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1 Introduction

One goal in the population genetics of autopolyploids, which are organisms with more
than two sets of homologous chromosomes, is to model their genotype frequencies. This
modeling presents a greater challenge in autopolyploids than in diploids because certain
meiotic configurations in autopolyploids can result in a phenomenon known as double
reduction is the co-migration of sister chromatid segments to the same gamete (Stift et al.,
2010). Double reduction affects both the segregation frequencies of genotypes from
individuals to their offspring (Mather, 1936; Fisher and Mather, 1943; Bever and Felber,
1992; Huang et al,, 2019) and the equilibrium genotype frequencies of a panmictic
population (Geiringer, 1949; Bennett, 1968; Bever and Felber, 1992; Huang et al., 2019).
Testing if a population is in equilibrium, or merely exhibits random mating, is important
for the same reasons as tests for Hardy—-Weinberg equilibrium in diploids, namely, for 1)
determining the mating system, 2) detecting segregation distortion, 3) detecting
inbreeding, and 4) detecting genotyping errors (Gerard, 2022b).

Three similar articles which attempt to test for equilibrium and random mating were
recently released: one for tetraploids (Sun et al., 2021), one for hexaploids (Wang et al.,
2022), and one for octoploids (Wang et al., 2021). These three articles have numerous
implementation mistakes, confuse random mating and equilibrium, confuse
autopolyploids and allopolyploids (organisms with homoeologous subgenomes), and
provide suboptimal testing approaches. The objectives of this study are to correct the
authors’ mistakes (Section 2), provide examples of how random mating and equilibrium
differ in autopolyploids (Section 3), provide examples of how allo- and autopolyploids
differ (Section 4), and promote the better methods of Gerard (2022b) and Gerard (2022a)
(Section 5).

This study requires a little notation before the issues are discussed here. Let g = (4o, 91,

. » qg) be the genotype frequencies at a single biallelic locus for an autopolyploid
population with ploidy K; that is, gy is the proportion of individuals in the population with
k copies of the minor allele. Let x = (x, X3, . . . , xk) be the genotype counts in a random
sample of n = ¥ x; individuals. Then x is multinomially distributed with size n and
probability vector q. Under random mating, the genotype frequencies are (Gerard, 2022b)
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TABLE 1 Segregation frequencies for an autooctoploid when there is no double reduction, either according to Table 1 from the study by Wang et al.
(2021) or according to the correct calculation using the hypergeometric distribution (Eq. 4). The two approaches are different, so the general

model for meiosis in the study by Wang et al. (2021) is incorrect.

Parent genotype Method Gamete genotype
4 3 2 1 0
8 Wang et al. (2021) 1 0 0 0 0
8 Correct 1 0 0 0 0
7 Wang et al. (2021) 9/16 3/8 1/16 0 0
7 Correct 172 172 0 0 0
6 Wang et al. (2021) 225/784 45/98 87/392 3/98 1/784
6 Correct 3/14 8/14 3/14 0 0
5 Wang et al. (2021) 25/196 75/196 285/784 45/392 9/784
5 Correct 1/14 6/14 6/14 1/14 0
4 Wang et al. (2021) 9/196 12/49 41/98 12/49 9/196
4 Correct 1/70 16/70 36/70 16/70 1/70
3 Wang et al. (2021) 9/784 45/392 285/784 75/196 25/196
3 Correct 0 1/14 6/14 6/14 1/14
2 Wang et al. (2021) 1/784 3/98 87/392 45/98 225/784
2 Correct 0 0 3/14 8/14 3/14
1 Wang et al. (2021) 0 0 1/16 3/8 9/16
1 Correct 0 0 0 1/2 1/2
0 Wang et al. (2021) 0 0 0 0 1
0 Correct 0 0 0 0 1
min (kK/2) 2 Implementation and coding errors
gk = z DiPr-i> 1)
i=max (0k-K/2) There are many logical and coding issues in the studies by

where p = (po, p1> - - . » Pxs2) are the gamete frequencies of the
population; that is, py is the proportion of gametes in the
population that have k copies of the minor allele. Suppose
that a population is randomly mating, then there exists a
function flg, &) = (fo (¢, @), ..., fx (¢, «)) that updates the
genotype frequencies from the current generation g to the next
flq, &). Here, « is called the double reduction rate, which is a
property of meiosis in autopolyploids (Stift et al., 2010). If the
population is at equilibrium, then the genotype frequencies
follow

q=f(ga). )

