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The dressed metric and the hybrid approach to perturbations are the two main approaches to capture the

effects of quantum geometry in the primordial power spectrum in loop quantum cosmology. Both consider

Fock quantized perturbations over a loop quantized background and result in very similar predictions

except for the modes which exit the horizon in the effective spacetime in the Planck regime. Understanding

precise relationship between both approaches has so far remained obscured due to differences in

construction and technical assumptions. We explore this issue at the classical and effective spacetime

level for linear perturbations, ignoring backreaction, which is the level at which practical computations of

the power spectrum in both of the approaches have so far been performed. We first show that at the classical

level both the approaches lead to the same Hamiltonian up to the second order in perturbations and result in

the same classical mass functions in the Mukhanov-Sasaki equation on the physical solutions. At the

effective spacetime level, the difference in phenomenological predictions between the two approaches in

the Planck regime can be traced to whether one uses the Mukhanov-Sasaki variable Q
k⃗
(the dressed metric

approach) or its rescaled version ν
k⃗
¼ aQ

k⃗
(the hybrid approach) to write the Hamiltonian of the

perturbations, and associated polymerization ambiguities. It turns out that if in the dressed metric approach

one chooses to work with ν
k⃗
, the effective mass function can be written exactly as in the hybrid approach,

thus leading to identical phenomenological predictions in all regimes. Our results explicitly show that the

dressed metric and the hybrid approaches for linear perturbations, at a practical computational level, can be

seen as two sides of the same coin.
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I. INTRODUCTION

Loop quantum cosmology (LQC) [1], an approach to

explore quantization of cosmological spacetimes based on

loop quantum gravity (LQG), has emerged in recent years

as an elaborate framework to investigate the impact of

nonperturbative quantum gravitational effects in the very

early universe. Unlike previous attempts in quantum

cosmology, LQC is based on a (discrete) quantum geom-

etry which replaces the classical differential geometry near

the Planck scale. Thanks to this quantum geometry, the

spacetime curvature is bounded in the Planck regime and

the big bang singularity is replaced by a big bounce [2–5].

In the last two decades, significant progress has been made

in LQC to understand the quantum evolution of the

universe across cosmological singularities and the imprints

of quantum geometry on linear perturbations around the

background effective quantum spacetime. In particular, the

resolution of curvature singularities via a nonsingular

quantum bounce has been proved to be a generic feature

in both isotropic and anisotropic spacetimes [6–10]. But so

far there has been no complete treatment of various modes

of cosmological perturbations encoding quantum geomet-

ric effects in a sense where perturbations are also loop

quantized. In order to understand phenomenological impli-

cations of quantum geometry in the cosmic microwave

background (CMB), a pragmatic strategy is to consider

Fock quantized linear perturbations over a loop quantized

background (see for reviews [11–14]). There are several

approaches to perturbations in LQC,
1
which include the

deformed algebra approach [19–24], the separate universe

approach [25], and the dressed metric approach [26–28]
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1
Attempts to understand LQG effects in cosmological pertur-

bations date back to almost two decades starting from [15].
Hamiltonian methods to understand quantum geometry effects
for perturbations in LQC setting were first introduced in [16,17],
before any of the four approaches discussed below. Further, there
have been attempts to understand effects of quantum geometry
on cosmological perturbations in nonscalar field setting too (see
e.g., [18]).
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and the hybrid approach [29–34]. The deformed algebra

approach is quite constrained observationally at ultraviolet

scales [23] and the separate universe approach only con-

cerns with long wavelength modes. The two popular

approaches are the dressed metric and the hybrid

approaches. In both of these approaches, the background

spacetime is loop quantized using the μ̄ scheme in LQC [4]

while the linear perturbations are Fock quantized on the

loop quantum homogeneous spacetime. While the quantum

theory of both the approaches has various interesting

elements which have been rigorously studied [27,30–32],

at a practical computational level both rely on an effective

background spacetime encoding quantum gravity effects.

In particular, at a phenomenological level both of the

approaches make use of the effective LQC in the back-

ground to compute the primordial power spectrum which

turns out to be almost scale-invariant for the observ-

able modes.

Since both the dressed and hybrid approaches use Fock

quantized perturbations over an LQC background, in

literature one sometimes finds statements which seem to

suggest that the dressed and the hybrid approaches are quite

similar (see for e.g., [14], but the similarity essentially ends

here. In the last decade there has been ongoing active

debate between the two approaches and in what regimes

they give different results [35]. Though similar as far as

the Fock quantization of perturbations is concerned, the

dressed metric and the hybrid approaches follow different

procedures to reach the Mukhanov-Sasaki equation captur-

ing quantum gravity effects via the effective background

spacetime, and seemingly have various differences includ-

ing the way constraints are implemented. The classical

theory of dressed metric approach is based on the results for

the linear perturbations using Hamiltonian approach in the

Langlois’ work [36]. In particular, the background space-

time is assumed to be a spatially flat Friedmann-Lemaître-

Robertson-Walker (FLRW) universe on which the linear

perturbations are expanded in terms of the Fourier modes.

While Langlois uses spatially flat gauge to perform most

computations in the intermediate steps, final answer is

written in terms of the gauge-invariant Mukhanov-Sasaki

variable Q
k⃗
using which the second order Hamiltonian for

perturbations in terms ofQ
k⃗
and its conjugate momentum is

obtained. This Hamiltonian written in terms ofQ
k⃗
serves as

the starting point for the quantization in the dressed metric

approach. On the other hand, the hybrid approach at the

classical level follows the formalism by Halliwell and

Hawking [37]. The original perturbation theory was under-

stood for a spatially closed universe, and the hybrid

approach extends this formalism to the spatially flat

universe with compact spatial sections.

When the backreaction of the perturbations on the

background dynamics is ignored, which in practice has

always been the case so far, both approaches yield very

similar predictions for the power spectrum given the same

initial states in almost all situations for the ultraviolet

and intermediate modes at the level of linear perturbations.
2

The phenomenological difference between these two

approaches becomes manifest only near the Planck regime

which is captured via the effective mass functions in the

Mukhanov-Sasaki equation [41]. This leads to some

pertinent questions. Given that at a fundamental level both

the approaches follow the same strategy—Fock quantized

perturbations over loop quantized background, can the

difference between the two approaches at the level of the

quantum corrected Mukhanov-Sasaki equation be under-

stood as a result of some quantization ambiguity? Or does

the difference between them, at a practical computational

level, really arises from adopting different methods? Note

that there are several examples in the background dynamics

of LQC which reveal that when quantizing the same

classical theory, quantization ambiguities can result in

dramatic distinctions in the phenomenology (see e.g.,

[42–44]). If so, is it possible that one can obtain the

effective Mukhanov-Sasaki equation used in hybrid

approach from a dressed metric like approach? The goal

of this manuscript is to answer these questions. Our

investigation shows that the difference in two approaches

at the computational level arises from using the Mukhanov-

Sasaki variable Q
k⃗
versus its rescaled version ν

k⃗
¼ aQ

k⃗
,

and the noncommuting nature of implementing polymeri-

zation in effective spacetime before computing the Poisson

bracket (to find the Raychaudhuri equation) or afterwards.

We show that if one ignores details of the quantum

theory and backreaction effects of perturbations on the

background, which is the case in all works so far at the

practical computation level to analyze phenomenological

implications for perturbations, the “quantum corrected”

Mukhanov-Sasaki equation with the same effective mass

function in the hybrid approach can be easily obtained

following a dressed metric like approach in effective

spacetime description.

To relate both of these approaches one has to bridge

between different strategies and conventions starting at the

classical level. First, as mentioned above, in the hybrid

approach, the perturbation is considered on the background

with compact spatial sections, while in the dressed metric

approach there is no such restriction. One can consider

spatial hypersurface to be noncompact which then requires

an introduction of a fiducial cell to introduce symplectic

structure. Second, the background metric in the hybrid

approach is rescaled by a constant σ2 ¼ 4πG=ð3l0Þ,
inherited from convention in [37], with l0 denoting the

length of the three-torus spatial manifold. Therefore, when

2
The only known exception in which the initial states in two

approaches cannot be taken as the same is in one of the modified
LQC where the contracting branch turns out to be a quasi de Sitter
phase with a Planck-scale cosmological constant which results in
significant differences in phenomenological predictions from two
approaches [38–40].
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comparing the results from two approaches, one has to take

into account this extra scaling constant of the spacetime

metric as well. Third, in the hybrid approach, the linear

perturbations are expanded in terms of the Fourier modes

in the real basis while the dressed metric approach makes

use of the complex basis. Fourth, as mentioned above, the

hybrid approach aims at the second order Hamiltonian

of the rescaled Mukhanov-Sasaki variable ν
k⃗
motivated

by considerations of unitary quantization of the linear

perturbations [45,46] while the dressed metric approach

quantizes the second order Hamiltonian in terms of the

Mukhanov-Sasaki variable Q
k⃗
. Furthermore, when deriv-

ing the second order Hamiltonian for Q
k⃗
or ν

k⃗
from the

Hamiltonian of the original phase space variables, some

canonical transformations are required. Two different

strategies are used in two approaches in order to maintain

the system symplectic under the canonical transformations.

In the hybrid approach, these canonical transformations are

used to redefine the background quantities [30–32] while in

the dressed metric approach the canonical transformations

are treated as time-dependent ones as in the Langlois’ paper

[36]. With all the stated differences in the classical aspects

of two approaches, one requires correspondence relations

between two sets of variables used in two approaches to

show they lead to the same classical theory for both

background and perturbations. In particular, for consistency

the Mukhanov-Sasaki equations in terms of either Q
k⃗

or ν
k⃗
in both of the approaches are required to have the

equivalent classical mass functions at least on the physical

solutions of the classical background dynamics. This has

so far not been shown in any work to the best of our

knowledge which will be established here to help identify

the relationship between the dressed metric and the hybrid

approach.

After comparing two approaches at the classical level,

let us now briefly discuss how the quantum geometry

effects are included in both approaches. When quantizing

the background and the linear perturbations in both

approaches, the background Hamiltonian is loop quantized

in the μ̄ scheme in LQC [4] while the linear perturbations

are Fock quantized on the quantum background spacetime.

At this stage, an important approximation, namely, the

Born-Oppenheimer (BO) ansatz is made to decompose the

total quantum state into a direct product of the individual

quantum state for the background and the perturbations.

With this ansatz, the second order Hamiltonian which does

not necessarily vanish in the dressed metric approach

generates a Schrödinger-like equation for the perturbations

while the hybrid approach implements the Dirac quantiza-

tion in which the physical solutions of the background and

the perturbations are obtained by requiring the vanishing of

the Hamiltonian up to the second order in perturbations.

