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Abstract: The AlyBa crystal structure is the most common structure among binary intermetallic
compounds. It is well suited for accommodating large atoms of group II elements and is often the
intermediate phase closest to the terminal phase. It is, therefore, of interest to characterize diffusion
properties of compounds with this tetragonal crystal structure. In the present study, H1n perturbed
angular correlation spectroscopy was used to study solute site occupation and atom movement
in IngBa, Al4Ba, AlyEu, AlySr, and GasSr. The indium tracer and its daughter cadmium were
found to occupy only the two Al-type sublattices in these compounds through detection of nuclear
quadrupole interactions with axially symmetric EFGs. Measurements with increasing temperature
revealed merging of signals due to dynamical averaging of these interactions as Cd atoms jumped at
increasing rates between alternating sublattices. The jump rates were estimated to be between 8 kHz
and 2 MHz at about 350 °C for Al4Eu and at about 450 °C for InyBa and AlsBa. Fits of spectra using
Blume's stochastic model allowed determination of activation enthalpies for average Cd jump rates
between alternating Al sublattices in Al4Sr and GasSr to be 1.16(3) eV and 1.47(3) eV, respectively.
This result was used to estimate transverse diffusivities of Cd.

Keywords: jump frequency; diffusion; nuclear relaxation; quadrupole relaxation; PAC; motional averaging

1. Introduction

Atomic motion in solids can be studied macroscopically by measuring diffusivity of a
tracer element through evolution of its concentration profile in a sample or microscopically
by measuring effects such as nuclear magnetic resonance and mechanical vibration that
are sensitive to atomic jumps of the tracer [1]. Alternatively, perturbed angular correla-
tion (PAC) spectroscopy can be used as a microscopic method for studying diffusion by
measuring nuclear quadrupole relaxation caused by the jumps [2]. In this work, 1'lIn
PAC was used to detect Cd movement in five compounds with the tetragonal Al;Ba (D13,
tI10) structure: IngBa, AlsBa, Al;Eu, Al45r, and GasSr. These measurements are of interest
because they involve application of PAC to a system with non-cubic crystal structure, so
that the physical origin of quadrupole relaxation differs from previous PAC work.

1.1. Diffusion Studied via Perturbed Angular Correlation Spectroscopy

PAC measures the angular correlation between directions in which two gamma-rays
are emitted in a gamma-cascade following radioactive decay of a tracer nucleus. The
electric quadrupole interaction between the quadrupole moment of the nucleus of a tracer
atom and the local electric field gradient (EFG) leads to a time-dependence of the angular
correlation. The EFG is essentially the second spatial derivative of the electrostatic potential
produced by extranuclear charges and is highly sensitive to arrangement of atoms within a
few angstroms of the tracer. When this arrangement changes, for example, due to jumping
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of the tracer atom among lattice sites on a timescale comparable to the lifetime of the
intermediate nuclear state in the gamma-cascade, there is a relaxation of the measured
angular correlation due to decoherence in the quadrupole interaction experienced by the
ensemble of tracers.

One of the most commonly used PAC isotopes is 'In. It decays to ''Cd, and the
quadrupole interaction is measured while Cd is in its 247 keV, 5/2-spin state, which has
a mean lifetime of 120 ns. For such a 5/2-spin state, the perturbation function, which
characterizes the time-dependence of the angular correlation, is given by

' 3
G;tatm(a}o/ t) =5+ Z Sn COS(wn (OJO)t)/ (1)

n=1

where wy = 3meQ|V,,|/10h is the fundamental quadrupole interaction frequency, which is
dependent on the quadrupole moment of the nucleus, Q, main principal component of the
EFG tensor at the lattice site, V., and Planck’s constant #. When PAC tracers are located at
a lattice site having tetragonal point symmetry, they experience an axially symmetric EFG
with three harmonic frequencies given by wy, (wp) = nwy. For a polycrystalline sample, the
symmetry axes have a uniform random orientational distribution, and the amplitudes are
given by so = 1/5,s1 = 13/35,s, = 10/35, and s3 = 5/35.

