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Abstract

The rapid rise of biological pharmaceuticals motivates a need for both predictive models and better
materials for separations. Physical chemists now have the tools to deliver on an effort started
almost 75 years ago to describe chromatographic separations through statistical methods. When
combined with new support materials, a statistical model would enable the design and control of
the iterative combination of many single-analyte events to produce an ensemble chromatogram.
Because single-analyte events can now be measured and modeled directly using the latest
experimental and computational methods, our perspective describes the development and
implementation of a stochastic chromatographic theory based on these methods. Further, we
comment on the use of stimuli-responsive materials for future applications. We believe that
responsive materials when combined with state-of-the-art single-molecule experiments and theory

could lead to cost-effective methods for predictive protein separation.
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Introduction

Liquid chromatography is a multiscale problem where analytes separate in the mobile
phase due to differential interactions with the stationary phase when pumped through a
chromatographic column. The interactions depend on the nanoscale heterogeneity of the stationary
phase as well as the chemical nature of the analytes.!> Proteins are large macromolecules with
complex secondary and tertiary structures, heterogeneous surface charge distributions, and

hydrophobic/hydrophilic domains. Intrinsic heterogeneity in proteins makes empirical separation
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Figure 1. Connecting single-molecule parameters to stochastic theories for optimal
separation. Schematic of single-molecule interactions of biomolecules with a chromatographic
support at the nanoscale. Single-molecule experiments provide information, such as surface
residence time (At) for analyte-stationary phase interactions. One contributor to peak
skewing/broadening is adsorption at rare surface sites, but simulations based on stochastic theory
can be used to model the contribution from such heterogeneity to elution profiles. Different
colored chromatograms compare simulated elutions with varying desorption rates for the rare
surface sites.

and purification of biologics time and energy-intensive. 7
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Macroscale protein separation relies on empirical optimization of mobile and stationary
phase parameters by qualitatively considering the physical and chemical properties.® ° Because
ensemble separation can be envisioned as the combined effect of all interactions between analytes
and the stationary phase on the nanoscale,'? quantitative optimization assisted by single-analyte
knowledge is one means to improve separation efficiency. We have divided the protein separation
problem into three facets (Figure 1): observing single-molecule interactions of biomolecules with
the stationary phase, modeling properties such as peak asymmetry and broadening, and designing
novel separations by combining experimental and theoretical single-molecule knowledge.
Deviation from an ideal, Gaussian peak profile is due to mobile phase effects, column overloading,
rare adsorption events, etc.>* 114 Here, we summarize how macroscale elutions can be understood
and controlled through single-molecule understanding of the underlying solute-stationary phase
interactions in this context and envision controlling various single-molecule properties to achieve

better performance in ensemble separation.

In a previous perspective,'> we outlined how single-molecule fluorescence experiments can
provide insight into analyte-polymer interactions relevant to biologic separation. Here, we present
the application of stochastic theories for nanoscale insight into local domain-specific biomolecule-
polymer interactions and in modeling chromatographic peak broadening due to secondary site
kinetics. We also summarize the need to use novel responsive materials in rational
chromatographic designs and provide a design alternative for multiscale chromatographic

separation.
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Most of the widely used theoretical descriptions of chromatography are not designed to

capture the time-dependent microscopic heterogeneity intrinsic in separation processes.'® 1719

Figure 2 illustrates the history and potential of three separate approaches to chromatographic

theory that vary in complexity and 5qgq van Deomter hind: 80
—— Lapidus h-ind: 79
physical descriptors. The Differential — Giddings  h-ind: 44
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Figure 2. Theoretical advancements are primarily
described by the fluctuation of concerned with simplified descriptions of
chromatography. Tracked citations for three
concentration in both time and space, prominent theoretical descriptions of chromatography
ranging from simplified (van Deemter'¢), ensemble
together representing the diffusion of = (Lapidus'’), and single-molecule (Giddings'®)
methods. First-generation citations are marked with a
the analyte down the length of the dotted line. Second-generation citations, papers that
cite articles that cited the original work, are depicted
column and on the surface of the in the shaded populations. Citation data was gathered

using Web of Science statistics tools provided by
stationary phase.  van Deemter'® = Clarivate Analytics.