Since the zeroth order Hamiltonian is also constrained to

zero, the second order Hamiltonian is thus constrained

to vanish in the hybrid approach. For the practical

computations of the power spectrum, the test-field approxi-

mation in which the background quantum state is taken to

be the Gaussian coherent state is assumed to validate the

use of the effective dynamics in both approaches. The

effective dynamics is able to present a faithful description

of the quantum dynamics in LQC as proved by rigorous

numerical simulations [47–50]. Almost all the phenom-

enological studies in both approaches rely on the effective

dynamics, in particular with a kinetic dominated bounce

where any effects from the inflationary potential in the

bounce regime are ignored.
3
It is well known that the

Mukhanov-Sasaki equations, when written in terms of ν
k⃗
,

in two approaches differ by their effective mass functions

which have the same classical limit but quite distinct

behavior in the Planck regime [41]. The key question

we answer in this manuscript is why the effective mass

differs in both approaches and how one can obtain the same

mass function of the hybrid approach in the dressed metric

approach. It turns out that this difference arises only

because of the choice made in writing the second order

Hamiltonian for perturbations in one variable or another

and some associated polymerization ambiguities. If one

chooses to express the Hamiltonian for second order

perturbations at effective level in the dressed metric

approach in terms of ν
k⃗
and uses the same polymerization

as used so far in the hybrid approach, the quantum

corrected Mukhanov-Sasaki equation turns out to be

identical.

In this paper, we first review the classical linear pertur-

bation theory in the formalism used in the literature for each

approach. Although the perturbation theory can be done

equivalently in different gauges, calculations are more

transparent and easier to handle in the spatially flat gauge.

Therefore, we first present the original Hamiltonian up to

the second order in perturbations in the spatially flat gauge

in both approaches. In this gauge, the perturbation of the

scalar field is exactly the Mukhanov-Sasaki variable Qk

which greatly simplifies the calculations. We establish the

correspondence relations between two sets of canonical

variables used in two approaches (see Table I) and

explicitly show that the original Hamiltonian in terms of

the perturbation of the scalar field in both approaches are

exactly equal to each other. Then in order to remove the

cross term in this Hamiltonian as well as derive the second

order Hamiltonian for perturbations, one requires to make a

canonical transformation. We then show in a generic way

that for the same canonical transformation, different strat-

egies used in the dressed metric and the hybrid approach to

treat the canonical transformation can lead to the same

background and second order Hamiltonian. Specializing

our general proof to the spatially flat gauge, we show that

the second order Hamiltonian for the same variable ν
k⃗
in

3
An exception is the case of a matter-Ekpyrotic bounce

scenario studied for dressed metric approach [51].
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two approaches turns out to be exactly the same under the

correspondence relations in Table I. Therefore, when

working with the same variable ν
k⃗
, there is no difference

at all in the classical mass functions in two approaches.

Besides, we also show that in the dressed metric approach

the classical mass function will be different by a term

proportional to the background Hamiltonian constraint

when working with the variable Q
k⃗
. Moreover, in addition

to the spatially flat gauge, the second order Hamiltonian of

ν
k⃗
in the hybrid approach is also derived in the longitudinal

gauge [31] as well as the gauge invariant approach [32]. We

compute the difference between the classical mass func-

tions resulting from using different gauges and find their

difference turns out to be proportional to the background

Hamiltonian constraint and thus vanishes on the physical

solutions of the classical background dynamics. As a result,

we conclude that two approaches are based on the

equivalent classical perturbation theory with the same mass

function on the physical solutions of the background

dynamics.

In our analysis, for the effective dynamics which

incorporates the quantum geometry effects in the back-

ground dynamics, we focus on the polymerization of the

classically equivalent mass functions. All the classical mass

functions are polymerized in a way which is consistent with

the polymerization of the background dynamics as initially

proposed in the hybrid approach [30]. We find after

polymerization, the effective mass functions can be

classified into two categories. The first type corresponds

to the polymerization of the classical mass function in the

dynamical equation for ν
k⃗
resulting from the Hamiltonian

for perturbations written in the Mukhanov-Sasaki variable

Q
k⃗
as in the classical framework of original dressed metric

approach. The corresponding effective mass function after

including polymerization capturing quantum gravity effects

(4.9) can be regarded as the one used in the dressed metric

approach.
4
The second type of the effective mass function

comes from the polymerization of the classical mass

function when working with the rescaled variable ν
k⃗
to

write the Hamiltonian for perturbations. Its form is given

explicitly in (4.10) which is usually regarded as the one

used in the hybrid approach. We find the difference

between these two effective mass functions originates from

the noncommutativity of the polymerization and the evalu-

ation of the Poisson bracket. To be specific, the difference

comes from the quantum corrections in the modified

Raychaudhuri equation of the scale factor in the effective

dynamics of LQC. In the first type, one directly applies the

modified Raychaudhuri equation in the mass functions and

thus these quantum corrections are explicitly included.

On the other hand, in the second type, the classical

Raychaudhuri equation of the scale factor is first expressed

in terms of the classical canonical phase space variables

which is then polymerized. Therefore, the quantum cor-

rections in the modified Raychaudhuri equation of the scale

factor are not included in the second type. One important

lesson from our analysis is that with respect to these two

different effective mass functions there is no reason in

principle at least at the level of effective dynamics to prefer

one over the other considering both of them are coming

from the same way of polymerization of the classically

equivalent mass functions. In this sense, the difference

between the dressed metric and the hybrid approach

amounts to some quantization ambiguities which are

prevalent among many bottom-up approaches.

The manuscript is organized as follows. In Sec. II, we

briefly review the classical formulation of the linear

perturbation theory in the dressed metric and the hybrid

approach. Since two approaches follow Langlois [36] and

Halliwell and Hawking [37] respectively, we focus on the

classical aspects from the latter while adapting the con-

ventions used in dressed metric and hybrid papers.

Following the notations used in each approach, we present

the second order Hamiltonian for the linear perturbation of

the scalar field in the spatially flat gauge from which

deviations between two approaches start to emerge. In

Sec. III, we explicitly show that although the canonical

transformations required to obtain the second order

Hamiltonian in the dressed metric and the hybrid approach

are treated in different strategies, they can lead to the same

Mukhanov-Sasaki equations with the equivalent mass

functions on the physical solutions of the background

dynamics. Then in Sec. IV, we point out that with the

test-field approximation, these classically equivalent mass

TABLE I. Correspondence between different variables used in

the dressed metric and the hybrid approach. In this table,

σ2 ¼ 4πG=ð3l3
0
Þ.

Variable

Dressed

metric

approach

Hybrid

approach

Fiducial volume Vo l3
0

Wave vector k⃗ 2π
l0
n⃗

Lapse function N σN0

Background scalar degrees

of freedom
ðϕ̄; π̄ϕÞ ðσ−1l−3=2

0
φ̄; σl

−3=2
0

π̄φÞ
Background geometric

degrees of freedom
ða; πaÞ ðσeα; σ−1e−αl−3

0
παÞ

Perturbed scalar field δϕ
k⃗

1
ffiffi

2
p

σl
3=2

0

ðfn⃗;þ − ifn⃗;−Þ
Conjugate momentum of the

perturbed scalar field
δπϕ

k⃗

σ
ffiffi

2
p

l
3=2

0

ðπfn⃗;þ − iπfn⃗;−Þ
Scalar potential Uðϕ̄Þ σ−4l−3

0
Vðφ̄Þ

4
Note that this expression does not correspond to the same

effective mass function as original proposed in original dressed
metric formulation [27] which turns out to be discontinuous
across the bounce. Rather our result agrees with an improved
version given in [38].
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functions can be polymerized into two different effective

mass functions which are typically used in the dressed

metric and the hybrid approach. Thus the difference

between two effective mass functions are essentially due

to the choice of variable used for the Hamiltonian and

associated quantization ambiguities and it is easy to obtain

the effective mass function of the hybrid approach using

dressed metric like approach. In Sec. V, we summarize our

main results. In the following, we use the Planck units

ℏ ¼ c ¼ 1 and keep Newton’s constant G implicit in the

constant κ with κ ¼ 8πG.

II. CLASSICAL ASPECTS OF LINEAR

PERTURBATION THEORY IN THE DRESSED

METRIC AND THE HYBRID APPROACH

In this section, we briefly review the classical linear

perturbation theory used in the dressedmetric and the hybrid

approach. The classical formulation in these schemes is

based on the work of Langlois [36] and Halliwell and

Hawking [37] respectively, which we refer the reader for

more details. While our focus in this manuscript is to

compare the dressed metric and the hybrid approaches, it

is insightful in this section to follow details of the classical

theory directly from the Langlois’ and Halliwell and

Hawking’s works. Our goal will be to reach an important

juncture in the calculation in those approaches which serves

as a point of departure when making canonical transforma-

tion to obtain the final form of the Hamiltonian for the

Mukhanov-Sasaki variable. Note that while presenting

details below we follow the Langlois’ and Halliwell and

Hawking’s approach but adapt them as needed for dressed

metric and hybrid approaches. An example is the use of

fiducial cell which is absent in Langlois’ approach. Another

example is the use of a spatially compact spatially flat

3-manifold in Halliwell and Hawking’s approach unlike the

spatially closed manifold in their original paper. These two

approaches use different sets of variables and Fourier bases

to express linear perturbations in the k–space. In addition,

Halliwell and Hawking use an overall rescaling of the

spacetime metric which is also the case in the hybrid

approach. To establish a transparent relationship between

the dressed metric and the hybrid approach, a correspon-

dence relation between two sets of variables used in two

approaches is needed. Besides, in order to compare the

classical aspects of two approaches in a straightforwardway,

we present the second order Hamiltonian of the perturbed

scalar field in the spatially flat gauge in both approaches.

This second order Hamiltonian turns out to take exactly the

same form in two approaches under the correspondence

relation given in this section.

A. Classical theory following Langlois’ approach

The dressed metric approach is based on Hamiltonian

formulation of the classical perturbation theory initially

worked out by Langlois [36] in which the perturbation

theory for a spatially flat FLRW universe filled with an

inflaton field was studied. In the original work by Langlois,

the lapse and shift are treated as the Lagrangian multipliers

so that the classical phase space
5
in the Arnowitt-Deser-

Misner (ADM) formalism are only composed of the

following degrees of freedom: Γ ¼ fγij; πij;Φ; πΦg, where
γij and πij denote the three metric and its conjugate

momentum and ðΦ; πΦÞ represent the inflaton field and

its conjugate momentum respectively. The indices i, j
denote the spatial indices which run from 1 to 3. The

Poisson brackets between these canonical variables are the

standard ones

fΦðxÞ; πΦðyÞg ¼ δ3ðx − yÞ; fγijðxÞ; πklðyÞg

¼ 1

2
ðδki δlj þ δliδ

k
jÞδ3ðx − yÞ: ð2:1Þ

Correspondingly, the total action of the system can be

written as

S ¼
Z

d4xðπΦ _Φþ πij _γij − NH − NiHiÞ; ð2:2Þ

where N and Ni denote the lapse and the shift respectively.

