin
�

β
ffiffiffi

Δ

p
Kφðt;xÞ

xaðtÞ

		

2β
ffiffiffiffi

Δ
p ; ð3:10Þ
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where _aðtÞ ≔ daðtÞ
dt

. Since aðtÞ only depends on the time

coordinate, one can impose the following ansatz:

Kφðt; xÞ ¼ xK̃φðtÞ; Kxðt; xÞ ¼
K̃xðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p ; ð3:11Þ

so that the arguments of the trigonometric functions only

depend on t. The consistency between (3.9) and (3.10)

requires

−sin

�

β
ffiffiffiffi

Δ
p

ðK̃φðtÞþ2K̃xðtÞÞ
aðtÞ

�

−3sin

�

β
ffiffiffiffi

Δ
p

ðK̃φðtÞ−2K̃xðtÞÞ
aðtÞ

�

þsin

�

2β
ffiffiffiffi

Δ
p

K̃φðtÞ
aðtÞ

�

¼0:

ð3:12Þ

One set of the solutions to this constraint is given by

K̃φðtÞ ¼ 2K̃xðtÞ þ 2πnaðtÞ
β

ffiffiffiffi

Δ
p ; n ∈ Z: ð3:13Þ

In order to fix the parameter n, we plug the ansatz (3.11)

into the equations of motion of Kxðt; xÞ and Kφðt; xÞ,
namely (2.27) and (2.28), and find the consistency con-

dition of the resulting equations demands n ¼ 0. As a

result, in the ansatz (3.11), we also require

K̃φðtÞ ¼ 2K̃xðtÞ; ð3:14Þ

which implies the fulfillment of the classical LTB condition

[47,75], i.e.

∂xKφðt; xÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

Kxðt; xÞ; ð3:15Þ

at the level of the effective dynamics for the collapse of a

homogeneous dust cloud. Based on the above analysis, we

conclude that in the homogeneous reduction with the ansatz

(3.7), (3.11), and (3.14), the collapse of an inhomogeneous

dust cloud whose dynamics is governed by (2.27)–(2.30)

can be reduced to the collapse of a homogeneous dust cloud

with the following reduced equations of motion

_aðtÞ ¼ aðtÞ sin ð2β
ffiffiffiffi

Δ
p

bðtÞÞ
2β

ffiffiffiffi

Δ
p ;

_bðtÞ ¼ −
1

2

�

k

aðtÞ2 þ
3sin2ðβ

ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

�

; ð3:16Þ

where we have defined

bðtÞ ≔ 2K̃xðtÞ
aðtÞ ; v ≔ a3ðtÞ: ð3:17Þ

In the next subsection, one can find that the above equations

of motion could be derived from the effective Hamiltonian

density resulting from the homogeneous reduction.

Remark 1.—Note that in general, the action of the

Hamiltonian on the LTB condition (3.8) gives




HΔ; E
φðxÞ − ∂xE

xðxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

�

¼ −
1

βðΔþ Δkx2Þ3=2



ΔEφðxÞð1 − kx2Þ3=2

× cos

�

βΔKφðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔExðxÞ
p

��

sin

�

2βKxðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔExðxÞ
p

EφðxÞ

�

þ sin

�

βΔKφðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔExðxÞ
p

��

þ Δð3kx − ð1 − kx2Þ∂xÞ
�

cos

�

2βKxðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔExðxÞ
p

EφðxÞ

�

ExðxÞ sin
�

βΔKφðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔExðxÞ
p

���

: ð3:18Þ

This implies that the LTB condition (3.8) is generally not
preserved by the effective dynamics after the system is
polymerized with the μ̄ scheme. However, in the particular
case of the homogeneous reduction, with the ansatz (3.7),
(3.11), and (3.14), the right-hand side of the above equation
identically vanishes, thus LTB condition (3.8) is preserved.
Similar analysis can be carried out with respect to the LTB
condition (3.15) which is found to be preserved as well
during the evolution of the homogeneous dust cloud.
Whereas for the evolution of the inhomogeneous dust
cloud, since the right-hand side of the above Poisson
bracket does not vanish, the classical LTB conditions are
no longer preserved. As a result, one is required to find the

analogues of the classical LTB conditions for the polym-

erized system which was addressed in [75], but this

possible generalization is beyond the scope of the current
study. A more detailed investigation on the LTB conditions

will be considered in future work [77].

C. The Hamiltonian and the evolutionary properties

of the interior of the homogeneous dust collapse

After the homogeneous reduction with the ansatz (3.7),

(3.11), and (3.14), it can be shown in a straightforward

way that the Hamiltonian density CΔðxÞ in (2.25)

reduces to

SPHERICAL SYMMETRIC GRAVITATIONAL COLLAPSE OF A … PHYS. REV. D 107, 044047 (2023)

044047-11



CΔðxÞ ¼ −
24πaðtÞ3x2

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

�

sin2 ðβ
ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k

aðtÞ2
�

¼ −
12πaðtÞ3

κ
∂x

�

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

k
−
sinh−1 ð

ffiffiffi

k
p

xÞ
k3=2

�

×

�

sin2 ðβ
ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k

aðtÞ2
�

: ð3:19Þ

The corresponding classical limit of the Hamiltonian

density can be recovered as Δ → 0, leading to

Cclassical ¼ lim
Δ→0

CΔðxÞ ¼ −
24πx2aðtÞðbðtÞ2aðtÞ2 þ kÞ

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

¼ −
24πx2aðtÞð _aðtÞ2 þ kÞ

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p ; ð3:20Þ

here we have used b ¼ _a=a obtained from the equation of

motion of _a in (3.16) in the classical limit. Cclassical is exactly

the classical Hamiltonian for the gravitational collapse of a

homogeneous dust cloud in the marginally bound case

(k ¼ 0) [75] or the bound case (k ¼ 1) [78]. On the other

hand, with the dust energy density given by

ρ ¼ −
CΔ

4πEφ
ffiffiffiffiffiffi

Ex
p ¼ 6

κ

�

sin2 ðβ
ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k

aðtÞ2
�

; ð3:21Þ

assuming the comoving radius of the outermost dust shell is

denoted by xs, the dust mass ms enclosed within the dust

cloud turns out to be

ms ¼
4πx3saðtÞ3ρ

3
: ð3:22Þ

Clearly, quantities proportional to ϵ ≔ ρaðtÞ3, e.g. the dust
mass ms, are conserved. Using the energy density defined

in (3.21) and the equation of motion of aðtÞ in (3.16), one

can obtain the following effective Friedmann equation

H2 ¼ _aðtÞ2
aðtÞ2 ¼

�

κρ

6
−

k

aðtÞ2
��

1 −
β2Δκρ

6
þ β2Δk

aðtÞ2
�

¼
�

8πGρ

3
−

k

aðtÞ2
��

1 −
β2Δ8πG

3

�

ρ −
3k

8πGaðtÞ2
��

;