For each ploidy, there is a q that satisfies Eq. 2, which is called the
“equilibrium genotype frequencies” (Huang et al., 2019). These
frequencies are a function of the double reduction rate « and the
allele frequency r = %Zszoqu, and have been calculated for
ploidies less than or equal to ten (Huang et al., 2019). If & =
0, then these equilibrium genotype frequencies reduce to
binomial proportions (Haldane, 1930),

a = (Or* (1 =n* 3)

This study concerns tests for Eqs 1-3.
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Sunetal. (2021), Wang et al. (2021), and Wang et al. (2022). In
this section, the ones that were found are listed. However, the
code from the study by Sun et al. (2021) is not available, and
the code from the study by Wang et al. (2021) and Wang et al.
(2022) is verbose and sparsely documented, so there might be
more implementation errors that were missed. In particular,
the following were found: 1) an incorrect model for meiosis
for autooctoploids that results in incorrect equilibrium
genotype frequencies, 2) two instances of incorrect y* test
statistic calculations, 3) five instances of incorrect degrees of
freedom calculations, and 4) two instances of using unknown
parameters in an estimation scheme.

The model for meiosis in the study by Wang et al. (2021) is
incorrect. This leads to incorrect equilibrium genotype
frequencies in their “recursive” test for equilibrium, and
thus an incorrect test for equilibrium. It can be determined
that their model is incorrect by looking at what it implies when
a = 0. In this case, the distribution of gamete dosages is known
to follow a hypergeometric distribution (Table 1 from
Haldane, 1930; Huang et al, 2019). If X is the parental
genotype and Y is the gamete genotype, the reader can see
this result by thinking of the probability of obtaining Y minor
alleles out of K/2 chosen alleles from an individual with K total
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alleles and X total minor alleles. Therefore, the correct
segregation frequencies are obtained via

6)(,)
5

Table 1 shows that the model for meiosis from Table 1 of the
study by Wang et al. (2021) does not equal the probabilities from

Pr(Y=ylX=x)= (4)

Eq. 4 when a = 0, indicating that their model for meiosis is
incorrect. It can be empirically observed that their equilibrium
frequencies also do not equal binomial proportions when « = 0
(Supplementary Appendix S2), which they should (Haldane,
1930).

The ) statistics testing hypotheses Eq. 1 and Eq. 2 are
implemented incorrectly in the study by Wang et al. (2022).
The y° statistic in Eq. 1 of the study by Wang et al. (2022) is
correct in the study, but in their code, they left out the N term.
This affects both their equilibrium testing results and their
random mating results. This is known because this study
reproduced their 6.602 and 6.649 values from page five of
their article (Supplementary Appendix S3). Thus, their tests
are improperly implemented.

The random mating test is implemented incorrectly in the
study by Wang et al. (2022), even after the N term is included;
that is, the authors calculate it differently than what they state in
their article. Particularly, in their code, they first estimate the
gamete frequencies via maximum likelihood, and then put the
resulting genotype frequencies through the recursive formula to
come up with equilibrium values. However, using this recursive
formula just results in the same genotype frequencies as the
equilibrium “recursive” test. So, the 6.602 value and the
6.649 value aforementioned are different merely because the
authors ran the recursive relationship for a different number
of iterations.

A total of five instances of incorrect degrees of freedom
calculations were counted for the chi-squared tests in the studies
by Sun et al. (2021), Wang et al. (2022), and Wang et al. (2021).
These calculations are described in Supplementary Appendix Sé.
Thus, most of the test statistics from these three articles are
compared to the incorrect null distribution, resulting in incorrect
p-values.

