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Abstract  13 

The rapid rise of biological pharmaceuticals motivates a need for both predictive models and better 14 

materials for separations. Physical chemists now have the tools to deliver on an effort started 15 

almost 75 years ago to describe chromatographic separations through statistical methods. When 16 

combined with new support materials, a statistical model would enable the design and control of 17 

the iterative combination of many single-analyte events to produce an ensemble chromatogram. 18 

Because single-analyte events can now be measured and modeled directly using the latest 19 

experimental and computational methods, our perspective describes the development and 20 

implementation of a stochastic chromatographic theory based on these methods. Further, we 21 

comment on the use of stimuli-responsive materials for future applications. We believe that 22 

responsive materials when combined with state-of-the-art single-molecule experiments and theory 23 

could lead to cost-effective methods for predictive protein separation.   24 
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Introduction 25 

Liquid chromatography is a multiscale problem where analytes separate in the mobile 26 

phase due to differential interactions with the stationary phase when pumped through a 27 

chromatographic column. The interactions depend on the nanoscale heterogeneity of the stationary 28 

phase as well as the chemical nature of the analytes.1-5 Proteins are large macromolecules with 29 

complex secondary and tertiary structures, heterogeneous surface charge distributions, and 30 

hydrophobic/hydrophilic domains. Intrinsic heterogeneity in proteins makes empirical separation 31 

and purification of biologics time and energy-intensive. 6, 7  32 

 

Figure 1. Connecting single-molecule parameters to stochastic theories for optimal 
separation. Schematic of single-molecule interactions of biomolecules with a chromatographic 
support at the nanoscale. Single-molecule experiments provide information, such as surface 
residence time (Δτ) for analyte-stationary phase interactions. One contributor to peak 
skewing/broadening is adsorption at rare surface sites, but simulations based on stochastic theory 
can be used to model the contribution from such heterogeneity to elution profiles. Different 
colored chromatograms compare simulated elutions with varying desorption rates for the rare 
surface sites. 
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Macroscale protein separation relies on empirical optimization of mobile and stationary 33 

phase parameters by qualitatively considering the physical and chemical properties.8, 9 Because 34 

ensemble separation can be envisioned as the combined effect of all interactions between analytes 35 

and the stationary phase on the nanoscale,10 quantitative optimization assisted by single-analyte 36 

knowledge is one means to improve separation efficiency. We have divided the protein separation 37 

problem into three facets (Figure 1): observing single-molecule interactions of biomolecules with 38 

the stationary phase, modeling properties such as peak asymmetry and broadening, and designing 39 

novel separations by combining experimental and theoretical single-molecule knowledge. 40 

Deviation from an ideal, Gaussian peak profile is due to mobile phase effects, column overloading, 41 

rare adsorption events, etc.3, 4, 10-14 Here, we summarize how macroscale elutions can be understood 42 

and controlled through single-molecule understanding of the underlying solute-stationary phase 43 

interactions in this context and envision controlling various single-molecule properties to achieve 44 

better performance in ensemble separation. 45 

In a previous perspective,15 we outlined how single-molecule fluorescence experiments can 46 

provide insight into analyte-polymer interactions relevant to biologic separation. Here, we present 47 

the application of stochastic theories for nanoscale insight into local domain-specific biomolecule-48 

polymer interactions and in modeling chromatographic peak broadening due to secondary site 49 

kinetics. We also summarize the need to use novel responsive materials in rational 50 

chromatographic designs and provide a design alternative for multiscale chromatographic 51 

separation. 52 

 53 



4 
 

 Most of the widely used theoretical descriptions of chromatography are not designed to 54 

capture the time-dependent microscopic heterogeneity intrinsic in separation processes.16, 17, 19 55 

