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The dressed metric and the hybrid approach to perturbations are the two main approaches to capture the
effects of quantum geometry in the primordial power spectrum in loop quantum cosmology. Both consider
Fock quantized perturbations over a loop quantized background and result in very similar predictions
except for the modes which exit the horizon in the effective spacetime in the Planck regime. Understanding
precise relationship between both approaches has so far remained obscured due to differences in
construction and technical assumptions. We explore this issue at the classical and effective spacetime
level for linear perturbations, ignoring backreaction, which is the level at which practical computations of
the power spectrum in both of the approaches have so far been performed. We first show that at the classical
level both the approaches lead to the same Hamiltonian up to the second order in perturbations and result in
the same classical mass functions in the Mukhanov-Sasaki equation on the physical solutions. At the
effective spacetime level, the difference in phenomenological predictions between the two approaches in
the Planck regime can be traced to whether one uses the Mukhanov-Sasaki variable Q. (the dressed metric
approach) or its rescaled version v; = aQ; (the hybrid approach) to write the Hamiltonian of the
perturbations, and associated polymerization ambiguities. It turns out that if in the dressed metric approach
one chooses to work with vz, the effective mass function can be written exactly as in the hybrid approach,
thus leading to identical phenomenological predictions in all regimes. Our results explicitly show that the
dressed metric and the hybrid approaches for linear perturbations, at a practical computational level, can be

seen as two sides of the same coin.
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I. INTRODUCTION

Loop quantum cosmology (LQC) [1], an approach to
explore quantization of cosmological spacetimes based on
loop quantum gravity (LQG), has emerged in recent years
as an elaborate framework to investigate the impact of
nonperturbative quantum gravitational effects in the very
early universe. Unlike previous attempts in quantum
cosmology, LQC is based on a (discrete) quantum geom-
etry which replaces the classical differential geometry near
the Planck scale. Thanks to this quantum geometry, the
spacetime curvature is bounded in the Planck regime and
the big bang singularity is replaced by a big bounce [2-5].
In the last two decades, significant progress has been made
in LQC to understand the quantum evolution of the
universe across cosmological singularities and the imprints
of quantum geometry on linear perturbations around the
background effective quantum spacetime. In particular, the
resolution of curvature singularities via a nonsingular
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quantum bounce has been proved to be a generic feature
in both isotropic and anisotropic spacetimes [6—10]. But so
far there has been no complete treatment of various modes
of cosmological perturbations encoding quantum geomet-
ric effects in a sense where perturbations are also loop
quantized. In order to understand phenomenological impli-
cations of quantum geometry in the cosmic microwave
background (CMB), a pragmatic strategy is to consider
Fock quantized linear perturbations over a loop quantized
background (see for reviews [11-14]). There are several
approaches to perturbations in LQC,1 which include the
deformed algebra approach [19-24], the separate universe
approach [25], and the dressed metric approach [26-28]

1Attempts to understand LQG effects in cosmological pertur-
bations date back to almost two decades starting from [15].
Hamiltonian methods to understand quantum geometry effects
for perturbations in LQC setting were first introduced in [16,17],
before any of the four approaches discussed below. Further, there
have been attempts to understand effects of quantum geometry
on cosmological perturbations in nonscalar field setting too (see
e.g., [18]).
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and the hybrid approach [29-34]. The deformed algebra
approach is quite constrained observationally at ultraviolet
scales [23] and the separate universe approach only con-
cerns with long wavelength modes. The two popular
approaches are the dressed metric and the hybrid
approaches. In both of these approaches, the background
spacetime is loop quantized using the z scheme in LQC [4]
while the linear perturbations are Fock quantized on the
loop quantum homogeneous spacetime. While the quantum
theory of both the approaches has various interesting
elements which have been rigorously studied [27,30-32],
at a practical computational level both rely on an effective
background spacetime encoding quantum gravity effects.
In particular, at a phenomenological level both of the
approaches make use of the effective LQC in the back-
ground to compute the primordial power spectrum which
turns out to be almost scale-invariant for the observ-
able modes.

Since both the dressed and hybrid approaches use Fock
quantized perturbations over an LQC background, in
literature one sometimes finds statements which seem to
suggest that the dressed and the hybrid approaches are quite
similar (see for e.g., [14], but the similarity essentially ends
here. In the last decade there has been ongoing active
debate between the two approaches and in what regimes
they give different results [35]. Though similar as far as
the Fock quantization of perturbations is concerned, the
dressed metric and the hybrid approaches follow different
procedures to reach the Mukhanov-Sasaki equation captur-
ing quantum gravity effects via the effective background
spacetime, and seemingly have various differences includ-
ing the way constraints are implemented. The classical
theory of dressed metric approach is based on the results for
the linear perturbations using Hamiltonian approach in the
Langlois’ work [36]. In particular, the background space-
time is assumed to be a spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe on which the linear
perturbations are expanded in terms of the Fourier modes.
While Langlois uses spatially flat gauge to perform most
computations in the intermediate steps, final answer is
written in terms of the gauge-invariant Mukhanov-Sasaki
variable Q7 using which the second order Hamiltonian for
perturbations in terms of Q7 and its conjugate momentum is
obtained. This Hamiltonian written in terms of Q7 serves as
the starting point for the quantization in the dressed metric
approach. On the other hand, the hybrid approach at the
classical level follows the formalism by Halliwell and
Hawking [37]. The original perturbation theory was under-
stood for a spatially closed universe, and the hybrid
approach extends this formalism to the spatially flat
universe with compact spatial sections.

When the backreaction of the perturbations on the
background dynamics is ignored, which in practice has
always been the case so far, both approaches yield very
similar predictions for the power spectrum given the same

initial states in almost all situations for the ultraviolet
and intermediate modes at the level of linear perturbations.”
The phenomenological difference between these two
approaches becomes manifest only near the Planck regime
which is captured via the effective mass functions in the
Mukhanov-Sasaki equation [41]. This leads to some
pertinent questions. Given that at a fundamental level both
the approaches follow the same strategy—Fock quantized
perturbations over loop quantized background, can the
difference between the two approaches at the level of the
quantum corrected Mukhanov-Sasaki equation be under-
stood as a result of some quantization ambiguity? Or does
the difference between them, at a practical computational
level, really arises from adopting different methods? Note
that there are several examples in the background dynamics
of LQC which reveal that when quantizing the same
classical theory, quantization ambiguities can result in
dramatic distinctions in the phenomenology (see e.g.,
[42-44]). If so, is it possible that one can obtain the
effective  Mukhanov-Sasaki equation used in hybrid
approach from a dressed metric like approach? The goal
of this manuscript is to answer these questions. Our
investigation shows that the difference in two approaches
at the computational level arises from using the Mukhanov-
Sasaki variable O versus its rescaled version v; = aQy,
and the noncommuting nature of implementing polymeri-
zation in effective spacetime before computing the Poisson
bracket (to find the Raychaudhuri equation) or afterwards.
We show that if one ignores details of the quantum
theory and backreaction effects of perturbations on the
background, which is the case in all works so far at the
practical computation level to analyze phenomenological
implications for perturbations, the “quantum corrected”
Mukhanov-Sasaki equation with the same effective mass
function in the hybrid approach can be easily obtained
following a dressed metric like approach in effective
spacetime description.

To relate both of these approaches one has to bridge
between different strategies and conventions starting at the
classical level. First, as mentioned above, in the hybrid
approach, the perturbation is considered on the background
with compact spatial sections, while in the dressed metric
approach there is no such restriction. One can consider
spatial hypersurface to be noncompact which then requires
an introduction of a fiducial cell to introduce symplectic
structure. Second, the background metric in the hybrid
approach is rescaled by a constant o> = 472G/(3l),
inherited from convention in [37], with [, denoting the
length of the three-torus spatial manifold. Therefore, when

*The only known exception in which the initial states in two
approaches cannot be taken as the same is in one of the modified
LQC where the contracting branch turns out to be a quasi de Sitter
phase with a Planck-scale cosmological constant which results in
significant differences in phenomenological predictions from two
approaches [38—40].
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comparing the results from two approaches, one has to take
into account this extra scaling constant of the spacetime
metric as well. Third, in the hybrid approach, the linear
perturbations are expanded in terms of the Fourier modes
in the real basis while the dressed metric approach makes
use of the complex basis. Fourth, as mentioned above, the
hybrid approach aims at the second order Hamiltonian
of the rescaled Mukhanov-Sasaki variable vz motivated
by considerations of unitary quantization of the linear
perturbations [45,46] while the dressed metric approach
quantizes the second order Hamiltonian in terms of the
Mukhanov-Sasaki variable Q,;. Furthermore, when deriv-
ing the second order Hamiltonian for Q; or v; from the
Hamiltonian of the original phase space variables, some
canonical transformations are required. Two different
strategies are used in two approaches in order to maintain
the system symplectic under the canonical transformations.
In the hybrid approach, these canonical transformations are
used to redefine the background quantities [30-32] while in
the dressed metric approach the canonical transformations
are treated as time-dependent ones as in the Langlois’ paper
[36]. With all the stated differences in the classical aspects
of two approaches, one requires correspondence relations
between two sets of variables used in two approaches to
show they lead to the same classical theory for both
background and perturbations. In particular, for consistency
the Mukhanov-Sasaki equations in terms of either QO
or vz in both of the approaches are required to have the
equivalent classical mass functions at least on the physical
solutions of the classical background dynamics. This has
so far not been shown in any work to the best of our
knowledge which will be established here to help identify
the relationship between the dressed metric and the hybrid
approach.