The estimates of « are implemented incorrectly in the study
by Wang et al. (2022). The authors do not modularize their code
into functions, and this led to some logical errors. They have a
variable in their simulations called alpha, that is, the true
double reduction rate. Their code returns alphal, that is,
the estimated double reduction rate. However, their EM
algorithm uses alpha, not the current version of alphal, to
update the parental gamete frequencies. Thus, they use the true
value of « in their code that estimates a. This clearly results in
unwarranted advantages. Their simulations were rerun after that
fixed,
(Supplementary Appendix S5). This indicates that either their

bug was obtaining very biased estimates of «
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EM algorithm is wrong or their code is incorrect. It is hard to
judge if their EM algorithm is wrong since the EM algorithm used
to estimate « is neither in the article nor in the Supplementary
Materjals. It is also noted that the
“estimate_alpha.R” was run, which should produce the

when authors’
simulation results in their Table 3, it was not able to actually
reproduce their Table 3.

From what can be understood through their code (in files
“table2_power.R” and “LR.R”), Wang et al. (2021) implemented
their tests by using the true genotype frequencies when constructing
their test statistics. Needless to say, researchers would not have access
to the true genotype frequencies in reality. In their “table2_power.R,”
they set some genotype frequencies g; and then obtain the
underlying true genotype frequencies via a perturbation of q = f
(q1> ), where & = 0. They obtain two equivalently valued variables
called prob and probl. They use a perturbation of prob to
generate the data, and prob1l to construct the test statistic, but both
prob and probl are equal to g. An annotated version of
“table2_power.R” is provided in the Supplementary Material so
that it is easier for the reader to see the issue here. Though the reader
is warned, their code is rather verbose and spans 49 8.5 x 11" pages.
Because their test statistic is impossible to be calculated in real
analyses (because it uses the true genotype frequencies), the
simulation results of Wang et al. (2021) are invalid. It is also
noted that when “table2_power.R” was run using the authors’
original code, it was not able to actually reproduce the power
results in their Table 2.

3 Distinction between random mating
and equilibrium

Sun et al. (2021), Wang et al. (2022), and Wang et al. (2021)
suggest that Eqs 1 and 2 are the same hypothesis, or at least
approximately so. In their articles, they have a “recursive” test
and a “gamete-based” test that they claim both tests for
“asymptotic Hardy-Weinberg equilibrium.” Their “recursive”
test does indeed evaluate Eq. 2 (assuming « is known).
However, the “gamete-based” test actually evaluates Eq. 1.

Since the authors say that Eq. 1 is about the same as Eq. 2 for
any choice of a, this is worth some exploration. As an extreme
counterexample (Supplementary Appendix S1),let p = (0,0, 1, 0),
then hypothesis 1) states that

q, = (0,0,0,0,1,0,0). ©)

But ¢ is not at equilibrium, and one can use q; as the starting
point for many rounds of random mating to reach equilibrium

(Eq. 2). When one does, one obtains
q, = (0.001,0.016, 0.082, 0.219, 0.329, 0.263, 0.088), 6)

when « = 0, the lower bound of the double reduction rate. One
also obtains
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q; = (0.005,0.032,0.098,0.204, 0.277,0.251,0.133),  (7)

when «a = 0.3, the upper bound of the double reduction rate
(Huang et al., 2019). Clearly, g, g, and g3 are very different. But
Sun et al. (2021), Wang et al. (2022), and Wang et al. (2021)
suggest that they should be about the same.

As a less contrived example, S1 populations (a single
generation of selfing) are technically random mating
populations, but hardly any researcher would claim that an
S1 population is at equilibrium (see Gerard (2022b) for details).

The only real data example used in the study by Wang et al.
(2022) consists of four markers from an F1 population. This is
insufficient to explore their methods, as F1 populations exhibit
neither random mating (Eq. 1) nor equilibrium (Eq. 2).
Furthermore, they did not apply their test for random mating
on these data, but rather a test for binomial frequencies (Eq. 3),
which is a standard approach, though an incorrect one for

F1 populations.