Figure 2 illustrates the history and potential of three separate approaches to chromatographic 56 

theory that vary in complexity and 57 

physical descriptors. The Differential 58 

Equations model posited by Lapidus 59 

and Amundson17 describes the 60 

chromatographic process as the motion 61 

of an analyte concentration front down 62 

a column. Peak shape in this model is 63 

described by the fluctuation of 64 

concentration in both time and space, 65 

together representing the diffusion of 66 

the analyte down the length of the 67 

column and on the surface of the 68 

stationary phase.  van Deemter16  69 

proposed a simplification that condensed all calculations into three specific constants in contest 70 

with mobile phase velocity. Optimization in the van Deemter model now depends on one variable, 71 

the mobile phase velocity, at the cost of extensive a priori stationary phase characterization. Its 72 

simplicity established the van Deemter method as the standard descriptor for liquid 73 

chromatography. However, the van Deemter method is developed from a macroscopic perspective 74 

that cannot capture the heterogeneity of solute-stationary phase interactions at the nanoscale. 75 

Figure 2. Theoretical advancements are primarily 
concerned with simplified descriptions of 
chromatography. Tracked citations for three 
prominent theoretical descriptions of chromatography 
ranging from simplified (van Deemter16), ensemble 
(Lapidus17), and single-molecule (Giddings18) 
methods. First-generation citations are marked with a 
dotted line. Second-generation citations, papers that 
cite articles that cited the original work, are depicted 
in the shaded populations. Citation data was gathered 
using Web of Science statistics tools provided by 
Clarivate Analytics. 
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Starting in the 1950s, the father of transition state theory, H. Eyring and his student J. Giddings, 76 

developed a statistical framework for separations that – in theory – was capable of linking 77 

microscopic analyte chemistry and physics to macroscale separations.18, 20 Giddings and Eyring 78 

developed the stochastic model of chromatography by considering the overall separation process 79 

as a combination of a series of random adsorption and desorption processes. In the simplest picture 80 

of single-site adsorption, the analyte adsorption from mobile to stationary phase was characterized 81 

by a Poisson distribution, whereas desorption was assumed to follow first-order kinetics. The 82 

single-site adsorption model was further refined to account for more complex molecular 83 

interaction phenomena,21, 22 and D. McQuarrie made further improvements23 – the title of 84 

McQuarrie’s Ph.D. thesis was “A Theory of Fused Salts and On the Stochastic Theory of 85 

Chromatography”.24 Pasti et al. expanded the stochastic description in the Lévy representation to 86 

connect the rare adsorption observables obtained from the single-molecule measurements to 87 

ensemble elution.25 We recently adopted a Monte Carlo model, previously developed by Dondi 88 

and Cavazzini,21 to relate chromatographic peak asymmetry to heterogeneous kinetics, as well as 89 

developed a new analytical metric to connect microscopic surface dynamics to the macroscopic 90 

chromatograms.10  91 

Why use the stochastic theory now? 92 

The state of experimental and computational technology in the mid-20th century led Giddings 93 

and Eyring to declare, “The general problem of chromatography is, in a practical sense, not 94 

solvable”.18 At that time, it was impossible to experimentally measure heterogeneities and 95 

deconvolute multiple contributions to ensemble observables and connect them to theory. Further, 96 

the statistical expressions for n- different adsorption sites on a heterogeneous stationary phase23 97 

could not be calculated because the necessary computational technology had not yet been 98 
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developed. Giddings and Eyring’s statistical framework was ahead of its time, and despite the 99 

model’s scientific rigor and promise, separations remain dominated by the same empirical 100 

descriptions used since the 1920s.  101 

Measuring and modeling molecular interactions at unprecedented spatiotemporal resolutions 102 

is now a reality that has been made possible through the advancement of single-molecule methods 103 

and computational power.26 The potential to link new single-analyte data and statistical theories 104 

hints at achieving predictive chromatography, a premise that is only achievable in Giddings’ and 105 