When EFGs experienced by tracers fluctuate, due, for example, to changes in ori-
entation of the EFG symmetry axis as tracers jump among lattice sites, the measured
perturbation function can be described to good approximation as the static perturbation
function multiplied by an exponential damping factor as given by empirical expressions

Ggynamic (OJO/ t) = exp( _/\slowt) thatic (wO, t) 2)

in a slow-fluctuation regime where A, is proportional to the fluctuation rate and by
d H .
Gy "™ (wo, t) = exp(—Agastt) G5 ((wp), t) )

in a fast regime where Ay, varies inversely with the fluctuation rate [3,4]. The (wy) is equal
to the frequency of the motionally averaged EFG.

Use of PAC to study nuclear quadruple relaxation arising from movement of tracers
was first reported for motion of '!Cd in InzLa using !''In as the PAC parent isotope [5].
InzLa has the familiar CuzAu (L1,, cF4) structure, shown in Figure 1a. Lattice positions
occupied by In have tetragonal point symmetry, leading to an axially symmetric EFG, but
there are three different orientations of the symmetry axis. This means that each first-
neighbor jump among In-lattice sites (dark segments in Figure 1a) leads to reorientation
of the EFG by 90°, which is the source of relaxation. This is manifested as damping of the
PAC signal.

Spectra obtained using ''In in IngLa are shown in Figure 1b. Below 156 °C, the
perturbation function is essentially static. Spectra at 156 °C and 261 °C exhibit relaxation in
the slow-fluctuation regime with relaxation factor A, proportional to the mean jump fre-
quency of the tracer (i.e., to the inverse of the mean residence time of the tracer). Maximum
relaxation is observed at 340 °C at which the temperature jump rate is roughly equal to
the quadrupole interaction frequency. Above 340 °C, spectra exhibit relaxation in the fast
regime, with A, inversely proportional to the mean jump frequency and (wy) = 0 because
the motionally averaged EFG of three orthogonal axially symmetric EFGs is zero. As can
be seen, diffusional reorientation of the EFG leads to dramatic changes in the shape and
damping of measured perturbations.

M n-PAC measurements of Cd movement via this form of quadrupole relaxation
have also been carried out in other compounds. These include many having the CuzAu
structure, including rare-earth stannides, aluminides, and other indides [2,6-8]. Also
included are GayPd3 [9] and GayPt3 [10], which have the cubic GeyIrs structure (D8, cI40)
with In/Cd tracer impurities distributed between two inequivalent Ga-sublattices, allowing
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simultaneous measurement of different degrees of relaxation due to different jump rates on
two sublattices. Measurements also have been made in cubic f-Mn [11] (A13, cP20). Jumps
of the PAC tracer result in a reorientation of the EFG in all these systems.

PAC measurement of tracer jump rates through quadrupole relaxation has some
advantages over other methods. Relaxation is measured by the degree of relaxation
exhibited by a signal (or signals) that identifies the phase and lattice location(s) of the tracers.
This makes it possible to use polycrystalline samples, because in the slow-fluctuation regime
diffusion of tracers in grain boundaries would lead to signals distinguishable from O’ctllﬁ)j},]e of
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MIn-PAC measurements of Cd movement via this form of quadrupole relaxation
have also been carried out in other compounds. These include many having the CusAu
structure, including rare-earth stannides, aluminides, and other indides [2,6-8]. Also in-
cluded are GarPds [9] and Ga7Pts [10], which have the cubic Geslrs structure (D8, c140)
with In/Cd tracer impurities distributed between two inequivalent Ga-sublattices, allow-
ing simultaneous measurement of different degrees of relaxation due to different jump
rates on two sublattices. Measurements also have been made in cubic £ -Mn [11] (A13,
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1.2. AliBa Crystal Structure

The AlsBa crystal structure is favorable for accommodation of large atoms such as Ba
or Sr and is the most common structure for intermetallic phases [12]. It is almost always
the structure of the intermediate phase closest to the terminal phase of a binary sysf’e‘i{‘gl

The crystal structure is shown in Figure 2.
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*n/a = not applicable.

Generally, diffusion in close-packed alloys comprised of elements with similar atomic
radii is mediated by vacancies [14], and this likely is true for compounds with the Al4Ba
structure. Very little information about point defects in AlyBa-structured compounds
is readily available in the literature. Recent density functional theory calculations for
LaRu;P,, which has the AlyBa structure, indicated that vacancy formation enthalpies are
lower than interstitial formation enthalpies [15]. This is consistent with the expectation that
the dominant contribution to diffusion will be mediated by vacancies.