After comparing two approaches at the classical level,
let us now briefly discuss how the quantum geometry
effects are included in both approaches. When quantizing
the background and the linear perturbations in both
approaches, the background Hamiltonian is loop quantized
in the ji scheme in LQC [4] while the linear perturbations
are Fock quantized on the quantum background spacetime.
At this stage, an important approximation, namely, the
Born-Oppenheimer (BO) ansatz is made to decompose the
total quantum state into a direct product of the individual
quantum state for the background and the perturbations.
With this ansatz, the second order Hamiltonian which does
not necessarily vanish in the dressed metric approach
generates a Schrodinger-like equation for the perturbations
while the hybrid approach implements the Dirac quantiza-
tion in which the physical solutions of the background and
the perturbations are obtained by requiring the vanishing of
the Hamiltonian up to the second order in perturbations.
Since the zeroth order Hamiltonian is also constrained to
zero, the second order Hamiltonian is thus constrained
to vanish in the hybrid approach. For the practical

computations of the power spectrum, the test-field approxi-
mation in which the background quantum state is taken to
be the Gaussian coherent state is assumed to validate the
use of the effective dynamics in both approaches. The
effective dynamics is able to present a faithful description
of the quantum dynamics in LQC as proved by rigorous
numerical simulations [47-50]. Almost all the phenom-
enological studies in both approaches rely on the effective
dynamics, in particular with a kinetic dominated bounce
where any effects from the inflationary potential in the
bounce regime are ignored.3 It is well known that the
Mukhanov-Sasaki equations, when written in terms of v,
in two approaches differ by their effective mass functions
which have the same classical limit but quite distinct
behavior in the Planck regime [41]. The key question
we answer in this manuscript is why the effective mass
differs in both approaches and how one can obtain the same
mass function of the hybrid approach in the dressed metric
approach. It turns out that this difference arises only
because of the choice made in writing the second order
Hamiltonian for perturbations in one variable or another
and some associated polymerization ambiguities. If one
chooses to express the Hamiltonian for second order
perturbations at effective level in the dressed metric
approach in terms of vz and uses the same polymerization
as used so far in the hybrid approach, the quantum
corrected Mukhanov-Sasaki equation turns out to be
identical.

In this paper, we first review the classical linear pertur-
bation theory in the formalism used in the literature for each
approach. Although the perturbation theory can be done
equivalently in different gauges, calculations are more
transparent and easier to handle in the spatially flat gauge.
Therefore, we first present the original Hamiltonian up to
the second order in perturbations in the spatially flat gauge
in both approaches. In this gauge, the perturbation of the
scalar field is exactly the Mukhanov-Sasaki variable Q,
which greatly simplifies the calculations. We establish the
correspondence relations between two sets of canonical
variables used in two approaches (see Table I) and
explicitly show that the original Hamiltonian in terms of
the perturbation of the scalar field in both approaches are
exactly equal to each other. Then in order to remove the
cross term in this Hamiltonian as well as derive the second
order Hamiltonian for perturbations, one requires to make a
canonical transformation. We then show in a generic way
that for the same canonical transformation, different strat-
egies used in the dressed metric and the hybrid approach to
treat the canonical transformation can lead to the same
background and second order Hamiltonian. Specializing
our general proof to the spatially flat gauge, we show that
the second order Hamiltonian for the same variable v; in

An exception is the case of a matter-Ekpyrotic bounce
scenario studied for dressed metric approach [51].
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TABLE I. Correspondence between different variables used in
the dressed metric and the hybrid approach. In this table,
o? = 4zG/(313).

Dressed

metric Hybrid
Variable approach approach
Fiducial volume v, B
Wave vector k 2177,[’7
Lapse function N oN,
Background scalar degrees - _ o —3/2_ 3/

of freedom (@.7y) (7101 7,)

Background geometric (a,7,) (0e%, o7 1537,

degrees of freedom
Perturbed scalar field

Conjugate momentum of the
perturbed scalar field
Scalar potential

o W (fis —ifi-)

5ﬂ'¢; ﬁg/z (ﬂfﬁ,+ - iﬂfﬁf)

U(9) o I3°V(p)

two approaches turns out to be exactly the same under the
correspondence relations in Table I. Therefore, when
working with the same variable v7, there is no difference
at all in the classical mass functions in two approaches.
Besides, we also show that in the dressed metric approach
the classical mass function will be different by a term
proportional to the background Hamiltonian constraint
when working with the variable Q7. Moreover, in addition
to the spatially flat gauge, the second order Hamiltonian of
vz in the hybrid approach is also derived in the longitudinal
gauge [31] as well as the gauge invariant approach [32]. We
compute the difference between the classical mass func-
tions resulting from using different gauges and find their
difference turns out to be proportional to the background
Hamiltonian constraint and thus vanishes on the physical
solutions of the classical background dynamics. As a result,
we conclude that two approaches are based on the
equivalent classical perturbation theory with the same mass
function on the physical solutions of the background
dynamics.

In our analysis, for the effective dynamics which
incorporates the quantum geometry effects in the back-
ground dynamics, we focus on the polymerization of the
classically equivalent mass functions. All the classical mass
functions are polymerized in a way which is consistent with
the polymerization of the background dynamics as initially
proposed in the hybrid approach [30]. We find after
polymerization, the effective mass functions can be
classified into two categories. The first type corresponds
to the polymerization of the classical mass function in the
dynamical equation for v; resulting from the Hamiltonian
for perturbations written in the Mukhanov-Sasaki variable
Q; as in the classical framework of original dressed metric
approach. The corresponding effective mass function after
including polymerization capturing quantum gravity effects

(4.9) can be regarded as the one used in the dressed metric
approach.4 The second type of the effective mass function
comes from the polymerization of the classical mass
function when working with the rescaled variable v to
write the Hamiltonian for perturbations. Its form is given
explicitly in (4.10) which is usually regarded as the one
used in the hybrid approach. We find the difference
between these two effective mass functions originates from
the noncommutativity of the polymerization and the evalu-
ation of the Poisson bracket. To be specific, the difference
comes from the quantum corrections in the modified
Raychaudhuri equation of the scale factor in the effective
dynamics of LQC. In the first type, one directly applies the
modified Raychaudhuri equation in the mass functions and
thus these quantum corrections are explicitly included.
On the other hand, in the second type, the classical
Raychaudhuri equation of the scale factor is first expressed
in terms of the classical canonical phase space variables
which is then polymerized. Therefore, the quantum cor-
rections in the modified Raychaudhuri equation of the scale
factor are not included in the second type. One important
lesson from our analysis is that with respect to these two
different effective mass functions there is no reason in
principle at least at the level of effective dynamics to prefer
one over the other considering both of them are coming
from the same way of polymerization of the classically
equivalent mass functions. In this sense, the difference
between the dressed metric and the hybrid approach
amounts to some quantization ambiguities which are
prevalent among many bottom-up approaches.

The manuscript is organized as follows. In Sec. II, we
briefly review the classical formulation of the linear
perturbation theory in the dressed metric and the hybrid
approach. Since two approaches follow Langlois [36] and
Halliwell and Hawking [37] respectively, we focus on the
classical aspects from the latter while adapting the con-
ventions used in dressed metric and hybrid papers.
Following the notations used in each approach, we present
the second order Hamiltonian for the linear perturbation of
the scalar field in the spatially flat gauge from which
deviations between two approaches start to emerge. In
Sec. III, we explicitly show that although the canonical
transformations required to obtain the second order
Hamiltonian in the dressed metric and the hybrid approach
are treated in different strategies, they can lead to the same
Mukhanov-Sasaki equations with the equivalent mass
functions on the physical solutions of the background
dynamics. Then in Sec. IV, we point out that with the
test-field approximation, these classically equivalent mass

*Note that this expression does not correspond to the same
effective mass function as original proposed in original dressed
metric formulation [27] which turns out to be discontinuous
across the bounce. Rather our result agrees with an improved
version given in [38].
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functions can be polymerized into two different effective
mass functions which are typically used in the dressed
metric and the hybrid approach. Thus the difference
between two effective mass functions are essentially due
to the choice of variable used for the Hamiltonian and
associated quantization ambiguities and it is easy to obtain
the effective mass function of the hybrid approach using
dressed metric like approach. In Sec. V, we summarize our
main results. In the following, we use the Planck units
h =c¢ =1 and keep Newton’s constant G implicit in the
constant k with x = 8zG.