4 Distinction between allo- and
autopolyploids

Wang et al. (2021) stated on page four that “The case of
no double reduction in the autopolyploid model reduces to
allopolyploids if no preferential pairing is assumed.” Sun
et al. (2021) stated on page three that “When a = 0, the
pattern of allelic inheritance reduces from autotetraploids to
exhibit
inheritance within each subgenome (Stift et al., 2010), this

allotetraploids.” Since allopolyploids disomic
is true only if all subgenomes of an allopolyploid have the
exact same allele frequency. This is likely not the case in true
allopolyploids. In an extreme example, suppose that there is
an allooctoploid population with an allele frequency of 0 in
two of its subgenomes, and an allele frequency of one in the
other two subgenomes; then the overall allele frequency is
0.5, the genotype

frequencies are

and allooctoploid  equilibrium

Qato = (0) O) 0: O: 1; 0: 0, 0, 0), (8)

because every individual will have two minor alleles each from
two subgenomes, and two major alleles each from two
subgenomes, and therefore, all individuals will have genotype
4. Compare this to the genotype frequencies of an autooctoploid
with allele frequency 0.5 at equilibrium when there is no double
reduction

Qoo = (0.004,0.031,0.109, 0.219, 0.273, 0.219, 0.109, 0.031, 0.004).

©)

Clearly, qai, and q,,, are very different. This is not a contrived
example, as it might be the case that some subgenomes have fixed

an allele before the polyploidization event (“fixed
heterozygosity,” Cornille et al., 2016).
Frontiers in Genetics
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The tests created in the studies by Sun et al. (2021), Wang
et al. (2022), and Wang et al. (2021) are only applicable to
autopolyploids, but the only real data example in the studies by
Sun etal. (2021) and Wang et al. (2021) are allopolyploids. So the
authors did not adequately evaluate their method on a reasonable
dataset.

5 Hypothesis testing strategies

The test for equilibrium (Eq. 2) in the studies by Sun et al.
(2021), Wang et al. (2021), and Wang et al. (2022) assumes that
the double reduction rate is known. But it would not be clear to
the reader that this is the case from a reading of the articles. The
double reduction rate is never known in practice.

The “recursive” approach in the studies by Sun et al. (2021),
Wang et al. (2021), and Wang et al. (2022) for equilibrium testing
is unnecessary. The equilibrium frequencies of tetraploids,
hexaploids, and octoploids in the presence of double
reduction are well documented in the excellent article of
Huang et al. (2019). For example, for hexaploids, the

equilibrium gamete frequencies are

(1 93-a)(6—a) 27(1-)(3-a) , 1
=" ormerm T oo )T

(10

=<9(3—a)(9—4a)_81(1-a)(3-a)

O+a)(9+20) (9+a)(9+2a) r)r(l—r), (11)

4503 -« 81(1-a)(3 -«

P <(9 + "‘5(9 + ;a) (9(+ ) ()9(+ Z(X))r)r(l - ), and
(12)

200? 450(3 - a) 27(1-a)(3-a) ,
b :<(9+a)(9+20c)+ Ota)O+2a) Ota)O+2a) )r.
(13)

The equilibrium genotype frequencies are discrete linear
of proportions. 10-13  look
complicated, but they are not complicated for a computer. It

convolutions these Eqs
is easy to implement a likelihood approach to test for equilibrium
using these gamete frequencies, and such an approach,
advantageously, does not depend on knowing the double
reduction rate, which is a huge benefit over the iterative
approach of Sun et al. (2021), Wang et al. (2021), and Wang
etal. (2022). Indeed, this likelihood approach is what was used in
the study by Gerard (2022b).

Genotype uncertainty is a major issue in polyploids (Gerard
et al., 2018; Gerard and Ferrdo, 2019; Gerard, 2021a,b), and so
methods should be adjusted to account for this uncertainty. The
standard approach to do so is using genotype likelihoods (Li
et al,, 2011), and this is what was used in the studies by Gerard
(2022b) and Gerard (2022a). However, Sun et al. (2021), Wang
etal. (2021),and Wang et al. (2022) approach this by aggregating
heterozygous genotypes into a single count, which leaves them
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with only enough degrees of freedom to test for binomial
frequencies Eq. 3. They thus provide no way to evaluate
hypotheses Eq. 1 and Eq. 2 in the presence of genotype
uncertainty.

6 Discussion

Here, some implementation mistakes and some
the of
autopolyploid organisms presented in the studies by Sun
et al. (2021), Wang et al. (2021), and Wang et al. (2022)

have been discussed. Examples of how random mating and

misconceptions about genotype frequencies

equilibrium differ in autopolyploids, and also how allo- and
autopolyploid equilibrium genotype frequencies differ, have
been provided. Finally, it was suggested that users consider the
approaches of Gerard (2022b) and Gerard (2022a), which do
not assume that the double reduction rate is known, and can
account for genotype uncertainty through the use of genotype
likelihoods.