As will be reported, no PAC signals were observed in the present work that could
be attributed to vacancies or other point defects. This is typical of other PAC studies of
tracer movement [2,5-11]. For a tracer to jump, there must be a vacancy at a neighboring
lattice site. The probability that the tracer can jump between sublattices is proportional
to Zcy, where Z = 4 is the number of first neighbors and cy is the vacancy concentration.
Therefore, the jump rate of tracers will be a factor ¢y smaller than the jump rate of vacancies.
This means that if tracers jump at a rate comparable to the inverse timescale of the PAC
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measurement, vacancies will be jumping much faster. In this case, vacancies make rapid
enough “passages” past positions of probe atoms so that measured quadrupole interactions
are unaffected by fleeting changes to EFGs caused by passing vacancies.

2. Materials and Methods

Samples of InyBa, Al4Ba, Al4Eu, Al4Sr, and GasSr were prepared by arc-melting high
purity metals with !!!In-activity under argon in a small arc-furnace. Indium concentrations
were very dilute at about 1077 at.%. As will be shown below, PAC signals exhibited minimal
frequency distributions, indicating that sample preparation led to highly ordered crystals
having low concentrations of point defects. Spectra from IngBa samples exhibited only
two signals characteristic of the InsBa phase, indicating volume fractions of any minority
phases, if present, were minimal. For other samples, the lack of PAC signals from other
phases does not necessarily mean minimal minority-phase volume-fractions, because the
PAC tracer is an impurity and may preferentially dissolve into the AlyBa-structured phases.
In all cases, PAC signals from the Al4Ba-structured phases are not affected by the presence
of minority phases, so further characterization of sample composition by, for example,
X-ray diffraction was not deemed to be necessary.

In order to check whether or not spectra were influenced by composition, some
samples were prepared that had mean compositions with 16-17 at.% divalent metal and
with about 22 at.% divalent metal based on masses of metals before melting. All these
compounds appear as line compounds in binary phase diagrams, and are, therefore,
expected to have very narrow phase fields. This means that sample compositions likely
fell in the two-phase fields on either side of the AlyBa phases, in which case values for the
degree of nonstoichiometry, x in Aly,5,Baj_s,, are not known based on mean composition.
As will be shown, PAC measurements did not exhibit a variation with composition, so
there was not a need to measure compositions of the Al;Ba phases; instead, samples are
referred to as divalent-metal rich or divalent-metal poor.

PAC measurements were made using a four-detector spectrometer with BaF, scintilla-
tors. More information about the setup and data reduction can be found in ref. [16].

When PAC tracers are distributed between two inequivalent lattice sites at low tem-
perature, the perturbation function will be given by the weighted sum of perturbation
functions of the static form given by Equation (1):

Ga(t) = LG ((wo)y, 1) + 2G5 ((wo), 1), )

where f; and f, are fractions of tracers at each lattice site and quadrupole interaction
frequencies (wp); and (wy), are, in general, different because of different EFGs at the
two sites.

At elevated temperature, diffusion of PAC tracers on aluminum sublattices in the
AlyBa structure involves jumps between Al; and Al, sites. When such jumps occur at rates
comparable to the inverse timescale of the PAC measurement, the perturbation function
will exhibit features characteristic of stochastic fluctuations of the quadrupole interaction
between the two EFG states. Fluctuations of this type, between two EFGs with collinear
main principal axes of different magnitudes, were considered in detail by Achtziger and
Witthuhn [17].

The jump rates of tracers between the two sublattices are proportional to 1, and ry1,
the rates of EFG fluctuation from site 1 to 2 and from site 2 to 1, respectively. It is convenient
to define a dynamic parameter I'g = (r12 + r21)/ Awp, where Awg = |(wp); F (wp),| is the
difference in quadrupole interaction frequencies of the two sites. The negative sign is used
when EFGs have the same sign. In equilibrium, the distribution of tracers experiencing the
two EFGs are related to fluctuation rates between EFGs by detailed balance: fir1p = faoro1.