II. CLASSICAL ASPECTS OF LINEAR
PERTURBATION THEORY IN THE DRESSED
METRIC AND THE HYBRID APPROACH

In this section, we briefly review the classical linear
perturbation theory used in the dressed metric and the hybrid
approach. The classical formulation in these schemes is
based on the work of Langlois [36] and Halliwell and
Hawking [37] respectively, which we refer the reader for
more details. While our focus in this manuscript is to
compare the dressed metric and the hybrid approaches, it
is insightful in this section to follow details of the classical
theory directly from the Langlois’ and Halliwell and
Hawking’s works. Our goal will be to reach an important
juncture in the calculation in those approaches which serves
as a point of departure when making canonical transforma-
tion to obtain the final form of the Hamiltonian for the
Mukhanov-Sasaki variable. Note that while presenting
details below we follow the Langlois’ and Halliwell and
Hawking’s approach but adapt them as needed for dressed
metric and hybrid approaches. An example is the use of
fiducial cell which is absent in Langlois’ approach. Another
example is the use of a spatially compact spatially flat
3-manifold in Halliwell and Hawking’s approach unlike the
spatially closed manifold in their original paper. These two
approaches use different sets of variables and Fourier bases
to express linear perturbations in the k—space. In addition,
Halliwell and Hawking use an overall rescaling of the
spacetime metric which is also the case in the hybrid
approach. To establish a transparent relationship between
the dressed metric and the hybrid approach, a correspon-
dence relation between two sets of variables used in two
approaches is needed. Besides, in order to compare the
classical aspects of two approaches in a straightforward way,
we present the second order Hamiltonian of the perturbed
scalar field in the spatially flat gauge in both approaches.
This second order Hamiltonian turns out to take exactly the
same form in two approaches under the correspondence
relation given in this section.

A. Classical theory following Langlois’ approach

The dressed metric approach is based on Hamiltonian
formulation of the classical perturbation theory initially

worked out by Langlois [36] in which the perturbation
theory for a spatially flat FLRW universe filled with an
inflaton field was studied. In the original work by Langlois,
the lapse and shift are treated as the Lagrangian multipliers
so that the classical phase space5 in the Arnowitt-Deser-
Misner (ADM) formalism are only composed of the
following degrees of freedom: I' = {y,;, 7"/, @, 7}, where
yij and 7" denote the three metric and its conjugate
momentum and (®, zg) represent the inflaton field and
its conjugate momentum respectively. The indices i, j
denote the spatial indices which run from 1 to 3. The
Poisson brackets between these canonical variables are the
standard ones

{®(x), 7o (y)} = 8 (x = ). {ry(x). 7 (y)}

1
=3 (8568, + 6i65)6° (x = y). (2.1)

Correspondingly, the total action of the system can be
written as

S = /d4)€(7f(pcb+ﬂij}}ij —NH—NiHi), (22)

where N and N’ denote the lapse and the shift respectively.
Besides, the scalar and vector constraints are given explic-
itly by [36]

g = 2K ,[tj,[.._”_z _ﬂRJri
N ARGV AN

+7U + \/7770;1)@@, (2.3)
H; = =20, (y;j7*) + %0y j + 70, @, (2.4)

where « = 872G and y denotes the determinant of the three-
metric, R and U stand for the intrinsic Ricci scalar and the
potential of the scalar field. The phase space variables can
then be decomposed into the background sector and the
perturbation sector as

= p(1) +8p(1.3), 7o = 7y(1) +6my(1.5).
vij =7ij(0) +6y;;(t.X), 7' =7 (1) + 67 (t,X),

(2.5)

where the barred quantities stand for the background
variables, 6¢, 6z etc are the perturbations. For the spatially
flat FLRW background, the background variables for the
geometrical sector can be parametrized as

The perturbation theory in the Hamiltonian framework can
also be formulated in the extended phase space where the lapse
and shift are treated as dynamical variables, see for example
[52,53].
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Ty s

}_/ij = (125 7_1'” = 5”, (26)

g 6a
where a is the scale factor and 7z, is its conjugate
momentum. As a result, the homogeneous sector of
the phase space consists of four variables which are
{a, 7, ¢, 7y} If the spatial manifold is noncompact, one
needs to introduce a fiducial cell V with volume V, with
respect to the fiducial metric to define the symplectic
structure. Assuming the perturbations I'; = {6¢(z, x),
6my(t,x),8y;;(t,x),6x" (1, x)} are purely inhomogeneous,
it is straightforward to find that

/d4x(ﬂq,d.>+ﬂi-7)'/,~j) :/dtV(,(J'r(/,qZJrﬂaéz)
+ / d*x (67187, + 6m48¢), (2.7)

which implies {a,7,} = {¢, Tyt =1/V,.

Using (2.5), the scalar and vector constraints in (2.3)—
(2.4) can also be expanded up to the second order in
perturbations as
H=HO +HD 4+ H?,

H,=H" +HP,  (28)

with H(©) standing for the zeroth order scalar constraint,
H) and H,(»l) stand respectively for the first order scalar

and vector constraints, and similarly H?) and ng) stand
for the second order scalar and vector constraints. The
zeroth order scalar constraint is given explicitly by

(0) K”zzl 7_[(2 3
H :—12a+2—a3+(1 U, (29)

while the exact forms of the first/second order scalar
constraint and the first order vector constraint in terms
of 8y;; and 6z can be found in [36].° As a result, the
Hamiltonian of the background and the perturbations turns
out to

H= / dx(NH + N'H;) = NV,HO + N / dPxH?),
(2.10)

where we have chosen N = 0. The role of the first order
scalar and vector constraints is to impose constraints on the
perturbations 8y;; and 6z"/. To decouple the scalar, vector
and tensor modes in the perturbations, it is convenient to
work in the momentum space. The perturbations can be
expanded in terms of the Fourier modes with respect to a

®See Eqgs. (19), (20) and (50) in [36]. Besides the second order
vector constraint is not required for the calculation of the power
spectrum so we will ignore it in the following analysis.

finite fiducial cell [54] or in the limit of infinite spatial
sections [55]. Since the linear perturbation in the hybrid
approach is analyzed in the compact spatial sections,
in order to bring a closer relationship between two
approaches, we consider a finite fiducial cell. Taking the
perturbed scalar field 5¢p(7,X) as an example, it can be
expanded in the Fourier series as

5p(1.%) = pr()e'*F, (2.11)
k
with its Fourier coefficients given by
1 N iz
5 (1) =y d’x5¢p(t, X)e ™, (2.12)

where the nonzero wave vector takes the discrete value k =

Zl—o”fi with 7 = (n,,n,,n.) € Z* being any tuple of integers

and 7 # 0. Besides, the reality condition &¢(t,X) =
6¢"(1.X) requires 6¢p2(1) = 6¢p_t(1). In the momentum
space, the standard Poisson bracket now becomes

{6¢7(1), omy,, (1)} = ‘751?,—1?' (2.13)

The perturbations of the metric variables and their con-
jugate momenta can be expanded in the Fourier series in the
same manner. Then the second order Hamiltonian in (2.10)
should also be transformed into a summation over the
Fourier modes in the momentum space.

For any particular wave vector k in the momentum space,
we can introduce six orthonormal bases as in [36] (see also
[54]). These bases can be collectively denoted by Al’f},
where m runs from 1 to 6. Their inverse can be denoted by
A% which satisfy A%A;?j = d),. In terms of these bases, the
perturbations can be decomposed into

87ij = rmAl, on'l = n" A}, (2.14)
where y; and y, correspond to the scalar modes, y3 and y,4 to
the vector modes and y5 and y¢ to the tensor modes. As
analyzed in detail in [36], the first order scalar constraint

H") and the longitudinal part of the first order vector

constraint Hfl) turn out to be the functions of the scalar
modes only. They can be used to remove two unphysical
scalar modes and leave only one physical. While the two
transverse components of the first order vector constraint
can be used to remove two vector modes completely. As a
result, the remaining physical degrees of freedom amount to
one scalar mode and two tensor modes. In the following, we
will focus on the scalar mode. In general, in order to derive
the second order Hamiltonian for the physical scalar mode,
there are two common strategies. The first one is to construct
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the gauge invariant variable which commutes with both of
the first order scalar and vector constraint, the other is to
impose some gauge fixing conditions and then work in the
reduced phase space. Since the first strategy also involves
the construction of the gauge degrees of freedom which
commute with the gauge invariant quantities, it is a more
tedious calculation than the gauge fixing strategy which is a
more efficient way to extract physical Hamiltonian for the
physical degrees of freedom. For this reason, we will choose
the spatially flat gauge in the following as is the case in the
intermediate steps in Langlois’ work [36].

Choosing the spatially flat gauge, y; = y, = 0, then one
can solve for 7! and 7> from the first order constraints and
then substitute them into the second order scalar constraint
H® in (2.10) in the momentum space. After implementing
all these procedures, one can find the Hamiltonian in terms
of the perturbed scalar field and its conjugate momentum

HO = NV,> H, (2.15)
E+

where in order to avoid the double counting of the degrees

of freedom, the above summation is done for the &+ modes
with its first nonvanishing component of the wave vector
being strictly positive and the subscript “SF” stands for the
spatially flat gauge with

@ 0L 3T om0y )+ Mol
SF = T3 _ﬂaa4( promy . + 0 _zomy.) + R|ogz|*,
(2.16)
and
37 3
— 12 ¢ 217 % 317 -

where we have suppressed the time dependence in variables
for brevity. Note the above second order Hamiltonian is the
original one which is obtained from the gauge fixing in the
spatially flat gauge and thus contains a cross term. It is
the starting point where two different strategies for dealing
with the canonical transformation to obtain the final form
of the Hamiltonian for the Mukhanov-Sasaki variable
are implemented in two approaches. We will discuss and
compare these two strategies in detail in the next section.

