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Abstract

In this paper, we propose a single-agent Monte Carlo-based reinforced feature selection
method, as well as two efficiency improvement strategies, i.e., early stopping strategy and
reward-level interactive strategy. Feature selection is one of the most important technolo-
gies in data prepossessing, aiming to find the optimal feature subset for a given downstream
machine learning task. Enormous research has been done to improve its effectiveness and effi-
ciency. Recently, the multi-agent reinforced feature selection (MARFES) has achieved great
success in improving the performance of feature selection. However, MARFS suffers from
the heavy burden of computational cost, which greatly limits its application in real-world
scenarios. In this paper, we propose an efficient reinforcement feature selection method,
which uses one agent to traverse the whole feature set and decides to select or not select each
feature one by one. Specifically, we first develop one behavior policy and use it to traverse
the feature set and generate training data. And then, we evaluate the target policy based on
the training data and improve the target policy by Bellman equation. Besides, we conduct
the importance sampling in an incremental way and propose an early stopping strategy to
improve the training efficiency by the removal of skew data. In the early stopping strategy,
the behavior policy stops traversing with a probability inversely proportional to the impor-
tance sampling weight. In addition, we propose a reward-level and training-level interactive
strategy to improve the training efficiency via external advice. What’s more, we propose an
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incremental descriptive statistics method to represent the state with low computational cost.
Finally, we design extensive experiments on real-world data to demonstrate the superiority
of the proposed method.

Keywords Feature selection - Reinforcement learning - Monte Carlo

1 Introduction

In general data mining and machine learning pipelines, before proceeding with machine
learning tasks, people need to preprocess the data first. Preprocessing technologies include
data cleaning, data transformation and feature engineering. As one of the most important
feature engineering techniques, feature selection aims to select the optimal feature subset
from the original feature set for the downstream task. Traditional feature selection methods
can be categorized into three families: (i) filter methods, in which features are ranked by
a specific score (e.g., univariate feature selection [1, 2], correlation-based feature selection
[3, 4]); (ii) wrapper methods, in which optimal feature subset is identified by a search strat-
egy that collaborates with predictive tasks (e.g., evolutionary algorithms [5, 6], branch and
bound algorithms [7, 8]); (iii) embedded methods, in which feature selection is part of the
optimization objective of predictive tasks (e.g., LASSO [9], decision tree [10]). However,
these studies have shown not just strengths but also some limitations. For example, filter
methods ignore the feature dependencies and interactions between feature selection and pre-
dictors. Wrapper methods have to directly search a very large feature space of 2V feature
subspace candidates, where N is the number of features. Embedded methods are subject to
the strong structured assumptions of predictive models, i.e., in LASSO, the nonzero weighted
features are considered to be important.

Recently, reinforcement learning has been incorporated with feature selection and pro-
duces an emerging feature selection method, called reinforced feature selection [11, 12]. In
the reinforced feature selection, there are multiple agents to control the selection of features,
one agent for one feature. All agents cooperate to generate the optimal feature set. It has
been proved to be superior to traditional feature selection methods due to its powerful global
search ability. However, each agent adapts a neural network as its policy. Since the agent
number equals the feature number (N agents for N features), when the feature set is extremely
large, we need to train a large number of neural networks, which is computationally high and
not applicable for large-scale datasets. Our research question is as follows: Can we design a
more practical and efficient method to address the feature selection problem while preserving
the effectiveness of reinforced feature selection? To answer this questions, there are three
challenges.

The first challenge is to reformulate the feature selection problem with smaller number
of agents. Intuitively, we can define the action of the agent as the selected feature subset.
For a given feature set, we input it to the agent’s policy and the agent can directly output the
optimal subset. However, the feature subset space is as large as 2V, where N is the feature
number (Fig. 1). When the dataset is large, the action space is too large for the agent to
explore directly. To tackle this problem, we design a traverse strategy, where one single agent
visits each feature one by one to decide its selection (to select or deselect). After traversing
all the feature set, we can obtain the selected feature subset. We adapt the off-policy Monte
Carlo method to our framework. In the implementation, we design two policies, i.e., one
behavior policy and one target policy. The behavior policy is to generate the training data
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Fig.1 Reinforced feature selection explores the feature subspace by assigning each feature one agent, and the
agent’s policy decides the selection of its corresponding feature

and the target policy is to generate the final feature subset. In each training iteration, we
use the behavior policy to traverse the feature set and generate one training episode. The
training episode consists of a series of training samples, each of which contains the state,
the action and the reward. Similar with [11], we regard the selected feature subset as the
environment, and its representation as the state. The action 1/0 denotes selection/deselection,
and the reward is composed of predictive accuracy, feature subset relevance and feature
subset redundancy. Using the training episode, we evaluate the target policy by calculating
its Q value with importance sampling and improve it by the Bellman equation. After more
and more iterations, the target policy becomes better and better. After the training is done,
we use the target policy to traverse the feature set and can derive the optimal feature subset.
Besides, the behavior policy is supposed to cover the target policy as much as possible so
as to generate more high-quality training data and should introduce randomness to enable
exploration [13]. We design an e-greedy behavior policy, to better balance the coverage and
the diversity.

