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Abstract— Neuropotentials monitoring can help individuals to 

significantly enhance their physical and mental well-being. We 
present an evaluation of a multichannel, passive and fully 
implantable wireless neurosensing system (WiNS). WiNS employs 
radiofrequency and optical communications to address the need 
for non-battery-operated systems. In this study, we will present a 
new automated technique to identify signal segments eliminating 
the difficulty of manual classification of evoked biopotentials. In 
addition, machine learning algorithms are adopted to evaluate 
signal quality from WiNS and compare it with a commercially 
available wired system. Somatosensory evoked potential data 
measured from wired and our wireless systems shows < �% 
deviation in machine learning testing accuracy, indicating 
successful detection of biopotential signal as low as �� ���� . 

These results support the concept that real-time machine interface 
for wireless and passive acquisition of biopotentials is indeed 
feasible translating to several uses for future clinical research. 

I. INTRODUCTION 

 Neuropotential recording provides essential information to 
better understand the brain’s functionality and to diagnose 
neurological diseases early. To sense certain brain signals, 
implantable technologies are employed. However, wires are still 
required to connect the electrodes located on the brain to 
external equipment restricting movement and possible causing 
infections. In addition, current wireless implanted neural 
recording systems require use of batteries that may lead to heat 
in the brain which can cause tissue damage. To overcome these 
issues a multichannel passive wireless neurosensing system 
(WiNS) has been proposed with very minor heating to the brain. 
Therefore, WiNS minimizes injury and preserves the natural 
lifestyle of the patient [1].  

Several benchtop and in vivo measurements have been 
performed to demonstrate the potential of WiNS which can 
significantly impact the future neuroscience research [2]. The 
recorded data could be employed to analyze the patient’s well-
being in real-time as well as offer a diagnosis and treatment for 
several neurological disorders such as epilepsy, Parkinson’s, 
Alzheimer’s, tremor, etc. However, an automated brain-machine 
interface system is still required to collect and process the 
recorded neural data in real time. Such automated process serves 
to eliminate the need for manual classification of biopotentials. 
Therefore, by introducing artificial intelligence (AI) and 
implementing machine learning (ML) algorithms, automatic 
recognition of the recorded signals can be achieved.  

In this paper, we present an analysis of ML techniques to 
process recorded biopotentials. Further, we demonstrate that the 

WiNS system quality signal is comparable to existing wired 
recorders. 

II. NEUROSENSING SYSTEM 

Wireless Neurosensing System (WiNS) is the result of 
several years of collaborative research that led to a fully 
implantable, minimally invasive, wireless and passive 
alternative that does not require a battery. WiNS is composed of 
two principal components, the implant, and the interrogator. The 
operation principle of the proposed technology relies on 
radiofrequency and optical communications, as shown in Fig. 1. 
A carrier signal is generated at the interrogator and transmitted 
to the implant where it is mixed with the neural signals from the 
brain. Subsequently, this modulated signal is transmitted back to 
the interrogator for demodulation and processing. Recent 
versions of this system have incorporated multichannel 
recording and an impedance matching network to minimize the 
mismatches between the neural electrodes and the recording 
circuits [3,4]. 

 

Fig. 1: Block diagram of the neurosensing system able to detect neural signals 
as low as 15 ����. 

III. EXPERIMENTAL SET-UP AND MEASUREMENTS 

In vivo recordings in rats were performed in compliance with 
the Institutional Animal Care and Use Committee (IACUC) at 
Florida International University (Approval No. 20-040). 
Somatosensory evoked potentials (SSEPs) were recorded in 
these experiments by eliciting activity in the somatosensory 
cortex, specifically in the hind limb (HL) region, as shown in 
Fig. 2 (a). Evoked brain signals were detected using an 
electrocorticographic 32 channels grid. A typical recording 
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sampling rate of 500 Hz per channel was used for recording. In 
addition, a commercially available wired system Open Ephys 
was employed as a reference system.  