Sun et al. (2021), Wang et al. (2021), and Wang et al.
(2022) could have averted many of their issues if they would
have adhered to standard practices in the validation of
numeric analysis and coding. In the future, the authors are
encouraged to 1) apply unit testing (Wickham, 2011), 2) set up
continuous integration (Hilton et al.,, 2016), 3) implement
code review (Vable et al., 2021), 4) modularize their code into
functions, ideally, in a package (Wickham, 2015), 5) use a
workflow management software to aid in reproducibility and
decrease the chance for coding errors (Blischak et al., 2019), 6)
provide instructions (ideally automation) on specifically how
to reproduce their methods (Heil et al., 2021), and 7) post their
code on a repository that is committed to permanency and
produces DOT’s, such as Zenodo or Figshare, as this extends
the
recommended to encourage greater validation checks, such

lifetime of a work’s reproducibility. It is also
as demonstrating that the authors’ test statistic produce p-
values that are uniform under the null. This alone could have
detected the test statistic and degrees of freedom issues

discussed in Section 2 (Supplementary Appendix S4).

Data availability statement

Additional materials related to this work is available on
Zenodo: https://doi.org/10.5281/zenodo0.7019205.

o The file “hwesupp.Rmd” is an R Markdown file that
S1-S6,
reproduce all of the results of this paper. It has been

contains Appendices and is sufficient to
knitted into “hwesupp.pdf”.
o The file “sims.csv” contains the simulation output from

Appendix S5 of “hwesupp.Rmd”.
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o The file “table 2_power.Rmd” contains one iteration of
“table 2_power.R” from Wang et al.,, 2021, annotated to
demonstrate the mistakes here. It has been knitted into
“table 2_power.pdf”.

Much of the code from Wang et al.,, 2021 and Wang et al.,
2022 was packaged by me in the hexocto package on Zenodo
https://doi.org/10.5281/zenodo.7019230.

A fork of the original code from Wang et al., 2021 and Wang
et al., 2022 may be found at at https://github.com/dcgerard/
hexaploid and https://github.com/dcgerard/OctoploidDeer.
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Supplement to: Comment on Three Papers about Hardy-Weinberg
Equilibrium Tests in Autopolyploids

David Gerard
Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA

Abstract
This supplementary document contains additional simulations, coding examples, and other supporting

material for “Comment on Three Papers about Hardy-Weinberg Equilibrium Tests in Autopolyploids”.

This document was written in R Markdown and may be explored interactively. All code chunks are executable
in the order given. You can access the R Markdown file at https://doi.org/10.5281/zenodo.7019205.

The package {hexocto} contains the code from Wang et al. (2021) and Wang et al. (2022), formatted
in package form by me so that it is easier to compare. The original repos with the original code are
https://github.com/CCBBeijing/hexaploid and https://github.com/CCBBeijing/OctoploidDeer. You can
install this package using {devtools}:

# install.packages("devtools")

devtools: :install_github("dcgerard/hexocto")

The package {hwep} contains the code from Gerard (2022). T use it for comparison purposes at times. You
can install the development version via:

# install.packages ("devtools")

devtools::install_github("dcgerard/hwep")

I will load these packages into R now:

library (hexocto)
library (hwep)

S1 Difference between random mating and equilibrium

Here, I numerically demonstrate the difference between random mating and equilibrium in autohexaploids.
For illustration, let’s make an extreme example. Suppose the gamete frequencies for a hexaploid are

p <~ c(0, 0, 1, 0)

p

## [1] 0010

Then the genotype frequencies under random mating are

q <- convolve(p, rev(p), "open")
round(q, 3)

## [11 0000100

The allele frequency is



r <- sum(0:6 * q) / 6
r

## [1] 0.667

This results in equilibrium frequencies of the following when a = 0, the lower bound,

hwep: :hwefreq( r, 0, 6, Inf)