The second challenge is to improve the training efficiency of the proposed traverse strategy.
In this paper, we improve the efficiency from two aspects. One improvement is to conduct
the importance sampling in an incremental way, which saves repeated calculations between
samples. In the off-policy Monte Carlo method, since the reward comes from the behavior
policy, when we use it to evaluate the target policy, we need to multiply it by an importance
sampling weight. We decompose the sampling weight into an incremental format, where the
calculation of the sampling weight can directly use the result of previous calculations. The
other improvement is to propose an early stopping criteria to assure the quality of training
samples as well as stopping the meaningless traverse by behavior policy. In Monte Carlo
method, if the behavior policy is too far away from the target policy, the samples from
the behavior policy are considered harmful to the evaluation of the target policy. As the
traverse method is continuous and the importance sampling weight calculation depends on
the previous result, once the sample at time ¢ is skewed, the following samples are skew. We
propose a stopping criteria based on the importance sampling weight and recalculate a more
appropriate weight to make the samples from the behavior policy more close to the target
policy. The dynamic-graph-based GCN in [11] has been proved effective in representing
the state when the selected features are dynamically changing. However, this representation
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Table 1 Commonly used notations

Notations Definition

S, A State at time ¢ and action at time ¢

st ) al The i-th state and the j-th action

S State space defined as {si‘i <inf}

A Action space defined as {aj‘j e[1,N]}

y Discount factor in range [0,1]

Pst,ar, se+1) Transition probability

7w (s)/m*(s) Policy/optimal policy

M Markov decision process (MDP) defined as {S, A, R, v, P}
u Utility function from advisor’s perspective
F Feature space (set) defined as {fﬂk € [0, M1}

method is based on deep neural network, and it requires a lot of computational resources to
train. In this paper, we propose an incremental descriptive statistics method to reduce the
computational burden, as well as capture the feature-feature relationship.

The third challenge is how to improve the training efficiency by external advice. In classic
interactive reinforcement learning, the only source of reward is from the environment, and
the advisor does have access to the reward function. However, in many cases, the advisor can
not give direct advice on action, but can evaluate the state-action pair. In this paper, we define
autility function ¢/ which can evaluate state-action pair and provide feedback to the agent just
like the environment reward does. When integrating the advisor utility ¢/ with the environment
reward R to a more guiding reward R’, we should not change the optimal policy, namely the
optimal policy guided by R’ should be identical to the optimal policy guided by R. In this
paper, we propose a state-based reward integration strategy, which leads to a more inspiring
integrated reward as well as preserving the optimal policy. In addition, we propose a training-
level interactive strategy. We design a comprehensive importance function to evaluate the
training data. Experience replay is a widely used technology which can remember and reuse
transition data from the past experience. In the original version of experience replay, all
the data in the replay memory are randomly sampled without considering their importance
and contribution to the policy training. To tackle this problem, people propose prioritized
experience replay [14]. However, the ‘priority’ here only considers information from the
agent’s own policy, e.g., time difference (TD) error. In this paper, we design a comprehensive
importance function which combines the TD error and the utility improvement (UI) together.

To summarize, the contributions of this paper are (1) We reformulate the reinforced feature
selection into a single-agent framework by proposing a traverse strategy; (2) We design an off-
policy Monte Carlo method to implement the proposed framework; (3) We propose an early
stopping criteria to improve the training efficiency. (4) We propose reward-level and training-
level interactive strategies to improve the training efficiency. (5) We propose an incremental
descriptive statistics method to reduce the computational burden in state representation. (6)
We design extensive experiments to reveal the superiority of the proposed method.

@ Springer



Interactive reinforced feature selection with traverse strategy 1939

2 Preliminaries

We first introduce some preliminary knowledge about the Markov decision process(MDP)
and the Monte Carlo method to solve MDP, then we give a brief description of multi-agent
reinforced feature selection.

2.1 Markov decision process

Markov decision process (MDP) is defined by a tuple M = {S, A, R, v, P}, where state
space S is finite, action space A is pre-defined, reward function R : S x A — Risa
mapping function from state-action pair to a scalar, y € [0, 1] is a discount factor and
P:S x Ax S — Ris the transition probability from state-action pair to the next state. In
this paper, we study the most popular case when the environment is deterministic and thus
P = 1. We use superscripts to discriminate different episode and use subscripts to denote
the time step inside the episode, e.g., sf s af denote the state and action at time ¢ in the i-th
episode.

2.2 Monte Carlo for solving MDP

Monte Carlo method can take samples from the MDP to evaluate and improve its policy.
Specifically, at the i-th iteration, with a behavior (sampling) policy b, we can derive an
episode x' = {xl, xz, .. x,, . xN} where x, = (s, .aj, rt) is a sample consisting state,
action and reward. With the eplsode, we can evaluate the Q value Qi (st , at) over our policy
(detailed in Sect. 3.1) and improve it by Bellman optimality:

7 t(s) = argmax, Qi (s, a) (1)

With the evaluation-improvement process going on, the policy = becomes better and better
and can finally converge to the optimal policy. The general process is

E I E I I
n0—>Qﬂo—>n1—>Qn1—>...nM—>QﬂM 2)

where 5 denotes the policy evaluation and L denotes the policy improvement. After M
iterations, we can achieve an optimal policy. As Eq. 2 shows, the policy evaluation and
improvement need many iterations, and each iteration needs one episode x (x’ for the i-th
iteration) consisting N samples.

Advisor Agent Environment
2

O\_,O _ AitlolAﬂnc£> OVO

00 0——

Reward

Action

Fig.2 Classic interactive reinforcement learning. The advisor gives the agent advice at the action level
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2.3 Interactive reinforcement learning

As all the steps in this section belong to the same iteration, we omit the superscript i in each
denotation for simplicity.