B. Classical theory following Halliwell
and Hawking’s approach

The classical linear perturbation theory in the hybrid
approach follows Halliwell and Hawking’s approach [37],
but for a spatially flat FLRW universe with a T* topology in
which the four-dimensional globally hyperbolic spacetime
is ADM decomposed into M = R x T>. The four-metric
of the manifold is parameterized in terms of the lapse NV, the

shift N' and the three-metric h,;. The compact spatial
hypersurface is coordinated by ¢ (i = 1, 2, 3), each of
these angular coordinate ranges between O and /. In this
way, the spacetime metric takes the ADM form

ds? = =N2d7® + hy;(d6' + N'dr)(deV + Nidr).  (2.18)

One can define a fiducial metric °;; on the three-torus and
choose it to be the standard Euclidean metric. Then any
functions defined on the spatial manifold T3 can be expanded
in terms of the eigenfunctions Qﬁi(é) of the Laplace-
Beltrami operator compatible with the metric %; ;i [32]

0

0; _(6) = V2sin (zl—ﬂﬁ . 5),

0

Q;,JL(@) = V2cos (21_7171 : 5)
(2.19)

where 71 = (n;,n,,n3) € Z* is any tuple of integers with its
first nonvanishing component being a strictly positive integer
and the corresponding eigenvalue —w? = —4x°7i - ii/13.
With the basis (2.19), the spacetime metric, the scalar field
and their conjugate momenta can be decomposed into [32]

hi; = ;lij + Z(zaﬁ,eﬁijéﬁ,e =+ 6bﬁ,662€2aAijQ7i,€)’ (2.20)

g 1 . - 3 s
n = 60262(11(3) <7TU’ hv + HZ;”W‘S hij Qﬁ,e +§ﬂbn~,£A ]Qﬁ,e) ’

(2.21)
N Kiie - ~
N= 0<N0 +e3"Zgﬁ,eQﬁ,g> . Ni=ate) S50
n.e n.e
(2.22)
1/ 8
O :W §0+Zfﬁ,eQﬁ,e ,
610 e
o B ~
mo = 75 (m,, - anﬁvé_Qﬁ,E) (2.23)
0 n.e

where the background spatial metric is given by #; =

%hj6%e* with 6? = 4xG/(313) and Ay = —;f; + 2L with
n; = n;/Vn - n. Instead of the scale factor a, its logarithm
a = In a is used as the canonical variable for the background
geometric degree of freedom and 7, denotes its conjugate
momentum. Besides, in order to distinguish from the dressed
metric approach, we also use ¢ for the homogeneous
component of the scalar field and its conjugate momentum
is denoted by 7,. In the above decomposition, we only

consider the scalar modes which are aj; . and bj . from the
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geometric sector and fj . from the matter sector. Under
this decomposition, the homogeneous background is
described by
ds? = 6?(—N3(1)de* + e**°h;;d0,do);), (2.24)
with an overall normalization constant ¢> which was first
introduced in [37] for a spatially closed universe for conven-
ience. It can also be used to remove the dependence of the
final form of the Hamiltonian on /,. However, due to this
overall constant, the background metric in the hybrid
approach is no longer the same as the one in the dressed
metric approach which is given in (2.6). Therefore, when the
results in two approaches are compared, one should also take
into account an additional constant 6> in a consistent way.
Finally, it is worth noting that in addition to this constant, the
difference between two series expansions in (2.11) and
(2.20)—(2.23) is that the former uses the complex basis while
the latter uses the real basis.
Plugging (2.20)—(2.23) into the action (2.2), one obtains

S = / dt (ﬂad F 20+ Y (74, i
i.e

+ iy, b+ 7y, fie) = H> ; (2.25)

where the Hamiltonian of the background and the pertur-
bations takes the form

H=NoHO + > (NgH® + gz HY + ks 1Y), (2.26)

e ¢ 72
H(SZF) =__ {e‘zaﬂ]%h — 68_2a”—¢fﬁ.€ﬂfﬁ.€ + <w%e2" + "V 55+ 9e™ 7, — 6e*V )f%i.e}.

a

The corresponding Hamiltonian for the perturbations in the
spatially flat gauge is then given by

HC) =Ny M.

Let us now write a correspondence between the classical
framework of dressed metric approach and the hybrid
approach. In Table I, we list one-to-one correspondence
between two sets of canonical variables used in both
the approaches. Since we compare the Hamiltonian in the
spatially flat gauge, for the perturbations, we only list the
correspondence relation between the perturbed scalar field.
Using these relations, one can directly show that two
Hamiltonian in the spatially flat gauge, namely (2.15)
and (2.30), turn out to be the same. Similarly, one can
also show in a straightforward way that the background
Hamiltonian in two approaches coincide with each other.

(2.30)

Here H® is second order in perturbations and H(S1> and

H&,l ) arise from the linear perturbation of the scalar and
vector constraint respectively. Their explicit forms can be
found in Egs. (2.7)—(2.9) in [32]. Besides, the background
Hamiltonian is given by

HO) =

(-3 + 75 +2¢%V(p)),  (2.27)

2e3®

where we have used V({p) for the potential of the scalar
field in order to distinguish it from the potential in the
dressed metric approach. Compared with the Hamiltonian
(2.10) in the last subsection, the Hamiltonian (2.26)
contains two additional terms coming from the perturbation
of the lapse and the shift multiplied by the linear perturba-
tions of the scalar and the vector constraint. This is because
in (2.22), the lapse and the shift are treated as dynamical
variables in the extended phase space instead of the purely
Lagrangian multipliers. The linear perturbation of the scalar
and the vector constraint still play the role of constraining
the physical degrees of freedom in the sector of the scalar
modes. In particular, one can apply the spatially flat gauge
by imposing

(2.28)

and then solve for their conjugate momenta from
Hg) zO,’Hi,l) ~ 0. Plugging the resulting expressions of
the momenta into H? in (2.26), one can finally obtain [30]

g (2.29)

-0
”a

|

As a result, the original Hamiltonian in the spatially flat
gauge for the background and the perturbed scalar field in
two approaches are equivalent to each other under the
mapping listed in Table I. One can perform similar analysis
for different gauges and the equivalence between two
approaches would not change with a different choice of
the gauge. Note that in the dressed metric approach,
following Langlois’ analysis [36], one uses spatially flat
gauge to arrive at the Hamiltonian for perturbations. No
work based on any other gauges has been reported in the
dressed metric approach. On the other hand, results from
different choices of the gauges are presented in details in
the hybrid approach [30-32]. Finally, in order to remove
the cross terms in the Hamiltonian (2.15) and (2.30),
some canonical transformation is required. In the hybrid
approach, this canonical transformation is used to redefine
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the background variables while in the Langlois’ paper, the
canonical transformation is treated as a time-dependent
one. In the next section, we will show these two strategies
lead to the same form of the Hamiltonian up to the second
order in perturbations.

Remark.—As we have discussed above, the linear
perturbation theory in both approaches starts from a generic
action which can be cast into the form

S:/dt{W?,Wf,—kXpl o — No(HO(Wa, W)

+HO (W, Wh. X, . X,))} (2.31)

where (Wg, W) denote collectively the original back-
ground variables, namely (a,7,.¢,7,) in the classical
formulation following Langlois’ work [36] used in the
dressed metric approach and (a, 7,. . 7,) in the hybrid
approach. Meanwhile, (X, , X, ) stand for the perturbation
variables which are (¢, 6m,,) in the dressed metric
approach and (fj .7, ) in the hybrid approach when

we take the spatially flat gauge. H(® and H? are the
Hamiltonian for the background dynamics and the pertur-
bations respectively. To be specific, they are (2.9) and
(2.16) in the dressed metric approach and (2.27) and (2.29)
in the hybrid approach. The generic form of the action in
(2.31) is the starting point for further analysis in the next
section,

III. THE TIME DEPENDENT CANONICAL
TRANSFORMATION VERSUS THE
REDEFINITION OF THE BACKGROUND
VARIABLES

Following the analysis in the last section, we will first
show generically that the different treatments of the
canonical transformations in the dressed metric and the
hybrid approaches yield the same form of the Hamiltonian
up to the second order in perturbations. Then we will
consider a specific example of the spatially flat gauge in
both approaches to show that resulting mass functions in
the Mukhanov-Sasaki equation differ only by a multiple of
the zeroth order Hamiltonian which vanishes identically
on the physical solutions of the background dynamics. In
this way, we conclude that two approaches have the same
classical Hamiltonian for the background and the pertur-
bations, up to second order in perturbations, to later include
the effects of quantum geometry.