Empirical forms of GS ynamlc(cuo, t) given in Equations (2) and (3) can be used as a conve-
nient approximation to expressions given by Achtziger and Witthuhn. In the fast-fluctuation
regime, Iy > 1, Equation (3) can be used as-is, with the interaction frequency given by the
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weighted average of the two site EFGs, (wo) = |r21(wo); £ r12(wo),|/ (112 4 121) where the
negative sign is used when EFGs have opposite signs, and A o 112721 (Awyp) /2(r12 + 121 )3.
In the slow-fluctuation regime, I'y < 1,
G;lynamic (wo, t) 2 ag + f1exp(—rnt)GSRE((w'p)y, t)+ (5)
faexp(=r12t) G5 ((w'o)y, t)

where 4y is a small unperturbed fraction, and interaction frequencies (w’p); and (w’p),
are shifted from (wp); and (wy), toward (wp) with the degree of shift proportional to
12121/ Awy.

Achtziger and Witthuhn characterized progression of the perturbation function with
increasing dynamic parameter in three regimes they called quasistatic, intermediate, and
fast fluctuation domains corresponding toI'g < 1,9 ~ 1, and I'y > 1, respectively. In
order to describe results in the present work, it is convenient to consider the behavior
divided into four regimes, which correspond to different ranges in temperature, as follows.

e Low temperature—static regime. A sum of two PAC signals as in Equation (4) due to
tracers distributed among the two Al sublattices. Additional signals arising from point
defects such as vacancies will not be observed if defect concentrations are less than
around 1%, which can be expected for a well-ordered intermetallic compound at low
temperature. The values of quadrupole interaction frequencies (wy); and (wp), likely
will decrease with increasing temperature due to thermal expansion and effects of
lattice vibrations [18]. Shifts of interaction frequencies and damping will be negligible
because jump rates are very low.

e  Moderate temperature—slow-fluctuation regime. Tracer jumps occur on the timescale
of the PAC measurement with dynamic parameter Iy < 1. Just as in the static regime,
a sum of two PAC signals will be observed, but the spectrum is more appropriately
described by Equation (5), because jump rates are sufficiently high to induce apparent
shifts of interaction frequencies, and, depending on Awy, damping may be detectable.
Degrees of shifts and damping, if visible, increase with increasing temperature. Maxi-
mum damping occurs when I'g ~ 1 such that r1p ~ 191 ~ Awy.

e  Moderate temperature—rapid-fluctuation regime. Tracer jumps occur on the timescale
of the PAC measurement with I'y > 1. A single PAC signal will be observed with
damping due to fluctuating EFGs, as in Equation (3). Maximum damping occurs
at 'y ~ 1, and damping now decreases with increasing temperature. The value of
the dynamically averaged frequency (wp) will change with increasing temperature
due to two effects: (1) changes in site fractions if 71 and 1 have different activa-
tion enthalpies and (2) further decreases in (wp); and (wy), due to their temperature
dependences caused by thermal-expansion and lattice vibrations.

e  High temperature—motionally averaged regime. The fluctuation rate is now so large
that the PAC signal does not exhibit any damping. The value of {(wgy) will con-
tinue to change with increasing temperature due to both effects present in the rapid-
fluctuation regime.

As will be seen, measurement conditions present for systems in this study did not
allow one to observe all four relaxation regimes in a single sample.

A large obstacle in analyzing spectra comes from small values in Awy, which puts
a limit on maximum possible values of r1; and r; in the slow-fluctuation regime, corre-
sponding to Ty = (r12 +721)/Awp ~ 1. Small enough values of Awy lead to exponential
damping factors too small to measure. In studies of relaxation in the AuzCu-structured
compounds, it was found that damping parameters smaller than about 1 MHz could not be
determined reliably [2,5-8]. For those systems, a single signal was present. In the current
work, two signals are present in the slow-fluctuation regime. Interaction frequencies, site
fractions, and fluctuation rates are correlated strongly enough to make it difficult to mea-
sure damping. Thus, the lower limit for measurable fluctuation rate in the slow-fluctuation
regime is likely higher than in the previous work: 2 MHz, as an estimate.
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Another obstacle comes from uncertainty in how much of observed temperature
dependences of fitted quadrupole-interaction frequencies in the slow-fluctuation regime are
due to thermal expansion and lattice vibrations and how much are due to EFG fluctuation.
In two of the systems of the current work, it was possible to identify static and slow-
fluctuation regimes, so that fluctuation rates could be extracted from fits.