Reinforcement learning is proposed to develop the optimal policy 7} ((s) = argmax, Q% ,
(s, a) for an MDP M. The optimal Q-value can be updated by Bellman equation [15]:

Q*M(Sn ar) = R(st, ar) + y * maxg,,, Qj\/[(st+l s Ar+1) 3)

Interactive reinforcement learning (IRL) is proposed to accelerate the learning process of
reinforcement learning (RL) by providing external action advice to the RL agent [16]. As
Fig. 2 shows, for selected advising states, the action of RL agent is decided by the advisor’s
action advice instead of its own policy. The algorithm to select advising states varies with
the problem setting. Typical algorithms for selecting advising states include early advising,
importance advising, mistake advising and predictive advising [17]. To better evaluate the
utility of the state-action pair (s;, a;), we define a utility function/ (s, a;). The utility function
can give a feedback of how the action benefits from the state from the advisor’s point of view.

2.4 Multi-agent reinforced feature selection

Feature selection aims to find an optimal feature subset 7 from the original feature set  for a
downstream machine learning task M. Recently, the emerging multi-agent reinforced feature
selection (MARFS) method [11] formulates the feature selection problem into a multi-agent
reinforcement learning task, in order to automate the selection process. As Fig. 3 shows, in
the MARFS method, each feature is assigned to a feature agent, and the action of feature
agent decides to select/deselect its corresponding feature. It should be noted that the agents
simultaneously select features, meaning that there is only one time step inside an iteration,
and thus, we omit the subscript here. At the i-th iteration, all agents cooperate to select a
feature subset 7. The next state s'*! is derived by the representation of selected feature
subset F':

st = represent(]—"i) “4)

where F! is the selected feature subset at time . represent is a representation learning algo-
rithm which converts the dynamically changing ]-',‘ into a fixed-length state vector s‘*+!. The
represent method can be meta descriptive statistics, autoencoder-based deep representation
and dynamic-graph-based GCN in [11]. The reward r/ is an evaluation of the selected feature
subset F':

r' = eval(F') o)

where eval is evaluations of 7', which can be a supervised metric with the machine learning
task  taking ' as input, unsupervised metrics of ', or the combination of supervised and
unsupervised metrics in [11]. The reward is assigned to each of the feature agent to train their
policies. With more and more steps’ exploration and exploitation, the policies become more
and more smart, and consequently, they can find better and better feature subsets.

3 Proposed method

In this section, we first propose a single-agent Monte Carlo-based reinforced feature selection
method. And then, we propose an episode filtering method to improve the sampling efficiency
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Fig.3 Multi-agent Reinforced feature selection. Each feature is controlled by one feature agent
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Fig. 4 Single-agent Reinforced feature selection with traverse strategy. At each step, the agent transverses
features one by one to decide their selection. The traverse data are stored in the memory to form a training
episode

of the Monte Carlo method. In addition, we apply the episode filtering Monte Carlo method
to the reinforced feature selection scenario. Finally, we design a reward shaping strategy to
improve the training efficiency.

3.1 Monte Carlo-based reinforced feature selection
The MARFS method has proved its effectiveness, however, the multi-agent strategy greatly

increases the computational burden and hardware cost. Here, we propose a single-agent
traverse strategy and use Monte Carlo method as the reinforcement learning algorithm.

3.1.1 Traverse strategy

As Fig. 4 shows, rather than using N agents to select their corresponding features in the
multi-agent strategy, we design one agent to traverse all features one at a time.
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In the i-th episode, beginning from time ¢ = 1, the behavior policy 5’ firstly decides the
selection decision (select or not select) for feature 1, and then, at time t = 2, bt decides
the selection decision for feature 2. With time going on, the features are traversed one by
one, and the selected features form a selected feature subset ]-',’ . Meanwhile, this process
also generates an episode xﬁv = {xi, xé,‘. o, x,i, .. .xﬁv}, where xf = (sf, af, rti) is a tuple
of state, action and reward. The action a; = 1/0 is the selection/deselection decision of the
t-th feature, the next state s/ | is derived by represent(f,i ) and the reward rti is derived by

: 1+
eval (F}).
3.1.2 Monte Carlo method for reinforced feature selection

With the episode generated by the behavior policy ', we can evaluate our target policy 7’
and improve 77!. Both the behavior policy b* and the target policy 7/ provide the probability
of taking action a given a specific state s.

Specifically, we generate an episode xﬁv by b'. Then, we calculate the accumulated reward
by

t
G'(sjyap =y vy ).r ©)
j=0
where 0 < y < 1 is a discount factor.

As the state space is extremely large, we use a neural network Q(s, a) to approximate
G(s,a).

The target policy r is different from the behavior policy b, and the reward comes from
samples derived from policy b, therefore, the accumulated reward of & should be calculated
by multiplying an importance sampling weight:

I, (@'lst
ot = T ) &
M) _ob' (@jfs))

The Qi (s, a) can be optimized by minimizing the loss:
Lo = 1Qxi (57, ap) — pf * G' (57 ap? ®)

The probability of taking action a for state s under policy 7 in the next iteration can be
calculated by

exp(Qyifa, s})

ni"']{a | s} = ©)
exp(Qyifa =0,s5}) +exp(Qrifa =1,s})
We develop an e-greedy policy of b based on the Q value from 7:
bi"'l{a Is) = 1 —€ a=argmax,Q.i(s,a); (10)

otherwise;

Algorithm 1 shows the process of Monte Carlo-based feature selection (MCRES) with
traverse strategy.

3.2 Early stopping Monte Carlo-based reinforced feature selection

In many cases, the feature set size N can be very large, meaning that there can be a large
number of samples in one episode x),. The problem is, if the sample at time 7 is bad (the
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Algorithm 1 Monte Carlo-Based Reinforced Feature Selection with Traverse Strategy

Require: : Feature set 7 = {f1, f2, .... fn}, downstream machine learning task 7 . Initialize the behavior
policy bt target policy L exploration number M, F' = ®.

1: fori =1to M do

2:  Initialize state s.