Besides, the scalar and vector constraints are given explic-

itly by [36]

H ¼ 2κ
ffiffiffi

γ
p

�

πijπij −
π2

2

�

−

ffiffiffi

γ
p

2κ
Rþ π2

Φ

2
ffiffiffi

γ
p

þ ffiffiffi

γ
p

U þ
ffiffiffi

γ
p

2
∂iΦ∂

i
Φ; ð2:3Þ

Hi ¼ −2∂kðγijπjkÞ þ πjk∂iγjk þ πΦ∂iΦ; ð2:4Þ

where κ ¼ 8πG and γ denotes the determinant of the three-

metric, R and U stand for the intrinsic Ricci scalar and the

potential of the scalar field. The phase space variables can

then be decomposed into the background sector and the

perturbation sector as

Φ¼ ϕ̄ðtÞ þ δϕðt; x⃗Þ; πΦ ¼ π̄ϕðtÞ þ δπϕðt; x⃗Þ;
γij ¼ γ̄ijðtÞ þ δγijðt; x⃗Þ; πij ¼ π̄ijðtÞ þ δπijðt; x⃗Þ; ð2:5Þ

where the barred quantities stand for the background

variables, δϕ, δπϕ etc are the perturbations. For the spatially

flat FLRW background, the background variables for the

geometrical sector can be parametrized as

5
The perturbation theory in the Hamiltonian framework can

also be formulated in the extended phase space where the lapse
and shift are treated as dynamical variables, see for example
[52,53].
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γ̄ij ¼ a2δij; π̄ij ¼ πa

6a
δij; ð2:6Þ

where a is the scale factor and πa is its conjugate

momentum. As a result, the homogeneous sector of

the phase space consists of four variables which are

fa; πa; ϕ̄; π̄ϕg. If the spatial manifold is noncompact, one

needs to introduce a fiducial cell V with volume Vo with

respect to the fiducial metric to define the symplectic

structure. Assuming the perturbations Γ1 ¼ fδϕðt; xÞ;
δπϕðt; xÞ; δγijðt; xÞ; δπijðt; xÞg are purely inhomogeneous,

it is straightforward to find that

Z

d4xðπΦ _Φþ πij _γijÞ ¼
Z

dtVoðπ̄ϕ _̄ϕþ πa _aÞ

þ
Z

d4xðδπijδ_γij þ δπϕδ _ϕÞ; ð2:7Þ

which implies fa; πag ¼ fϕ̄; π̄ϕg ¼ 1=Vo.

Using (2.5), the scalar and vector constraints in (2.3)–

(2.4) can also be expanded up to the second order in

perturbations as

H ¼ Hð0Þ þHð1Þ þHð2Þ; Hi ¼ H
ð1Þ
i þH

ð2Þ
i ; ð2:8Þ

with Hð0Þ standing for the zeroth order scalar constraint,

Hð1Þ and H
ð1Þ
i stand respectively for the first order scalar

and vector constraints, and similarly Hð2Þ and H
ð2Þ
i stand

for the second order scalar and vector constraints. The

zeroth order scalar constraint is given explicitly by

Hð0Þ ¼ −
κπ2a

12a
þ

π̄2ϕ

2a3
þ a3U; ð2:9Þ

while the exact forms of the first/second order scalar

constraint and the first order vector constraint in terms

of δγij and δπij can be found in [36].
6
As a result, the

Hamiltonian of the background and the perturbations turns

out to

H ¼
Z

d3xðNHþ NiHiÞ ¼ NVoH
ð0Þ þ N

Z

d3xHð2Þ;

ð2:10Þ

where we have chosen Ni ¼ 0. The role of the first order

scalar and vector constraints is to impose constraints on the

perturbations δγij and δπij. To decouple the scalar, vector

and tensor modes in the perturbations, it is convenient to

work in the momentum space. The perturbations can be

expanded in terms of the Fourier modes with respect to a

finite fiducial cell [54] or in the limit of infinite spatial

sections [55]. Since the linear perturbation in the hybrid

approach is analyzed in the compact spatial sections,

in order to bring a closer relationship between two

approaches, we consider a finite fiducial cell. Taking the

perturbed scalar field δϕðt; x⃗Þ as an example, it can be

expanded in the Fourier series as

δϕðt; x⃗Þ ¼
X

k⃗

δϕ
k⃗
ðtÞeik⃗·x⃗; ð2:11Þ

with its Fourier coefficients given by

δϕ
k⃗
ðtÞ ¼ 1

Vo

Z

d3xδϕðt; x⃗Þe−ik⃗·x⃗; ð2:12Þ

where the nonzero wave vector takes the discrete value k⃗ ¼
2π
l0
n⃗ with n⃗ ¼ ðnx; ny; nzÞ ∈ Z3 being any tuple of integers

and n⃗ ≠ 0⃗. Besides, the reality condition δϕðt; x⃗Þ ¼
δϕ�ðt; x⃗Þ requires δϕ�

k⃗
ðtÞ ¼ δϕ

−k⃗
ðtÞ. In the momentum

space, the standard Poisson bracket now becomes

fδϕ
k⃗
ðtÞ; δπϕ

k⃗0
ðtÞg ¼ 1

Vo

δ
k⃗;−k⃗

0 : ð2:13Þ

The perturbations of the metric variables and their con-

jugate momenta can be expanded in the Fourier series in the

same manner. Then the second order Hamiltonian in (2.10)

should also be transformed into a summation over the

Fourier modes in the momentum space.

For any particular wave vector k⃗ in the momentum space,

we can introduce six orthonormal bases as in [36] (see also

[54]). These bases can be collectively denoted by Am
ij,

where m runs from 1 to 6. Their inverse can be denoted by

A
ij
m which satisfy A

ij
mA

n
ij ¼ δnm. In terms of these bases, the

perturbations can be decomposed into

δγij ¼ γmA
m
ij; δπij ¼ πmA

ij
m; ð2:14Þ

where γ1 and γ2 correspond to the scalar modes, γ3 and γ4 to

the vector modes and γ5 and γ6 to the tensor modes. As

analyzed in detail in [36], the first order scalar constraint

Hð1Þ and the longitudinal part of the first order vector

constraint H
ð1Þ
i turn out to be the functions of the scalar

modes only. They can be used to remove two unphysical

scalar modes and leave only one physical. While the two

transverse components of the first order vector constraint

can be used to remove two vector modes completely. As a

result, the remaining physical degrees of freedom amount to

one scalar mode and two tensor modes. In the following, we

will focus on the scalar mode. In general, in order to derive

the second order Hamiltonian for the physical scalar mode,

there are two common strategies. The first one is to construct

6
See Eqs. (19), (20) and (50) in [36]. Besides the second order

vector constraint is not required for the calculation of the power
spectrum so we will ignore it in the following analysis.
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the gauge invariant variable which commutes with both of

the first order scalar and vector constraint, the other is to

impose some gauge fixing conditions and then work in the

reduced phase space. Since the first strategy also involves

the construction of the gauge degrees of freedom which

commute with the gauge invariant quantities, it is a more

tedious calculation than the gauge fixing strategy which is a

more efficient way to extract physical Hamiltonian for the

physical degrees of freedom. For this reason, wewill choose

the spatially flat gauge in the following as is the case in the

intermediate steps in Langlois’ work [36].

Choosing the spatially flat gauge, γ1 ¼ γ2 ¼ 0, then one

can solve for π1 and π2 from the first order constraints and

then substitute them into the second order scalar constraint

Hð2Þ in (2.10) in the momentum space. After implementing

all these procedures, one can find the Hamiltonian in terms

of the perturbed scalar field and its conjugate momentum

H
ð2Þ ¼ NVo

X

k⃗
þ

H
ð2Þ
SF ; ð2:15Þ

where in order to avoid the double counting of the degrees

of freedom, the above summation is done for the k⃗
þ
modes

with its first nonvanishing component of the wave vector

being strictly positive and the subscript “SF” stands for the

spatially flat gauge with

H
ð2Þ
SF ¼

jδπϕ
k⃗
j2

a3
−

3π̄2ϕ

πaa
4
ðδϕ

k⃗
δπϕ

−k⃗
þ δϕ

−k⃗
δπϕ

k⃗
Þ þ ℵjδϕ

k⃗
j2;

ð2:16Þ

and

ℵ ¼ ak2 þ
3κπ̄2ϕ

2a3
− 6a2U;ϕ̄

π̄ϕ

πa
þ a3U;ϕ̄ ϕ̄; ð2:17Þ

where we have suppressed the time dependence in variables

for brevity. Note the above second order Hamiltonian is the

original one which is obtained from the gauge fixing in the

spatially flat gauge and thus contains a cross term. It is

the starting point where two different strategies for dealing

with the canonical transformation to obtain the final form

of the Hamiltonian for the Mukhanov-Sasaki variable

are implemented in two approaches. We will discuss and

compare these two strategies in detail in the next section.

B. Classical theory following Halliwell

and Hawking’s approach

The classical linear perturbation theory in the hybrid

approach follows Halliwell and Hawking’s approach [37],

but for a spatially flat FLRWuniverse with a T3 topology in

which the four-dimensional globally hyperbolic spacetime

is ADM decomposed into M ¼ R × T
3. The four-metric

of the manifold is parameterized in terms of the lapseN, the

shift Ni and the three-metric hij. The compact spatial

hypersurface is coordinated by θi (i ¼ 1, 2, 3), each of

these angular coordinate ranges between 0 and l0. In this

way, the spacetime metric takes the ADM form

ds2 ¼ −N2dt2 þ hijðdθi þ NidtÞðdθj þ NjdtÞ: ð2:18Þ

One can define a fiducial metric ohij on the three-torus and

choose it to be the standard Euclidean metric. Then any

functions defined on the spatial manifold T 3 can be expanded

in terms of the eigenfunctions Q̃n⃗;�ðθ⃗Þ of the Laplace-

Beltrami operator compatible with the metric 0hij [32]

Q̃n⃗;þðθ⃗Þ ¼
ffiffiffi

2
p

cos

�

2π

l0
n⃗ · θ⃗

�

;

Q̃n⃗;−ðθ⃗Þ ¼
ffiffiffi

2
p

sin

�

2π

l0
n⃗ · θ⃗

�

; ð2:19Þ

where n⃗ ¼ ðn1; n2; n3Þ ∈ Z3 is any tuple of integers with its

first nonvanishing component being a strictly positive integer

and the corresponding eigenvalue −ω2
n ¼ −4π2n⃗ · n⃗=l2

0
.