Eyring’s stochastic theory. For example, single-molecule and super-resolution methods have made 106 

it possible to experimentally observe the non-equilibrium interactions that drive separations. Such 107 

methods provide access to statistics about adsorption and desorption of individual molecules,27-30 108 

mobile/stationary phase exchange,4, 31 and transport in nanoporous media unfettered by ensemble 109 

averaging and equilibrium assumptions.32, 33 And cheap data storage and fast processors can model 110 

previously unsolvable nonlinear expressions and analyze large volumes of experimentally 111 

acquired data.34   112 

Recently, the National Academies Press set out a vision6 to transform separation science 113 

by adapting theory and data science approaches to model and predict separations. They identified 114 

a need to utilize computational methods to identify critical aspects of complex separation 115 

processes, including, but not limited to, kinetics and thermodynamics of molecular transport, 116 

transport in complex environments under molecular crowding conditions, and structural and 117 

dynamic properties of separation systems. The committee also identified the potential of 118 

conventional (such as temperature and pressure) and unconventional (such as electric, magnetic, 119 

and light) responsive materials as separation models. Thus, we assert that now is the time to revisit 120 

how a stochastic model of separations, informed by single-analyte experimental data and adapted 121 
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to exploit new responsive support materials, could allow us to achieve the goals set out by the 122 

National Academies study.   123 

Relating single-molecule data to ensemble results 124 

Ensemble chromatograms can be approximated as the collection of single-molecule elution 125 

histories. The van Deemter approach (Figure 3A) treats the column as a series of theoretical plates 126 

with uniform analyte concentration and predicts the maximum separation efficiency at minimum 127 

plate height. According to van Deemter,16 plate height depends on three empirical constants: 128 

mobile phase velocity (μ): eddy diffusion (A), diffusion (B), and mass transfer resistance (C): 129 

𝐻𝐻 = 𝐴𝐴 +
𝐵𝐵
𝜇𝜇

+ 𝐶𝐶𝐶𝐶 130 

Based on the van Deemter equation, the quality of a separation depends on empirical parameters 131 

such as column density and pressure. Separation optimization can be accomplished by tuning only 132 

one parameter, the mobile phase velocity (μ). However, the stated equation relies on physically 133 

unrealizable dynamics in the column, which hinders the translation of such a simplistic 134 

mathematical relation to more complex column descriptions.  135 

Single-molecule models can describe the complexity in mathematically tractable terms but 136 

must extrapolate long-term behavior from microscale observations to relate to macroscale 137 

observables. Giddings and Eyring’s stochastic theory provides a framework to assess the 138 

chromatographic peak shape as statistical populations differentiated by their interactions with the 139 

stationary phase surface. Giddings and Eyring describe the motion of each analyte molecule 140 

through a column as a random walk between the mobile and stationary phases35 (Figure 3B). The 141 

distribution of the number of adsorption events is then a Poisson distribution which gives the 142 

probability of a single protein associating with an adsorption site 𝑟𝑟𝑚𝑚 times:18  143 
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𝜓𝜓𝑚𝑚 =
(𝑘𝑘𝑎𝑎𝑡𝑡𝑚𝑚)𝑟𝑟𝑚𝑚

𝑟𝑟𝑚𝑚!
𝑒𝑒𝑒𝑒𝑒𝑒[−𝑘𝑘𝑎𝑎𝑡𝑡𝑚𝑚] 144 

Where 𝑟𝑟 is the number of stochastic adsorption events for a given time, t, in the mobile phase, 145 

m; 𝑘𝑘𝑎𝑎 - an adsorption rate constant; 𝑡𝑡𝑚𝑚 - the total time in the mobile phase. This equation can be 146 

used to extract an elution profile from a single-molecule kinetic measurement, specifically 147 

observable rate constants. Utilizing the stochastic approach, previous single-molecule studies 148 

already demonstrated the influence of multiple adsorption sites with heterogeneous kinetics on 149 

elution profile, therefore, providing a conceptual link between peak broadening and adsorption on 150 

strong sites.2, 4, 27 The stochastic theory can be expanded for multiple adsorption sites to calculate 151 

the adsorption probabilities and connect with observable rate constants, however, such calculations 152 

can be computationally demanding.23 Increased data storage, faster processors, and advanced 153 

programming methods enable a linear increase in complexity of the stochastic theory, extending 154 

the original mathematics past the bounds of calculating one to two populations analytically. 155 