3: fort=1toNdo o

4 Derive action a; with behavior policy b* (s} ).

5: Perform aj, getting selected feature subset F; .

6 Obtain the next state S;Jrl by represent(f;') and reward r; by eval (]—'ti).
7 end for _ .

8:  Update target policy mitl by Eq. 9 and behavior policy pit! by Eq. 10.
9: if eval(Fy) > eval(F') then

10: F =Ty

11:  endif

12: end for

13: Return F'.

Chi-squared distance between b’ (s!) and 7' (s!) is large), all the subsequent samples (from
T to N) in the episode are skewed [18]. The skewed samples not only are a waste time to
generate, but also do harm to the policy evaluation, therefore, we need to find some way to
stop the sampling when the episode becomes skew.

3.2.1 Incremental importance sampling

Rather than calculating the importance sampling weight for each sample directly by Eq. 7,
we here decompose it into an incremental format. Specifically, in the i-th iteration, we define
the weight increment:
C iails
wi = Tk an
bi(allsh
and the importance sampling weight can be calculated by
p;' = p;71 . wf (12)

Thus, at each time, we just need to calculate a simple increment to update the weight.

3.2.2 Early stopping Monte Carlo method for reinforced feature selection

We first propose the stopping criteria and then propose a decision history-based traversing
strategy to enhance diversity.
Early stopping criteria. We stop the traverse by probability:

pi=max(0,1 - p}/v) (13)

where 0 < v < 1 is the stopping threshold.
And for the acquired episode, we recalculate the importance sampling weight for each
sample by

w! = pl, - p}/pi (14)

where the p, can be calculated by

pf) = /max(O, 1— p;/v)bi(st) ds; (15)
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Algorithm 2 Monte Carlo-Based Reinforced Feature Selection with Early Stopping Traverse
Strategy

Require: Feature set 7 = {f], f2, ..., fn}, downstream machine learning task 7 .

1: Initialize the behavior policy b", target policy 1 exploration number M, F' = &.
2:fori=1toMdo

3 Initialize state s].

4 Rank features with their decision history.
5: fort=1toNdo
6
7
8

Derive action a; with behavior policy b (sf ).
Perform a;, getting selected feature subset .7-'}.
Obtain the next state S£+1 by represent(ff) and reward rti by eval(]—',i).
9: Break the loop with probability p; derived from Eq. 13;
10:  end for
11:  Update target policy mitl by Eq. 9 and behavior policy pitl by Eq. 10.
12: if eval(F}V) > eval (F') then
13: F =F.
14:  endif
15: end for
16: Return F.

As pfj is identical for all samples in the i-th episode regardless of #, the calculation of Eq.

14 does almost no increase to the computation.
Decision history-based traversing strategy. In the i-th iteration, the stopping criteria stop the
traverse at time ¢, and the features after ¢ are not traversed. With more and more traverses, the
front features (e.g., fi and f>) are always selected/deselected by the agent, while the backside
features (e.g., fy and fy_1) get very few opportunity to be decided. To tackle this problem,
we record the decision times we made on each feature and re-rank their orders to diversify
the decision process in the next traverse episode. For example, in the past 5 episodes, if the
decision times of feature set { f1, f2, f3} are {5,2,4}, then in the 6-th episode, the traverse
orderis f, — f3 — f1.

Algorithm 2 shows the process of Monte Carlo-based feature selection (MCRFS) with
early stopping traverse strategy. Specifically, we implement the early stopping Monte Carlo-
based reinforced feature selection method as follows:

Step 1: Use a random behavior policy »° to traverse the feature set. Stop the traverse with
the probability in Eq. 13 and get an episode X(I)VO'

Step 2: Evaluate the policy 7° to get the Q value Q° by minimizing Eq. 8, and derive the
updated policy ! and b! from Eqs. 9 to 10, respectively.

Step 3: Update the record of traverse times for each feature. Re-rank feature order. The
smaller times one feature was traversed, the more forward order it should get.

Step 4: Use the updated policy 7' and b! to traverse the re-ranked feature set for the next
M steps. Derive the policy 7™ and b™ . Use 7™ to traverse the feature set without stopping
criteria, and derive the final feature subset.

3.3 Reward-level interactive reinforcement learning

In reinforcement learning (RL), we aim to obtain the optimal policy for the MDP M =
{S, A, R, y, P}. However, in IRL, when we change the reward function R to a more inspiring
reward function R/, the original MDP M is changed to anew MDP M’ = {S, A, R, y, P}.
Without careful design , the optimal policy derived from M’ would be different from the
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Algorithm 3 Reward-Level Interactive Reinforcement Learning

1

2

3:
4:

0 RN

: Initialize replay memory D; Initialize the Q-value function with random weights; Initialize the advising
state number N, stop time 7';

cfort=1toT do

random action  with probabilitye;

a —
! maxg, Q(s¢, ar) with probabilityl — €;

Perform a;, obtaining reward R (a;, s;) and next state s, 1;

’ Rst, ar) t > Ng;
R'(st,ar) =
R(st,ar) +cx (y «U(s,41) —U(st)) t < Na:
Store transition (s¢, ar, R'(s¢, ar), s;+1) in D;
Randomly sample mini-batch of data from D;
: Update Q(s, a) with the sampled data;
: end for

optimal policy for M. Here, we give a universal form of reward advice without limitation on
the form of utility function U(s, a):

R (ar, 51) = Rlaz, 1) + ¢ % (y *U(s;41) — U(sy)) (16)

where U (s;) = E,, [U(a;, s¢)], ¢ is the weight to balance the proportion of the utility function.