To remove the cross terms in the second order
Hamiltonian for perturbations, one needs to use a different
set of the perturbation variables (V, .V, ). The trans-
formation from (X,.X, ) to the new canonical pairs
(Vy,-V,,) is a canonical one which can be generically
shown as

Xg = aiVy, +0[V,,, Xp =V, +diV,,. (3.1)

where the coefficients aj, b}, ¢}, d} are understood to be
the functions of the background variables and satisfy the
normalization condition

bjcy —ajdy = oy. (3.2)
Correspondingly, one can compute
. 1 . 1. 1d
XpXq = EXquz - Eszqu + EE(XPIXIII)’ (3.3)

where the last term is a surface term which will be dropped.
Since the coefficients in the canonical transformation (3.1)
depend explicitly on the background quantities, (3.3) can
be shown as

v ayya a d(SWZ ’
XpXg =W, Wy +Wp dt +V, Vg, (34)
where we have defined
1 0X 1 0X
SWe = | =X lI/__X Pi ,
P <2 P 6W;’ 27 0W§;>
1 0X 1 0X
oWe = (-x, 2 __x 4, 3.5
q <2 qi ()W?, 2 Pi ()W?,) ( )

In addition, the following identities are used in the
intermediate steps

vl Xy 10X,
Pn 2 P oV 2 q1 avqn ’
1 X 1 X
==X, -~ a 3.6
qn 2 q1 ov 2 P 1% ( )

One can see from the right-hand side of (3.4) that in
addition to the last term which gives the right symplectic
structure for the new canonical variables, we also need to
deal with the other two terms which are second order in
perturbations in a proper way. There are two different
strategies to treat these two additional terms, one is to
absorb them into the Hamiltonian which amounts to treat
the transformation (3.1) as a time-dependent canonical
transformation [36], the other is to absorb these terms into
the redefinition of the background variables as in the hybrid
approach [30-33].

A. Dressed metric approach and the time-dependent
canonical transformation

Note that the first two terms on the right-hand side of
(3.4) are second order in perturbations, besides the second
term can be rewritten into the form
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AW
Pdt

va d aya
= —SWIWS +— (SWIW4).

- (3.7)

Therefore, one can make use of the Hamilton’s equations
for the background

. oH©)
Wé¢ = N. a Oy — N 10
q O{W 7H } 0 0W; 5
. oH©)
“_ N a OV — N .
w5 ofWa, H9'} Ny awe (3.8)

Using (3.7)—(3.8), the first two terms on the right-hand side
of (3.4) turn out to be proportional to the lapse function and
thus can be combined with the original Hamiltonian. In this
way, the action in terms of the old background variables
and the new perturbation variables take the final form

S= / d{WiWwe +V, V, —No(H® +H®)},  (3.9)

where the new second order Hamiltonian is given by

- oH©
H? = 1O — swe .
P ows

aaH(O)
T owa

(3.10)

where for the last two terms we are supposed to use the
definitions in (3.5) and (X, X, ) are treated as functions of
the new variables (V, .V, ). From the action (3.9), we
learn that the background canonical variables (Wg, W¢) as
well as the new perturbation variables (an, Vpn) maintain
the same symplectic structure as the set of old phase space
variables. More specifically, their Poisson brackets satisfy

the standard ones, namely

(We, Wby = 6% (V, V, } =8,  (3.11)

with all other Poisson brackets vanishing. Above ansatz is
essentially the same as the one used in the Langlois’ paper
where the additional terms in the new second order
Hamiltonian are explained to come from a time-dependent
canonical transformation, namely the Poisson bracket
between the generator of the canonical transformation
and the background Hamiltonian. The canonical trans-
formation is carried out mainly for the purpose of removing
the cross term in the Hamiltonian (2.16). Depending on
the new phase space variables in use there can be two
distinctive cases which can finally yield the same
Mukhanov-Sasaki equations with equivalent mass func-
tions on the physical solutions of the classical background
dynamics. In the following, we will discuss each case in
some detail and compare their mass functions explicitly.

1. The Hamiltonian in Q; and its
Mukhanov-Sasaki equation

The original dressed metric approach is based on
Mukhanov-Sasaki ~ equation  obtained from  the
Hamiltonian for perturbations using Q. Our calculation
used spatially flat gauge in which the variable Q; and its
conjugate momentum PQ; are related to the old variables

via the canonical transformation

=2

3wy

One can then compute the new second order Hamiltonian
according to (3.10), which for a given mode k turns out to be

o Vel e amop 3.13
= Tak+@)gf. (3.13)
with
3k, 7 7,U
Q=" 180 12a " L 22U, (3.14)

a wa 7,

Note that while one used spatially flat gauge to reach above
expression of H?, it being expressed in terms of gauge-
invariant variable. If one would have not assumed spatially
flat gauge in deriving above expression, one would obtain
the same result up to terms which vanish on background
solution.

After obtaining the Hamilton’s equations for O and Py,
one can derive the equation of motion for Q, yielding

2 2
QE+3HQ;{*+%QE:O, (3.15)
where H stands for the Hubble rate defined via H = a/a
and an overdot denotes the differentiation with respect to
the cosmic time ¢. In the dressed metric approach one starts
from this Mukhanov-Sasaki equation and includes quan-
tum geometric corrections.

Switching to the Mukhanov-Sasaki variable vz = aQs,
we can immediately obtain from above equation

! (3.16)

a//
I/-{ + (kz +Qz ——>I/lz = 0,
a
where a prime denotes differentiation with respect to the
conformal time di = dt/a. From (3.16), we can define the
time-dependent mass function by

" 72 74

s o, a 73K7T¢ 7,
Mgp = Q7 —— = — — 2 6
a a wha

(3.17)
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Note that the mass function is with subscript ‘SF’ denoting
spatially flat gauge signifying that the original derivation
leading to this mass function assumed spatially flat gauge.
For any other gauge, the same mass function would hold on
the space of physical solutions.

Furthermore, it is straightforward to check that with
the help of the classical Hamiltonian constraint (2.9), the
effective potential Q? given in (3.14) reduces to a function
of the potential of the scalar field, namely,

Q> = a?(PU£2fU 5+ U 35). (3.18)

where f = , /%& with p = %(Zﬁz + U denoting the energy

density of the scalar field, and the ‘+4’/‘—’ sign applies to
the expanding/contracting phase. The above expression
of Q? was derived in the original dressed metric papers
[27,28], albeit only with the negative sign, when the
background classical Hamiltonian constraint (2.9) vanishes
identically. This form of Q? was used in the numerical
analysis in the early literature of the dressed metric
approach with p determined from effective equations.
While the above expression of the effective potential uses
classical Hamiltonian constraint, coincidentally it can also
be obtained in the same form in the Planck regime using
modified Friedmann dynamics in effective background
spacetime [see discussion below (4.6)].

On the other hand, an equivalent expression of the
classical mass function which is directly valid in the
effective dynamics in the Planck regime was proposed
in [38] motivated by the construction in hybrid approach
to respect superselection sectors. Using the classical
Friedmann equation in (3.18), one can find immediately that

Q? = a? <f2U+6H%U’¢+U,¢¢>. (3.19)
This form of the potential Q> has a more transparent form
suited for LQC than (3.18) since it still holds in the Planck
regime in the effective LQC when the background quantities
in the original expression (3.14) are polymerized in a
way consistent with the polymerization of the background
dynamics, especially taking into account superselection
sectors in the quantum Hamiltonian constraint. We will
come back to this point in detail in Sec. IV.

2. The Hamiltonian in v; and its
Mukhanov-Sasaki equation
In addition to the variable Oy, starting from (2.16), one
can directly find the second order Hamiltonian for the
variable v; and its conjugate momentum by using the
canonical transformation

571',/,; 37_1'55
vp= aégb,;, Ty = -

a
o¢; ——kr,0¢p>. (3.20
a ﬂ_aaz ¢k 6 a ¢k ( )
Then it is straightforward to find the new second order
Hamiltonian under this canonical transformation, which
turns out to be

- 7[> 1 _
HY = — +— (K 4 mge) |

. (32D

here the corresponding mass function is given explicitly by

o 7@y Skry  9azU ~ R

Mg = ¢ 7} 5 12aU 4
2r5a 2a 5 “r,
K*r2

K
+a2U_(7){7, —*azU.

5 (3.22)

724>

Choosing the lapse function N = a, we can obtain the
Mukhanov-Sasaki equation in terms of vz, namely,

1/;:’ + (k> + I’h%F)UE =0. (3.23)
As compared with the mass function given in (3.17), one
can easily check that the difference turns out to be

proportional to the background Hamiltonian H(®) given
by (2.9), that is

972
oMy = mgy — Mgy = — (—"’ += )H(°> ~0,  (3.24)

a’*n:  6a

where we have used Eqgs. (3.17), (3.22) and the classical
equation of motion of a”/a. This indicates that two mass
functions are equivalent on the physical solutions of the
background dynamics which requires the vanishing of the
zeroth order Hamiltonian constraint. Furthermore, using
the Hamiltonian constraint (2.9) and the equation of motion
of ¢, we can obtain an equivalent expression of the mass
function (3.22) which is frequently used in the literature,
namely,

5 4G

Mgy = ———a*(p—3P) + U,

3 (3.25)

where P = %(}2 — U denotes the pressure of the scalar field
and the effective potential U is defined by

y 487G
¢U’¢— T

P P

U= a2<U,¢¢ +482GU + 6H U2>. (3.26)

It should be noted that the form of the mass function given in
(3.25) coincides with the one used in the hybrid approach
[41]. Besides, the effective potential (3.26) can be obtained
directly from (3.19) by expressing the kinetic energy in
terms of the energy density and the potential of the scalar
field. Moreover, it can be shown that this form of the mass
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function remains the same on the constraint surface of the
background dynamics in the effective theory of LQC when
we properly polymerize the background quantities in the
original mass function (3.22) (see Sec. IV). Finally it is
worthwhile to note that in the classical theory, the
Raychaudhuri equation in the conformal time takes the form

e
T Laz(p -3P).
a

3 (3.27)

Therefore, the mass function (3.25) is exactly the same as the
one in (3.17) with Q? given by (3.19).