Therefore, the mosaic of populations that compose an elution, made apparent by single-molecule 156 

spectroscopic studies, can be used to predict elution accurately. A few proof-of-concept examples 157 

are highlighted next. 158 



9 
 

A study of reverse phase 159 

chromatography highlighted that the 160 

stochastic model of chromatography 161 

combined with single-molecule kinetic 162 

results can provide consistent macroscopic 163 

separation trends.4 In another example, bulk-164 

scale elution profiles of the salting-out of 165 

transferrin proteins from polymer nylon 166 

membranes matched stochastic simulations 167 

informed by single-molecule kinetic 168 

information. Single-molecule data confirmed 169 

a decrease in peak broadening as the salt 170 

concentration increased, consistent with 171 

macroscale observations.2 These proofs-of-172 

concept demonstrate that local chemistry and 173 

physics when measured precisely and 174 

without ensemble averaging, can be used to 175 

model elutions in ways that could be adapted 176 

for predictive simulations.  177 

Theoretical and computational development 178 

An essential step towards fully modeling elution is correlating calculations of the time an 179 

analyte molecule spends in the mobile phase and the structure of the chromatographic column. 180 

Many studies have provided detailed flow descriptions of single tracers through porous media to 181 

 
Figure 3. Macroscopic and microscopic 
description of chromatography. (A) The van 
Deemter description of chromatography predicts 
maximum separation at minimum plate height by 
empirical optimization. (B) Stochastic single-
molecule description following Giddings 
incorporates adsorption heterogeneities by 
accounting for both homogeneous (time, τ1) as 
well as rare heterogeneous interactions (time, τ2). 
(C) (Top) The observed chromatogram with two 
underlying populations composed of 
homogeneous (blue) and heterogeneous (red) 
interactions. (Bottom) The underlying single-
molecule contributions to the visualized 
subpopulations. Desorption times for 
homogeneous and heterogeneous interactions 
are τ1 and τ2, respectively.  Time spent in the 
stationary phase (τ1) is represented as a sum of ith 
single-molecule event and jth retention mode.  
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describe the time an analyte spends in the mobile phase.36 However, most theoretical models 182 

struggle to connect the physical quantities that define analyte motion to the structure of the 183 

column.37 Capturing analyte behavior in the column, as well as in column connections, is key to 184 

achieving a complete theoretical model. Current theoretical models can account for multi-site 185 

adsorptions based on stochastic theory18 and heterogeneous adsorption distributions using 186 

canonical Levy representations25 in chromatographic simulations. The underlying assumption in 187 

these theories is that mobile phase effects do not contribute to chromatographic performance 188 

whereas in practice, mobile phase effects can introduce peak tailing and loss of analyte.10 189 

Combining new experimental methods to track analyte molecules moving through tortuous 190 

environments1, 38 will underpin the development of mobile phase theory, bringing the separation 191 

sciences one step closer to predictive separations.  192 

Another promising branch of theoretical development is chemometrics to connect surface 193 

chemistry to elution results. Ensemble metrics used to describe separation efficiency, such as the 194 

asymmetry factor, offer simple descriptors of chromatographic lineshape based on the same 195 

mathematics as the full width at half maximum.10, 39 Linking the stochastic theory powered by the 196 

Monte Carlo simulations of Dondi40 and Cavazzini21  provides a new way to connect empirical 197 

chemometrics to microscopic dynamics and thus provides a path to the real-time adaptation of 198 

chromatographic conditions during elution. Further extensions to the theory should include ways 199 

to model interactions along patterned surfaces, mathematical expressions for mobile phase 200 

heterogeneity, and descriptions of nonlinearity originating from column connectors. By 201 

maintaining the statistical background of the theory, further advancements can be agnostic to the 202 

type of separation mode, offering broad applicability to a variety of separation industries.  203 