We prove that the optimal policies of M and M’ are identical when the reward advice is

Eq. 16:

We firstly subtract ¢ * U (s;) from both sides of Eq. 3, and we have

Qhv(st,ar) — e xU(s)) = R(sy, ar) an
+y kmaxg,, Qg (Si41, dip1) — ¢ xU(S;)

We add and subtract ¢ * y * U (s;4+1) on the right side:

Qi (s, ar) — e xU(s) = R(ss, ar)

+y kmaxq, Qg (Se41, Q1) — ¢ xU(s;)

+oexy xUS+1) —cxy xUSi41) (18)
=R(st, ar) +cxy x«U(si+1) — ¢ xU(sy)

+y s maxg, [ Qv (a1, ) — ¢ % Uls11)]

We define
Q% (st ar) = Qy(se. ar) — ¢+ U(s;) (19)

Then, Eq. 18 has the new form:
0% (51, ar) = Risp, ar) + ¢ [y  Ulsi41) — U(s))]
+y *maxg,,, Q?W(sﬂ_l, as4+1) (20)

0
=R (s;,ar) +y *maxa,,, Q% (si41. dr+1)

which is the Bellman equation of Q?W(s,, a,) with reward R’, meaning Q?W(s[, ay) is the
optimal policy Q-value for MDP M, i.e.,

Qi (i, ar) = Oy (1, ar) @1
We combine Eqgs. 19 and 21 and have
Qj\/(/(st, ar) = Qp(se, ar) — cxU(sy) (22)
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Fig.5 Reward-level interactive reinforcement learning. The advisor gives advice at the reward level
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Fig.6 Training-level interactive reinforcement learning. The advisor gives advice at the training level

Reward

Obviously,

argmax, Q% (s, a;) = argmax, [Q’((sr, ar) — ¢ xU(s;)]

5 (23)
= argmax,, O (st ar)

which reveals the optimal policy of MDP M’ with reward R’ is identical to the optimal policy
of MDP M with reward R (Fig. 5).

As the reward advice R’ consists of more information than the original reward R, it can
help the reinforcement learning agent explore the environment more efficiently. We give a
detailed description of reward-level IRL in Algorithm 3. Specifically, we adapt the early
advising strategy [17] to select the advising states, i.e., the advisor gives advice for the first
n states the IRL agent meets.

3.4 Training-level IRL

Reinforcement learning (RL) is a self-improving framework which trains and improves its
policy at each step. As Fig. 6 shows, in the training process, the agent stores the training data
in the replay memory. In each training step, a mini-batch of samples are randomly picked
to train the Q-value function. This store-and-sample technology is called experience replay
[19].

Experience replay can remember and reuse transition data from the past experience. How-
ever, in the original version of experience replay, all the data in the replay memory are
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Algorithm 4 Training-Level Interactive Reinforcement Learning

1: Initialize replay memory D; Initialize the Q-value function with random weights; Initialize the advising
state number N, stop time 7';

2: forr =1to T do

random action  with probabilitye;

3: ay = . oy
maxq, Q(st, ar) with probability]l — €;

4:  Perform a;, obtaining reward R(s;, a;) and next state s, 1;

5:  Store transition (s¢, ar, R(s¢, at), s¢41) in D;

.. Randomly sample from D t > Ng;

6:  Training Data = . . . .
Sample with priority in Equation 27 from D ¢ < Ng;

7: Update Q(s, a) with the sampled data;

8: end for

randomly sampled without considering their importance and contribution to the policy train-
ing. To tackle this problem, people propose prioritized experience replay [14]. Here, we have
a research question: Can the advisor in interactive reinforcement learning give advice in the
training process with regard to sample importance?

The most popular criterion to evaluate the importance of a transition is time difference
(TD) error §:

8 = R(st,ar) +y * maxg, O m(Sr+1, @r1) — QM (St, ar) (24)

which measures the difference between the ‘ideal’ Q-value and ‘calculated’ Q-value for the
state-action pair (s;, a;).
Here, we define utility improvement (UI) n as

ne = UC(sy, ar) — Eq, [U(ay, 51)] (25)

which measures the improvement of utility if we take action a; at state s;.
We then integrate the two measurements into a comprehensive importance function:

Pr =18+ w 4 (26)

where w is a weight to balance the proportion between ID error and utility improvement
Finally, we define the sampling probability of the transitions in replay memory D:

exp(pr)

PP= ————
Zd,ep exp(pr)

27)
where d; = (s, a;, R'(ay, 5¢), s1+1) denotes the transition from 7 to ¢ + 1.

As the importance function p; consists more information than the original importance
measurement &;, it can help the reinforcement learning agent explore the environment more
efficiently. We give a detailed description of reward-level IRL in Algorithm 4. Specifically,
we adapt the early advising strategy [17] to select the advising states, i.e., the advisor gives
advice for the first n states the IRL agent meets.

3.5 Improving state representation

Assuming we have M data samples and N selected features, the dimensionality of dataset D
is M x N. We would like to represent D into the state vector. Let n; be the number of selected
features at the j-th iteration step. Then, M * n is the dimension of the selected data matrix
S, which changes over iteration steps. However, the behavior network and target network
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Fig. 7 Incremental descriptive statistics. We extract descriptive statistics twice from the feature subspace to
obtain a fixed-length state vector

in Monte Carlo method require a fixed-length vector as the state vector s. In one word, we
are required to obtain a fixed-length vector s from the selected matrix S, whose dimension
changes over iterations.

The dynamic-graph-based GCN in [11] has been proved effective in representing the state
when the selected features are dynamically changing. However, this representation method is
based on deep neural network, and it requires a lot of computational resources to train. In this
section, we propose an incremental descriptive statistics method to reduce the computational
burden, as well as capture the feature-feature relationship.