IV. NEUROSENSING SYSTEM EVALUATION 

In this paper, we aim to evaluate the performance of our 
wireless recording method by comparing datasets recorded from 
a wired system and WiNS. The raw data was first filtered using 
a 60 �� notch filter and then passed through a band-pass filter 
across 0.1 − 100 ��. Each recording was five minutes in lenght 
and were segmented from −50 to 250 �� , referenced to the 
time when HL stimulation occurred. Here, we introduce a 
machine learning algorithm to remove noisy trials automatically 
from the WiNS system recording. Further, somatosensory 
evoked potentials (SSEPs) were extracted by averaging across 
the identified signal segments. 

Notably, several machine learning classification methods are 
available. These are categorized based on their complexity in 
ML, deep learning (DL) and transfer learning (TL) modalities. 
ML algorithms are usually simple to interpret and understand. 
Some of the popular techniques are the ensemble methods 
including the random forest (RF) approach that employs several 
decision trees. RF approach is robust to outliers and nonlinear 
data, making it more suitable for noisy signals. On the other 
hand, DL algorithms can incorporate several hidden layers. An 
efficient DL method for images is the convolutional neural 
network (CNN) which has little dependence on pre-processing. 
Transfer learning is employed when already trained networks 
from one task are reused for another task. Two examples are 
GoogleNet (22 layers deep) and SqueezeNet (18 layers deep). 
The latter can classify objects into 1000 categories. 

 

 
(a) 

 
(b) 

(c) 
 

(d) 
Figure 2. Passive wireless acquisition of SSEP: (a) eliciting activity 

characteristics, (b) labeled noise/signal segments scalograms, (c) classification 
performance and (d) manually and machine learning recovered SSEP. 

 Random Forest, Convolutional Neural Network of three 
layers (CNN- 3), GoogleNet and SqueezeNet with modifications 
for our dataset, were employed for classification. For the last 
three algorithms, a continuous wavelet transform filter bank was 
precomputed to create the scalograms. The latter are time 
frequency representations generated from the data, as shown in 
Fig. 2 (b). Since the recorded data is unbalanced, introducing a 
negative impact on algorithm accuracy, the amount of signal 

segments was under sampled for training the algorithm. The 
models were constructed and trained in MATLAB. The training 
data set was composed of 807 segments while the testing data 
set was comprised of 201 segments. The results in Fig. 2 (c) 
show that RF is the best classifier for the data. Notably, RF 
training time took 55 seconds. By employing the RF trained 
model with datasets from a single recording, we can determine 
the SSEP. This indicates that manual and ML extraction have 
the same timing and similar amplitude for the maximum peak, 
Fig. 2 (d). These results demonstrated that we can automatically 
recognize signal segments, eliminating difficulties of manually 
identifying noisy segments and thereby reducing processing 
time. 

After SSEP extraction, we proceeded to analyze the datasets 
recorded from the wired system and WiNS. The same pre-
process techniques were again used to generate scalograms. Fig. 
3 (a) shows the SSEP scalograms of WiNS vs the wired system. 
For this classification, the training dataset was composed of 71 
segments. The measurement dataset was comprised of 17 
segments. From Fig. 3 (b), the measured SSEP data from wired 
and wireless systems shows < 6% discrepancy. We remark that 
measurements indicate a detectable neural signal of amplitude 
as low as 15 µ���. 

 
 

 
(a) 

 
(b) 

Figure 3. (a) SSEP Scalograms and (b) classification performance.  

V. CONCLUSIONS 

A new data analysis technique with AI/ML algorithms was 
used to process wired and WiNS received medical datasets. It 
was demonstrated that the recording of the evoked neuronal 
activity using a multichannel and passive WiNS is comparable 
to a wired system. We also introduced a machine learning 
technique to enable the SSEP signal recognition and avoid the 
need for manual classification. In the future, we will employ this 
machine learning algorithm to automatically recognize 
recordings from various stimulation paradigms in real time. 
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