Applicability of single-molecule and stochastic theory to industry  204 
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Predictive approaches that scale up single-molecule interactions to emulate ensemble 205 

separation with the support of statistical simulations could streamline the optimization of industrial 206 

scale separations. Ensemble elution profiles can be considered a statistical sum of numerous 207 

single-molecule events. In such a model, a single mechanism for adsorption onto the stationary 208 

phase leads to a Gaussian elution profile, whereas heterogeneous interactions lead to skewness or 209 

tailing in the elution profile (Figure 3C). The ability to link microscopic chemical and physical 210 

dynamics to macroscale separations in silico could thus reduce the need for iterative optimization 211 

during industrial scale-up.  212 

Using stimuli-responsive materials as stationary phases with novel structure and functional 213 

properties 214 

 Development of novel stationary phase materials with stimuli-responsive behavior 215 

requires designing complex interfaces to control physical properties at the nanoscale. Predictive 216 

chromatographic performance of such materials can be achieved by manipulating the local 217 

chemistry and controlling the molecular scale solute-solvent interactions. In this section, we 218 

highlight recent progress41-43 in how single-molecule experiments are helping to understand 219 

analyte motion in stimuli-responsive polymer brushes, 2D/3D porous structures, and 3D printed 220 

columns to aid in the design of predictive and efficient separations. We also point out future 221 

opportunities where single-molecule detail might be crucial for materials optimization. 222 

Stimuli-responsive polymers:  223 

Stimuli-responsive polymer brushes are an attractive material for separations because of 224 

their low cost, high flexibility, and tunable through a range of stimuli (e.g., pH, salt, 225 

temperature).44, 45  Single-molecule methods have been implemented to understand how polymer 226 

brush chemical composition, height, and density influence analyte interactions with the polymer 227 
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support.46-50 The influence of polymer conformational changes on analyte motion has been probed 228 

using single-molecule techniques, where it has been found that attractive Coulombic interactions 229 

and local geometric heterogeneities slow analyte diffusion.51, 52  More recently, we reported that 230 

electrostatic-induced unfolding of immunoglobulin G (IgG) in an ion-exchange chromatography 231 

column slows IgG motion and elution, providing a crucial and direct link between single-molecule 232 

measurements and ensemble separations.1  233 

On the macroscale, temperature-responsive separation is implemented by flowing the 234 

mobile phase at multiple temperatures, thereby heating the entire column and losing site-specific 235 

thermodynamic information.53 Hybrid plasmonic nanoparticle/polymer materials are one option to 236 

understand and control local molecular interactions at various temperatures during the polymer 237 

phase transition. Plasmonic heterostructures coated with pNIPAM polymers offer local 238 

temperature control using plasmonic heating, and can be combined with analyte tracking in single-239 

molecule experiments.54, 55  There are a range of new redox-active polymer and other  electro-240 

driven membranes for chemical and biomolecular separations56-58 that are ripe for study, especially 241 

because single-particle studies have shown that electrodes can reorganize at the nanoscale during 242 

electrochemical charging and discharging.59  243 

MOFs/COFs: Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are 244 

emerging classes of materials that can be integrated into the solid stationary phase (Figure 4A).55, 245 

60, 61  MOFs consist of metal ions or clusters with extended conjugation of organic ligands to form 246 

2D/3D porous structures. High porosity, mechanical stability, and tunable surface properties make 247 

MOFs suitable for separation and purification applications. Zeolitic imidazolate frameworks 248 

(ZIFs), a subclass of MOFs, have recently been explored to understand the protein capture 249 

behavior in MOFs. Zheng et al. showed that magnetic ZIF-8 nanocomposites (Fe3O4@ZIF8) can 250 
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selectively capture natural His-rich proteins, such as bovine hemoglobin.60 Liu et al. demonstrated 251 

that hierarchical ZIF-8 structures can immobilize lysozyme via a physical adsorption mechanism.62 252 