proposed a simplification that condensed all calculations into three specific constants in contest
with mobile phase velocity. Optimization in the van Deemter model now depends on one variable,
the mobile phase velocity, at the cost of extensive a priori stationary phase characterization. Its
simplicity established the van Deemter method as the standard descriptor for liquid
chromatography. However, the van Deemter method is developed from a macroscopic perspective

that cannot capture the heterogeneity of solute-stationary phase interactions at the nanoscale.
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Starting in the 1950s, the father of transition state theory, H. Eyring and his student J. Giddings,
developed a statistical framework for separations that — in theory — was capable of linking
microscopic analyte chemistry and physics to macroscale separations.'® 2 Giddings and Eyring
developed the stochastic model of chromatography by considering the overall separation process
as a combination of a series of random adsorption and desorption processes. In the simplest picture
of single-site adsorption, the analyte adsorption from mobile to stationary phase was characterized
by a Poisson distribution, whereas desorption was assumed to follow first-order kinetics. The
single-site adsorption model was further refined to account for more complex molecular

21,22 and D. McQuarrie made further improvements® — the title of

interaction phenomena,
McQuarrie’s Ph.D. thesis was “A Theory of Fused Salts and On the Stochastic Theory of
Chromatography”.* Pasti et al. expanded the stochastic description in the Lévy representation to
connect the rare adsorption observables obtained from the single-molecule measurements to
ensemble elution.”> We recently adopted a Monte Carlo model, previously developed by Dondi
and Cavazzini,?! to relate chromatographic peak asymmetry to heterogeneous kinetics, as well as
developed a new analytical metric to connect microscopic surface dynamics to the macroscopic
chromatograms.'”

Why use the stochastic theory now?

The state of experimental and computational technology in the mid-20" century led Giddings
and Eyring to declare, “The general problem of chromatography is, in a practical sense, not
solvable”.!® At that time, it was impossible to experimentally measure heterogeneities and
deconvolute multiple contributions to ensemble observables and connect them to theory. Further,

the statistical expressions for n- different adsorption sites on a heterogeneous stationary phase?’

could not be calculated because the necessary computational technology had not yet been
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developed. Giddings and Eyring’s statistical framework was ahead of its time, and despite the
model’s scientific rigor and promise, separations remain dominated by the same empirical
descriptions used since the 1920s.

Measuring and modeling molecular interactions at unprecedented spatiotemporal resolutions
is now a reality that has been made possible through the advancement of single-molecule methods
and computational power.?’ The potential to link new single-analyte data and statistical theories
hints at achieving predictive chromatography, a premise that is only achievable in Giddings’ and
Eyring’s stochastic theory. For example, single-molecule and super-resolution methods have made
it possible to experimentally observe the non-equilibrium interactions that drive separations. Such
methods provide access to statistics about adsorption and desorption of individual molecules,?’-*
mobile/stationary phase exchange,* 3! and transport in nanoporous media unfettered by ensemble
averaging and equilibrium assumptions.**3* And cheap data storage and fast processors can model
previously unsolvable nonlinear expressions and analyze large volumes of experimentally
acquired data.>*

Recently, the National Academies Press set out a vision® to transform separation science
by adapting theory and data science approaches to model and predict separations. They identified
a need to utilize computational methods to identify critical aspects of complex separation
processes, including, but not limited to, kinetics and thermodynamics of molecular transport,
transport in complex environments under molecular crowding conditions, and structural and
dynamic properties of separation systems. The committee also identified the potential of
conventional (such as temperature and pressure) and unconventional (such as electric, magnetic,
and light) responsive materials as separation models. Thus, we assert that now is the time to revisit

how a stochastic model of separations, informed by single-analyte experimental data and adapted
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to exploit new responsive support materials, could allow us to achieve the goals set out by the
National Academies study.
Relating single-molecule data to ensemble results

Ensemble chromatograms can be approximated as the collection of single-molecule elution
histories. The van Deemter approach (Figure 3A) treats the column as a series of theoretical plates
with uniform analyte concentration and predicts the maximum separation efficiency at minimum
plate height. According to van Deemter,!¢ plate height depends on three empirical constants:

mobile phase velocity (i): eddy diffusion (A), diffusion (B), and mass transfer resistance (C):
B

Based on the van Deemter equation, the quality of a separation depends on empirical parameters
such as column density and pressure. Separation optimization can be accomplished by tuning only
one parameter, the mobile phase velocity (p). However, the stated equation relies on physically
unrealizable dynamics in the column, which hinders the translation of such a simplistic
mathematical relation to more complex column descriptions.