## [1] 0.00137 0.01646 0.08230 0.21948 0.32922 0.26337 0.08779

I can verify this by iterating the recursive scheme from Wang et al. (2022).

qw <~ q
for (i in 1:20) {
qw <- hexocto: :hex_onegen( qw, 0)

3
qw

## [1] 0.00137 0.01646 0.08230 0.21948 0.32922 0.26337 0.08779

Equilibrium frequencies when o = 0.3, the upper bound (Huang et al. 2019), are
hwep: :hwefreq( r, 0.3, 6, Inf)

## [1] 0.00537 0.03190 0.09792 0.20350 0.27748 0.25115 0.13268

I can also verify this by iterating the recursive scheme from Wang et al. (2022).

qw <= q
for (i in 1:20) {
qw <- hexocto::hex_onegen( qw, 0.3)

}
qw

## [1] 0.00537 0.03190 0.09792 0.20350 0.27748 0.25115 0.13268

S2 Incorrect equilibrium genotype frequencies from Wang et al.
(2021)

I will begin at the same example genotype frequencies as Wang et al. (2021).

yww <- ¢(0.1, 0.1, 0.15, 0.1, 0.2, 0.1, 0.05, 0.1, 0.1)

Then I apply their recursive approach to obtain their equilibrium genotype frequencies

hexocto::octo_recursive( YWW, 20, 0)

## [1] 0.0186 0.0677 0.1424 0.2064 0.2234 0.1793 0.1076 0.0443 0.0104

These are different from the theoretical binomial proportions Haldane (1930)

r <- sum(0:8 * yww) / 8
dbinom( 0:8, 8, r)

## [1] 0.00577 0.04177 0.13228 0.23937 0.27071 0.19594 0.08864 0.02291 0.00259

My {hwep} package, on the other hand, correctly calculates these using my recursive formula
qcurrent <- yww
for (i in seq_len(20)) {

gcurrent <- hwep::fregnext( gcurrent, c(0, 0))



}

qcurrent

## [1] 0.00577 0.04177 0.13228 0.23937 0.27071 0.19594 0.08864 0.02291 0.00259

S3 Coding errors for y? statistics

Wang et al. (2022) use the following as an example for their tests for equilibrium and random mating on
page 5 of their manuscript.

nvec <- c(29, 21, 17, 10, 10, 10, 23)

nind <- sum(nvec)

Here, I will reproduce those tests, and demonstrate that they implemented their x? test statistics incorrectly.

Their recursive test gets a chi-squared value of 6.602, which I can get here.

hex_chisq( nvec / nind,
nind,
8,
0,
"incorrect")
## $chisq
## [1] 6.6019
##
## $df
## [1] 6
##
## $p

## [1] 0.35924
This is the “incorrect” way because they forgot to account for the number of individuals in the chi-squared
test. It should be 120 times 6.602.

# generate their equilibrium frequencies

ghat <- hex_recursive( nvec / nind, 8, 0)
# does mot use nind

sum((ghat - (nvec / nind))"2 / (ghat))

## [1] 6.6019

# correct way
nind * sum((ghat - (avec / nind))"2 / (ghat))
## [1] 792.23

For the “gamete based test”, they get 6.649, but this is not correct. They were just calculating the same test
statistic as the 6.602 value, but ran it for a different number of iterations.

# Estimate gamete frequencies

hout <- hex_em( nvec / nind, 30)
# Feed those into recursive algorithm
rvec <- hex_recursive( hout$q, 8, 0)

# Incorrect way
sum((nvec/nind - rvec)"2 / rvec)

## [1] 6.6487



Here is the value they were trying to get.

# Incorrectly does not multiply by nind
sum((nvec/nind - hout$q) "2 / hout$q)

## [1] 0.30123

# Correctly multiplies by nind
nind * sum((nvec/nind - hout$q) "2 / hout$q)

## [1] 36.147

The authors’ two procedures would produce the same values if you ran them for long enough.