COFs are extended 2D/3D organic structures with well-defined structural regularity, high surface 253 

area, tunable pore size, and high chemical and structural stability.63 Various COF composites have  254 

been recently synthesized and shown to 255 

selectively capture small hydrophobic 256 

peptides while separating proteins through 257 

size-exclusion.55 While the high 258 

physicochemical tunability of MOF/COFs is 259 

attractive for potential separation applications, 260 

a mechanistic understanding of the nanoscale 261 

molecular interactions is required for 262 

specificity biomolecular separation. Further 263 

investigations into other frameworks with 264 

responsive materials and novel chemical 265 

properties will enable better design of 266 

separation systems. 267 

3D printed materials: 3D printed columns 268 

with novel geometries assisted by stochastic 269 

single-molecule simulation and flow 270 

dynamics simulations can instigate a radical 271 

change in protein chromatography (Figure 272 

4B).64-66 Traditional liquid chromatography 273 

 
Figure 4. Responsive polymers with active 
functional groups and novel structures can be 
used as effective separation material. Some 
representative ideas include (A) MOFs/COFs.  
Adapted with permission from ref 60.  Copyright 
2015 Royal Society of Chemistry. (B) 3D 
printed soft columns are presented. Adapted 
with permission from refs. 64, 65 Copyright  2019 
Elsevier and Copyright 2018 American 
Chemical Society, respectively. 
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stationary phases consist of randomly packed spherical beads or monolithic networks where 274 

careful experiments and optimization is required to understand the separation behavior as a priori 275 

quantitative predictions are impossible. On the contrary, ordered and homogeneously packed beds 276 

have been shown to drastically increase separation efficiency in recent theoretical and 277 

experimental studies.65, 67 However, manufacturing highly ordered columns with predefined 278 

structures is challenging with traditional techniques. Recent developments in additive 279 

manufacturing or 3D printing techniques enable layer-by-layer fabrication of highly ordered 280 

structures with precise morphologies. Future developments utilizing 3D printing and 281 

nanofabrication techniques to manufacture chromatographic supports with responsive materials 282 

will be the key to high-resolution separations with low cost and higher efficiency.68 283 

On-chip multiscale separations 284 

Multidimensional chromatography using responsive polymers as stationary phases could enable 285 

high-resolution separations of biologics. Microfluidic based devices offer portable,  energy and 286 

time efficient platform for biologic separations specially in preparative procedures in protein and 287 

peptide analysis.69-71 One tool employed in modern-day proteomics is 2D gel electrophoresis (2-288 

DE) that relies on separation based on the isoelectric point of proteins and their molecular weights. 289 

In 2-DE, a mixture of proteins is sequentially separated using a gel strip and a gel slab kept between 290 

two electrodes. 2-DE is a multidimensional separation process that requires72 (i) each separation 291 

step to be independent of the separation in other steps and (ii) the materials separated in one step 292 

must not get mixed in subsequent steps. These requirements are consequences of Giddings's 293 

definition of multidimensional (MD) chromatography.73 However, designing an MD separation is 294 

challenging as the separation achieved in one dimension suffers degraded resolution in the 2nd 295 
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dimension due to diffusion. Introducing independent separation mechanisms of actively controlled 296 

polymers in subsequent separation steps could achieve high-resolution separations. 297 

Figure 5A illustrates an on-chip separation system based on an LCxLC method, where LC 298 

denotes a separation in the liquid phase. In our proposed system, the two independent separation 299 

steps are size exclusion (1D) and ion exchange (2D) where a mixture of proteins can be sorted 300 

based on their size in 1D by actively trapping proteins on a polymer hydrogel having a gradient of 301 

pore sizes. Smaller-sized proteins will enter the hydrogel pores and larger proteins will be excluded 302 

 
Figure 5. 2D chromatography on-a-chip, with a representative LCxLC method, where 1D is 
size exclusion and 2D is IEX. The type of polymers used here will work independently of each 
other and be selective. (B) A multiscale chromatographic process on a chip for protein 
separations. Schematic of a typical industrial antibody purification process (top), which begins 
with Protein A chromatography, followed by anion-exchange chromatography, cation-
exchange chromatography, and virus retentive filtration. A proposed chip-based 
chromatography (bottom) can reduce the time and cost of the standard antibody column 
purification process.  
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and travel faster down the column. Proteins eluted from the size exclusion will be sorted further in 303 