B. The hybrid approach and the redefinition of the
background variables

In this ansatz, we can absorb the first two terms on the
right-hand side of (3.4) into the redefinition of the back-
ground quantities. To be specific, if one defines the new
background quantities

7a a 1 a)(PI 1 aqu a a
Wq:Wq+§quaWZ_§Xpl anZWq +5Wq,
S 10X, 1 oX . .
Wo=Wo+-X, —L——X, —PL_We45W4,  (3.28)

27 Powe 27 1 owe

then it is straightforward to show that up to the second order
in perturbations the redefinition of the background varia-
bles in the above also preserves the symplectic structure,
that is [32]

WaWs + X, X, =WiWy+V, V, +0O(4)

(3.29)

where O(4) denotes terms which are fourth order in
perturbations. In order to obtain the second order
Hamiltonian in terms of the new background variables
and the new perturbation variables, one should first note
that the inverse of (3.28) turns out to be

We =Wia—sWi+04), W4 =Ws—5W5+0O(4),

(3.30)
where we have defined

SWa=5w¢

- - a4 — a - -
Wa—sWeWe W 5Wp—5Wp Wa—sWeWe—>We >

(3.31)

so that SW4(5W4) has the same form as SW¢(§W¢4) and the
former is in terms of the new background variables while
the latter is of the old background variables. Finally, in
terms of the new variables, the background and second
order Hamiltonian turn out to be

HO (W, W) + HO (W, W, X, . X,,)
= HO(Wg. Wh) + HE (W WiV, . V,) + O4).
(3.32)

where we have defined

ﬂw)(W;v WZ) = H(O)(WZ’ WZ)|W§;—>W§,W;‘,—>W‘,§’

oH O (W, W)

o o
H( )(Wf], w3, V.V, )=—6W; dW‘q*

As aresult, the new background Hamiltonian 7 (W4, W§)
for the new background variables takes the same form as the
old one H® (W4, W) for the original background variables
while the new second order Hamiltonian acquire two addi-
tional terms from the use of the tilded background variables in
the original zeroth order Hamiltonian. Moreover, comparing
with the Hamiltonian in (3.10), one can immediately find that
the new second order Hamiltonian in terms of the tilded phase
space variables given in (3.33) has the same form as the one
given in (3.10) in terms of untilded background variables.
Therefore, up to the second order in perturbations, the forms
of the Hamiltonian from two different ansatz coincide with
each other. Besides, both ansatz are consistent with sym-
plectic structure. As a result, we can conclude that up to the
second order in perturbations, two different strategies in
treating the canonical transformation from (X,.X, ) to
(Vg V) lead to the formally same result.

- oH O (W, W)
P y7a
ows,

+ H<2)‘Wg—>W2,th'_>‘7Vg- (3.33)

The redefinition of the background variables is mainly
used in the hybrid approach in which the original total
Hamiltonian is given in the action (2.25). Since the pertur-
bation variables in (2.25) are not gauge invariant, one then
needs to proceed either by choosing a particular gauge
or constructing gauge invariant variables to work with. In
the literature, both directions have been studied [30-32].
Therefore, we will only briefly review the underlying
procedures and cite the main results below.

1. The classical mass function in the spatially flat gauge

As discussed in Sec. II, in the spatially flat gauge (2.28),
one can find the second order Hamiltonian in terms of f75 .
and its conjugate momentum in (2.29)—(2.30), where the
cross term can be removed by the canonical transformation
explicitly given by [30]
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fﬁ,e‘ = eaffi,e’ ii'.f;t,(»: =e |:ﬂfﬁe - (3

2
d=a——|322_—
a=a 2( z,

the old and new phase space variables can be shown to
satisfy (3.29) with (V, .V, ) = (fie %, ). Hence the
above transformation is a canonical transformation. Be-
sides, from the correspondence relation in Table I, one can
find the new variable J?ﬁ,i is proportional to the real and
imaginary part of the rescaled Mukhanov-Sasaki variable
v; defined in (3.20). It is straightforward to show that in
terms of the new variables (the tilded variables) for the
background and the perturbations, the second order
Hamiltonian takes the form [30]

=2
T ﬂf?x,c ~ 7
AP = PRy (w7 + M3p) fre (3.35)
with the mass function given by
N | "
iy = XV 50+ 3 e~ (—7t5 + 3072 — 6e57V)
_0 ~7~[—5’(352 — 254V — 12e2f'@v . (3.36)
et 7L Y Fo '

where the index ‘SF’ as before denotes the spatially flat
gauge.

Remark.—The mass function (3.36) turns out to be
exactly the same as the one in (3.22) using the mapping
in Table I. Therefore, redefinition of variables and time
dependent canonical transformation yield the same
classical Mukhanov-Sasaki equation with the identical
time-dependent mass function when working with the
rescaled variable v;.

2. The classical mass function in the longitudinal gauge

In addition to the spatially flat gauge, starting from
(2.25)—(2.26), one can also choose the longitudinal gauge
which can be implemented by choosing the gauge con-
ditions [30,31]

bz =0, Ra, = Toliie — 37, [ = 0. (3.37)
Similar to the case of the spatially flat gauge, one can then
proceed by imposing the linear scalar and vector constraints
together with the gauge fixing conditions to remove aj .,
b . and their respective conjugate momentum from the
system, leaving only the physical degrees of freedom. The

=2
[
— +”a

T
)f?i.e:| s
g

. 7
o= Y| fremr = (S5 2
a

ie

(3.34)

only complication arises due to the fact that in the
longitudinal gauge, the tilded variable f;;_e(: e“fre) is
no longer the rescaled Mukhanov-Sasaki gauge invariant
variable v, which, regardless of the gauge fixing con-
ditions, is defined by
7,
Vie = €| fiie + ﬂ_,, (e +bic) |-

a

(3.38)

Since aj . does not vanish in the longitudinal gauge one
cannot simply identify v;, with }‘ﬁ,e' Therefore, (3.38)
should be tailored to the longitudinal gauge in order to find
the second order Hamiltonian in terms of v;. and its
conjugate momentum. One can find more details on the
canonical transformation and the corresponding redefini-
tions of the background variables in [30,31]. Here we only
cite the final result for the second order Hamiltonian for the
Mukhanov-Sasaki variable v; . and its momentum, which
explicitly takes the form [31]

o
= Ze + 357 (0% 4 )% (3.39)

e

with the corresponding mass function given by

) —4a ~2 ﬁ.?ﬂ 20 ﬂga
mLG:e 19ﬂ¢_18? +e Vy¢¢—4V—12V‘¢~—

a a

(3.40)

with the subscript “L.G” denoting the longitudinal gauge.
One can directly compute the difference between two mass
functions (3.36) and (3.40) resulting from choosing differ-
ent gauge fixing conditions, and it turns out that

;7:.2

Sm? = i3 — i = <9~—‘2” + 1)e—f'ﬂ<°>, (3.41)
o

where we have only used the background Hamiltonian
constraint and kept HO) explicit. Therefore the difference
in the mass functions resulting from different choices of the
gauge fixing conditions vanishes on the physical solutions
of the background dynamics, implying that the physical
predictions are independent of the gauge fixing conditions
as generally expected for any classical gauge theory.
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3. The classical mass function in the gauge invariant
approach

In addition to choosing a particular gauge, there is also a
gauge invariant approach to obtain the Mukhanov-Sasaki
equation by separating the physical degrees of freedom
from the gauge degrees of freedom explicitly in the phase
space. In the hybrid approach the detailed analysis was first
carried out in [32]. The starting point is first to abelianize
the linear scalar and vector constraints and then parameter-
ize the space of the inhomogeneous perturbations by the
Abelianized linear constraints and the Mukhanov-Sasaki
variable v; .. One also needs to find their proper conjugate
variables so that the transformation from the old variables
to the new ones is canonical. The details of the above
procedures can be found explicitly in [32]. It turns out that
the resulting second order Hamiltonian for the Mukhanov-
Sasaki variable takes the form

T ﬂ:yﬁf 1 ~
HE = 27 + o (w2 + mél)ué’e,

(3.42)

with the effective mass given by

~ ~ ﬁ B V2
72, = ez 4 o <VW +30v-1222y _7266(1~2> |

a a

(3.43)

By making use of the background Hamiltonian constraint
and keeping H?) explicit, one can compute the difference
between the above mass with the one given in the
longitudinal gauge, namely (3.40), leading to

Vv JHO
om* = ﬁ1fG - ﬁizGI = (144650’72 —72e% =
a a

(3.44)

Therefore the mass functions in the spatially flat gauge, the
longitudinal gauge as well as from the gauge invariant
approach are equivalent on the physical solutions of the
background dynamics. More specifically, they only differ
by a term proportional to the background Hamiltonian
constraint which vanishes identically as required.
Furthermore, the effective mass functions resulting from
the redefinition of the background variables are also
equivalent to those from a time-dependent canonical trans-
formation on the physical solutions of the background
dynamics. As a result, two strategies can lead to the same
Mukhanov-Sasaki equation for the scalar perturbations and
the classical aspects of the dressed metric and the hybrid
approach turn out to be equivalent as expected up to the
second order in perturbations.