Incremental descriptive statistics of feature subspace. Figure 7 shows how we extract the
meta data of descriptive statistics from the selected data matrix via a two-step procedure.

Step 1: We extract descriptive statistics of the selected data matrix S, including the standard
deviation, minimum, maximum and Q1 (the first quartile), Q2 (the second quartile), and Q3
(the third quartile). Specifically, we extract the seven descriptive statistics of each feature
(column) in S, and thus, obtain a descriptive statistics matrix D with size of 7 * n ;.

Step 2: We extract the seven descriptive statistics of each row in the descriptive statistics
matrix D, and obtain a meta descriptive statistics matrix D’ with a size of 7 % 7.

Finally, we link each column D together into the state vector s with a fixed length of 49.

Please be notified that, when the behavior policy traverses features, the selected features
are added to the selected dataset one by one, thus we don’t have to calculate the column
descriptive statistics every time. Instead, we record the column statistics, and we only need
to calculate the statistics of the newly added feature. This incremental update can further
improve the efficiency of the state representation.

3.6 Comparison with prior literature

Compared with filter methods, our methods capture feature interactions. For example, the
univariate feature selection [2] method selects the best feature set based on univariate sta-
tistical scores. Typical scores are x 2, p value, mutual information, etc. The ranking of these
scores is only capable of measuring the importance of features from the perspective of one
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feature, instead of a feature set. Our method can capture the set-level interaction relationship
and measure features from the set level.

Compared with wrapper methods, our methods reduce the search space. Typical wrapper
methods [5, 6] explore the full search space, which is of low efficiency. Some other wrapper
methods like beam search [20, 21] can also reduce the search space, but they are lack of
stopping rules to stop the selection process when the marginal improvement is not significant.

Compared with embedded methods, our methods don’t rely on strong structured assump-
tions. The most widely used embedded methods are LASSO [9] and decision tree [10]. They
can only be embedded in specific downstream tasks. For example, the selected feature subset
by decision tree is not optimal for a linear regression model.

Compared with multi-agent reinforcement learning feature selection, our methods achieve
parallel performance with lower computational cost. Multi-agent methods [11, 22] require
as many agents as the features. When the feature set is large, the training and inferring
of multiple agents are computationally expensive. Our methods alleviate this problem by
proposing a single-agent traverse strategy with an early stopping criteria.

4 Experimental results

We conduct extensive experiments on real-world datasets to study: (1) the overall performance
of early stopping Monte Carlo-based reinforced feature selection (ES-MCRFS); (2) the
training efficiency of the early stopping criteria; (3) the sensitivity of the threshold in the
early stopping criteria; (4) the computational burden of the traverse strategy; (5) the decision
history-based traverse strategy; (6) the behavior policy in the ES-MCRFS.

4.1 Experimental setup
4.1.1 Data description

We use six publicly available datasets on classification task to validate our methods, i.e., Forest
Cover (FC) dataset [23], Spambase (Spam) dataset [24], Insurance Company Benchmark
(ICB) dataset [25], Arrhythmia (Arrhy) dataset [26], AP_Omentum_Ovary (APOO) dataset
[27], and Higgs Boson (HB) [28]. The statistics of the datasets are in Table 2.

4.1.2 Evaluation metrics

In the experiments, we have classification as the downstream task for feature selection prob-
lem, therefore, we use the two most popular evaluation metrics for classification task:
Accuracy is giveq l?y Acc = %, where TP, TN, FP, FN are true positive, true
negative, false positive and false negative for all classes.

F1-score is given by F1 = 2;};*15 , Where P = % is precision and R = TPE% is recall.
Table 2 Statistics of datasets FC Spam  ICB Amhy APOO HB
Features 54 57 86 274 10,936 28

Samples 15,120 4,601 5,000 452 275 50,000
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4.1.3 Baseline algorithms

We compare our proposed ES-MCRFS method with the following baselines: (1) K-Best ranks
features by unsupervised scores with the label and selects the top k highest scoring features
[1]. In the experiments, we set k equals to half of the number of input features.(2) LASSO
conducts feature selection via /1 penalty [9]. The hyperparameter in LASSO is its regulariza-
tion weight A which is set to 0.15 in the experiments. (3) GFS selects features by calculating
the fitness level for each feature to generate better feature subsets via crossover and muta-
tion [29]. (4) mRMR ranks features by minimizing feature’s redundancy and maximizing
their relevance with the label[30]. (5) RFE selects features by recursively selecting smaller
and smaller feature subsets [31]. (6)MARFS is a multi-agent reinforcement learning-based
feature selection method [11]. It uses M feature agents to control the selection/deselection
of the M features. Besides, we also compare our method with its variant without early stop-
ping strategy, i.e., Monte Carlo-based reinforced feature selection MCREFS. (6) FS, short
for forward selection, keeps adding new features to the selected feature set until no further
performance improvement is observed. Here, we stop the selection when the improvement
is less than 5% compared with base performance without feature selection methods. (7) BS,
short for beam search, is a generation method of FG. It always keeps the best k features at
each step [21]. Here, we set k = 5 to align with the reference. (8) DT, short for decision tree,
evaluates feature importance by Gini impurity.

4.1.4 Implementation

In the experiments, for all deep networks, we set mini-batch size to 16 and use AdamOptimizer
with a learning rate of 0.01. For all experience replays, we set memory size to 200. We set
the Q network in our methods as a two-layer ReLU with 64 and 8 nodes in the first and
second layer. The classification algorithm we use for evaluation is a random forest with
100 decision trees. The stop time is set to 3000 steps. The state representation method in
reinforced feature selection is an autoencoder method whose encoder/decoder network is a
two-layer ReLU with 128 and 32 nodes in the first and second layer.