Instead of using formulas from ref. [17] to relate frequency shifts and damping to
fluctuation rates, one can fit spectra to perturbation functions calculated numerically via

Ga(t) =} Gyexp[—Aqt] ©)
q

where A, is the gth eigenvalue of the Blume matrix and G, are time-independent factors that
depend on projections of eigenvectors on the vector space and distribution of parent isotope
among EFGs in the system [19,20]. The Blume matrix is constructed from Hamiltonians
describing the quadrupole interactions experienced by probes in the two Al-sites and the
rates of transition between the two interactions [21]. The form of the Blume matrix suitable
for fluctuations between two collinear EFGs is given in Appendix A. Fits to Equation (6)
were carried out using PolyPacFit [22] with quadrupole interaction frequencies (wp); and
(wp),, transition rates 1, and 7,1, and fractions of H1Tn in each lattice site, f1 and f», as
adjustable parameters.

3. Results

With the expectation that atomic jump rates will only be large enough to lead to
observable relaxation above room temperature, most measurements were made between
room temperature and the temperature above which PAC tracers diffused out of the sample
during data collection. This upper temperature varied from system to system. For In4Ba
and Al4Ba, spectra also were collected at —196 °C. The —196 °C measurements did not
contribute to understanding of temperature dependences of fitted parameters but are
included for completeness.

In all five systems, two axially symmetric quadrupole interactions were observed at
low temperatures where diffusional motion was negligible compared to the 120-ns lifetime
of the PAC level. Axial symmetry indicates the signals arise from tracers that substitute at
regular lattice site and do not have nearby point defects, as the presence of a point defect
would tend to break axial symmetry. It is natural to attribute the two observed signals
as arising from tracers on the two Al-type sites rather than one Al-type site and the Ba
site because of (1) the chemical similarity of the tracer parent isotope to the host element
occupying the Al-type site, and (2) the good match between tracer atomic size and volumes
of Al-sites.

Measurements are reviewed first for InyBa, in which 1In is a host-element so that PAC
tracers must be distributed equally between Al-type sites. Then, results are given for AlyBa
and Al Eu, which exhibit similar temperature-dependences of quadrupole interaction
frequencies. Finally, results are given for Al4Sr and GaySr, which have temperature depen-
dences of interaction frequencies that allow calculation of mean EFG reorientation rates.

3.1. InyBa

PAC spectra for IngBa are shown in Figure 3. They exhibit features typical of spectra
in most systems studied in the present work. At 15 °C, two signals with equal site fractions
(fi = f2 = 0.5) were observed; they are most readily seen when spectra are plotted in
the frequency domain, with the trio of harmonics for each signal marked using trident
symbols. At 200 °C frequencies are only partially resolved while at 650 °C the signals are
collapsed into a single, averaged interaction. Amplitudes of the three harmonics deviate
from values for a random polycrystalline sample (sp = 1/5, s;1 = 13/35, s, = 10/35,
and s3 = 5/35). This effect is known as texturing and occurs in samples that do not
have uniform distribution of randomly oriented grains, which can be a result of sample
preparation and annealing, especially for non-cubic materials.
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nEgesirtHenly olasianblatMisdddn IngBa showed that the higher-frequency signal corresponds
to tracers on In; (i.e., Alj-type) sites [23]. With increasing temperature, the two signals have
merged and only one signal is visible.

Merging of the two signals is attributed to frequency-averaging, as described in more
detail in Appendix B. Tracer atoms jump back and forth between the two sublattices more
and more rapidly as the temperature increases, going from the slow-fluctuation to fast-
fluctuation regime at the merging temperature of about 450 °C. In the slow-fluctuation
regime, spectra were fit well using values of r13 = r7; = 0 in Equation (5). This does not
mean fluctuation rates (and jump rates) were zero, but rates were less than about 2 MHz,
as explained above.

Temperature dependences of measured interaction frequencies caused by relaxation shifts
overlap temperature dependences of the (not directly measured) static interaction frequencies
caused by thermal expansion and lattice vibrations, and, unfortunately, it is not possible to
resolve the two dependences. Expressed differently, it is not possible to determine the value
of Awy at the temperature where measured frequencies merge (around 450 °C in Figure 4). If
it were, then it would have been possible to determine the values of r1; and rp; accurately.
The merging of signals indicates that EFG fluctuations must be on a timescale comparable to
the 120-ns lifetime of the PAC level. That is, (120 ns) /1000 < r,! ~ 75! < (120ns) - 1000

so that one can place 8 kHz as the lower limit for r1; and ;. Thus, fluctuation rates and, by
extension, tracer jump rates, are between 8 kHz and 2 MHz at 450 °C.