— 34e‘a> HO,

IV. POLYMERIZATION AND THE EFFECTIVE
MASS FUNCTION

As discussed earlier, the quantization of the background
and the linear perturbations in the dressed metric and the
hybrid approach essentially follows the same broad path. In
particular, the homogeneous gravitational sector is loop
quantized in the g scheme in LQC [4], the homogeneous
matter sector is quantized in the Schrodinger representation
while the linear perturbations are Fock quantized. As a
result, the kinematic Hilbert space is a tensor product of
the individual Hilbert space for each sector, namely
Hiin = He' @ HI® @ F. In this sense, the quantization
in both approaches is carried outin a “hybrid way” where the
homogeneous and the inhomogeneous sectors are quantized
by means of different quantization approaches. Besides, for
phenomenological studies both approaches rely on the test-
field approximation in which the quantum states used for the
homogeneous gravitational sector are the Gaussian coherent
states for which effective spacetime description is an
excellent approximation [47-50]. With the effective dynam-
ics for the homogeneous background and the Fock quan-
tization of the inhomogeneous sector, what really matters for
practical purpose of computing effects of quantum geometry
on the power spectrum is the polymerization of the mass
functions in the Mukhanov-Sasaki equation. As discussed
in the last section, these mass functions in the classical
Mukhanov-Sasaki equation in the dressed metric and the
hybrid approach are equivalent on the physical solutions of
the classical background dynamics, and one is thus led to the
investigation of the polymerized mass functions in different
approaches and different gauges.

A. The polymerized mass functions
in the dressed metric approach

The classical background Hamiltonian in the dressed
metric approach is given in (2.9) which is in terms of the
canonical pair a and z,, while it is well known in LQC that
a more appropriate set of the variables for loop quantization
in the z scheme is (v, b) which are related with (a, z,) via

Kpr,

= a3V b=
v a 0> 6a2 N

(4.1)

where £ is the Barbero-Immirzi parameter whose value is
fixed to be f = 0.2375 for the numerical purpose as in
previous works in LQC. In order to obtain the effective
Hamiltonian for the background dynamics, the following
“thumb rule” for the polymerization of the variable b is
generally used in the classical background Hamiltonian,’
namely

"Such a “thumb rule” is only valid for spatially flat models
quantized in standard loop quantum cosmology. It neither holds
for spatially curved spacetimes [56], nor for other versions of
regularized Hamiltonian constraint in LQC [40].
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2
_,sin (D)

b? pE

. (4.2)

Here 1 = +/A with A = 4/37y£%, denoting the minimal
eigenvalue of the area operator in LQG. With this poly-
merization, the effective Hamiltonian for the background
dynamics turns out to be

©  3vsin’(1b) Py

Hor = — ‘U,
eff 871'G/12[}2 + 203 +o

(4.3)

where we have chosen N =1 and defined pj = Voz‘ré.

With the help of the effective Hamiltonian, it is straight-
forward to derive the modified Friedmann and
Raychaudhuri equations in LQC, namely,

H? :%p(l—ﬁ>,
3 Pe

1" 4
4 _ LGa2p<1 + 23) - 4ﬂGa2P<1 - 2ﬁ>, (4.5)
a 3 e Pe

(4.4)

where p. = is the maximum energy density in LQC

and the prime denotes a derivative with respect to the
conformal time. The linear perturbations are thus described
as propagating on the background spacetime whose evo-
lution is governed by the effective equations (4.4) and (4.5).
As a result, the mass functions of the Mukhanov-Sasaki
equation are supposed to be polymerized as well in order to
be consistent with the effective dynamics of the homo-
geneous background. As we have discussed in Sec. III A,
depending on the new set of the variables after performing
the canonical transformation, there can be two mass
functions in the spatially flat gauge, i.e., (3.17) and
(3.22) (the latter equivalent to (3.36) in the hybrid
approach), which correspond to the classical mass func-
tions used in the original dressed metric and the hybrid
approach respectively. Since these mass functions include
terms related with negative powers of z,, these terms
should be polymerized in a way consistent with the
polymerization of the background (see also Remark at
the end of this section).

To be specific, in the classical mass functions (3.17) and
(3.22), one should polymerize both 1/z2 and 1/x,. Using
classical Hamilton’s equation for scale factor we find
n, = —6a*b/xy. Therefore, 1/72 can be polymerized in
a way consistent with the polymerization of the background
dynamics, namely,

1 KZ}’Z K2y2)42 K
_— = —_ =
7r  36a*h*  360*3sin’>(Ab)  120%3p’

(4.6)

where we have used the background Hamiltonian constraint
in the effective spacetime in the last step. Note that the final

expression of 1/72 is coincidentally the same as one would
obtain using the classical Hamiltonian constraint. Besides,
the ansatz in (4.6) for polymerizing 1/z2 is exactly the
one used for polymerizing the classical background
Hamiltonian. A compelling reason to use the same polym-
erization for variables in the propagation equation for
perturbations as in the background Hamiltonian constraint
is tied to the independence of mass function (hence
phenomenology) on gauge fixing conditions. Consider
for example a comparison between the mass functions in
the spatially flat and the longitudinal gauge in the hybrid
approach. In the effective spacetime description, one
obtains a generalization of Eq. (3.41) with both of its sides
polymerized. If the polymerization in the mass functions is
not identical to the background Hamiltonian constraint
the equation will not be satisfied in the Planck regime. As
a result, the difference of effective mass functions will
depend on the choice of gauge fixing used for perturba-
tions. This will be unacceptable as phenomenological
predictions will not be independent of gauge fixing.
Similar arguments also apply to (3.44) which vanishes
only when 72 is polymerized in the same way in the
background Hamiltonian and the mass function.

When it comes to the polymerization of 1/7x,, one may
simply consider a square root of the above equation, which
is then the same as the choice made in original dressed
metric approach using classical constraint [26-28]. Since
the resulting effective potential (3.18) turns out to be
discontinuous at the bounce this choice has a serious
drawback. Hence, if the initial states of the perturbations
are given in the prebounce branch, one has to deal with a
discontinuity in the Mukhanov-Sasaki equation at the
bounce. This problem was resolved using a continuous
extension across the bounce [38] which was motivated
by the ansatz originally used in the hybrid approach.
The idea is to respect the superselection sectors
prescribed by the quantum operator of the background
Hamiltonian constraint [30] which demands the following
polymerization

1 N A 51.n22/1b) _ lclos(/lb) ’ 47)
b 2sin*(Ab)  sin(4b)

and thus leads to

1 H

e - 2075, (4.8)
In this ansatz, the effective potential takes the form given
in (3.19)/(3.26) which is continuous and well-behaved at
all times. Therefore, in the following, we make use of this
ansatz when polymerizing the classical mass functions
(3.17) and (3.22).

With the latter ansatz discussed above and the effective
Hamiltonian constraint (4.3), the classical mass functions

086015-15



BAO-FEI LI and PARAMPREET SINGH

PHYS. REV. D 106, 086015 (2022)

givenin (3.17) and (3.22) are polymerized into (we drop the
subscript ‘SF’ for brevity)

4rzG
m2y = —La2p<1 + 2£> +47zGa2P<1 - 2£> + U,
3 Pe Pe

(4.9)

4G
gy = - a*(p—3P) + U,

: (4.10)

where U is still given by (3.26) and we have also used the
modified Raychaudhuri equation to obtain m?%;. Note that
although the form of the effective mass function (4.10)
remains the same as its classical counterpart (3.25), the
background quantities in (4.9) and (4.10) are actually
determined by the modified Friedmann equation instead
of the classical background dynamics. Besides, although
two mass functions are equivalent in the classical theory,
they are no longer so at the level of the effective dynamics.
One can compute their difference directly, yielding

. 872G P
Sy = mi — iy = 3 a*(p+ 3P);, (4.11)

which does not vanish on the physical solutions of the
effective background dynamics, especially in the Planck
regime where the energy density becomes comparable with
the maximum energy density in LQC. This difference
originates from using the modified Raychaudhuri equation
in LQC to obtain the effective mass in (4.9). More
specifically, it is a consequence of the fact that the
polymerization of the classical equation of motion of
a”’/a is not equal to the equation of motion of a”/a from
the effective dynamics. In particular, m%; computed from
(3.17) uses the expression of modified Raychaudhuri
equation directly. But going from (3.17) to (3.22) requires
usage of classical Raychaudhuri equation, which on
polymerization results in above expression of rhgff. The
noncommutativity of the polymerization and the Poisson
bracket to compute dynamical equations leads to the
inequivalent expressions of the effective mass functions.
Since 72 is the mass function used in hybrid approach, its
difference from m?%; can be seen as an artifact of a
quantization ambiguity of at what step to polymerize.