4.1.5 Environmental setup

The experiments were carried on a server with an 19-9920X 3.50GHz CPU, 128GB memory
and a Ubuntu 18.04 LTS operation system.

4.2 Overall performance

We compare the proposed ES-MCRFS method with baseline methods and its variant with
regard to the predictive accuracy. As Table 3 shows, the MCRFS, which simplify the rein-
forced feature selection into a single-agent formulation, achieves similar performance with
the multi-agent MARFS. With the help of traverse strategy and early stopping criteria, the
ES-MCREFS outperforms all the other methods.

4.3 Sensitivity study of early stopping criteria

We study the threshold sensitivity in the early stopping criteria by differing the threshold v
and evaluate the predictive accuracy. Figure 8 shows that the optimal threshold for the four
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Fig.8 Threshold sensitivity of early stopping criteria

datasets are 0.4, 0.5, 0.7, 0.7. It reveals that the early stopping criteria are sensitive to the
pre-defined threshold, and the optimal threshold varies on different datasets.

4.4 Training efficiency of early stopping criteria
We compare the predictive accuracy with different numbers of training episodes to study the
training efficiency of the early stopping. Figure 9 shows that with early stopping criteria,

the Monte Carlo reinforced feature selection can achieve convergence more quickly, and the
predictive accuracy can be higher after convergence.

4.5 Study of the behavior policy
We study the difference between random behavior policy and the e-greedy policy presented

in Eq. 10. We combine the two policies with MCRFS and ES-MCREFS, respectively. Figure
10 shows that the e-greedy policy outperforms the random behavior policy on all datasets.

4.6 Computational burden of traverse strategy

We compare the computational burden of the MCRFES which uses single agent and the traverse
strategy to substitute the multi-agent strategy in the MARFS. Table 4 shows that the CPU

@ Springer



Interactive reinforced feature selection with traverse strategy 1953

0.9 T
0.94
0.88 0.92
() (o]
3 3
(%] @a 0.9
‘G 086 a
o ]
® ® oss
) L )
g oss 3
3 3 086
< <
0.82f
—+—MARFS 0.84 —+—MARFS
—-8-MCRFS —8#-MCRFS
0sf ES-MCRFSH 082 ES-MCRFS|]
300 600 900 1200 1500 1800 2100 2400 2700 3000 300 600 900 1200 1500 1800 2100 2400 2700 3000
Training episode Training episode
(a) FC (b) Spam
0ozl T T T T T T T T ] orel
0.74
09t
[0} (0]
3 3
2 @ 072
S osst 53
® ® o7
5 z
© 086f I
3 3 068
o o
< <
0.84
—+—MARFS 0.66 —+—MARFS
—&-MCRFS —8-MCRFS
0.2}, ES-MCRFS|] 0.64 ES-MCRFS|]
300 600 900 1200 1500 1800 2100 2400 2700 3000 300 600 900 1200 1500 1800 2100 2400 2700 3000
Training episode Training episode
(c) ICB (d) Arrhy

Fig.9 Predictive accuracy on training step

and memory cost when implementing the two methods. Our method MCRES requires less
computational resources than the multi-agent MARFS.

4.7 Decision history-based traverse strategy

We study the decision history-based traverse strategy by comparing its performance with
the vanilla traverse strategy on ES-MCREFS. Table 5 shows that the decision history can
significantly improve performance of the traverse strategy.

4.8 Training efficiency of reward-level interactive strategy

We compare the predictive accuracy with different numbers of training episodes to study
the training efficiency of the reward-level interactive (RI) strategy. Figure 11 shows that
with RI, the Monte Carlo reinforced feature selection can achieve convergence more quickly.
However, as the ES-MCREFS already achieves good performance, the RI can not improve its
final performance.
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Fig. 10 Predictive accuracy on different training strategies. RB for random behavior policy and GB for e-
greedy behavior policy

Table4 CPU and memory (in MB) occupation

FC Spam ICB Arrhy
CPU Mem CPU Mem CPU Mem CPU Mem
MARFS 72% 1531 75% 1502 86% 1797 97% 4759
MCRFS 57% 1429 54% 1395 59% 1438 55% 1520
Table 5 Traverse strategy
F ICB Arrh
ablation. DH for decision history S Spam ¢ Ly
Acc Fl Acc Fl Acc Fl Acc Fl1
No DH 075 0.82 0.83 0.79 0.75 0.81 0.59 0.56
WithDH 0.89 088 094 091 092 0.88 0.76 0.74

4.9 Study of the utility function

We define the utility function ¢/ as the combination of relevance (Rv) function and redundancy
(Rd) function. Here, we study the impact of the two components for the utility function. Table
6 shows that when we use Rv independently as the utility function, its performance is better
than the Rd. This is because Rv evaluates the relationship between features and the label,
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Fig. 11 Predictive accuracy on training step

which is directly related to the classification task, while Rd evaluates the relationship among
features, which is an indirect evaluation to the classification task. The combination of the two
functions (Rv — Rd) as the utility function significantly outperforms each of the independent
functions, revealing the Rd and Rv coordinate and make up each other’s shortage.

4.10 Study of multi-level IRL methods

After investigating different levels of IRL methods, we are curious about the combination
of them. In this section, we study the case when we have more than one level of advice. We
consider four cases: (1) RLFS that has no advice; (2) ARLFS that has action-level advice; (3)
RRLFS that has reward-level advice; (4) TRLFS that has training-level advice; (5) ARRLFS
that has both action-level and reward-level advice; (6) ATRLFS that has both action-level
and training-level advice; (7) RTRLFS that has both reward-level and training-level advice;
(8) ARTRLEFS that has all of the action-level, reward-level and training-level advice.