Single-molecule models can describe the complexity in mathematically tractable terms but
must extrapolate long-term behavior from microscale observations to relate to macroscale
observables. Giddings and Eyring’s stochastic theory provides a framework to assess the
chromatographic peak shape as statistical populations differentiated by their interactions with the
stationary phase surface. Giddings and Eyring describe the motion of each analyte molecule
through a column as a random walk between the mobile and stationary phases® (Figure 3B). The
distribution of the number of adsorption events is then a Poisson distribution which gives the

probability of a single protein associating with an adsorption site 7, times:'®



144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

(kgtm)™
Ym = ar—m|exp[_katm]

!

Where r is the number of stochastic adsorption events for a given time, t, in the mobile phase,
m; k, - an adsorption rate constant; t,, - the total time in the mobile phase. This equation can be
used to extract an elution profile from a single-molecule kinetic measurement, specifically
observable rate constants. Utilizing the stochastic approach, previous single-molecule studies
already demonstrated the influence of multiple adsorption sites with heterogeneous kinetics on
elution profile, therefore, providing a conceptual link between peak broadening and adsorption on
strong sites. * 27 The stochastic theory can be expanded for multiple adsorption sites to calculate
the adsorption probabilities and connect with observable rate constants, however, such calculations
can be computationally demanding.?* Increased data storage, faster processors, and advanced
programming methods enable a linear increase in complexity of the stochastic theory, extending
the original mathematics past the bounds of calculating one to two populations analytically.
Therefore, the mosaic of populations that compose an elution, made apparent by single-molecule
spectroscopic studies, can be used to predict elution accurately. A few proof-of-concept examples

are highlighted next.
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A study of reverse phase
chromatography  highlighted that the
stochastic model of chromatography
combined with single-molecule kinetic

results can provide consistent macroscopic
separation trends.* In another example, bulk-
scale elution profiles of the salting-out of
transferrin proteins from polymer nylon
membranes matched stochastic simulations
informed by single-molecule kinetic
information. Single-molecule data confirmed
a decrease in peak broadening as the salt
concentration increased, consistent with
macroscale observations.> These proofs-of-
concept demonstrate that local chemistry and
physics when measured precisely and
without ensemble averaging, can be used to
model elutions in ways that could be adapted

for predictive simulations.

Theoretical and computational development
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Figure 3. Macroscopic and microscopic
description of chromatography. (A) The van
Deemter description of chromatography predicts
maximum separation at minimum plate height by
empirical optimization. (B) Stochastic single-
molecule description following  Giddings
incorporates adsorption heterogeneities by
accounting for both homogeneous (time, 11) as
well as rare heterogeneous interactions (time, 12).
(C) (Top) The observed chromatogram with two
underlying  populations composed of
homogeneous (blue) and heterogeneous (red)
interactions. (Bottom) The underlying single-
molecule contributions to the visualized
subpopulations. Desorption  times  for
homogeneous and heterogeneous interactions
are 11 and T2, respectively. Time spent in the
stationary phase (t1) is represented as a sum of i
single-molecule event and j" retention mode.

An essential step towards fully modeling elution is correlating calculations of the time an

analyte molecule spends in the mobile phase and the structure of the chromatographic column.

Many studies have provided detailed flow descriptions of single tracers through porous media to
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describe the time an analyte spends in the mobile phase.’® However, most theoretical models
struggle to connect the physical quantities that define analyte motion to the structure of the
column.’” Capturing analyte behavior in the column, as well as in column connections, is key to
achieving a complete theoretical model. Current theoretical models can account for multi-site
adsorptions based on stochastic theory'® and heterogeneous adsorption distributions using
canonical Levy representations® in chromatographic simulations. The underlying assumption in
these theories is that mobile phase effects do not contribute to chromatographic performance
whereas in practice, mobile phase effects can introduce peak tailing and loss of analyte.!
Combining new experimental methods to track analyte molecules moving through tortuous

environments'> 38

will underpin the development of mobile phase theory, bringing the separation
sciences one step closer to predictive separations.

