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Abstract— Neuropotentials monitoring can help individuals to
significantly enhance their physical and mental well-being. We
present an evaluation of a multichannel, passive and fully
implantable wireless neurosensing system (WiNS). WiNS employs
radiofrequency and optical communications to address the need
for non-battery-operated systems. In this study, we will present a
new automated technique to identify signal segments eliminating
the difficulty of manual classification of evoked biopotentials. In
addition, machine learning algorithms are adopted to evaluate
signal quality from WiIiNS and compare it with a commercially
available wired system. Somatosensory evoked potential data
measured from wired and our wireless systems shows < 6%
deviation in machine learning testing accuracy, indicating
successful detection of biopotential signal as low as 15 uV,,.
These results support the concept that real-time machine interface
for wireless and passive acquisition of biopotentials is indeed
feasible translating to several uses for future clinical research.

I. INTRODUCTION

Neuropotential recording provides essential information to
better understand the brain’s functionality and to diagnose
neurological diseases early. To sense certain brain signals,
implantable technologies are employed. However, wires are still
required to connect the electrodes located on the brain to
external equipment restricting movement and possible causing
infections. In addition, current wireless implanted neural
recording systems require use of batteries that may lead to heat
in the brain which can cause tissue damage. To overcome these
issues a multichannel passive wireless neurosensing system
(WiINS) has been proposed with very minor heating to the brain.
Therefore, WiNS minimizes injury and preserves the natural
lifestyle of the patient [1].

Several benchtop and in vivo measurements have been
performed to demonstrate the potential of WiNS which can
significantly impact the future neuroscience research [2]. The
recorded data could be employed to analyze the patient’s well-
being in real-time as well as offer a diagnosis and treatment for
several neurological disorders such as epilepsy, Parkinson’s,
Alzheimer’s, tremor, etc. However, an automated brain-machine
interface system is still required to collect and process the
recorded neural data in real time. Such automated process serves
to eliminate the need for manual classification of biopotentials.
Therefore, by introducing artificial intelligence (AI) and
implementing machine learning (ML) algorithms, automatic
recognition of the recorded signals can be achieved.

In this paper, we present an analysis of ML techniques to
process recorded biopotentials. Further, we demonstrate that the
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WINS system quality signal is comparable to existing wired
recorders.

II.  NEUROSENSING SYSTEM

Wireless Neurosensing System (WiNS) is the result of
several years of collaborative research that led to a fully
implantable, minimally invasive, wireless and passive
alternative that does not require a battery. WiNS is composed of
two principal components, the implant, and the interrogator. The
operation principle of the proposed technology relies on
radiofrequency and optical communications, as shown in Fig. 1.
A carrier signal is generated at the interrogator and transmitted
to the implant where it is mixed with the neural signals from the
brain. Subsequently, this modulated signal is transmitted back to
the interrogator for demodulation and processing. Recent
versions of this system have incorporated multichannel
recording and an impedance matching network to minimize the
mismatches between the neural electrodes and the recording
circuits [3,4].
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Fig. 1: Block diagram of the neurosensing system able to detect neural signals
as low as 15 ul,.

III. EXPERIMENTAL SET-UP AND MEASUREMENTS

In vivo recordings in rats were performed in compliance with
the Institutional Animal Care and Use Committee (IACUC) at
Florida International University (Approval No. 20-040).
Somatosensory evoked potentials (SSEPs) were recorded in
these experiments by eliciting activity in the somatosensory
cortex, specifically in the hind limb (HL) region, as shown in
Fig. 2 (a). Evoked brain signals were detected using an
electrocorticographic 32 channels grid. A typical recording
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sampling rate of 500 Hz per channel was used for recording. In
addition, a commercially available wired system Open Ephys
was employed as a reference system.