With the basis (2.19), the spacetime metric, the scalar field

and their conjugate momenta can be decomposed into [32]

hij ¼ h̄ij þ
X

n⃗;ϵ

ð2an⃗;ϵh̄ijQ̃n⃗;ϵ þ 6bn⃗;ϵσ
2e2αΔijQ̃n⃗;ϵÞ; ð2:20Þ

πij¼ 1

6σ2e2αl3
0

�

πα
ohijþ

X

n⃗;ϵ

πan⃗;ϵ
ohijQ̃n⃗;ϵþ

3

2
πbn⃗;ϵΔ

ijQ̃n⃗;ϵ

�

;

ð2:21Þ

N¼σ

�

N0þe3α
X

n⃗;ϵ

gn⃗;ϵQ̃n⃗;ϵ

�

; Ni¼σ2e2α
X

n⃗;ϵ

kn⃗;ϵ

w2
n

∂iQ̃n⃗;ϵ;

ð2:22Þ

Φ ¼ 1

σl
3=2
0

�

φ̄þ
X

n⃗;ϵ

fn⃗;ϵQ̃n⃗;ϵ

�

;

πΦ ¼ σ

l
3=2
0

�

π̄φ þ
X

n⃗;ϵ

πfn⃗;ϵQ̃n⃗;ϵ

�

; ð2:23Þ

where the background spatial metric is given by h̄ij ¼
ohijσ

2e2α with σ2 ¼ 4πG=ð3l3
0
Þ and Δij ¼ −n̂in̂j þ

ohij
3
with

n̂i ¼ ni=
ffiffiffiffiffiffiffiffiffi

n⃗ · n⃗
p

. Instead of the scale factor a, its logarithm
α ¼ ln a is used as the canonical variable for the background

geometric degree of freedom and πα denotes its conjugate

momentum. Besides, in order to distinguish from the dressed

metric approach, we also use φ̄ for the homogeneous

component of the scalar field and its conjugate momentum

is denoted by π̄φ. In the above decomposition, we only

consider the scalar modes which are an⃗;ϵ and bn⃗;ϵ from the
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geometric sector and fn⃗;ϵ from the matter sector. Under

this decomposition, the homogeneous background is

described by

ds2 ¼ σ2ð−N2

0
ðtÞdt2 þ e2αðtÞohijdθidθjÞ; ð2:24Þ

with an overall normalization constant σ2 which was first

introduced in [37] for a spatially closed universe for conven-

ience. It can also be used to remove the dependence of the

final form of the Hamiltonian on l0. However, due to this

overall constant, the background metric in the hybrid

approach is no longer the same as the one in the dressed

metric approach which is given in (2.6). Therefore, when the

results in two approaches are compared, one should also take

into account an additional constant σ2 in a consistent way.

Finally, it is worth noting that in addition to this constant, the

difference between two series expansions in (2.11) and

(2.20)–(2.23) is that the former uses the complex basis while

the latter uses the real basis.

Plugging (2.20)–(2.23) into the action (2.2), one obtains

S ¼
Z

dt

�

πα _αþ π̄φ _̄φþ
X

n⃗;ϵ

ðπan⃗;ϵ _an⃗;ϵ

þ πbn⃗;ϵ
_bn⃗;ϵ þ πfn⃗;ϵ

_fn⃗;ϵÞ −H

�

; ð2:25Þ

where the Hamiltonian of the background and the pertur-

bations takes the form

H¼N0H
ð0Þþ

X

n⃗;ϵ

ðN0H
ð2Þþgn⃗;ϵH

ð1Þ
S þkn⃗;ϵH

ð1Þ
V Þ: ð2:26Þ

Here Hð2Þ is second order in perturbations and H
ð1Þ
S and

H
ð1Þ
V arise from the linear perturbation of the scalar and

vector constraint respectively. Their explicit forms can be

found in Eqs. (2.7)–(2.9) in [32]. Besides, the background

Hamiltonian is given by

Hð0Þ ¼ 1

2e3α
ð−π2α þ π̄2φ þ 2e6αVðφ̄ÞÞ; ð2:27Þ

where we have used Vðφ̄Þ for the potential of the scalar

field in order to distinguish it from the potential in the

dressed metric approach. Compared with the Hamiltonian

(2.10) in the last subsection, the Hamiltonian (2.26)

contains two additional terms coming from the perturbation

of the lapse and the shift multiplied by the linear perturba-

tions of the scalar and the vector constraint. This is because

in (2.22), the lapse and the shift are treated as dynamical

variables in the extended phase space instead of the purely

Lagrangian multipliers. The linear perturbation of the scalar

and the vector constraint still play the role of constraining

the physical degrees of freedom in the sector of the scalar

modes. In particular, one can apply the spatially flat gauge

by imposing

an⃗;ϵ ¼ bn⃗;ϵ ¼ 0; ð2:28Þ

and then solve for their conjugate momenta from

H
ð1Þ
S ≈ 0;H

ð1Þ
V ≈ 0. Plugging the resulting expressions of

the momenta intoHð2Þ in (2.26), one can finally obtain [30]

H
ð2Þ
SF ¼ e−α

2

�

e−2απ2fn⃗;ϵ − 6e−2α
π̄2φ

πα
fn⃗;ϵπfn⃗;ϵ þ

�

ω2
ne

2α þ e4αV ;φ̄ φ̄ þ 9e−2απ̄2φ − 6e4αV ;φ̄

π̄φ

πα

�

f2
n⃗;ϵ

�

: ð2:29Þ

The corresponding Hamiltonian for the perturbations in the

spatially flat gauge is then given by

H
ð2Þ ¼ N0

X

n⃗;ϵ

H
ð2Þ
SF : ð2:30Þ

Let us now write a correspondence between the classical

framework of dressed metric approach and the hybrid

approach. In Table I, we list one-to-one correspondence

between two sets of canonical variables used in both

the approaches. Since we compare the Hamiltonian in the

spatially flat gauge, for the perturbations, we only list the

correspondence relation between the perturbed scalar field.

Using these relations, one can directly show that two

Hamiltonian in the spatially flat gauge, namely (2.15)

and (2.30), turn out to be the same. Similarly, one can

also show in a straightforward way that the background

Hamiltonian in two approaches coincide with each other.

As a result, the original Hamiltonian in the spatially flat

gauge for the background and the perturbed scalar field in

two approaches are equivalent to each other under the

mapping listed in Table I. One can perform similar analysis

for different gauges and the equivalence between two

approaches would not change with a different choice of

the gauge. Note that in the dressed metric approach,

following Langlois’ analysis [36], one uses spatially flat

gauge to arrive at the Hamiltonian for perturbations. No

work based on any other gauges has been reported in the

dressed metric approach. On the other hand, results from

different choices of the gauges are presented in details in

the hybrid approach [30–32]. Finally, in order to remove

the cross terms in the Hamiltonian (2.15) and (2.30),

some canonical transformation is required. In the hybrid

approach, this canonical transformation is used to redefine
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the background variables while in the Langlois’ paper, the

canonical transformation is treated as a time-dependent

one. In the next section, we will show these two strategies

lead to the same form of the Hamiltonian up to the second

order in perturbations.

Remark.—As we have discussed above, the linear

perturbation theory in both approaches starts from a generic

action which can be cast into the form

S ¼
Z

dtfWa
p
_Wa
q þ Xpl

_Xql
− N0ðHð0ÞðWa

q;W
q
pÞ

þHð2ÞðWa
q;W

q
p; Xql

; Xpl
ÞÞg; ð2:31Þ

where ðWa
q;W

a
pÞ denote collectively the original back-

ground variables, namely ða; πa; ϕ̄; π̄ϕÞ in the classical

formulation following Langlois’ work [36] used in the

dressed metric approach and ðα; πα; φ̄; π̄φÞ in the hybrid

approach. Meanwhile, ðXql
; Xpl

Þ stand for the perturbation

variables which are ðδϕ
k⃗
; δπϕ

k⃗
Þ in the dressed metric

approach and ðfn⃗;ϵ; πfn⃗;ϵÞ in the hybrid approach when

we take the spatially flat gauge. Hð0Þ and Hð2Þ are the

Hamiltonian for the background dynamics and the pertur-

bations respectively. To be specific, they are (2.9) and

(2.16) in the dressed metric approach and (2.27) and (2.29)

in the hybrid approach. The generic form of the action in

(2.31) is the starting point for further analysis in the next

section,

III. THE TIME DEPENDENT CANONICAL

TRANSFORMATION VERSUS THE

REDEFINITION OF THE BACKGROUND

VARIABLES

Following the analysis in the last section, we will first

show generically that the different treatments of the

canonical transformations in the dressed metric and the

hybrid approaches yield the same form of the Hamiltonian

up to the second order in perturbations. Then we will

consider a specific example of the spatially flat gauge in

both approaches to show that resulting mass functions in

the Mukhanov-Sasaki equation differ only by a multiple of

the zeroth order Hamiltonian which vanishes identically

on the physical solutions of the background dynamics. In

this way, we conclude that two approaches have the same

classical Hamiltonian for the background and the pertur-

bations, up to second order in perturbations, to later include

the effects of quantum geometry.

To remove the cross terms in the second order

Hamiltonian for perturbations, one needs to use a different

set of the perturbation variables ðVqn
; Vpn

Þ. The trans-

formation from ðXql
; Xpl

Þ to the new canonical pairs

ðVqn
; Vpn

Þ is a canonical one which can be generically

shown as

Xql
¼ anl Vqn

þ bnl Vpn
; Xpl

¼ cnl Vqn
þ dnl Vpn

; ð3:1Þ

where the coefficients anl ; b
n
l ; c

n
l ; d

n
l are understood to be

the functions of the background variables and satisfy the

normalization condition

bnl c
n
l0 − anl d

n
l0 ¼ δll0 : ð3:2Þ

Correspondingly, one can compute

Xpl
_Xql

¼ 1

2
Xpl

_Xql
−
1

2

_Xpl
Xql

þ 1

2

d

dt
ðXpl

Xql
Þ; ð3:3Þ

where the last term is a surface term which will be dropped.