ð3:23Þ

which coincides with the modified Friedmann equation for

the K quantization of the spatially flat (k ¼ 0) or closed

(k ¼ 1) FLRW universe with the μ̄ scheme [46,79]. As a

result, a bounce with _aðtbÞ ¼ 0 and äðtbÞ > 0 will take

place at the time tb when bðtbÞ ¼ π

2β
ffiffiffi

Δ
p , which once plugged

into (3.21) leads to

6

κ

�

1

β2Δ
þ k

aðtbÞ2
�

aðtbÞ3 ¼ ϵ: ð3:24Þ

Therefore, the scale factor at the bounce can be solved from

the above equation, yielding a general solution for any k

ab¼aðtbÞ

¼ð3β2Δκϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9β4Δ2κ2ϵ2þ48β6Δ3k3
p

Þ2=3−2
ffiffiffi

6
3
p

β2Δk

62=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2Δκϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9β4Δ2κ2ϵ2þ48β6Δ3k3
p

3

q :

ð3:25Þ

Since the evolution of the dust cloud in the marginally

bound case with k ¼ 0 is qualitatively different from that in

the bound case with k ¼ 1. In the following, we discuss

these two cases separately.

Remark 2.—It is important to note here two assumptions

when dealing with the bound case. Being spatially-compact

not only do quantum geometric effects enter via holono-

mies but also via inverse scale factor effects. Since the latter

are generally negligible in the dynamics of the homo-

geneous and isotropic bounce they have been ignored [80].

Nevertheless their contribution can be significant in singu-

larity resolution, such as in anisotropic cases [81]. The

second assumption is that the K quantization is based on

constructing holonomies using the extrinsic curvature only.

Since we are working the approximation where inverse

scale factor effects are ignored and intrinsic curvature does

not enter the holonomies, above modified Friedmann

equation (3.23) for the bound case ignores quantum geo-

metric modifications to the intrinsic curvature. The follow-

ing analysis for the bound case would be under these setting

and it is an open question how the results change if these

assumptions are relaxed.

Case A: The marginally bound case.—In this case k ¼ 0,

hence the scale factor at the bounce reads ab ¼
ffiffiffiffiffiffiffiffiffiffiffi

4β2Δκϵ
3
p

2
ffiffi

3
3
p ,

which once plugged into (3.21) yields the maximum energy

density at the bounce, namely

ρ0max ¼
6

κβ2Δ
¼ 3

8πGβ2Δ
: ð3:26Þ

For a dust cloud with a fixed mass ms, it collapses

continuously with a decreasing radius and an increasing

energy density. When the energy density attains its maxi-

mum value at ρ0max, the bounce takes place and the dust

cloud starts to reexpand toward spatial infinity. In this

process, during the collapse of the dust cloud, b lies in the

interval b ∈ ð π

2β
ffiffiffi

Δ

p ; π

β
ffiffiffi

Δ

p Þ and is continuously decreasing.

After the quantum bounce when the dust cloud enters into

expanding phase, b monotonically decreases from π

2β
ffiffiffi

Δ

p

toward zero. In the marginally bound case, b cannot reach

zero in any finite coordinate time.
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Case B: The bound case.—In this case k ¼ 1, the

quantum corrections enter into the effective Friedmann

equation (3.23) in the second parenthesis on the right-hand

side. Due to the spatial curvature, there is also a recollapse

which takes place when the energy density satisfies

ρre ¼ 3

8πGa2re
, hereafter the index ‘re’ will be used to denote

quantities at the recollapse point. Combining with the

relation between the energy density and the scale factor

given in (3.22), it is straightforward to obtain the energy

density and the scale factor at the recollapse which turn out

to be

are ¼
2Gms

x3s
; ρre ¼

3x6s

32πG3m2
s

: ð3:27Þ

On the other hand, in this case, the maximum energy

density at the bounce takes the form

ρb ¼ ρ0max þ
3

8πGa2b
; ð3:28Þ

with ab given by (3.25) for k ¼ 1. Therefore, for the

bound case, the dust cloud behaves like a pulsating star

which experiences infinite cycles of the bounces and the

recollapses with the energy density ρ ¼ ρb and ρ ¼ ρre
respectively.

D. The null expansions and the formation of the trapped

surfaces of the homogeneous collapsing dust cloud

In order to investigate the formation of the trapped

surfaces during the gravitational collapse of the dust cloud,

for a generic spherically symmetric spacetime described by

the metric (2.14), one can define two future-directed null

vectors which are normal to the sphere with the constant

radius
ffiffiffiffiffiffiffiffi

jExj
p

¼ const via

∂ξþ ¼ 1
ffiffiffi

2
p

�

∂t þ
ffiffiffiffiffiffiffiffi

jExj
p

Eφ
∂x

�

;

∂ξ− ¼ 1
ffiffiffi

2
p

�

∂t −

ffiffiffiffiffiffiffiffi

jExj
p

Eφ
∂x

�

: ð3:29Þ

If the radius of the sphere shrinks along the radial null

geodesics ξþ ¼ const and ξ− ¼ const, then a trapped

surface forms at the sphere [82]. In practice, it is convenient

to introduce the expansion parameters θ� which are

defined by

θ� ¼ 2
ffiffiffiffiffiffiffiffi

jExj
p ∂�

ffiffiffiffiffiffiffiffi

jExj
p

¼ 1
ffiffiffi

2
p

jExj

�

∂tjExj �
ffiffiffiffiffiffiffiffi

jExj
p ∂xjExj

Eφ

�

;

ð3:30Þ

where ∂� denotes derivatives with respect to ξ� respec-

tively. When θ� < 0, the light rays emitted from the sphere

converge on both sides of the sphere, then the sphere

becomes a future trapped surface. In the homogeneous

reduction with the ansatz (3.7), the expansion parameters

are simplified to

θ� ¼ 1
ffiffiffi

2
p

xa

�

x _a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− kx2
p

	

¼ 1
ffiffiffi

2
p

R

�

_R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− kx2
p

	

;

ð3:31Þ

where in the last step we have used the definition of the

radius of the sphere R ≔ xaðtÞ in the homogeneous case.