Based on typical diffusivity of metals in intermetallic compounds, one can reasonably
assume that the spectrum measured at —196 °C corresponds to the static regime and
that somewhere between that measurement and the signal merging spectra correspond
to the slow-fluctuation regime. However, it is not possible to distinguish between these
regimes in the InyBa system. The upper three measurements correspond to the motionally
averaged regime.
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As was the case for InyBa, damping factors in Equation (5) were too small to detect
because temperature dependences of interaction frequencies led to small values of Awy near
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Figure 11 shows time-domain and corresponding Fourier-amplitude spectra for
GauSr at three temperatures. Unlike other compounds in this study, there is a strong tem-
perature dependence of the site fractions. At room temperature, the spectrum is domi-
nated by the lower-frequency signal. As temperature increases in the slow-fluctuation re-
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Figure 11 shows time-domain and corresponding Fourier-amplitude spectra for GasSr
at three temperatures. Unlike other compounds in this study, there is a strong temperature
dependence of the site fractions. At room temperature, the spectrum is dominated by
the lower-frequency signal. As temperature increases in the slow-fluctuation regime, the
fraction of the higher frequency signal, f,, becomes visible and increases. At the highest
temperature, 690 °C, it is not possible to resolve whether a fit to two signals, as appropriate
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Figure 13 shows temperature dependences of the frequencies measured in GaSr.
Values obtained using fits to the empirical model given in Equation (5) show convergence
due to relaxation shifts in the slow-fluctuation regime between about 550 and 730 °C,
whereas fits to Equation (6) show the temperature dependence of the static quadrupole
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4. Discussion
4.1. Temperature Dependences of Quadrupole Interaction Fregeuncies

It is interesting that temperature dependences of static quadrupole interaction frequen-
cies led to such small values of Awy at the transition between slow- and fast-fluctuation
regimes so that fluctuation rates could not be determined in three of the five systems
studied. Indeed, if fluctuation rates were much lower, interaction frequencies would have
crossed in Figures 4-6 and merged because of dynamical averaging at higher temperatures.
The trend that static interaction frequencies result in small Awp happened because tem-
perature dependences of the two sites were not proportional to one another, as they more
frequently are in other compounds.

The large difference in temperature dependences between the two Al sites in the
AlyBa structure is, perhaps, not unexpected. Local configurations of atoms around the
two Al-type sites are notably different. The Al;-site is in a nearly perfect tetrahedron of
Aly-sites [24], whereas Al sites have four Al;-sites in a square arrangement on one side and
one Al,-site close on the other side. Second, there is a variable internal lattice parameter
z = 3/8 that controls distances between Al; and Al, planes along the tetragonal axis and
that varies from phase to phase. In addition, highly anisotropic thermal expansion has
been observed for AlSr [24]; it is a factor of 1.9 greater perpendicular than parallel to the
tetragonal axis. This is likely to be a general feature of AlyBa phases and, along with the
other considerations, will lead to different temperature dependences of EFGs at the two
Al-type sites.

4.2. Diffusivities

For Al4Sr and GaySr, it was possible to determine an average EFG fluctuation rate, 7.
The corresponding average total tracer jump rate (not including the “invisible” jump rate
of tracers on Al sites making jumps along the tetragonal direction) is related by w = 4f:r,
where the 4 accounts for the fact that four different jump vectors lead to the same change
in EFG and f; is a temporal correlation factor that takes into account the probability that
multiple tracer—vacancy exchanges during an encounter result in the tracer ending up on
the same type of lattice site it started on [25].

In compounds with the tetragonal Al4Ba structure, diffusivity will have different
components parallel and perpendicular to the tetragonal axis. The jump rate between
adjacent Al,-type sites (pictured vertically, one over the other in Figure 2) is not measurable
using PAC, since there is no change of EFG in the jump. Thus, only qualitative statements
can be made about the parallel diffusivity. Note from Table 1 that the distance between
adjacent Al,-sites is comparable to that between Al; and Al, sites, so that the Aly-Al, jump
rate may be significant.