Since the coefficients in the canonical transformation (3.1)

depend explicitly on the background quantities, (3.3) can

be shown as

Xpl
_Xql

¼ δWa
p
_Wa
q þWa

p

dδWa
q

dt
þ Vpn

_Vqn
; ð3:4Þ

where we have defined

δWa
p ¼

�

1

2
Xpl

∂Xql

∂Wa
q

−
1

2
Xql

∂Xpl

∂Wa
q

�

;

δWa
q ¼

�

1

2
Xql

∂Xpl

∂Wa
p

−
1

2
Xpl

∂Xql

∂Wa
p

�

: ð3:5Þ

In addition, the following identities are used in the

intermediate steps

Vpn
¼ 1

2
Xpl

∂Xql

∂Vqn

−
1

2
Xql

∂Xpl

∂Vqn

;

Vqn
¼ 1

2
Xql

∂Xpl

∂Vpn

−
1

2
Xpl

∂Xql

∂Vpn

: ð3:6Þ

One can see from the right-hand side of (3.4) that in

addition to the last term which gives the right symplectic

structure for the new canonical variables, we also need to

deal with the other two terms which are second order in

perturbations in a proper way. There are two different

strategies to treat these two additional terms, one is to

absorb them into the Hamiltonian which amounts to treat

the transformation (3.1) as a time-dependent canonical

transformation [36], the other is to absorb these terms into

the redefinition of the background variables as in the hybrid

approach [30–33].

A. Dressed metric approach and the time-dependent

canonical transformation

Note that the first two terms on the right-hand side of

(3.4) are second order in perturbations, besides the second

term can be rewritten into the form

CLOSE RELATIONSHIP BETWEEN THE DRESSED METRIC AND … PHYS. REV. D 106, 086015 (2022)

086015-9



Wa
p

dδWa
q

dt
¼ −δWa

q
_Wa
p þ

d

dt
ðδWa

qW
a
pÞ: ð3:7Þ

Therefore, one can make use of the Hamilton’s equations

for the background

_Wa
q ¼ N0fWa

q;H
ð0Þg ¼ N0

∂Hð0Þ

∂Wa
p

;

_Wa
p ¼ N0fWa

p;H
ð0Þg ¼ −N0

∂Hð0Þ

∂Wa
q

: ð3:8Þ

Using (3.7)–(3.8), the first two terms on the right-hand side

of (3.4) turn out to be proportional to the lapse function and

thus can be combined with the original Hamiltonian. In this

way, the action in terms of the old background variables

and the new perturbation variables take the final form

S ¼
Z

dtfWa
p
_Wa
q þ Vpn

_Vqn
− N0ðHð0Þ þ H̃

ð2ÞÞg; ð3:9Þ

where the new second order Hamiltonian is given by

H̃
ð2Þ ¼ Hð2Þ − δWa

p

∂Hð0Þ

∂Wa
p

− δWa
q

∂Hð0Þ

∂Wa
q

; ð3:10Þ

where for the last two terms we are supposed to use the

definitions in (3.5) and ðXql
; Xql

Þ are treated as functions of
the new variables ðVqn

; Vpn
Þ. From the action (3.9), we

learn that the background canonical variables ðWa
q;W

a
pÞ as

well as the new perturbation variables ðVqn
; Vpn

Þ maintain

the same symplectic structure as the set of old phase space

variables. More specifically, their Poisson brackets satisfy

the standard ones, namely

fWa
q;W

b
pg ¼ δab; fVqn

; Vpm
g ¼ δmn; ð3:11Þ

with all other Poisson brackets vanishing. Above ansatz is

essentially the same as the one used in the Langlois’ paper

where the additional terms in the new second order

Hamiltonian are explained to come from a time-dependent

canonical transformation, namely the Poisson bracket

between the generator of the canonical transformation

and the background Hamiltonian. The canonical trans-

formation is carried out mainly for the purpose of removing

the cross term in the Hamiltonian (2.16). Depending on

the new phase space variables in use there can be two

distinctive cases which can finally yield the same

Mukhanov-Sasaki equations with equivalent mass func-

tions on the physical solutions of the classical background

dynamics. In the following, we will discuss each case in

some detail and compare their mass functions explicitly.

1. The Hamiltonian in Q
k⃗
and its

Mukhanov-Sasaki equation

The original dressed metric approach is based on

Mukhanov-Sasaki equation obtained from the

Hamiltonian for perturbations using Q
k⃗
. Our calculation

used spatially flat gauge in which the variable Q
k⃗
and its

conjugate momentum PQ
k⃗
are related to the old variables

via the canonical transformation

Q
k⃗
¼ δϕ

k⃗
; PQ

k⃗
¼ δπϕ

k⃗
−
3π̄2ϕ

aπa
δϕ

k⃗
: ð3:12Þ

One can then compute the new second order Hamiltonian

according to (3.10), which for a given mode k⃗ turns out to be

H̃
ð2Þ ¼

jPQ
k⃗
j2

a3
þ aðk2 þ Ω

2ÞjQ
k⃗
j2; ð3:13Þ

with

Ω
2 ¼

3κπ̄2ϕ

a4
− 18

π̄4ϕ

π2aa
6
− 12a

π̄ϕU;ϕ̄

πa
þ a2U;ϕ̄ ϕ̄: ð3:14Þ

Note that while one used spatially flat gauge to reach above

expression of H̃ð2Þ, it being expressed in terms of gauge-

invariant variable. If one would have not assumed spatially

flat gauge in deriving above expression, one would obtain

the same result up to terms which vanish on background

solution.

After obtaining the Hamilton’s equations forQ
k⃗
and PQ

k⃗
,

one can derive the equation of motion for Q
k⃗
, yielding

Q̈
k⃗
þ 3H _Q

k⃗
þ k2 þ Ω

2

a2
Q

k⃗
¼ 0; ð3:15Þ

where H stands for the Hubble rate defined via H ¼ _a=a
and an overdot denotes the differentiation with respect to

the cosmic time t. In the dressed metric approach one starts

from this Mukhanov-Sasaki equation and includes quan-

tum geometric corrections.

Switching to the Mukhanov-Sasaki variable ν
k⃗
¼ aQ

k⃗
,

we can immediately obtain from above equation

ν00
k⃗
þ
�

k2 þΩ
2 −

a00

a

�

ν
k⃗
¼ 0; ð3:16Þ

where a prime denotes differentiation with respect to the

conformal time dη ¼ dt=a. From (3.16), we can define the

time-dependent mass function by

m2

SF ¼ Ω
2 −

a00

a
¼

3κπ̄2ϕ

a4
− 18

π̄4ϕ

π2aa
6

− 12a
π̄ϕU;ϕ̄

πa
þ a2U;ϕ̄ ϕ̄ −

a00

a
: ð3:17Þ
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Note that the mass function is with subscript ‘SF’ denoting

spatially flat gauge signifying that the original derivation

leading to this mass function assumed spatially flat gauge.

For any other gauge, the same mass function would hold on

the space of physical solutions.

Furthermore, it is straightforward to check that with

the help of the classical Hamiltonian constraint (2.9), the

effective potential Ω2 given in (3.14) reduces to a function

of the potential of the scalar field, namely,

Ω
2 ¼ a2ðf2U � 2fU;ϕ̄ þU;ϕ̄ ϕ̄Þ; ð3:18Þ

where f ¼
ffiffiffiffiffiffiffiffi

24πG
ρ

q

_̄ϕ with ρ ¼ 1

2

_̄ϕ
2 þ U denoting the energy

density of the scalar field, and the ‘þ’/‘−’ sign applies to

the expanding/contracting phase. The above expression

of Ω2 was derived in the original dressed metric papers

[27,28], albeit only with the negative sign, when the

background classical Hamiltonian constraint (2.9) vanishes

identically. This form of Ω
2 was used in the numerical

analysis in the early literature of the dressed metric

approach with ρ determined from effective equations.

While the above expression of the effective potential uses

classical Hamiltonian constraint, coincidentally it can also

be obtained in the same form in the Planck regime using

modified Friedmann dynamics in effective background

spacetime [see discussion below (4.6)].

On the other hand, an equivalent expression of the

classical mass function which is directly valid in the

effective dynamics in the Planck regime was proposed

in [38] motivated by the construction in hybrid approach

to respect superselection sectors. Using the classical

Friedmann equation in (3.18), one can find immediately that

Ω
2 ¼ a2

�

f2U þ 6H
_̄ϕ

ρ
U;ϕ̄ þU;ϕ̄ ϕ̄

�

: ð3:19Þ

This form of the potential Ω2 has a more transparent form

suited for LQC than (3.18) since it still holds in the Planck

regime in the effective LQCwhen the background quantities

in the original expression (3.14) are polymerized in a

way consistent with the polymerization of the background

dynamics, especially taking into account superselection

sectors in the quantum Hamiltonian constraint. We will

come back to this point in detail in Sec. IV.

2. The Hamiltonian in ν
k⃗
and its

Mukhanov-Sasaki equation

In addition to the variable Q
k⃗
, starting from (2.16), one

can directly find the second order Hamiltonian for the

variable ν
k⃗
and its conjugate momentum by using the

canonical transformation

ν
k⃗
¼ aδϕ

k⃗
; πν

k⃗
¼
δπϕ

k⃗

a
−

3π̄2ϕ

πaa
2
δϕ

k⃗
−
a

6
κπaδϕk⃗

: ð3:20Þ

Then it is straightforward to find the new second order

Hamiltonian under this canonical transformation, which

turns out to be

H̃
ð2Þ ¼

jπν
k⃗
j2

a
þ 1

a
ðk2 þ m̃2

SFÞjνk⃗j2; ð3:21Þ

here the corresponding mass function is given explicitly by

m̃2
SF ¼ −

27π̄4ϕ

2π2aa
6
þ
5κπ̄2ϕ

2a4
þ
9π̄2ϕU

π2a
− 12aU;ϕ̄

π̄ϕ

πa

−
κ2π2a

72a2
þ a2U;ϕ̄ ϕ̄ −

κ

2
a2U: ð3:22Þ

Choosing the lapse function N ¼ a, we can obtain the

Mukhanov-Sasaki equation in terms of ν
k⃗
, namely,

ν00
k⃗
þ ðk2 þ m̃2

SFÞνk⃗ ¼ 0: ð3:23Þ

As compared with the mass function given in (3.17), one

can easily check that the difference turns out to be

proportional to the background Hamiltonian Hð0Þ given

by (2.9), that is

δm2
SF ¼ m2

SF − m̃2
SF ¼ −

�

9π̄2ϕ

a3π2a
þ κ

6a

�

Hð0Þ ≈ 0; ð3:24Þ

where we have used Eqs. (3.17), (3.22) and the classical

equation of motion of a00=a. This indicates that two mass

functions are equivalent on the physical solutions of the

background dynamics which requires the vanishing of the

zeroth order Hamiltonian constraint. Furthermore, using

the Hamiltonian constraint (2.9) and the equation of motion

of ϕ̄, we can obtain an equivalent expression of the mass

function (3.22) which is frequently used in the literature,

namely,

m̃2

SF ¼ −
4πG

3
a2ðρ − 3PÞ þU; ð3:25Þ

where P ¼ 1

2

_̄ϕ
2
−U denotes the pressure of the scalar field

and the effective potential U is defined by

U¼ a2
�

U;ϕ̄ ϕ̄ þ 48πGUþ 6H
_̄ϕ

ρ
U;ϕ̄ −

48πG

ρ
U2

�

: ð3:26Þ

It should be noted that the form of themass function given in

(3.25) coincides with the one used in the hybrid approach

[41]. Besides, the effective potential (3.26) can be obtained

directly from (3.19) by expressing the kinetic energy in

terms of the energy density and the potential of the scalar

field. Moreover, it can be shown that this form of the mass
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function remains the same on the constraint surface of the

background dynamics in the effective theory of LQC when

we properly polymerize the background quantities in the

original mass function (3.22) (see Sec. IV). Finally it is

worthwhile to note that in the classical theory, the

Raychaudhuri equation in the conformal time takes the form

a00

a
¼ 4πG

3
a2ðρ − 3PÞ: ð3:27Þ

Therefore, themass function (3.25) is exactly the same as the

one in (3.17) with Ω
2 given by (3.19).