Consequently, during the collapse of the dust cloud with
_R < 0, a marginally trapped surface with θ− < 0 and

θþ ¼ 0 exists at the comoving radius

xh ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

_a2 þ k
p : ð3:32Þ

Note Rθþ decreases monotonically as the comoving radius

x increases. When the comoving radius of the outermost

dust shell is larger than xh, namely xs > xh, the outermost

dust shell becomes a trapped surface with θ� < 0. As a

result, the criterion for the formation of the (marginally)

trapped surface at the boundary of the dust cloud is

Rs ≥ Rh; ð3:33Þ

where Rs ¼ axs is the physical radius of the outermost dust

shell and Rh ¼ axh denotes the physical radius of the

marginally trapped surface located at x ¼ xh.
The classical description of the collapse of the dust cloud

can be obtained by taking the classical limit of the effective

dynamics, under which the dust mass in (3.22) tends to its

classical value given by

mc
s ¼ msjΔ→0 ¼

x3sa

2G
ð _a2 þ kÞ; ð3:34Þ

hereafter we use superscript “c” to denote the quantities

obtained in the classical limit when the minimal area gap

tends to vanish. As a result, in the classical theory, for both

the marginally bound and the bound case, the physical radii

of the marginally trapped surface and the outermost dust

shell are related via

Rc
h ¼ xchaðtÞ ¼

xsaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

xsaðtÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffi

2Gmc
s

p ¼ Rs

ffiffiffiffiffiffiffiffiffiffiffiffi

Rs

2Gmc
s

s

: ð3:35Þ

Now imagine a dust cloud starts to collapse at a very

large volume with Rs ≫ 2Gmc
s, at the early stage of the

collapse, Rc
h ≫ Rs, so its outermost shell is not trapped at

all. As the dust cloud keeps collapsing, the critical moment

happens at Rs ¼ 2Gmc
s when the outermost dust shell

becomes marginally trapped since Rc
h ¼ Rs at this moment.
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Afterwards, the outermost dust shell remains a trapped

surface until the classical singularity at Rs ¼ 0 is reached.

Therefore, in the classical case, the singularity is always

covered by a trapped surface at the boundary of the dust

cloud, namely an apparent horizon, which is consistent

with the cosmic censorship hypothesis.

In contrast, assuming the validity of effective dynamics

in the entire evolution (3.19), a trapped surface at the

boundary may not always form during the collapse of

the dust cloud if the quantum bounce takes place before the

formation of the trapped surface. In particular, as discussed

above, there will be no trapped surface if Rh > Rs, namely,

Rh

Rs

¼ 1

xs
ffiffiffiffiffiffiffiffiffiffiffiffiffi

_a2 þ k
p > 1; ð3:36Þ

holds for all the time before and after the bounce.

Combining Eqs. (3.21) and (3.22) and the equations of

motion in (3.16), it is straightforward to show that

Rh

Rs

¼ a1=3

ð2GmsÞ1=3
�

a2 sin2ðβ
ffiffiffiffi

Δ
p

bÞ
β2Δ

þ k

�

1=3

×

�

a2 sin2ð2β
ffiffiffiffi

Δ
p

bÞ
4β2Δ

þ k

�

−1=2

: ð3:37Þ

As a result, the minimum of Rh=Rs is located at
dðRh=RsÞ

dt
¼ 0

which results in

4aðtÞ2 sin3 ðβ
ffiffiffiffi

Δ

p
bðtÞÞ cos ð3β

ffiffiffiffi

Δ

p
bðtÞÞ

þ β2Δk sin ð4β
ffiffiffiffi

Δ

p
bðtÞÞ ¼ 0: ð3:38Þ

For the marginally bound case k ¼ 0, the above equation

yields two solutions for b, namely,

b1 ¼
π

6β
ffiffiffiffi

Δ
p ; b2 ¼

5π

6β
ffiffiffiffi

Δ
p : ð3:39Þ

The first solution b1 corresponds to the expanding phase of
the dust cloud after the occurrence of the quantum bounce

while the second solution b2 to the collapsing phase of the

dust cloud before the quantum bounce. These two solutions

give the same minimum of Rh=Rs as the evolution of the

dust cloud is symmetric with respect to the bounce. Now

plugging the solutions (3.39) into the ratio (3.37), one can

immediately find the minimum of Rh=Rs turns out to be

Rh

Rs

�

�

�

�

min

¼
�

8
ffiffiffiffi

Δ
p

β

3
ffiffiffi

3
p

Gms

�

1=3

: ð3:40Þ

Then we can find a threshold mass for the formation of the

trapped surface at the boundary of the dust cloud, which is

M� ¼
8

ffiffiffiffi

Δ
p

β

3
ffiffiffi

3
p

G
: ð3:41Þ

When the dust mass ms is less than M�, Rh=Rs is always

larger than unity during the entire evolution of the dust

cloud which implies no trapped surface (horizon) would

form at any time. Only when ms is taken to be larger than

M�, the horizon can form before the occurrence of the

bounce during the collapse of the dust cloud. More details

on the qualitative features of dynamical evolution of the

dust cloud and the formation of the trapped surface will be

discussed and analyzed via numerical simulations in the

next section.

Remark 3.—It is worthwhile to note that our results on the

marginally bound case with k ¼ 0 are consistent with those

reported in [47]. In particular, the threshold mass M� is

exactly the same as the one derived in [47]. Moreover, the

numerical results presented in Sec. IV will further confirm

this consistency. Although we expect that in more general

models implementing the LTB conditions and quantization

will not commute as in the case of the relationship between

polymerization and the gauge fixing recently discussed

in [42], for the polymerization at the level of the effective

dynamics commutes with the homogeneous reduction at

least for the K quantization with the μ̄ scheme. In particular,

we have shown this explicitly for the marginally bound case

as we have obtained from the homogeneous reduction the

same modified dynamical equations and the threshold mass

for the formation of the trapped surface at the boundary as in

the dust shellmodelwhich relies on a loop quantization of the

classical homogeneous model of the dust collapse [47].