The perpendicular component of diffusivity is governed by jumps between Al;- and
Alp-type sites, since jump distances between sites of the same type (e.g., Al; to Aly) are
much larger. Therefore, the fluctuation rate r gives insight into the perpendicular compo-
nent of the diffusivity. Reliable fluctuation rates were obtained for Al4Sr and GaySr, as
shown in Figures 10 and 14. Each jump between Al; and Al sites moves the probe atom
by a perpendicular distance equal to a/2, using the convention that unit cell parameter c is
parallel to the tetragonal axis and a is perpendicular. Following Philibert [26], the perpen-
dicular diffusivity will be givenby D = fcorrwﬁz. The fcorr is the correlation factor for the
operative diffusion mechanism. Assuming a vacancy mechanism, the correlation factor is
expected to be approximately the same as for self-diffusion in diamond, feorr ~ 1/2,[26]
since the local atomic arrangement in Al4Ba is quasi-tetrahedral with coordination number
4. Here, ¢ represents jump distance, for which one uses the projected distance ¢ = a/2.
This gives

D, ~ %ffazr. )

Only limited information about temporal correlation factors is available. The value of
fr is about 0.3 for the case of self-diffusion on the Cu sublattice in CuzAu [25]. Using that
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value as an approximation, one can estimate perpendicular components of diffusivity to
be 0.5 x 10712 m?/sand 3 x 10712 m?/s at 1000 K in Al4Sr and GaySr, respectively, using
room temperature lattice parameters.

Because the Aly-Al, jump rate is “invisible” to PAC, one cannot calculate the diffusivity
D) parallel to the tetragonal axis. However, an estimate can be made of the maximum
possible value for the ratio D| /D, by assuming that the Al,-Al, jump rate is infinite.
In effect, this conjoins adjacent Al, atoms and diffusion takes place in a reduced lattice
having the CaF; fluorite structure (C1, cF12). Jumps are between Ca and F sites, with
F sites analogous to Al; sites and Ca sites to Al sites. The arrangement of Al, sites
around Al; sites is very close to tetrahedral [24]. This means that D /D, ~ 1in the
conjoined structure so that the maximum ratio in the expanded structure will be given by

(D /DL> ~ (c/a)* ~ 6 for AlySr and Ga,Sr.
H max

4.3. Signs of the Nuclear Quadrupole Interactions

It is not possible to determine the sign of the main principal component of an EFG
using PAC; however, the present work illustrates a situation where it is possible to deter-
mine whether two EFGs have the same sign or opposite signs. When PAC tracers jump
between sites that have EFGs with colinear main principal axes and when it is possible to
make measurements in the static- or slow-fluctuation regime and in the fast fluctuation or
motionally averaged regime, then it is possible to determine whether the EFGs have the
same sign or opposite signs, as illustrated by the stark difference in measured interaction
frequencies when I'g > 1 for same-sign or opposite-sign EFGs in Figure Al of Appendix B.
Results show that EFGs at the two Al-type sites in all five compounds studied in the present
work have the same sign.

4.4. Solute Site Occupation Behavior

In general, for indium solutes in a compound having the AlyBa structure, equilib-
rium fractions of indium tracers on Al; sites and Al sites can be related by applying the
law of mass action to the pseudo-chemical reaction that describes exchange of tracers
across sublattices:

Ingp, + Alpy, = Inpy, + AlAll- (8)

This gives, in terms of fractional concentrations of indium on sublattices, [In}, | and [Inay, ]:

[InAlz ]

[InAl ] = Kxfer = EXP[Sxfer/kB] EXP[—foer/kBT]/ (9)
1

where Hyfor and Sy, are the enthalpy and the entropy changes when going from the
reactant to the product side of Equation (8). In terms of site fractions,

fol fr = exp| (sk, = sk, ) /ks] exp |~ (W, — W3, ) /ksT], (10)

where I and s indicate the defect enthalpy and vibrational entropy of indium at lattice
site X.