B. The hybrid approach and the redefinition of the

background variables

In this ansatz, we can absorb the first two terms on the

right-hand side of (3.4) into the redefinition of the back-

ground quantities. To be specific, if one defines the new

background quantities

W̃a
q ¼Wa

qþ
1

2
Xql

∂Xpl

∂Wa
p

−
1

2
Xpl

∂Xql

∂Wa
p

¼Wa
qþδWa

q;

W̃a
p ¼Wa

pþ
1

2
Xpl

∂Xql

∂Wa
q

−
1

2
Xql

∂Xpl

∂Wa
q

¼Wa
pþδWa

p; ð3:28Þ

then it is straightforward to show that up to the second order

in perturbations the redefinition of the background varia-

bles in the above also preserves the symplectic structure,

that is [32]

Wa
p
_Wa
q þ Xpl

_Xql
¼ W̃a

p
_̃W
a
q þ Vpn

_Vqn
þOð4Þ ð3:29Þ

where Oð4Þ denotes terms which are fourth order in

perturbations. In order to obtain the second order

Hamiltonian in terms of the new background variables

and the new perturbation variables, one should first note

that the inverse of (3.28) turns out to be

Wa
q ¼ W̃a

q − δW̃a
q þOð4Þ; Wa

p ¼ W̃a
p − δW̃a

p þOð4Þ;
ð3:30Þ

where we have defined

δW̃a
q≡δWa

qjWa
q→W̃a

q;W
a
p→W̃a

p
; δW̃a

p≡δWa
pjWa

q→W̃a
q;W

a
p→W̃a

p
;

ð3:31Þ

so that δW̃a
qðδW̃a

pÞ has the same form as δWa
qðδWa

pÞ and the
former is in terms of the new background variables while

the latter is of the old background variables. Finally, in

terms of the new variables, the background and second

order Hamiltonian turn out to be

Hð0ÞðWa
q;W

q
pÞ þHð2ÞðWa

q;W
q
p; Xql

; Xpl
Þ

¼ H̃
ð0ÞðW̃a

q; W̃
q
pÞ þ H̃

ð2ÞðW̃a
q; W̃

q
p; Vqn

; Vpn
Þ þOð4Þ;

ð3:32Þ

where we have defined

H̃
ð0ÞðW̃a

q; W̃
q
pÞ ¼ Hð0ÞðWa

q;W
q
pÞjWa

q→W̃a
q;W

a
p→W̃a

p
;

H̃
ð2ÞðW̃a

q; W̃
q
p; Vqn

; Vpn
Þ ¼ −δW̃a

q

∂H̃
ð0ÞðW̃a

q; W̃
q
pÞ

∂W̃a
q

− δW̃a
p

∂H̃
ð0ÞðW̃a

q; W̃
q
pÞ

∂W̃a
p

þHð2ÞjWa
q→W̃a

q;W
a
p→W̃a

p
: ð3:33Þ

As a result, the new background Hamiltonian H̃ð0ÞðW̃a
q; W̃

q
pÞ

for the new background variables takes the same form as the

old oneHð0ÞðWa
q;W

q
pÞ for the original background variables

while the new second order Hamiltonian acquire two addi-

tional terms from the use of the tilded background variables in

the original zeroth order Hamiltonian. Moreover, comparing

with the Hamiltonian in (3.10), one can immediately find that

the new second orderHamiltonian in terms of the tilded phase

space variables given in (3.33) has the same form as the one

given in (3.10) in terms of untilded background variables.

Therefore, up to the second order in perturbations, the forms

of the Hamiltonian from two different ansatz coincide with

each other. Besides, both ansatz are consistent with sym-

plectic structure. As a result, we can conclude that up to the

second order in perturbations, two different strategies in

treating the canonical transformation from ðXql
; Xpl

Þ to

ðVqn
; Vpn

Þ lead to the formally same result.

The redefinition of the background variables is mainly

used in the hybrid approach in which the original total

Hamiltonian is given in the action (2.25). Since the pertur-

bation variables in (2.25) are not gauge invariant, one then

needs to proceed either by choosing a particular gauge

or constructing gauge invariant variables to work with. In

the literature, both directions have been studied [30–32].

Therefore, we will only briefly review the underlying

procedures and cite the main results below.

1. The classical mass function in the spatially flat gauge

As discussed in Sec. II, in the spatially flat gauge (2.28),

one can find the second order Hamiltonian in terms of fn⃗;ϵ
and its conjugate momentum in (2.29)–(2.30), where the

cross term can be removed by the canonical transformation

explicitly given by [30]
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f̃n⃗;ϵ ¼ eαfn⃗;ϵ; π̃fn⃗;ϵ ¼ e−α
�

πfn⃗;ϵ −

�

3
π̄2φ

πα
þ πα

�

fn⃗;ϵ

�

;

α̃ ¼ α −
1

2

�

3
π̄2φ

πα
− 1

�

X

n⃗;ϵ

f2
n⃗;ϵ
; π̃α ¼ πα −

X

n⃗;ϵ

�

fn⃗;ϵπfn⃗;ϵ −

�

3
π̄2φ

πα
þ πα

�

f2
n⃗;ϵ

�

;

φ̃ ¼ φ̄þ 3
π̄φ

πα

X

n⃗;ϵ

f2
n⃗;ϵ
; π̃φ ¼ π̄φ; ð3:34Þ

the old and new phase space variables can be shown to

satisfy (3.29) with ðVqn
; Vpn

Þ ¼ ðf̃n⃗;ϵ; π̃fn⃗;ϵÞ. Hence the

above transformation is a canonical transformation. Be-

sides, from the correspondence relation in Table I, one can

find the new variable f̃n⃗;� is proportional to the real and

imaginary part of the rescaled Mukhanov-Sasaki variable

ν
k⃗
defined in (3.20). It is straightforward to show that in

terms of the new variables (the tilded variables) for the

background and the perturbations, the second order

Hamiltonian takes the form [30]

H̃
ð2Þ ¼

π̃2fn⃗;ϵ

2eα̃
þ 1

2eα̃
ðω2

n þ m̃2

SFÞf̃2n⃗;ϵ; ð3:35Þ

with the mass function given by

m̃2

SF ¼ e2α̃V ;φ̃ φ̃ þ
1

2
e−4α̃ð−π̃2α þ 30π̃2φ − 6e6α̃VÞ

−
9

2e4α̃
π̃2φ

π̃2α
ð3π̃2φ − 2e6α̃VÞ − 12e2α̃

π̃φ

π̃α
V ;φ̃; ð3:36Þ

where the index ‘SF’ as before denotes the spatially flat

gauge.

Remark.—The mass function (3.36) turns out to be

exactly the same as the one in (3.22) using the mapping

in Table I. Therefore, redefinition of variables and time

dependent canonical transformation yield the same

classical Mukhanov-Sasaki equation with the identical

time-dependent mass function when working with the

rescaled variable ν
k⃗
.

2. The classical mass function in the longitudinal gauge

In addition to the spatially flat gauge, starting from

(2.25)–(2.26), one can also choose the longitudinal gauge

which can be implemented by choosing the gauge con-

ditions [30,31]

bn⃗;ϵ ¼ 0; πan⃗;ϵ − παan⃗;ϵ − 3π̄φfn⃗;ϵ ¼ 0: ð3:37Þ

Similar to the case of the spatially flat gauge, one can then

proceed by imposing the linear scalar and vector constraints

together with the gauge fixing conditions to remove an⃗;ϵ,
bn⃗;ϵ and their respective conjugate momentum from the

system, leaving only the physical degrees of freedom. The

only complication arises due to the fact that in the

longitudinal gauge, the tilded variable f̃n⃗;ϵð¼ eαfn⃗;ϵÞ is

no longer the rescaled Mukhanov-Sasaki gauge invariant

variable νn⃗;ϵ which, regardless of the gauge fixing con-

ditions, is defined by

νn⃗;ϵ ¼ eα
�

fn⃗;ϵ þ
π̄φ

πα
ðan⃗;ϵ þ bn⃗;ϵÞ

�

: ð3:38Þ

Since an⃗;ϵ does not vanish in the longitudinal gauge one

cannot simply identify νn⃗;ϵ with f̃n⃗;ϵ. Therefore, (3.38)

should be tailored to the longitudinal gauge in order to find

the second order Hamiltonian in terms of νn⃗;ϵ and its

conjugate momentum. One can find more details on the

canonical transformation and the corresponding redefini-

tions of the background variables in [30,31]. Here we only

cite the final result for the second order Hamiltonian for the

Mukhanov-Sasaki variable νn⃗;ϵ and its momentum, which

explicitly takes the form [31]

H̃
ð2Þ ¼

π2νn⃗;ϵ

2eα̃
þ 1

2eα̃
ðω2

n þ m̃2
LGÞν2n⃗;ϵ; ð3:39Þ

with the corresponding mass function given by

m̃2

LG¼e−4α̃
�

19π̃2φ−18
π̃4φ

π̃2α

�

þe2α̃
�

V ;φ̃φ̃−4V−12V ;φ̃

π̃φ

π̃α

�

ð3:40Þ

with the subscript “LG” denoting the longitudinal gauge.