E. The exterior stationary spacetime

and the matching conditions

To explore potential phenomenological signatures of

collapse of the dust cloud, it is necessary to glue the interior

collapsing spacetime with an exterior spacetime which

describes the geometry and thus the matter distributions of

the collapsing dust cloud as observed by an outside spectator

at spatial infinity. As discussed in Sec. III B, the interior

collapsing spacetime is described by the OS model in the

classical regime while for the exterior spacetime we choose

without loss of generality a generic spherically symmetric

spacetime with its metric given in (2.14). The matching is

performed at the boundary x ¼ xs. In particular, for the

interior spacetime, its first and second fundamental forms on

the boundary surface turn out to be

γ−μνdx
μdxν ¼ −dt2 þ x2saðtÞ2dΩ2; ð3:42Þ

K−
μνdx

μdxν ¼ 1

2
∂xE

x

ffiffiffiffiffiffiffiffiffiffiffiffi

Ex

ðEφÞ2

s

dΩ2 ¼ xsaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2s

q

dΩ2;

ð3:43Þ
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where γ−μν is the induced 3-metric on the boundary surface

and K−
μν ¼ −γαμγ

β
ν∇αnβ is the projection of the extrinsic

curvature onto the boundary surface. While for the exterior

solution, assuming the boundary surface Σ is determined

by Fðτ; xÞ ≔ fðτÞ − x ¼ 0, where the normal covector is

given by nμ ¼ ∇μFðτ; xÞ which satisfies nμn
μ > 0, then

the induced metric and extrinsic curvature projected

from the exterior spacetime onto the boundary surface take

the form

γþμνdx
μdxν ¼ −dt2 þ ExðτðtÞ; xðtÞÞdΩ2; ð3:44Þ

Kþ
μνdx

μdxν ¼ Bdt2 þ CdΩ2; ð3:45Þ

with

B ¼ 1

2ExsgnðEφÞðEx − f0ðτÞ2ðEφÞ2Þ3=2

× ðf0ðτÞEφExðf0ðτÞð2f0ðτÞEφ
∂τE

φ þ ∂xE
xÞ þ 2∂τE

xÞ
− 2ðExÞ2ðf0ðτÞðf0ðτÞ∂xEφ þ 2∂τE

φÞ
þ f00ðτÞEφÞ þ f0ðτÞ3ðEφÞ3∂τExÞ; ð3:46Þ

C ¼ f0ðτÞðEφÞ2∂τEx þ Ex
∂xE

x

2jEφj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex − f0ðτÞ2ðEφÞ2
p : ð3:47Þ

Requiring the continuation of the induced metric and the

existence of a surface stress-energy tensor on the boundary

surface Σ, the matching conditions of the interior and the

exterior spacetimes are prescribed by

γþμν − γ−μν ¼ 0; ð3:48Þ

ðKþ
μν − γþμνK

þÞ − ðK−
μν − γ−μνK

−Þ ¼ σμν; ð3:49Þ

where σμν stands for the surface stress-energy tensor on Σ.

Note the exact form of σμν is determined by the specific

exterior spacetime metric used to match with the interior.

Taking the classical Schwarzschild exterior as an example,

we have Ex ¼ R2; Eφ ¼ R0R with

Rðx; τÞ ¼
�

3

2

ffiffiffiffiffiffiffi

2m
p

ðx − τÞ
�

2

3 ¼
�

3

2

ffiffiffiffiffiffiffi

2m
p

z

�

2

3

: ð3:50Þ

With the classical homogeneous interior solutions given by

aðtÞ ¼
�

3

2

ffiffiffiffiffiffi

2E
p

ðt0 − tÞ
�

2

3

for k ¼ 0; ð3:51Þ

the junction condition (3.48) in the classical marginally

bound case can be solved with σab ¼ 0 and

Ex¼x2saðτÞ2; m¼x3sE; xðtÞ¼xs; τðtÞ¼ t−xs: ð3:52Þ

1. The effective stationary exterior solution

To obtain an analog of the Schwarzschild solution (3.50)

in the effective dynamics, we can introduce the following

generator of the Killing vector field

∂K ¼ ∂t þ ∂x; ð3:53Þ

so that the metric functions Ex; Eφ are preserved by ∂K. As

a result, we have the following ansatz

Exðt;xÞ¼ExðzÞ; Eφðt;xÞ¼EφðzÞ;
Kxðt;xÞ¼KxðzÞ; Kφðt;xÞ¼KφðzÞ; z¼x− t: ð3:54Þ

With the null expansion (3.29), one can easily check that,

the vector field ∂K is timelike in the untrapped region, while

spacelike inside the trapped region. Thus ∂K generates the

analog of classical static solution in the effective dynamics.

This solution has been studied in detail in [38]. We will

briefly summarize the results here.

With ansatz (3.54), the EOMs (2.27)–(2.30) reduce to a

set of 1st order ODEs:

d

dz

2

6

6

6

4

Ex

Eφ

K1

K2

3

7

7

7

5

¼ −

2

6

6

6

4

fxðEx; Eφ; K1; K2Þ
fφðEx; Eφ; K1; K2Þ
f1ðEx; Eφ; K1; K2Þ
f2ðEx; Eφ; K1; K2Þ

3

7

7

7

5

: ð3:55Þ

The classical solution is supposed to be recovered at

z → þ∞ or z → −∞, since it is far away from the classical

singularities z ¼ 0. The Schwarzschild solution (3.50) then

can be given at z ≫ 1 or z ≪ −1 as initial conditions for the

ODEs (3.55).

Note that, using coordinate z, we can rewrite the metric

for black hole exterior (∂K timelike) as

ds2 ¼ −dt2 þ ðEφðzÞÞ2
jExðzÞj ðdzþ dtÞ2 þ jExjdΩ2: ð3:56Þ

By defining a new coordinate τ ¼ t −
R

z
z0
dz0 Eφðz0Þ2

Eφðz0Þ2−Exðz0Þ,

the above metric turns out to be equivalent to

ds2 ¼ −
Ex − ðEφÞ2

Ex
ðzÞdτ2 þ ðEφÞ2

Ex − ðEφÞ2 ðzÞdz
2

þ ExðzÞdΩ2; ð3:57Þ

which has coordinate singularities at the horizons located at

Ex ¼ ðEφÞ2. Moreover, in the region where ExðzÞ is

monotonic, using ExðzÞ ¼ R2 it can be further rewritten as

ds2 ¼ −

�

1 −
ðEφÞ2
R2

�

dτ2 þ ðEφÞ2
ðR2 − ðEφÞ2ÞðR0Þ2 dR

2

þ R2dΩ2: ð3:58Þ
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Therefore, the above coordinate transformation has a

coordinate singularity at the bounce point R0 ¼ 0.