B. The polymerized mass functions
in the hybrid approach

In the classical formulation of the perturbation theory in
the hybrid approach, one can derive the Mukhanov-Sasaki
equation by using different gauges and even in a gauge
invariant approach. All these ansatz can lead to the
equivalent mass functions which differ by a term propor-
tional to the classical background Hamiltonian constraint.
Besides, we have also shown that in the spatially flat gauge,

the classical mass function in the hybrid approach given in
(3.36) is exactly the same as the one given by (3.22) in the
dressed metric approach. Therefore, at the level of the
effective dynamics, when we polymerize these classical
mass functions, i.e., (3.36), (3.40), and (3.43), by the ansatz
given in (4.6), the polymerized mass functions remain
equivalent on the physical solutions of the effective
dynamics of the background spacetime. Moreover, the
form of the polymerized mass function is exactly the same
as the one given in (4.10) if the additional ansatz in (4.8) for
polymerizing 1/7, is employed. Although the equations of
motion for v;,. and Qj. are equivalent in the classical
theory, their counterparts in the effective dynamics turn
out to be different from one another due to the non-
commutativity of the polymerization and the evaluation
of the Poisson bracket to obtain modified Raychaudhuri
equation.

In the literature, the difference between the effective
mass functions (4.9) and (4.10) is usually regarded as the
major distinction between the dressed metric and the hybrid
approach since the corresponding Mukhanov-Sasaki equa-
tions with these two effective mass functions are the
starting points for the analytical and numerical computa-
tions of the primordial power spectra. It can be shown that
they result in predictions of the power spectra which
deviate from general relativity near the regime of the
characteristic wave numbers in each approach. Although
two effective mass functions cannot be differentiated from
each other in the classical regime when the energy density
is much less than p,., they have rather different behavior
in the Planck regime [41,57]. For example, one of the
properties which are often mentioned in the literature is that
near the bounce which is dominated by the kinetic energy
of the scalar field, m2; is always negative while /2 is
positive. Another typical example which exemplifies the
physical consequence of two effective mass functions is in
the one of the modified LQC model, which is called
mLQC-I in the literature. Due to the emergent Planck-
scale cosmological constant in its contracting phase, differ-
ent choices of the effective mass functions, namely whether
we works with (4.9) or (4.10), can greatly affect the choice
of the initial states and thus the behavior of the power
spectrum in the infrared and intermediate regimes [38,39].
Previously, this served as an example to distinguish two
approaches which are characterized by two distinct effec-
tive mass functions. However, in the current paper, we tend
to regard two distinctive effective mass functions in the
dressed metric and the hybrid approach as coming from the
polymerization of two forms of the classical mass functions
which are equivalent in the classical theory. So, at least at
the level of the effective dynamics, the difference between
the dressed metric and the hybrid approach is no more
than the difference due to the quantization ambiguities
which may exist in any equivalent formulations of the
classical theories.
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V. SUMMARY

Exploration of phenomenological consequences of quan-
tum geometry in primordial power spectrum in LQC is an
important avenue to link nonperturbative quantum geo-
metric effects from LQG to observations. Since LQC has
been so far not derived from a cosmological sector of LQG,
it is pertinent to understand the robustness of predictions
from LQC given different approaches to incorporate
quantum gravity effects in cosmological perturbations.
The two main approaches are the dressed metric and the
hybrid approach. These are “bottom-up” approaches in the
sense that they aim to capture quantum gravity effects in
perturbations using LQC as the fundamental theory which
is used to quantize the background spacetime and Fock
quantizing cosmological perturbations. For practical com-
putations, both of them make use of the test-field approxi-
mation in which the effective dynamics in LQC is valid
throughout the whole evolution of the universe from the
Planck to the classical regime and back-reaction effects
are neglected. Extensive work has been done in both the
approaches in the last few years [39,41,54,57-64], and it
has been found that unless one is interested in the modes
exiting the horizon in the Planck regime, starting from same
initial states for perturbation and initial conditions for the
background there are negligible differences in predictions
for the ultra-violet modes in CMB. While similarities of
predictions have been noted in literature, the question of
precise sense in which these approaches are related to each
other has not been explored. Since at a practical computa-
tional level of the primordial power spectrum both the
approaches do not utilize underlying quantum theory from
LQC and ignore backreaction effects, in this manuscript we
have approached this question at the classical and effective
spacetime levels. Since both approaches follow different
methodology, including different Fourier basis and con-
ventions, our first task was to create a mapping between the
variables used in both approaches. Hence, we first com-
pared the formulations of the classical perturbation theory
in two approaches and then focused on the effective
dynamics to incorporate the quantum geometry effects in
each approach.

To compare the dressed metric and the hybrid approach,
for simplicity we worked with the spatially flat gauge as the
majority of calculation in Langlois’ work [36] on which
the dressed metric approach is based. We found that in the
spatially flat gauge when the scalar modes from the metric
perturbations are gauged to vanish, the second order
Hamiltonian for the perturbation of the scalar field and
its momentum turns out to be identical in two approaches at
the classical level. The difference in the classical formu-
lation of the perturbation theory in two approaches comes
at the next step when one uses a canonical transformation to
removes the cross term in the original Hamiltonian for the
perturbed scalar field. In the Langlois’ work (and hence in

the dressed metric approach) the canonical transformation
is treated as a time-dependent one without affecting the
background variables while in the hybrid approach the
canonical transformation is used to redefine the background
variables. We have showed explicitly that both strategies
maintain the symplectic structure of the system and they
also end up with the same form of the background
Hamiltonian. More importantly we found that both the
approaches lead to the same form of the second order
Hamiltonian when the correspondence relations between
two sets of variables in two approaches given in Table I are
taken into account. As a result, both approaches yield the
same Mukhanov-Sasaki equation with the equivalent mass
functions and the formulation of the classical perturbation
theory in the original background variables in the dressed
metric approach turns out to be the same as the one
formulated in term of the redefined background variables
in the hybrid approach up to the second order in perturba-
tions. It is also expected that the equivalence between two
approaches at the classical level does not depend on the
chosen gauge, that is, in each approach and any gauges
one can finally obtain the same mass function for the
Mukhanov-Sasaki equation on the physical solutions of
the background dynamics. We verified this in the hybrid
approach where classical mass functions resulting from
different gauges as well as gauge-invariant approach are
different by a term proportional to the background
Hamiltonian constraint and thus equivalent on the back-
ground dynamics.

Apart from different strategies to deal with the canonical
transformation, the dressed metric and hybrid approaches
employ different gauge-invariant variables. The dressed
metric approach uses Mukhanov-Sasaki variable Q7, while
the hybrid approach uses its rescaled counterpart v;.
Although the canonical transformations which can lead
to the Hamiltonian for Q; and v; are different, the resulting
classical mass function showing up in the Mukhanov-
Sasaki equation turn out to be equivalent on the physical
solution of the classical background dynamics. Therefore,
the choice of the perturbation variables in the classical
theory would have no effects on the physical predictions
since they can only result in the mass functions which differ
by a term proportional to the background Hamiltonian
constraint. While at the classical level this change in choice
of variables is trivial, it turns out that the main cause of
difference between dressed metric and hybrid approaches
is precisely this choice at the computational level when
quantum gravity effects are included in the background
spacetime.

It is important to note that the equivalent classical mass
functions turn out to be nonequivalent when the back-
ground and the linear perturbations are quantized. In both
of the approaches, while one focuses on the effective
dynamics under the test-field approximation in LQC, in
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addition to the polymerization of the background
Hamiltonian, the classical mass function in the
Mukhanov-Sasaki equation also needs to be polymerized
in a way consistent with the polymerization of the back-
ground spacetime. We show that at the practical computa-
tional level, it is only the polymerization of the equivalent
classical mass functions that results in the main distinction
between the effective mass functions given the choice
of O versus vy used in the dressed metric and the hybrid
approach, respectively. This difference originates from the
noncommutativity between the polymerization and the
evaluation of the Poisson bracket. In particular, it is due
to the difference of when to evaluate a” /a and perform the
polymerization. We find in general the polymerization of
the equivalent classical mass functions can lead to two
types of the effective mass functions. The first type which is
used in the original dressed metric approach comes from
working with Q7. In this case, the term a”/a directly
appears in the mass function and hence in the effective
LQC one is supposed to use the modified Raychaudhuri
equation for a”’/a. On the other hand, the second type of
the effective mass function which is used in the hybrid
approach comes from working with v; where the classical
mass function which is expressed in terms of the phase
space variables is polymerized. The extra terms between
two types of the effective mass functions are exactly the
quantum correction terms coming from the quantum
geometry effects in the modified Raychaudhuri equation
of the scale factor in the conformal time. These terms have
little impact in the classical regime but become important in

the Planck regime and change the qualitative behavior of
the effective mass function in the Planck regime.

In conclusion, despite their different methodologies and
underlying assumptions, the phenomenological differences
in predictions between dressed metric and the hybrid
approach in the Planck regime essentially result from the
differences in effective mass functions which arises from
the polymerization of the different versions of the classical
mass functions which are equivalent at the level of the
classical background dynamics. In fact, if one were to
consider the dressed metric approach with using variable
vy and choosing same polymerization for 1/z,, at a
phenomenological level one obtains an identical descrip-
tion as the hybrid approach. The difference between the two
approaches, at a practical computation level, is no more
than the choice of variable used to write the Hamiltonian for
perturbations and associated polymerization ambiguities. It
is likely that such a difference can disappear in a top-to-
bottom approach where the perturbation theory is obtained
by truncating the full quantum theory to any desired order
in perturbations. In such a scenario, a different choice of the
variables would leave no impact on the effective dynamics
of the quantum theory.
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