Another promising branch of theoretical development is chemometrics to connect surface
chemistry to elution results. Ensemble metrics used to describe separation efficiency, such as the
asymmetry factor, offer simple descriptors of chromatographic lineshape based on the same
mathematics as the full width at half maximum.!%3° Linking the stochastic theory powered by the
Monte Carlo simulations of Dondi*’ and Cavazzini?! provides a new way to connect empirical
chemometrics to microscopic dynamics and thus provides a path to the real-time adaptation of
chromatographic conditions during elution. Further extensions to the theory should include ways
to model interactions along patterned surfaces, mathematical expressions for mobile phase
heterogeneity, and descriptions of nonlinearity originating from column connectors. By
maintaining the statistical background of the theory, further advancements can be agnostic to the

type of separation mode, offering broad applicability to a variety of separation industries.

Applicability of single-molecule and stochastic theory to industry

10
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Predictive approaches that scale up single-molecule interactions to emulate ensemble
separation with the support of statistical simulations could streamline the optimization of industrial
scale separations. Ensemble elution profiles can be considered a statistical sum of numerous
single-molecule events. In such a model, a single mechanism for adsorption onto the stationary
phase leads to a Gaussian elution profile, whereas heterogeneous interactions lead to skewness or
tailing in the elution profile (Figure 3C). The ability to link microscopic chemical and physical
dynamics to macroscale separations in silico could thus reduce the need for iterative optimization
during industrial scale-up.

Using stimuli-responsive materials as stationary phases with novel structure and functional
properties

Development of novel stationary phase materials with stimuli-responsive behavior
requires designing complex interfaces to control physical properties at the nanoscale. Predictive
chromatographic performance of such materials can be achieved by manipulating the local
chemistry and controlling the molecular scale solute-solvent interactions. In this section, we

highlight recent progress*' ™

in how single-molecule experiments are helping to understand
analyte motion in stimuli-responsive polymer brushes, 2D/3D porous structures, and 3D printed
columns to aid in the design of predictive and efficient separations. We also point out future
opportunities where single-molecule detail might be crucial for materials optimization.
Stimuli-responsive polymers:

Stimuli-responsive polymer brushes are an attractive material for separations because of
their low cost, high flexibility, and tunable through a range of stimuli (e.g., pH, salt,

temperature).** +> Single-molecule methods have been implemented to understand how polymer

brush chemical composition, height, and density influence analyte interactions with the polymer

11
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support.**3° The influence of polymer conformational changes on analyte motion has been probed
using single-molecule techniques, where it has been found that attractive Coulombic interactions
and local geometric heterogeneities slow analyte diffusion.’!:3> More recently, we reported that
electrostatic-induced unfolding of immunoglobulin G (IgG) in an ion-exchange chromatography
column slows IgG motion and elution, providing a crucial and direct link between single-molecule
measurements and ensemble separations. !

On the macroscale, temperature-responsive separation is implemented by flowing the
mobile phase at multiple temperatures, thereby heating the entire column and losing site-specific
thermodynamic information.>® Hybrid plasmonic nanoparticle/polymer materials are one option to
understand and control local molecular interactions at various temperatures during the polymer
phase transition. Plasmonic heterostructures coated with pNIPAM polymers offer local
temperature control using plasmonic heating, and can be combined with analyte tracking in single-
molecule experiments.’* 3 There are a range of new redox-active polymer and other electro-
driven membranes for chemical and biomolecular separations>®-® that are ripe for study, especially
because single-particle studies have shown that electrodes can reorganize at the nanoscale during
electrochemical charging and discharging.>
MOFs/COFs: Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are
emerging classes of materials that can be integrated into the solid stationary phase (Figure 4A).%>
60,61 MOFs consist of metal ions or clusters with extended conjugation of organic ligands to form
2D/3D porous structures. High porosity, mechanical stability, and tunable surface properties make
MOFs suitable for separation and purification applications. Zeolitic imidazolate frameworks
(ZIFs), a subclass of MOFs, have recently been explored to understand the protein capture

behavior in MOFs. Zheng et al. showed that magnetic ZIF-8 nanocomposites (Fe3O4@ZIF8) can

12
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selectively capture natural His-rich proteins, such as bovine hemoglobin.®® Liu et al. demonstrated
that hierarchical ZIF-8 structures can immobilize lysozyme via a physical adsorption mechanism.®?