Remark 4.—Note that the above static solution may not

be a vacuum solution for given vacuum initial values on the

initial Cauchy slices. The reason is the effective physical

Hamiltonian density HΔðt; xÞ is not a conserved quantity.

The only vacuum solution is the Minkowski solution. As a

result, the vacuum solution for a massive object in the

effective theory can only be achieved at z ¼ x − t ¼ �∞,

which reduces to the classical Schwarzschild solution.

Lacking of nontrivial vacuum solution means the dust

contribution will always appear except for some certain

fixed isolated t’s. Thus the deparametrization is always

well-defined in the system.

Remark 5.—The ODEs (3.55) have a time-reflection

symmetry with the following transformation of the fields:

Exð−zÞ → −ExðzÞ;
Eφð−zÞ → EφðzÞKxð−zÞ → KxðzÞKφð−zÞ

→ −KφðzÞ ð3:59Þ

This symmetry can be used to define the white hole solution

which can be glued asymptotically to the black hole

solution as described in [38].

2. Approximate gluing to an effective static

exterior solution

Since our effective equations of motion (2.27)–(2.30)

hold for the whole spherical symmetric space time, a

consistent exterior solution should solve (2.27)–(2.30) as

well at effective level. Beyond the classical theory we can

still assume x0ðtÞ ¼ 0 and τ0ðtÞ ¼ 1. The reason to chose

this ansatz is that the surface of the star must follow a

timelike geodesic of the exterior metric, where x0ðtÞ ¼ 0 is

a timelike geodesic with metric (2.14). The junction

condition then becomes (assuming σab ¼ 0)

Exðτ; xÞjx¼xs
¼ x2saðtÞ2;

2Eφðτ; xÞjx¼xs
¼ ∂xE

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2
p

�

�

�

�

x¼xs

; ð3:60Þ

which is similar to the classical one. This imposes the

boundary condition at x ¼ xs for the PDE system (2.27)–

(2.30). At t ≪ 0, the system approaches the classical

regime, and assuming that it is approximately described

by Einstein field equations in LTB spacetime we can set

the initial value as the LTB vacuum solution. Under this

approximation the boundary-initial value PDE system

which can be solved numerically.

In the case where the exterior solution has the killing

field ∂K given in (3.53), we have

ExðzÞ ¼ x2sa
2ðxs − zÞ;

2EφðzÞ ¼ Ex0ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2s
p ¼ fðxsÞEx0ðzÞ; ð3:61Þ

where the condition on the junction surface is transported

to z plane due to the killing field ∂K , and fðxsÞ ≔ 1
ffiffiffiffiffiffiffiffiffi

1−kx2s

p .

In this case, the metric (3.57) becomes

ds2 ¼ −

�

1 −
fðxsÞ2Ex0ðzÞ2

4ExðzÞ

�

dτ2 þ 1

4Ex

fðxsÞ2Ex 0ðzÞ2 − 1
dz2

þ ExðzÞdΩ2: ð3:62Þ

Using the Friedmann equation (3.23) we have

R0ðzÞ2 ¼ ðEx0ðzÞÞ2
4jExj

¼
�

2Gms
ffiffiffiffiffiffi

Ex
p − kx2s

��

1 −
β2Δ

Ex

�

2Gms
ffiffiffiffiffiffi

Ex
p − kx2s

��

:

ð3:63Þ

Thus the metric only depends on R0ðzÞ2. In the region

where ExðzÞ is monotonic, using R ≔ �
ffiffiffiffiffiffi

Ex
p

which cor-

responds to the stage before or after the bounce, the above

metric can be further rewritten as

ds2 ¼ −ð1 − fðxsÞ2R0ðzÞ2Þdτ2 þ fðxsÞ2
1 − fðxsÞ2R0ðzÞ2 dR

2

þ R2dΩ2 ð3:64Þ

¼ −AðRÞdτ2 þ fðxsÞ2
AðRÞ dR2 þ R2dΩ2; ð3:65Þ

with A given by

AðRÞ¼1−fðxsÞ2
�

2Gms

jRj −kx2s

��

1−
β2Δ

R2

�

2Gms

jRj −kx2s

��

:

ð3:66Þ

For k ¼ 0, we have fðxsÞ ¼ 1 and

AðRÞ ¼ 1 −
2Gms

jRj

�

1 −
β2Δ

R2

2Gms

jRj

�

: ð3:67Þ

Note that now the metric (3.64) is well-defined for both

before and after the bounce, as well as at the bounce. This

metric has the same form as the one obtained in [83,84].

However, here this metric is only defined locally before

or after the bounce with a minimal value of jRjmin ¼
ffiffiffiffiffiffiffiffiffiffiffi

ExðzÞ
p

z¼zbounce
, there is no extension to the regime

R < Rjmin.
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It is important to note that (3.60) is exactly the first LTB

condition on the junction surface. However, as one can see

from (3.18), the LTB condition is in general violated. More

specifically, it is violated in the static solution given by

(3.55). The violation is shown in Fig. 1. As expected, the

violation is strong in the quantum regime close to the

classical singularity. Thus the junction condition with

static exterior will lead to a nontrivial surface stress-energy

tensor σμνdx
μdxν¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Exðτ;xÞ
p

ð1− ∂xE
x

2Eϕðτ;xÞÞdΩ2jx¼xs
, which

increases linearly with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Exðτ; xÞ
p

after the bounce. The

result is consistent with the general analysis given in

[85,86]. Such violation may relate to the fact that the static

solution in effective dynamics contains a nontrivial dust

mass distribution which is not compatible with the homo-

geneous interior.