# "recursive test" from Wang et al. (2021)
hex_chisq( nvec / nind,
nind,
20,
0,
"incorrect")$chisq

## [1] 6.7014

# Implementation of "gamete-based" test from Wang et al. (2021)
hout <- hex_em( nvec / nind, 30)

rvec <- hex_recursive( hout$q, 20, 0)
sum((nvec/nind - rvec)"2 / rvec)

## [1] 6.7014

This is the exact same as just testing for binomial frequencies, but calculating the x? statistic incorrectly.

rhat <- sum(nvec / nind * 0:6) / 6
ghat <- dbinom( 0:6, 6, rhat)
sum((nvec/nind - ghat) "2 / ghat)

## [1] 6.7014

S4 Correct degrees of freedom

Here, I show that the method Wang et al. (2022) does not produce uniform p-values under the null of
equilibrium. I also show that my correct version, including the correct degrees of freedom of 5, not 6, does
produce uniform p-values under the null of equilibrium. I also find the correct degrees of freedom for the
recursive test in Wang et al. (2021) to be 7, not 8.

S4.1 Hexaploids

I generate data under the null of equilibrium. I then fit the incorrect method Wang et al. (2022), my corrected
version, and the likelihood ratio test from Gerard (2022).

gvec <- hwep::hwefreq( 0.5, ©ollg 6)
nrep <- 1000
nsize <- 100000
pout_wang <- rep(NA_real_, nrep)
pout_correct <- rep(NA_real_, nrep)
pout_hwep <- rep(NA_real_, nrep)
for (i in seq_len(nrep)) {
nvec <- c(rmultinom( 1, nsize, qvec))
pout_wang[[i]] <- hex_chisq( nvec / sum(uvec),



sum(nvec) ,
OFS19
"incorrect")$p
pout_correct[[i]] <- hex_chisq( nvec / sum(nvec),
sum(nvec),
0.1,
"correct")$p
pout_hwep[[i]] <- hwep::hwelike( nvec, 0)$p_hwe
}

All of the p-values from Wang et al. (2022) are 1, so do not follow a uniform distribution.

summary (pout_wang)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1

The QQ-plot of the correct p-values follow a uniform distribution.

library(ggplot2)
gplot( pout_correct, "qq", qunif) +
geom_abline()
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The QQ-plot of the {hwep} p-values follow a uniform distribution.

gplot( pout_hwep, "qq", qunif) +
geom_abline ()
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S4.2 Octoploids

I generate data under the incorrect model of Wang et al. (2021), calculating the x? statistic each iteration.

ywwl <- ¢(0, 0, 0, 0, 1, 0, 0, O, O)
gvec <- octo_recursive( ywwl)
nrep <- 1000
nsize <- 100000
chstat_octo <- rep(NA_real_, nrep)
for (i in seq_len(anrep)) {
nvec <- c(rmultinom( 1, nsize, qvec))
gemp <- nvec / sum(nvec)
gnew <- octo_recursive( gemp)
chstat_octo[[i]] <- sum((gnew - gemp) "2 / gnew) * sum(nvec)

3

The degrees of freedom is not 8:

pocto <- pchisq( chstat_octo, 8, FALSE)

gplot( pocto, "qq", qunif) +
geom_abline ()
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The degrees of freedom is 7:

pocto <- pchisq( chstat_octo, 7, FALSE)
gplot( pocto, "qq", qunif) +
geom_abline ()
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S5 Simulation study to estimate «

The model Wang et al. (2022) used to create an estimator for « is actually different from (1) and (2). Their
model to estimate double reduction says that (i) parent genotypes frequencies satisfy g = p * p for some p,
and (ii) the current genotype frequencies are ¢ = f(@, «). So this indicates random mating for parents, and
one update of random mating for children given the double reduction rate.

I ran simulations with p = (1,1,1,1)/4 or p = (0.1,0.2,0.3,0.4), n € {100,200,400}, and
a € {0,1/7,1/5,3/11}. This mimics the simulation settings from Wang et al. (2022). I ran each
unique combination of parameter settings for 100 replications. Each replication, I generated data according
to the assumed model from Wang et al. (2022), then used their code to obtain estimates of p and «. I always
initialized the algorithm at « = 0 and p = (1,1,1,1)/4.

Below is my simulation code.