Figure 12 shows that when combining the training-level advice with the action-level advice
(i.e., ATRLFS) or with the reward-level advice, the acceleration can be more significant. How-
ever, when combing the action-level advice with the reward-level advice, the improvement is
not significant. The reason may be that the mechanism of action-level advice and the reward-
level advice are similar, while the training-level advice is different. This makes training-level
advice can help to make up the shortage of the other two levels.
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Fig. 12 Exploration accuracy with different advice
Table 6 Performance with different utility function
FC Spam ICB Arrhy
Acc Fl1 Acc F1 Acc F1 Acc F1
Utility  Rd 0.8689  0.8433  0.9250 0.8749 0.8997 0.8788  0.7340  0.6955
Rv 0.8703  0.8507 0.9317 0.8831 0.9001 0.8793 0.7393  0.7143

Rv—Rd 0.8842 0.8650 0.9402 0.8949 09117 0.8903 0.7492  0.7258

Bold means the best performance

4.11 Study of incremental descriptive statistics

We study the incremental descriptive statistics (IDS) method by comparing its performance
with the state-of-the-art dynamic-graph-based GCN representation in [11], under our pro-
posed MCRFS method. Table 7 shows that the IDS method can achieve similar performance
with the GCN representation method.

Table 8 shows the CPU and memory cost when implementing the two methods. Our
method, IDS, requires less computational resources than the GCN representation method.

@ Springer



Interactive reinforced feature selection with traverse strategy 1957

Tabl'e 7 Performance comparison EC Spam ICB Arrhy
of different state representation
methods Acc  Fl Acc  Fl Acc  Fl Acc  Fl

GCN 0.89 0.88 094 091 092 088 0.76 0.74
IDS 0.87 089 093 092 093 088 0.76 0.75

Table 8 CPU and memory (in

F ICB Arrh
MB) cost of different state C Spam ¢ mhy
representation methods CPU Mem CPU Mem CPU Mem CPU Mem

GCN 57% 1429 54% 1395 59% 1438 55% 1520
IDS 51% 1369 52% 1206 48% 1201 43% 1130

5 Related work
5.1 Efficient sampling in reinforcement learning

Reinforcement learning is a trial-and-error-based method, which requires high-quality sam-
ples to train its policy. It is always a hot topic to pursue efficient sampling for reinforcement
learning. One research direction is to generate training samples with high quality based on the
importance sampling technology, such as rejection control [32] and marginalized importance
sampling [33]. These methods basically control the sampling process based on the importance
sampling weight. Another research direction is to sample diversified sample from different
policy parameters. The diversity partially contributes to the exploration and thus has better
performance on some specific tasks [34]. However, these methods suffer from slow conver-
gence and no theoretical guarantee [35]. Besides, there are other attempts to develop sample
efficient reinforcement learning, such as curiosity-driven exploration and hybrid optimization
[36, 37].

5.2 Feature selection

Feature selection can be categorized into three types, i.e., filter methods, wrapper methods
and embedded methods [22, 38]. Filter methods rank features only by relevance scores and
only top-ranking features are selected. The representative filter methods is the univariate
feature selection [2]. The representative wrapper methods are branch and bound algorithms
[7, 8]. Wrapper methods are supposed to achieve better performance than filter methods
since they search on the whole feature subset space. Evolutionary algorithms [5, 6] low down
the computational cost but could only promise local optimum results. Embedded methods
combine feature selection with predictors more closely than wrapper methods. The most
widely used embedded methods are LASSO [9] and decision tree [10].

5.3 Interactive reinforcement learning
Interactive reinforcement learning (IRL) is proposed to accelerate the learning process of

reinforcement learning. Early work on the IRL topic can be found in [39], where the authors
present a general approach to making robots which can improve their performance from
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experiences as well as from being taught. Unlike the imitation learning which intends to
learn from an expert other than the environment [40, 41], IRL sticks to learning from the
environment and the advisor is only an advice-provider in its apprenticeship [42, 43]. As the
task for the advisor is to help the agent pass its apprenticeship, the advisor has to identify which
states belong to the apprenticeship. In [17], the authors study the advising state selection and
propose four advising strategies, i.e., early advising, importance advising, mistake correcting
and predictive advising.

6 Conclusion remarks
6.1 Summary

In this paper, we study the problem of improving the training efficiency of reinforced feature
selection (RFS). We propose a traverse strategy to simplify the multi-agent formulation of
the RFS to a single-agent framework, an implementation of Monte Carlo method under the
framework, and two strategies to improve the efficiency of the framework. We propose reward-
level and training-level interactive reinforcement learning to improve the effectiveness and
efficiency. We further reduce the computational cost by proposing an incremental descriptive
statistics representation method.

6.2 Theoretical implications

The single-agent formulation reduces the requirement of computational resources, the early
stopping strategy improves the training efficiency, the decision history-based traversing strat-
egy diversifies the training process, and the interactive reinforcement learning accelerates the
training process without changing the optimal policy.

6.3 Practical implications

Experiments show that the Monte Carlo method with the traverse strategy can significantly
reduce the hardware occupation in practice, the decision history-based traverse strategy can
improve performance of the traverse strategy, the interactive reinforcement learning can
improve the training of the framework.

6.4 Limitations and future work

Our method can be further improved from the following aspects: (1) The framework can be
adapted into a parallel framework, where more than one (but much smaller than the feature
number) agents work together to finish the traverse; (2) Besides reward level and training level,
the interactive reinforcement learning can obtain advice from other levels, e.g., policy level.
(3) The framework can be implemented on any other reinforcement learning frameworks,
e.g., deep Q-network, actor critic and proximal policy optimization (PPO).
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