IV. NUMERICAL RESULTS OF THE EFFECTIVE

HOMOGENEOUS DUST COLLAPSE

In this section we present the numerical results of the

dynamical evolution of the homogeneous dust collapse

described by the effective dynamics for both marginally

bound and the bound case. We have already shown in

Sec. III C that in the effective dynamics the classical

singularity is resolved and replaced by a quantum bounce

in the Planck regime. In our numerical simulations, we

carefully choose the initial conditions in the classical

regime so that the bounce in the marginally bound case

takes place at time tb ¼ 0. For the bound case we ensure

that at least one of the bounces occurs at tb ¼ 0. In general,

the (3.6) with solutions of the effective equations of motion

(3.16) can be uniquely determined by three parameters,

namely, the dust mass (3.22), the spatial curvature and the

choice of the boundary surface. Therefore, in addition to

quantum gravity effects, we will also investigate in some

detail the impacts of these three parameters on the evolution

of the homogeneous dust collapse, in particular, on the

formation of the trapped surface during the contraction and

the reexpansion of the dust cloud. In the numerical results,

we choose β ¼ 0.2375 based on the black hole thermo-

dynamics in LQG.

In the following, we start with the qualitative evolution

of the physical radius R ¼ xsa of the dust cloud and

investigate how it is affected by the dust mass and the

spatial curvature. In Fig. 2, we explicitly show the evolution

of R for the marginally bound and the bound case with the

boundary surface chosen at xs ¼ 0.5. For each case, two

different dust masses are compared. The left panel depicts

the behavior of R over a long time for the bound case with

mass ms ¼ 32 (red dot-dashed curve) and ms ¼ 64 (blue

dotted curve) as well as the marginally bound case with the

same mass, namely ms ¼ 32 (magenta dashed curve) and

ms ¼ 64 (black solid curve) while the right panels illustrate

FIG. 1. The evaluation of the LTB condition of the effective

static exterior solution with mass m ¼ 10 (blue-solid line) and

m ¼ 1000 (orange-dashed line) on the junction surface x ¼ xs
(Units are Planckian). The surface stress-energy tensor is given

by σμνdx
μdxν ¼ xsaðtÞð1 − ∂xE

x

2Eφ ÞdΩ2. The classical singularity

lies at z ¼ 0.
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FIG. 2. In this plot, we compare the evolution of the physical radius for k ¼ 0 and k ¼ 1 with the mass given by ms ¼ 32 and

ms ¼ 64. The left panel depicts these four cases, with red dot-dashed curve describing the case ðk ¼ 1; ms ¼ 32Þ, blue dotted curve for
ðk ¼ 1; ms ¼ 64Þ, magenta dashed curve for ðk ¼ 1; ms ¼ 32Þ and black solid curve for ðk ¼ 0; ms ¼ 64Þ. On the right is the zoomed-

in plot around the bounce at tb ¼ 0 for the bound case only.
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some details near the bounce at t ¼ 0. Since the physical

radius evolves in a qualitatively same way for both margin-

ally bound and the bound case, in the right panel we only

show the details around the bounce in the bound case. One

can find from the figure the following properties of the

homogeneous dust collapse in the effective dynamics. First,

the classical singularity is generically resolved and replaced

by a bounce for both marginally bound and the bound case.

Secondly, for the marginally bound case, there exists only

one single bounce which connects the collapsing phase

with a reexpanding branch. The physical radius of the dust

cloud reaches the minimal value at the bounce which

increases with the dust mass. For the bound case, due to the

spatial curvature, the dust cloud experiences identical

cycles of contraction and expansion, mimicking the behav-

ior of a pulsating star. The physical radius of the dust cloud

increases at both the recollapse and the bounce point with

the dust mass. Moreover, the period of the cyclic evolution

of the dust cloud also increases with the dust mass. In

particular, the period of cycles doubles when the dust mass

doubles.
In Fig. 3, we plot the change in the energy density for

both cases with the parameters chosen the same as in Fig. 2.

It turns out that the maximum energy density in the

marginally bound case has an intrinsic value determined

only by β2Δ as given in (3.26). It would not be affected at

all by the dust mass or the choice of the boundary surface.

On the other hand, for the bound case, as expected in

(3.28), the maximum energy density also depends on the

minimal physical radius of the dust cloud at the bounce

which in turn is fixed by β, Δ and the dust mass. In

particular, as can be seen from (3.25), when the dust mass

ms ≫ 1, Rb ¼ xsab ∼m
1=3
s . Therefore, the maximum

energy density in the bound case decreases with the dust

mass and tends to ρ0max in the marginally bound case. This

feature is qualitatively captured in the left panel of Fig. 3. In

particular, the maximum energy densities of the bound case

as seen from the red dot-dashed and blue dotted curves are

always larger than the maximum energy density of the

marginally bound case represented by the magenta dashed

curve. Meanwhile, due to the effect of intrinsic curvature

the blue dotted curve corresponding toms ¼ 64 has a lesser

maximum energy density than the red dot-dashed curve

which corresponds to the dust mass ms ¼ 32.

In Fig. 4, we show explicitly the dependence of the

maximum energy density on the dust mass in two cases

with a fixed boundary surface xs ¼ 0.5. A different choice

of the boundary surface would not change the value of ρ0max

in the marginally bound case, neither it would change the

way ρ0max depends on the dust mass in the bound case. As

expected, the maximum energy density of the marginally

bound case does not change with the dust mass as shown in

the left panel of the figure while in the bound case the

maximum energy density at the bounce point increases

with a decreasing dust mass. When the dust mass increases,

the shell recollapses at a larger value of the radius therefore

making recollapse density negligible. In this case the

density at the bounce in the marginally bound and bound

cases approximate each other. For very small dust mass as

depicted in the right panel of the figure, the difference

between the maximum and the minimum energy densities

tends to be small as compared with the maximum (mini-

mum) energy density. This is why the blue circles appears

to be overlapping with the red disks at the small dust

masses in the right panel.