2D where the surface chemistry will be modified with polyampholytic ion-exchangers. Stationary 304 

phase arrangements presented here will require an unprecedented level of accuracy in terms of 305 

sample preparation and probing the protein-surface interactions at the single-molecule level. 306 

Precise control of the separation mechanisms (pore size and surface chemistry) in each step will 307 

provide better resolution than conventional electrophoresis methods.  308 

Advances in responsive polymer sample preparation and single-molecule studies of 309 

polymer–protein interactions with high spatiotemporal resolution will enable the design of a 310 

multidimensional separation on a chip. For instance, a polyampholyte-filled capillary may be tuned 311 

by varying solution conditions to function as a shape-selective substrate to capture an antibody of 312 

interest similar to affinity chromatography and an anion exchanger under similar solution 313 

conditions. Prior optimization for individual steps needs to be carried out separately to keep the 314 

degree of heterogeneous interactions to a minimum. Advanced sample preparation technologies, 315 

such as e-beam lithography to pattern polyampholyte hydrogels on the substrates and focused ion 316 

beam etching to shape the optically transparent substrates can be applied for the on-chip sample 317 

preparation. However, substrate-specific fabrication processes are needed to increase the thermal 318 

and radiation tolerance of the polymer-based microdevices to achieve high resolution in 319 

fabrication.74 Figure 5B (top) demonstrates a simplified designed concept showing the sequence 320 

of purification in a standard antibody purification compared to the bottom panel in Figure 5B that 321 

demonstrates the on-chip implementation. In execution, we envision those multiple steps such as 322 

shape-based filtration and anion exchange can be conducted using the same polyampholyte 323 

material with different mobile phase conditions optimized using single-molecule experiments and 324 

stochastic theory. Even though microfluidic on-chip separations perform faster and require little 325 
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chemical consumption compared to alternative to traditional liquid chromatography on-chip 326 

separation still rely on empirical optimizations.69, 71 The column-on-a-chip with single-molecule 327 

measurement capabilities will be significantly faster and more efficient, particularly in the early 328 

stages of an antibody-based biologic development before the completion of clinical trials and mass 329 

production. The microfluidic nature of the column-on-a-chip means that the entire multistep 330 

purification process can be tracked in real-time at the single-molecule level using fluorescently 331 

tagged proteins and advanced 3D single-molecule methods. 332 

   Real-time monitoring of all stages of the separation process will identify the bottlenecks 333 

and couple single-molecule observations to the previously discussed chromatographic theories, 334 

speeding chromatographic optimization through scientific observation of true physical 335 

phenomena. While the integrated single-molecule (experiment and theory) and responsive polymer 336 

approaches could lead to better performance in laboratory-based separations at small scales, 337 

additional challenges in scale up to industrial production need to be identified and addressed for 338 

practical applications, e.g., multicolumn continuous mode protein-A separation for monoclonal 339 

antibody separation.75 The associated problems and their solutions are rather broad and system-340 

specific, and so they are beyond the scope of this article. 341 

Conclusions: separations by design 342 

In conclusion, we discussed key steps to achieving high-resolution, predictive separations: 343 

the need to implement stochastic theories for a better understanding of the nanoscale 344 

heterogeneous interactions during protein separation and the use of responsive materials as 345 

separation systems for controlling molecular separation. Acquiring single-molecule knowledge of 346 

the separation system through state-of-the-art single-molecule experimental techniques and 347 

stochastic theoretical predictions of the desired molecular properties of an ideal system can fuel a 348 



18 
 

paradigm shift into futuristic separation systems. The predicted systems for ideal separation could 349 

be materialized through innovation in polymer science and chemical engineering for energy-350 

efficient, high-resolution separations aligned with the central theme of the National Academies of 351 

Sciences report on the future of separation science.  352 
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