COFs are extended 2D/3D organic structures with well-defined structural regularity, high surface

area, tunable pore size, and high chemical and structural stability.®> Various COF composites have

been recently synthesized and shown to

A MOFs/COFs
selectively capture small hydrophobic

#*%"‘ B
peptides while separating proteins through

. . . . Fe;0, @ ZIF-8
size-exclusion.” While the high
physicochemical tunability of MOF/COFs is "
@gﬂ’ Iy
attractive for potential separation applications, RO -
* Chemical selectivity in small
a mechanistic understanding of the nanoscale peptides and protein separation
molecular interactions is required for B 3D printed columns
. ) . = = complex

specificity biomolecular separation. Further m 7. monoliths with
. . . . " soft polymers
investigations into other frameworks with Wy pol

responsive materials and novel chemical
properties will enable better design of

separation systems. columns

3D printed materials: 3D printed columns | ‘ - - -
Figure 4. Responsive polymers with active

functional groups and novel structures can be
used as effective separation material. Some
representative ideas include (A) MOFs/COFs.
Adapted with permission from ref ®*. Copyright
2015 Royal Society of Chemistry. (B) 3D
printed soft columns are presented. Adapted
with permission from refs. %6 Copyright 2019
Elsevier and Copyright 2018 American
Chemical Society, respectively.

with novel geometries assisted by stochastic
single-molecule  simulation and flow
dynamics simulations can instigate a radical

change in protein chromatography (Figure

4B).5+%¢ Traditional liquid chromatography
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stationary phases consist of randomly packed spherical beads or monolithic networks where
careful experiments and optimization is required to understand the separation behavior as a priori
quantitative predictions are impossible. On the contrary, ordered and homogeneously packed beds
have been shown to drastically increase separation efficiency in recent theoretical and
experimental studies.’> ¢7 However, manufacturing highly ordered columns with predefined
structures 1is challenging with traditional techniques. Recent developments in additive
manufacturing or 3D printing techniques enable layer-by-layer fabrication of highly ordered
structures with precise morphologies. Future developments utilizing 3D printing and
nanofabrication techniques to manufacture chromatographic supports with responsive materials
will be the key to high-resolution separations with low cost and higher efficiency.®®

On-chip multiscale separations

Multidimensional chromatography using responsive polymers as stationary phases could enable
high-resolution separations of biologics. Microfluidic based devices offer portable, energy and
time efficient platform for biologic separations specially in preparative procedures in protein and
peptide analysis.®*”! One tool employed in modern-day proteomics is 2D gel electrophoresis (2-
DE) that relies on separation based on the isoelectric point of proteins and their molecular weights.
In 2-DE, a mixture of proteins is sequentially separated using a gel strip and a gel slab kept between
two electrodes. 2-DE is a multidimensional separation process that requires’? (i) each separation
step to be independent of the separation in other steps and (ii) the materials separated in one step
must not get mixed in subsequent steps. These requirements are consequences of Giddings's
definition of multidimensional (MD) chromatography.”® However, designing an MD separation is

challenging as the separation achieved in one dimension suffers degraded resolution in the 2"
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dimension due to diffusion. Introducing independent separation mechanisms of actively controlled
polymers in subsequent separation steps could achieve high-resolution separations.