In Fig. 5, the qualitative behavior of the momentum b is

compared for the marginally bound and the bound case

where we choose the dust mass ms ¼ 32, 64 and the

boundary surface xs ¼ 0.5 as two examples. We find only

the spatial curvature can affect the qualitative behavior of b.
In particular, for the marginally bound case k ¼ 0, b is

confined within the range b ∈ ð0; π

β
ffiffiffi

Δ

p Þ. The classical limit

can be recovered as b → 0ðb →
π

β
ffiffiffi

Δ

p Þ in the collapsing

(reexpanding) branch. A change in the dust mass would not

affect the evolution of b in this case. In contrast, for the
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FIG. 3. In this plot we compare the dust energy density ρ for k ¼ 0 (magenta dashed curve) and k ¼ 1 case, for k ¼ 1 we choose

m ¼ 32 (red dot-dashed curve) and m ¼ 64 (blue dotted curve). In the right panel, we compare the energy density of these three cases

near the bounce at t ¼ 0 which shows the difference of the maximum energy density among them.
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bound case, the value of the momentum b is not constrained

in any finite range as the cyclic evolution of the dust cloud

goes on. Since b evolves monotonically when the matter

content (such as the dust) satisfies the weak energy

condition, it keeps decreasing during the forward evolution

of the dust cloud in time. The classical limits are recovered

near the recollapse points where b takes the values b ¼
nπ=β

ffiffiffiffi

Δ
p

with n being any integers while the bounces take

place at b ¼ lπ=2β
ffiffiffiffi

Δ
p

with l standing for any nonzero

integers. In this way, the evolution of the momentum b

forms a ladder structure in which there appears a plateau

around the recollapse points b ¼ nπ=β
ffiffiffiffi

Δ
p

. We see the

same periods of the cycles in the bound case as in Figs. 2

and 3. Since the dust mass can affect the periods of the

cycles in the bound case, different masses can correspond-

ingly change the duration of the plateau as shown explicitly

in the right panel of the figure.

Now let us discuss the formation of the trapped surfaces

during the nonsingular evolution of the homogeneous dust

cloud in the effective dynamics. As discussed in Sec. III D,

the outermost shell of the dust cloud becomes trapped as a

result of its relative positioning against the apparent horizon

which amounts to a marginally trapped surface. When the

apparent horizon is located inside the outermost shell of the

dust cloud, the latter becomes trapped and the dust cloud

forms a black/white hole. Therefore, it is of key importance

to track the relative position of the outermost shell of the

dust cloud with respect to the apparent horizon as shown

explicitly in Fig. 6. In this representative example, we

choose xs ¼ 0.5,ms ¼ 2 and k ¼ 1. Note we only pick one

cycle with the bounce taking place at tb ¼ 0. Finally, we

numerically compute the minimal value of the ratio

between the apparent horizon and the location of the

physical radius of outermost dust shell. The result is

presented in Fig. 7. As shown in the figure, this ratio only

depends on the mass of the dust cloud. For each case, there

exists a threshold value of the dust mass. When the actual

mass of the dust cloud falls below the threshold value, no

horizon would form during the nonsingular evolution of the

FIG. 4. In this plot we show explicitly how the mass of the dust cloud can affect the maximum energy density in two cases k ¼ 0

(magenta dashed line) and k ¼ 1 (blue dotted line) in the left panel. In the right panel, we show the change in the maximum energy

density (blue circles) and the recollapse energy density (red disks) in the bound case for small dust mass.
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FIG. 5. In the figure, we show the evolution of the momentum b in the marginally bound case in the left panel and also in the bound

case in the right panel. The blue dotted curve corresponds to the case ðk ¼ 1; ms ¼ 64Þ while the red dot-dashed curve to the case

ðk ¼ 1; ms ¼ 32Þ.
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dust cloud. This actually sets up a lowest bound on the mass

of the black hole which is formed by the collapse of the dust

cloud. Besides, we also note that the spatial curvature does

impact the specific value of the threshold mass although its

effect is limited.

V. CONCLUSIONS

In this work, we applied the μ̄-scheme effective dynam-

ics of the spherical symmetry reduced model to study the

gravitational collapse for a homogeneous dust cloud. The

model, having infinitely many physical DOFs, is developed

based on the reduced phase space formulation of gravity

coupled to Gaussian dust. The dust serves as both the

reference field and the source of the gravitational collapse.

Inside the dust cloud, the effective dynamics improves the

classical Oppenheimer-Snyder (OS) model by resolving the

singularity with a nonsingular bounce, where the curvature

is of Planckian order. The effective dynamics from the

model presented here for a homogeneous dust cloud

reduces precisely to the effective dynamics of LQC with

K-quantization based on using holonomies of the extrinsic

curvature, indicating that the LQC effective dynamics for

the spatially flat case lives as a subsector of the model

presented here. Since the model presented in this work

allows to consider the k ¼ 0 and k ¼ 1 case in a unified

framework, we have also compared the properties of the

two cases. Here we restate our assumption that the bound

case only takes into account quantum geometric effects of

extrinsic curvature via holonomies and the intrinsic curva-

ture does not affect holonomies. In a former work by some

of the authors [47] on the one hand only the k ¼ 0 case was

considered and on the other hand the LTB conditions were

applied before quantization. It has been found that the

spatial curvature can affect the qualitative dynamics of the

evolution of the dust cloud. For k ¼ 0, the collapsing dust

cloud bounces at a fixed maximum energy density and then

keeps expanding ever after. In this process, the momentum

b is confined within the range b ∈ ð0; π

β
ffiffiffi

Δ
p Þ and monoton-

ically increases. On the other hand, the evolution of the dust

cloud in the bound case (with k ¼ 1) exhibits a richer

FIG. 7. In this figure, we numerically show the dependence of

the minimum value of Rh=Rs on the mass of the dust cloud in the

cases of k ¼ 0 and k ¼ 1. When this minimal value is greater than

unity, no horizon would form at the outermost dust shell during

the nonsingular evolution of the dust cloud. The threshold mass

turns out to be M� ¼ 0.5879 for k ¼ 0 and M� ¼ 0.4756

for k ¼ 1.

FIG. 6. The plot of the position of apparent horizon and the dust shell in bound case with ms ¼ 2. The blue dashed line indicates the

position of apparent horizon in the effective theory. The red lines indicates the evaluation of the dust shell under effective theory. The

intersection between the apparent horizon and the dust shell separates the trapped and untrapped regions, which can be seen from the

signature of null expansion on the right side (blue thick lines for θþ and orange dashed lines for θ−).
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dynamical properties. First, due to the nonvanishing spatial

curvature, the dust cloud experiences infinite cycles of

contraction and expansion, mimicking the behavior of a

pulsating star. Besides, both the maximum energy density

at the bounce point and the minimum energy density at the

recollapse point decrease with an increasing dust mass. In

particular, for sufficient large values of the dust mass, the

bounce energy density will merge into the same maximum

energy density obtained in the marginally bound case and

the gap between the maximum and the minimum energy

densities also increase as the dust mass increases.