One can directly compute the difference between two mass

functions (3.36) and (3.40) resulting from choosing differ-

ent gauge fixing conditions, and it turns out that

δm2 ¼ m̃2

SF − m̃2

LG ¼
�

9
π̃2φ

π̃2α
þ 1

�

e−α̃H̃ð0Þ; ð3:41Þ

where we have only used the background Hamiltonian

constraint and kept H̃ð0Þ explicit. Therefore the difference

in the mass functions resulting from different choices of the

gauge fixing conditions vanishes on the physical solutions

of the background dynamics, implying that the physical

predictions are independent of the gauge fixing conditions

as generally expected for any classical gauge theory.
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3. The classical mass function in the gauge invariant

approach

In addition to choosing a particular gauge, there is also a

gauge invariant approach to obtain the Mukhanov-Sasaki

equation by separating the physical degrees of freedom

from the gauge degrees of freedom explicitly in the phase

space. In the hybrid approach the detailed analysis was first

carried out in [32]. The starting point is first to abelianize

the linear scalar and vector constraints and then parameter-

ize the space of the inhomogeneous perturbations by the

Abelianized linear constraints and the Mukhanov-Sasaki

variable νn⃗;ϵ. One also needs to find their proper conjugate

variables so that the transformation from the old variables

to the new ones is canonical. The details of the above

procedures can be found explicitly in [32]. It turns out that

the resulting second order Hamiltonian for the Mukhanov-

Sasaki variable takes the form

H̃
ð2Þ ¼

π2νn⃗;ϵ

2eα̃
þ 1

2eα̃
ðω2

n þ m̃2

GIÞν2n⃗;ϵ; ð3:42Þ

with the effective mass given by

m̃2

GI¼e−4α̃π̃2αþe2α̃
�

V ;φ̃φ̃þ30V−12
π̃φ

π̃α
V ;φ̃−72e6α̃

V2

π̃2α

�

:

ð3:43Þ

By making use of the background Hamiltonian constraint

and keeping H̃
ð0Þ explicit, one can compute the difference

between the above mass with the one given in the

longitudinal gauge, namely (3.40), leading to

δm2¼ m̃2

LG−m̃2

GI¼
�

144e5α̃
V

π̃2α
−72e2α̃

H̃
ð0Þ

π̃2α
−34e−α̃

�

H̃
ð0Þ:

ð3:44Þ

Therefore the mass functions in the spatially flat gauge, the

longitudinal gauge as well as from the gauge invariant

approach are equivalent on the physical solutions of the

background dynamics. More specifically, they only differ

by a term proportional to the background Hamiltonian

constraint which vanishes identically as required.

Furthermore, the effective mass functions resulting from

the redefinition of the background variables are also

equivalent to those from a time-dependent canonical trans-

formation on the physical solutions of the background

dynamics. As a result, two strategies can lead to the same

Mukhanov-Sasaki equation for the scalar perturbations and

the classical aspects of the dressed metric and the hybrid

approach turn out to be equivalent as expected up to the

second order in perturbations.

IV. POLYMERIZATION AND THE EFFECTIVE

MASS FUNCTION

As discussed earlier, the quantization of the background

and the linear perturbations in the dressed metric and the

hybrid approach essentially follows the same broad path. In

particular, the homogeneous gravitational sector is loop

quantized in the μ̄ scheme in LQC [4], the homogeneous

matter sector is quantized in the Schrödinger representation

while the linear perturbations are Fock quantized. As a

result, the kinematic Hilbert space is a tensor product of

the individual Hilbert space for each sector, namely

Hkin ¼ H
grav
kin ⊗ Hmatt

kin ⊗ F . In this sense, the quantization

in both approaches is carried out in a “hybridway”where the

homogeneous and the inhomogeneous sectors are quantized

by means of different quantization approaches. Besides, for

phenomenological studies both approaches rely on the test-

field approximation in which the quantum states used for the

homogeneous gravitational sector are the Gaussian coherent

states for which effective spacetime description is an

excellent approximation [47–50].With the effective dynam-

ics for the homogeneous background and the Fock quan-

tization of the inhomogeneous sector, what reallymatters for

practical purpose of computing effects of quantumgeometry

on the power spectrum is the polymerization of the mass

functions in the Mukhanov-Sasaki equation. As discussed

in the last section, these mass functions in the classical

Mukhanov-Sasaki equation in the dressed metric and the

hybrid approach are equivalent on the physical solutions of

the classical background dynamics, and one is thus led to the

investigation of the polymerized mass functions in different

approaches and different gauges.

A. The polymerized mass functions

in the dressed metric approach

The classical background Hamiltonian in the dressed

metric approach is given in (2.9) which is in terms of the

canonical pair a and πa, while it is well known in LQC that

a more appropriate set of the variables for loop quantization

in the μ̄ scheme is ðv; bÞ which are related with ða; πaÞ via

v ¼ a3V0; b ¼ −
κβπa

6a2
; ð4:1Þ

where β is the Barbero-Immirzi parameter whose value is

fixed to be β ¼ 0.2375 for the numerical purpose as in

previous works in LQC. In order to obtain the effective

Hamiltonian for the background dynamics, the following

“thumb rule” for the polymerization of the variable b is

generally used in the classical background Hamiltonian,
7

namely

7
Such a “thumb rule” is only valid for spatially flat models

quantized in standard loop quantum cosmology. It neither holds
for spatially curved spacetimes [56], nor for other versions of
regularized Hamiltonian constraint in LQC [40].
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b2 →
sin2ðλbÞ

λ2
: ð4:2Þ

Here λ ¼
ffiffiffiffi

Δ
p

with Δ ¼ 4
ffiffiffi

3
p

πγl2Pl denoting the minimal

eigenvalue of the area operator in LQG. With this poly-

merization, the effective Hamiltonian for the background

dynamics turns out to be

H
ð0Þ
eff ¼ −

3v sin2ðλbÞ
8πGλ2β2

þ
p2

ϕ

2v3
þ v3U; ð4:3Þ

where we have chosen N ¼ 1 and defined pϕ ¼ V0π̄
2

ϕ.

With the help of the effective Hamiltonian, it is straight-

forward to derive the modified Friedmann and

Raychaudhuri equations in LQC, namely,

H2 ¼ 8πG

3
ρ

�

1 −
ρ

ρc

�

; ð4:4Þ

a00

a
¼ 4πG

3
a2ρ

�

1þ 2
ρ

ρc

�

− 4πGa2P

�

1 − 2
ρ

ρc

�

; ð4:5Þ

where ρc ¼ 3

8πGλ2β2
is the maximum energy density in LQC

and the prime denotes a derivative with respect to the

conformal time. The linear perturbations are thus described

as propagating on the background spacetime whose evo-

lution is governed by the effective equations (4.4) and (4.5).

As a result, the mass functions of the Mukhanov-Sasaki

equation are supposed to be polymerized as well in order to

be consistent with the effective dynamics of the homo-

geneous background. As we have discussed in Sec. III A,

depending on the new set of the variables after performing

the canonical transformation, there can be two mass

functions in the spatially flat gauge, i.e., (3.17) and

(3.22) (the latter equivalent to (3.36) in the hybrid

approach), which correspond to the classical mass func-

tions used in the original dressed metric and the hybrid

approach respectively. Since these mass functions include

terms related with negative powers of πa, these terms

should be polymerized in a way consistent with the

polymerization of the background (see also Remark at

the end of this section).

To be specific, in the classical mass functions (3.17) and

(3.22), one should polymerize both 1=π2a and 1=πa. Using
classical Hamilton’s equation for scale factor we find

πa ¼ −6a2b=κγ. Therefore, 1=π2a can be polymerized in

a way consistent with the polymerization of the background

dynamics, namely,

1

π2a
¼ κ2γ2

36a4b2
→

κ2γ2λ2

36v4=3 sin2ðλbÞ ¼
κ

12v4=3ρ
; ð4:6Þ

where we have used the background Hamiltonian constraint

in the effective spacetime in the last step. Note that the final

expression of 1=π2a is coincidentally the same as one would

obtain using the classical Hamiltonian constraint. Besides,

the ansatz in (4.6) for polymerizing 1=π2a is exactly the

one used for polymerizing the classical background

Hamiltonian. A compelling reason to use the same polym-

erization for variables in the propagation equation for

perturbations as in the background Hamiltonian constraint

is tied to the independence of mass function (hence

phenomenology) on gauge fixing conditions. Consider

for example a comparison between the mass functions in

the spatially flat and the longitudinal gauge in the hybrid

approach. In the effective spacetime description, one

obtains a generalization of Eq. (3.41) with both of its sides

polymerized. If the polymerization in the mass functions is

not identical to the background Hamiltonian constraint

the equation will not be satisfied in the Planck regime. As

a result, the difference of effective mass functions will

depend on the choice of gauge fixing used for perturba-

tions. This will be unacceptable as phenomenological

predictions will not be independent of gauge fixing.

Similar arguments also apply to (3.44) which vanishes

only when π2a is polymerized in the same way in the

background Hamiltonian and the mass function.

When it comes to the polymerization of 1=πa, one may

simply consider a square root of the above equation, which

is then the same as the choice made in original dressed

metric approach using classical constraint [26–28]. Since

the resulting effective potential (3.18) turns out to be

discontinuous at the bounce this choice has a serious

drawback. Hence, if the initial states of the perturbations

are given in the prebounce branch, one has to deal with a

discontinuity in the Mukhanov-Sasaki equation at the

bounce. This problem was resolved using a continuous

extension across the bounce [38] which was motivated

by the ansatz originally used in the hybrid approach.

The idea is to respect the superselection sectors

prescribed by the quantum operator of the background

Hamiltonian constraint [30] which demands the following

polymerization

1

b
→

λ sinð2λbÞ
2 sin2ðλbÞ ¼

λ cosðλbÞ
sinðλbÞ ; ð4:7Þ

and thus leads to

1

πa
→ −

H

2v2=3ρ
: ð4:8Þ

In this ansatz, the effective potential takes the form given

in (3.19)/(3.26) which is continuous and well-behaved at

all times. Therefore, in the following, we make use of this

ansatz when polymerizing the classical mass functions

(3.17) and (3.22).

With the latter ansatz discussed above and the effective

Hamiltonian constraint (4.3), the classical mass functions
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given in (3.17) and (3.22) are polymerized into (we drop the

subscript ‘SF’ for brevity)

m2

eff ¼ −
4πG

3
a2ρ

�

1þ 2
ρ

ρc

�

þ 4πGa2P

�

1 − 2
ρ

ρc

�

þU;

ð4:9Þ

m̃2

eff ¼ −
4πG

3
a2ðρ − 3PÞ þU; ð4:10Þ

where U is still given by (3.26) and we have also used the

modified Raychaudhuri equation to obtain m2

eff . Note that

although the form of the effective mass function (4.10)

remains the same as its classical counterpart (3.25), the

background quantities in (4.9) and (4.10) are actually

determined by the modified Friedmann equation instead

of the classical background dynamics. Besides, although

two mass functions are equivalent in the classical theory,

they are no longer so at the level of the effective dynamics.