Figure 5A illustrates an on-chip separation system based on an LCXLC method, where LC
denotes a separation in the liquid phase. In our proposed system, the two independent separation
steps are size exclusion ('D) and ion exchange (*D) where a mixture of proteins can be sorted
based on their size in 'D by actively trapping proteins on a polymer hydrogel having a gradient of

pore sizes. Smaller-sized proteins will enter the hydrogel pores and larger proteins will be excluded

A 1D: Temperature  °D: pH tunable

tunable size surface chemistry
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)
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polyelectrolyte polyampholyte
regime regime

Figure 5. 2D chromatography on-a-chip, with a representative LCXLC method, where 'D is
size exclusion and 2D is IEX. The type of polymers used here will work independently of each
other and be selective. (B) A multiscale chromatographic process on a chip for protein
separations. Schematic of a typical industrial antibody purification process (top), which begins
with Protein A chromatography, followed by anion-exchange chromatography, cation-
exchange chromatography, and virus retentive filtration. A proposed chip-based
chromatography (bottom) can reduce the time and cost of the standard antibody column
purification process.
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and travel faster down the column. Proteins eluted from the size exclusion will be sorted further in
2D where the surface chemistry will be modified with polyampholytic ion-exchangers. Stationary
phase arrangements presented here will require an unprecedented level of accuracy in terms of
sample preparation and probing the protein-surface interactions at the single-molecule level.
Precise control of the separation mechanisms (pore size and surface chemistry) in each step will
provide better resolution than conventional electrophoresis methods.

Advances in responsive polymer sample preparation and single-molecule studies of
polymer—protein interactions with high spatiotemporal resolution will enable the design of a
multidimensional separation on a chip. For instance, a polyampholyte-filled capillary may be tuned
by varying solution conditions to function as a shape-selective substrate to capture an antibody of
interest similar to affinity chromatography and an anion exchanger under similar solution
conditions. Prior optimization for individual steps needs to be carried out separately to keep the
degree of heterogeneous interactions to a minimum. Advanced sample preparation technologies,
such as e-beam lithography to pattern polyampholyte hydrogels on the substrates and focused ion
beam etching to shape the optically transparent substrates can be applied for the on-chip sample
preparation. However, substrate-specific fabrication processes are needed to increase the thermal
and radiation tolerance of the polymer-based microdevices to achieve high resolution in
fabrication.”* Figure 5B (top) demonstrates a simplified designed concept showing the sequence
of purification in a standard antibody purification compared to the bottom panel in Figure 5B that
demonstrates the on-chip implementation. In execution, we envision those multiple steps such as
shape-based filtration and anion exchange can be conducted using the same polyampholyte
material with different mobile phase conditions optimized using single-molecule experiments and

stochastic theory. Even though microfluidic on-chip separations perform faster and require little
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chemical consumption compared to alternative to traditional liquid chromatography on-chip
separation still rely on empirical optimizations.®® ’! The column-on-a-chip with single-molecule
measurement capabilities will be significantly faster and more efficient, particularly in the early
stages of an antibody-based biologic development before the completion of clinical trials and mass
production. The microfluidic nature of the column-on-a-chip means that the entire multistep
purification process can be tracked in real-time at the single-molecule level using fluorescently
tagged proteins and advanced 3D single-molecule methods.

Real-time monitoring of all stages of the separation process will identify the bottlenecks
and couple single-molecule observations to the previously discussed chromatographic theories,
speeding chromatographic optimization through scientific observation of true physical
phenomena. While the integrated single-molecule (experiment and theory) and responsive polymer
approaches could lead to better performance in laboratory-based separations at small scales,
additional challenges in scale up to industrial production need to be identified and addressed for
practical applications, e.g., multicolumn continuous mode protein-A separation for monoclonal
antibody separation.’”> The associated problems and their solutions are rather broad and system-
specific, and so they are beyond the scope of this article.

Conclusions: separations by design

In conclusion, we discussed key steps to achieving high-resolution, predictive separations:
the need to implement stochastic theories for a better understanding of the nanoscale
heterogeneous interactions during protein separation and the use of responsive materials as
separation systems for controlling molecular separation. Acquiring single-molecule knowledge of
the separation system through state-of-the-art single-molecule experimental techniques and

stochastic theoretical predictions of the desired molecular properties of an ideal system can fuel a

17



349

350

351

352

353

354

355

356

357

358

359

360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

paradigm shift into futuristic separation systems. The predicted systems for ideal separation could
be materialized through innovation in polymer science and chemical engineering for energy-
efficient, high-resolution separations aligned with the central theme of the National Academies of
Sciences report on the future of separation science.
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