It is interesting that there is little, if any, temperature dependence in site fractions for
three of the systems over the temperature range investigated (e.g., as shown in Figure 7).
Averages of the measured site-fraction ratios in these systems are summarized in Table 2.
To investigate possible temperature dependence, site fraction ratios of Al;Sr, Al4Ba, and
Al4Eu are shown in an Arrhenius plot in Figure 15. Results of fitting with Equation (9) are
summarized in Table 2, along with fit results of site fraction ratios measured in GaySr.
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Table 2. Distribution of tracers on Al-type sublattices given by ratio of fraction with the larger
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temperature, it was possible to conclude only that rates were between about 8 kHz and
2 MHz at the merge temperatures.

For Al4Sr and GaySr, there was less decrease in the difference in static quadrupole
interaction frequencies with increasing temperature caused by thermal expansion and
lattice vibrations, so that it was possible to measure the degree of quadrupole relaxation
and, by extension, interaction fluctuation rates as a function of temperature. The inter-
sublattice jump frequencies were found to have activation enthalpies of 1.16 and 1.47 eV,
respectively, for Al4Sr and GaySr. This allowed determination of the rate at which tracers
jump between unlike Al-type sites to within a correlation factor. This further allowed
estimation of transverse diffusivity in these systems.
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Appendix A

The Blume matrix is constructed in the Liouville vector space defined by |amm') =
|a)|Im) (Im'|{a| where a is an index that labels the hyperfine interaction, I is spin of the
intermediate state of the PAC tracer (5/2 for ''Cd), and m and m’ designate magnetic
substates of the tracer’s intermediate spin state. Elements of the Blume matrix are given by

(bmym's| B |amym'y) = Smymy Ot (bR )
— ab%{5m’1m’2<1m2|Ha“ml> — (5m1m2<1m’1|Hu|1m’2

)y A

where R is the transition rate matrix and H, is the Hamiltonian of the ath quadrupole
interaction. Because there are just two quadrupole interactions, the transition rate matrix is

given by
R = (”2 21 ) (A2)
a2~

Because the two quadrupole interactions are axially symmetric and main principal
components are collinear, matrix elements of the Hamiltonians can be expressed as

I I 2
my —mjp My — 1M

I I 2
I -I 0

h _
(Ima|Ha|Imy) = g(wo)u5mlmz(_1)l " (A3)


https://tinyurl.com/Collins-archive
https://tinyurl.com/Collins-archive
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When the initial distribution of tracers between states is equal to the equilibrium
distribution, there are 14 distinct eigenvalues of the Blume matrix given by

Ap=0
Ar - —2r
2
Ane = —r F 3niQqg + \/(r + %niﬂq) - (:I:%ni(wg)r - HZEZQ) (A4)

2
An—x = —1 F 3niQg — \/(r + %HEQQ) - (:I:%ni(wg)r — HZEZQ)

where (wo) = |r21(wu)1 + r12({Uu)2|/(r12 +7121), OQ = é(a}o)l + %({Uo)z, EZQ = i%(a}u)l
(wo),, and n = 1,2, 3 with negative signs used when EFGs have opposite signs.

Appendix B

Frequencies of the cosine terms of Equation (6) are given by |Im (A, 4+ )| and [Im(A,,— +)|
in Equation (A4). The dependence of frequencies on average fluctuation rate are shown in
Figure Al for rip = ry;. At low fluctuation rate, there are two sets of frequencies with three
harmonics given by wy(wp) = nwo with n = 1,2, 3. As can be seen in Figure A1, whether the
EFGs have the same sign or they have opposite signs is readily discernable by the merging
behavior of the frequencies whenr ~ Awyp.

This merging is attributed to frequency-averaging as the tracer-atoms jump back and
forth between the two sublattices more rapidly with increasing temperature. It is analogous
to frequency-shift keying, with shifts between two frequencies occurring at stochastically
random times (when the tracer atom jumps). If the EFGs have the same sign, then, in a
manner of speaking, the phase of the nuclear precession is preserved during the shift and
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the same sign are illustrated in Figure A2.
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Figure A2. Simulations of PAC spectra for (wp), = 1.3(wp); with same-sign EFGs for varying
fluctuation rates. At low fluctuation rates r/Awg < 1, all three harmonics of both signals can be seen
in the frequency plots. At the critical fluctuation rate, r / Awy = 1, the first harmonics of both signals
have the same value, but the second and third harmonics are distinguishable. By r/Awy = 2, the
second harmonics have merged, and the third harmonics have not. By r/Awg = 5, all harmonics

have merged.
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