Moreover, we find that the spatial curvature can also

influence the threshold mass for the formation of the

trapped surface at the outermost shell of the dust cloud

during its gravitational collapse. To be specific, in the k ¼ 0

case, the analytical expression of the threshold mass is

obtained and its exact value which is at the order of

Planckian mass agrees with the one found in [47] for

the standard LQC quantization where no covariant fluxes

are involved. In contrast, for the k ¼ 1 case, we can only

obtain the numerical result of the threshold mass which

turns out to be a slightly different value as compared with

the one in the marginally bound case. In both cases, the

bounce at the end of the gravitational collapse is symmetric

in time reversal. Whenever there is a black-hole formed in

the contracting phase of the dust cloud, it is always

accompanied by an anti-trapped white-hole region in the

expanding phase after the bounce which suggests that

the white hole might be the final state of the black hole

and the dust is finally emitted by the white hole. The results

obtained in this work also show that at least for the

considered homegeneous collapse model and the k ¼ 0

case applying the LTB conditions in the classical theory

and then quantizing yields the same threshold mass than if

we first quantize, consider the corresponding effective

model and implement the LTB conditions at the effective

level. Since the k ¼ 1 case was not considered in [47] we

cannot compare the results with the ones obtained here. The

effective Hamiltonian used in this work connects to the

K-quantization in LQC, because of the gauge fixing and

the choice of basic variables discussed in Sec. II C. The

choice of basic variables affects the μ̄-scheme regulariza-

tion in the effective Hamiltonian, and thus it affects the

properties of the effective dynamics such as the conserved

charges. The present choice results in that infinitely many

charges of spatial diffeomorphisms are conserved. As the

future investigation, it may be interesting to take into

account the different choices, which might results in the

dynamics with more conserved charges.

Our results of the gravitational collapse and bounce is in

favor of the black-hole-to-white-hole transition proposed

and explored in e.g. [12,87,88]. The effective dynamics

here has the advantage of treating the black hole interior

and exterior in a unified manner, and is aiming at a

complete description of the nonsingular black hole space-

time from the center to the infinity. The effective spacetime

obtained here shares similarities with the proposal in e.g.

[88]. However our effective description is still not com-

plete, because the matching condition between inside and

outside are not satisfied due to quantum effects. A detailed

analysis of this issue is needed to assess whether this is

because of the breakdown of the matching condition or the

underlying scheme. In future work an investigation will be

carried out to understand the region near the bounce, and

possibly for this we will need a model involving inhomo-

geneous dust. To formulate such a model requires to extend

the analysis on the LTB conditions at the effective level. For

the homogeneous case considered here for the k ¼ 0 as

well as the k ¼ 1 models the LTB conditions are preserved

under the effective dynamics. As discussed in [75] and also

briefly at the end of Sec. III B for an inhomogeneous model

this is no longer given and thus one needs to carry over the

LTB conditions consistently to such an effective model. An

approach where the LTB conditions have been modified by

functions depending on either one triad or extrinsic

curvature variable depending on the chosen polymerization

in the framework of effective techniques can be found in

[75]. In future work we plan to investigate the stability LTB

conditions further in order to see in addition to the work in

[75] how the stability of the LTB conditions can be

implemented in effective models [77]. In addition presum-

ably we might also take further effects from full LQG into

account because of the strong quantum dynamical effects in

the region around the bounce where the effective tech-

niques considered here might not capture all properties of a

given model.

There are proposals to glue the effective metric inside the

dust cloud to the Vaidya solution outside the dust cloud, in

order that the matching conditions are satisfied all the time.

This proposal is used especially in the model where the

effective dynamics inside and outside the dust cloud are

treated separately (see e.g. [47] and the references therein).

The effective metric obtained here can also be glued to the

Vaidya solution, as shown in Appendix. But this may

become inconsistent in our approach, unless one is able to

show that the Vaidya solution also satisfies the effective

equations fromHΔ, because both the inside and the outside

of dust cloud are governed by the same set of effective

equations in the model presented here. It is still interesting

to explore different effective solutions outside the dust

cloud. The solution employed here assumes the timelike

killing vector outside the horizon (so Ex; Eφ are functions

of z ¼ x − t). Relaxing this killing symmetry might result

in new dynamical solutions, which could satisfy the

matching conditions even near the bounce. This will likely

relate to the study of the inhomogeneous dust mentioned

above, since the solution may correlate to nontrivial

dynamics of the dust.
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APPENDIX: JUNCTION CONDITION TO THE

VAIDYA METRIC

For the Vaidya metric

ds2 ¼ −

�

1 −
2GMðτ; xÞ

x

�

dτ2 − 2dτdxþ x2dΩ2; ðA1Þ

Eq. (3.44) on junction surface Σ determined by x−xðτÞ¼0

becomes

γþμν ¼ −A2dτ2 þ xðτÞ2dΩ2; ðA2Þ

Kþ
μν ¼

1

A
ð−ðxðτÞÞ−3Bdτ2 þ CdΩ2Þ: ðA3Þ

The matching condition (3.48) then implies

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1 −
2GMðτ; xðτÞÞ

xðτÞ

�

þ 2x0ðτÞ
s

; ðA4Þ

B¼−xðτÞMðτ;xðτÞÞð2Mð0;1Þðτ;xðτÞÞþ3x0ðτÞþ1Þ ðA5Þ

þ xðτÞ2ðð3x0ðτÞ þ 1ÞMð0;1Þðτ; xðτÞÞ þMð1;0Þðτ; xðτÞÞ
− xðτÞx00ðτÞÞ þ 2Mðτ; xðτÞÞ2;

C ¼ 2GMðτ; xðτÞÞ − xðτÞð1þ x0ðτÞÞ: ðA6Þ

Thus we obtain

Aτ0ðtÞ ¼ 1; xðtÞ ¼ xsaðtÞ; B ¼ 0;

C ¼ AxsaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2s

q

; ðA7Þ

which have the following solution

τ0ðtÞ ¼ xs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kx2s
p

a0ðtÞ þ 1

ð1 − kx2sÞx2sa0ðtÞ2 − 1
;

Mðτ; xÞj
Σ
¼ 1

2
x3saðtÞð1 − kx2sÞ3=2a0ðtÞ2; ðA8Þ

xðtÞ ¼ xsaðtÞ;

∂xMðτ; xÞj
Σ
¼ 1

2
x2sð1 − kx2sÞða0ðtÞ2 þ 2aðtÞa00ðtÞÞ: ðA9Þ

The above solution gives the matching condition of the

interior effective dynamics to exterior Vaidya spacetime.

In the k ¼ 0 case we obtain the junction condition given

in [47].
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