## Parameter settings ----
pvecl <- rep(1, 4) / 4

gvecl <- convolve(pvecl, rev(pvecl), "open")
pvec2 <- c(0.1, 0.2, 0.3, 0.4)
gvec2 <- convolve(pvec2, rev(pvec2), "open")

niter <- 100
paramdf <- expand.grid( seq_len(niter),
c(100, 200, 400),
c(o, 1/7, 1/5, 3/11),
C(”A", I|B|l))

## Estimates to fill in ----
paramdf$alphahat <- NA_real_
paramdf$pOhat <- NA_real_
paramdf$plhat <- NA_real_
paramdf$p2hat <- NA_real_
paramdf$p3hat <- NA_real_



## Simulations ----

for (i in seq_len(nrow(paramdf))) {
set.seed(paramdf$seed[[i]1])
## offspring genotype frequencies

if (paramdf$truth[[i]] == "A") {

qoff <- hex_omnegen( qvecl, paramdf$alphal[i]])
} else {

qoff <- hex_onegen( qvec2, paramdf$alphal[i]])
}

## sample of offspring
nvec <- c(rmultinom( 1, paramdf$n[[i]], qoff))

## estimate parameters
hout <- hex_estdr( nvec, 1000, 0)
paramdf$alphahat [[i]] <- hout$alpha
paramdf$pOhat [[i]] <- hout$p[[1]]
paramdf$pilhat [[i]] <- hout$p[[2]]
paramdf$p2hat [[i]] <- hout$p[[3]]
paramdf$p3hat [[i]] <- hout$p[[4]]

}

write.csv( paramdf, ", /sims.csv", FALSE)

The estimates of o are very biased (Figure S1), and the estimates of p are somewhat biased (Figure S2).

S6 Degrees of Freedom Calculations

Here, I list out the five instances of incorrect degrees of freedom calculations from Sun et al. (2021), Wang et
al. (2022), and Wang et al. (2021).

The degrees of freedom for the both the equilibrium and random mating tests are incorrect in Sun et al.
(2021). They list the degrees of freedom to be four in both tests. But there are already four free parameters
under the alternative (since go + ¢1 + g2 + ¢3 + g4 = 1). Since Sun et al. (2021) assume the double reduction
rate is known, under the null of equilibrium there is one free parameter (the allele frequency), and so the
degrees of freedom for the test for equilibrium is 4 — 1 = 3, not 4. Under the null of random mating, there
are 2 free parameters (since pg + p1 + p2 = 1), and so the degrees of freedom for the test of random mating is
4 —2=2 not 4.

The degrees of freedom for the random mating test is incorrect in Wang et al. (2022). On page 4 of Wang et
al. (2022), the authors say about their test for random mating that “this test statistic follows the chi-square
distribution with an unknown degree of freedom. However, we can empirically determine it as a value between
7-1-1=5t07-1=6" 1can theoretically determine the degrees of freedom here. There are 6 free
parameters under the alternative (since go + ¢1 + g2 + g3 + g4 + ¢5 + g6 = 1), and there are 3 free parameters
under the null (since pg + p1 + p2 + ps = 1), and so the degrees of freedom is 6 - 3 = 3, which is neither 5 nor
6.

The degrees of freedom for the recursive test is incorrect in Wang et al. (2022). They say, right after their
equation (1) that the degrees of freedom is 6. But there are already 6 free parameters under the alternative.
Because Wang et al. (2022) assume the double reduction rate is known, there is only 1 free parameter under
the null, the allele frequency. Thus, the true degrees of freedom is 6 - 1 = 5, not 6. See Appendix S4 for an
empirical demonstration.

The degrees of freedom for the recursive test is incorrect in Wang et al. (2021). Right after their equation (3),
they state that their x? statistic “is thought to follow a chi-square distribution with eight degrees of freedom.”
But there are already 8 parameters under the alternative (since Zi:o qr = 1). The number of parameters



under the null is unclear since they are using a different (incorrect) model for meiosis than I have studied for
octoploids, but it likely at least 1 (for the allele frequency). Empirically, it seems the degrees of freedom is 7,
not 8 (Appendix S4).



S7 Supplementary Figures
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Figure S1: Estimates of a (y-axis) stratified by sample size (x-axis) and true a (facets) using the method of
Wang et al. (2022). The red dashed horizontal line is the true « in each facet. The estimates are way off.
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