IV. NEUROSENSING SYSTEM EVALUATION

In this paper, we aim to evaluate the performance of our
wireless recording method by comparing datasets recorded from
a wired system and WiNS. The raw data was first filtered using
a 60 Hz notch filter and then passed through a band-pass filter
across 0.1 — 100 Hz. Each recording was five minutes in lenght
and were segmented from —50 to 250 ms, referenced to the
time when HL stimulation occurred. Here, we introduce a
machine learning algorithm to remove noisy trials automatically
from the WINS system recording. Further, somatosensory
evoked potentials (SSEPs) were extracted by averaging across
the identified signal segments.

Notably, several machine learning classification methods are
available. These are categorized based on their complexity in
ML, deep learning (DL) and transfer learning (TL) modalities.
ML algorithms are usually simple to interpret and understand.
Some of the popular techniques are the ensemble methods
including the random forest (RF) approach that employs several
decision trees. RF approach is robust to outliers and nonlinear
data, making it more suitable for noisy signals. On the other
hand, DL algorithms can incorporate several hidden layers. An
efficient DL method for images is the convolutional neural
network (CNN) which has little dependence on pre-processing.
Transfer learning is employed when already trained networks
from one task are reused for another task. Two examples are
GoogleNet (22 layers deep) and SqueezeNet (18 layers deep).
The latter can classify objects into 1000 categories.

Eliciting Neuronal Activity
0.5 ms
—
2.5
mA
3 Hz

Electrical Pulse Parameters

(a)

Algorithms Performance

Marnaby Idantibed SSEPs
——Machina Leaming ldertfied 85885

94.5°

10 : op
3

5 o i '

81.68 a

70 8.32 {20 o

287 386 |

0 \ 2o}

47

30|

50 | 3
E

R CNN-3  SqueezeNel  GoogleNel = a 50 100 150 0 250
Algorithms Time [msac)

(©) (d)
Figure 2. Passive wireless acquisition of SSEP: (a) eliciting activity
characteristics, (b) labeled noise/signal segments scalograms, (c) classification
performance and (d) manually and machine learning recovered SSEP.
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Random Forest, Convolutional Neural Network of three
layers (CNN- 3), GoogleNet and SqueezeNet with modifications
for our dataset, were employed for classification. For the last
three algorithms, a continuous wavelet transform filter bank was
precomputed to create the scalograms. The latter are time
frequency representations generated from the data, as shown in
Fig. 2 (b). Since the recorded data is unbalanced, introducing a
negative impact on algorithm accuracy, the amount of signal

segments was under sampled for training the algorithm. The
models were constructed and trained in MATLAB. The training
data set was composed of 807 segments while the testing data
set was comprised of 201 segments. The results in Fig. 2 (c¢)
show that RF is the best classifier for the data. Notably, RF
training time took 55 seconds. By employing the RF trained
model with datasets from a single recording, we can determine
the SSEP. This indicates that manual and ML extraction have
the same timing and similar amplitude for the maximum peak,
Fig. 2 (d). These results demonstrated that we can automatically
recognize signal segments, eliminating difficulties of manually
identifying noisy segments and thereby reducing processing
time.

After SSEP extraction, we proceeded to analyze the datasets
recorded from the wired system and WiNS. The same pre-
process techniques were again used to generate scalograms. Fig.
3 (a) shows the SSEP scalograms of WiNS vs the wired system.
For this classification, the training dataset was composed of 71
segments. The measurement dataset was comprised of 17
segments. From Fig. 3 (b), the measured SSEP data from wired
and wireless systems shows < 6% discrepancy. We remark that
measurements indicate a detectable neural signal of amplitude
as low as 15 ul,
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Figure 3. (a) SSEP Scalograms and (b) classification performance.

V. CONCLUSIONS

A new data analysis technique with AI/ML algorithms was
used to process wired and WiNS received medical datasets. It
was demonstrated that the recording of the evoked neuronal
activity using a multichannel and passive WiNS is comparable
to a wired system. We also introduced a machine learning
technique to enable the SSEP signal recognition and avoid the
need for manual classification. In the future, we will employ this
machine learning algorithm to automatically recognize
recordings from various stimulation paradigms in real time.
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