One can compute their difference directly, yielding

δm2

eff ¼ m2

eff − m̃2

eff ¼ −
8πG

3
a2ðρþ 3PÞ ρ

ρc
; ð4:11Þ

which does not vanish on the physical solutions of the

effective background dynamics, especially in the Planck

regime where the energy density becomes comparable with

the maximum energy density in LQC. This difference

originates from using the modified Raychaudhuri equation

in LQC to obtain the effective mass in (4.9). More

specifically, it is a consequence of the fact that the

polymerization of the classical equation of motion of

a00=a is not equal to the equation of motion of a00=a from

the effective dynamics. In particular, m2

eff computed from

(3.17) uses the expression of modified Raychaudhuri

equation directly. But going from (3.17) to (3.22) requires

usage of classical Raychaudhuri equation, which on

polymerization results in above expression of m̃2

eff . The

noncommutativity of the polymerization and the Poisson

bracket to compute dynamical equations leads to the

inequivalent expressions of the effective mass functions.

Since m̃2

eff is the mass function used in hybrid approach, its

difference from m2

eff can be seen as an artifact of a

quantization ambiguity of at what step to polymerize.

B. The polymerized mass functions

in the hybrid approach

In the classical formulation of the perturbation theory in

the hybrid approach, one can derive the Mukhanov-Sasaki

equation by using different gauges and even in a gauge

invariant approach. All these ansatz can lead to the

equivalent mass functions which differ by a term propor-

tional to the classical background Hamiltonian constraint.

Besides, we have also shown that in the spatially flat gauge,

the classical mass function in the hybrid approach given in

(3.36) is exactly the same as the one given by (3.22) in the

dressed metric approach. Therefore, at the level of the

effective dynamics, when we polymerize these classical

mass functions, i.e., (3.36), (3.40), and (3.43), by the ansatz

given in (4.6), the polymerized mass functions remain

equivalent on the physical solutions of the effective

dynamics of the background spacetime. Moreover, the

form of the polymerized mass function is exactly the same

as the one given in (4.10) if the additional ansatz in (4.8) for

polymerizing 1=πa is employed. Although the equations of

motion for νn⃗;ϵ and Qn⃗;ϵ are equivalent in the classical

theory, their counterparts in the effective dynamics turn

out to be different from one another due to the non-

commutativity of the polymerization and the evaluation

of the Poisson bracket to obtain modified Raychaudhuri

equation.

In the literature, the difference between the effective

mass functions (4.9) and (4.10) is usually regarded as the

major distinction between the dressed metric and the hybrid

approach since the corresponding Mukhanov-Sasaki equa-

tions with these two effective mass functions are the

starting points for the analytical and numerical computa-

tions of the primordial power spectra. It can be shown that

they result in predictions of the power spectra which

deviate from general relativity near the regime of the

characteristic wave numbers in each approach. Although

two effective mass functions cannot be differentiated from

each other in the classical regime when the energy density

is much less than ρc, they have rather different behavior

in the Planck regime [41,57]. For example, one of the

properties which are often mentioned in the literature is that

near the bounce which is dominated by the kinetic energy

of the scalar field, m2

eff is always negative while m̃2

eff is

positive. Another typical example which exemplifies the

physical consequence of two effective mass functions is in

the one of the modified LQC model, which is called

mLQC-I in the literature. Due to the emergent Planck-

scale cosmological constant in its contracting phase, differ-

ent choices of the effective mass functions, namely whether

we works with (4.9) or (4.10), can greatly affect the choice

of the initial states and thus the behavior of the power

spectrum in the infrared and intermediate regimes [38,39].

Previously, this served as an example to distinguish two

approaches which are characterized by two distinct effec-

tive mass functions. However, in the current paper, we tend

to regard two distinctive effective mass functions in the

dressed metric and the hybrid approach as coming from the

polymerization of two forms of the classical mass functions

which are equivalent in the classical theory. So, at least at

the level of the effective dynamics, the difference between

the dressed metric and the hybrid approach is no more

than the difference due to the quantization ambiguities

which may exist in any equivalent formulations of the

classical theories.
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V. SUMMARY

Exploration of phenomenological consequences of quan-

tum geometry in primordial power spectrum in LQC is an

important avenue to link nonperturbative quantum geo-

metric effects from LQG to observations. Since LQC has

been so far not derived from a cosmological sector of LQG,

it is pertinent to understand the robustness of predictions

from LQC given different approaches to incorporate

quantum gravity effects in cosmological perturbations.

The two main approaches are the dressed metric and the

hybrid approach. These are “bottom-up” approaches in the

sense that they aim to capture quantum gravity effects in

perturbations using LQC as the fundamental theory which

is used to quantize the background spacetime and Fock

quantizing cosmological perturbations. For practical com-

putations, both of them make use of the test-field approxi-

mation in which the effective dynamics in LQC is valid

throughout the whole evolution of the universe from the

Planck to the classical regime and back-reaction effects

are neglected. Extensive work has been done in both the

approaches in the last few years [39,41,54,57–64], and it

has been found that unless one is interested in the modes

exiting the horizon in the Planck regime, starting from same

initial states for perturbation and initial conditions for the

background there are negligible differences in predictions

for the ultra-violet modes in CMB. While similarities of

predictions have been noted in literature, the question of

precise sense in which these approaches are related to each

other has not been explored. Since at a practical computa-

tional level of the primordial power spectrum both the

approaches do not utilize underlying quantum theory from

LQC and ignore backreaction effects, in this manuscript we

have approached this question at the classical and effective

spacetime levels. Since both approaches follow different

methodology, including different Fourier basis and con-

ventions, our first task was to create a mapping between the

variables used in both approaches. Hence, we first com-

pared the formulations of the classical perturbation theory

in two approaches and then focused on the effective

dynamics to incorporate the quantum geometry effects in

each approach.

To compare the dressed metric and the hybrid approach,

for simplicity we worked with the spatially flat gauge as the

majority of calculation in Langlois’ work [36] on which

the dressed metric approach is based. We found that in the

spatially flat gauge when the scalar modes from the metric

perturbations are gauged to vanish, the second order

Hamiltonian for the perturbation of the scalar field and

its momentum turns out to be identical in two approaches at

the classical level. The difference in the classical formu-

lation of the perturbation theory in two approaches comes

at the next step when one uses a canonical transformation to

removes the cross term in the original Hamiltonian for the

perturbed scalar field. In the Langlois’ work (and hence in

the dressed metric approach) the canonical transformation

is treated as a time-dependent one without affecting the

background variables while in the hybrid approach the

canonical transformation is used to redefine the background

variables. We have showed explicitly that both strategies

maintain the symplectic structure of the system and they

also end up with the same form of the background

Hamiltonian. More importantly we found that both the

approaches lead to the same form of the second order

Hamiltonian when the correspondence relations between

two sets of variables in two approaches given in Table I are

taken into account. As a result, both approaches yield the

same Mukhanov-Sasaki equation with the equivalent mass

functions and the formulation of the classical perturbation

theory in the original background variables in the dressed

metric approach turns out to be the same as the one

formulated in term of the redefined background variables

in the hybrid approach up to the second order in perturba-

tions. It is also expected that the equivalence between two

approaches at the classical level does not depend on the

chosen gauge, that is, in each approach and any gauges

one can finally obtain the same mass function for the

Mukhanov-Sasaki equation on the physical solutions of

the background dynamics. We verified this in the hybrid

approach where classical mass functions resulting from

different gauges as well as gauge-invariant approach are

different by a term proportional to the background

Hamiltonian constraint and thus equivalent on the back-

ground dynamics.

Apart from different strategies to deal with the canonical

transformation, the dressed metric and hybrid approaches

employ different gauge-invariant variables. The dressed

metric approach uses Mukhanov-Sasaki variable Q
k⃗
, while

the hybrid approach uses its rescaled counterpart ν
k⃗
.

Although the canonical transformations which can lead

to the Hamiltonian for Q
k⃗
and ν

k⃗
are different, the resulting

classical mass function showing up in the Mukhanov-

Sasaki equation turn out to be equivalent on the physical

solution of the classical background dynamics. Therefore,

the choice of the perturbation variables in the classical

theory would have no effects on the physical predictions

since they can only result in the mass functions which differ

by a term proportional to the background Hamiltonian

constraint. While at the classical level this change in choice

of variables is trivial, it turns out that the main cause of

difference between dressed metric and hybrid approaches

is precisely this choice at the computational level when

quantum gravity effects are included in the background

spacetime.

It is important to note that the equivalent classical mass

functions turn out to be nonequivalent when the back-

ground and the linear perturbations are quantized. In both

of the approaches, while one focuses on the effective

dynamics under the test-field approximation in LQC, in
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addition to the polymerization of the background

Hamiltonian, the classical mass function in the

Mukhanov-Sasaki equation also needs to be polymerized

in a way consistent with the polymerization of the back-

ground spacetime. We show that at the practical computa-

tional level, it is only the polymerization of the equivalent

classical mass functions that results in the main distinction

between the effective mass functions given the choice

of Q
k⃗
versus ν

k⃗
used in the dressed metric and the hybrid

approach, respectively. This difference originates from the

noncommutativity between the polymerization and the

evaluation of the Poisson bracket. In particular, it is due

to the difference of when to evaluate a00=a and perform the

polymerization. We find in general the polymerization of

the equivalent classical mass functions can lead to two

types of the effective mass functions. The first type which is

used in the original dressed metric approach comes from

working with Q
k⃗
. In this case, the term a00=a directly

appears in the mass function and hence in the effective

LQC one is supposed to use the modified Raychaudhuri

equation for a00=a. On the other hand, the second type of

the effective mass function which is used in the hybrid

approach comes from working with ν
k⃗
where the classical

mass function which is expressed in terms of the phase

space variables is polymerized. The extra terms between

two types of the effective mass functions are exactly the

quantum correction terms coming from the quantum

geometry effects in the modified Raychaudhuri equation

of the scale factor in the conformal time. These terms have

little impact in the classical regime but become important in

the Planck regime and change the qualitative behavior of

the effective mass function in the Planck regime.

In conclusion, despite their different methodologies and

underlying assumptions, the phenomenological differences

in predictions between dressed metric and the hybrid

approach in the Planck regime essentially result from the

differences in effective mass functions which arises from

the polymerization of the different versions of the classical

mass functions which are equivalent at the level of the

classical background dynamics. In fact, if one were to

consider the dressed metric approach with using variable

ν
k⃗

and choosing same polymerization for 1=πa, at a

phenomenological level one obtains an identical descrip-

tion as the hybrid approach. The difference between the two

approaches, at a practical computation level, is no more

than the choice of variable used to write the Hamiltonian for

perturbations and associated polymerization ambiguities. It

is likely that such a difference can disappear in a top-to-

bottom approach where the perturbation theory is obtained

by truncating the full quantum theory to any desired order

in perturbations. In such a scenario, a different choice of the

variables would leave no impact on the effective dynamics

of the quantum theory.
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