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1 Introduction

One goal in the population genetics of autopolyploids, which are organisms with more

than two sets of homologous chromosomes, is to model their genotype frequencies. This

modeling presents a greater challenge in autopolyploids than in diploids because certain

meiotic configurations in autopolyploids can result in a phenomenon known as double

reduction is the co-migration of sister chromatid segments to the same gamete (Stift et al.,

2010). Double reduction affects both the segregation frequencies of genotypes from

individuals to their offspring (Mather, 1936; Fisher and Mather, 1943; Bever and Felber,

1992; Huang et al., 2019) and the equilibrium genotype frequencies of a panmictic

population (Geiringer, 1949; Bennett, 1968; Bever and Felber, 1992; Huang et al., 2019).

Testing if a population is in equilibrium, or merely exhibits random mating, is important

for the same reasons as tests for Hardy–Weinberg equilibrium in diploids, namely, for 1)

determining the mating system, 2) detecting segregation distortion, 3) detecting

inbreeding, and 4) detecting genotyping errors (Gerard, 2022b).

Three similar articles which attempt to test for equilibrium and random mating were

recently released: one for tetraploids (Sun et al., 2021), one for hexaploids (Wang et al.,

2022), and one for octoploids (Wang et al., 2021). These three articles have numerous

implementation mistakes, confuse random mating and equilibrium, confuse

autopolyploids and allopolyploids (organisms with homoeologous subgenomes), and

provide suboptimal testing approaches. The objectives of this study are to correct the

authors’ mistakes (Section 2), provide examples of how random mating and equilibrium

differ in autopolyploids (Section 3), provide examples of how allo- and autopolyploids

differ (Section 4), and promote the better methods of Gerard (2022b) and Gerard (2022a)

(Section 5).

This study requires a little notation before the issues are discussed here. Let q = (q0, q1,

. . . , qK) be the genotype frequencies at a single biallelic locus for an autopolyploid

population with ploidyK; that is, qk is the proportion of individuals in the population with

k copies of the minor allele. Let x = (x0, x1, . . . , xK) be the genotype counts in a random

sample of n � ∑K
k�0xk individuals. Then x is multinomially distributed with size n and

probability vector q. Under randommating, the genotype frequencies are (Gerard, 2022b)
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qk � ∑
min k,K/2( )

i�max 0,k−K/2( )

pipk−i, (1)

where p = (p0, p1, . . . , pK/2) are the gamete frequencies of the

population; that is, pk is the proportion of gametes in the

population that have k copies of the minor allele. Suppose

that a population is randomly mating, then there exists a

function f(q, α) = (f0 (q, α), . . ., fK (q, α)) that updates the

genotype frequencies from the current generation q to the next

f(q, α). Here, α is called the double reduction rate, which is a

property of meiosis in autopolyploids (Stift et al., 2010). If the

population is at equilibrium, then the genotype frequencies

follow

q � f q, α( ). (2)

For each ploidy, there is a q that satisfies Eq. 2, which is called the

“equilibrium genotype frequencies” (Huang et al., 2019). These

frequencies are a function of the double reduction rate α and the

allele frequency r � 1
K∑K

k�0kqk, and have been calculated for

ploidies less than or equal to ten (Huang et al., 2019). If α =

0, then these equilibrium genotype frequencies reduce to

binomial proportions (Haldane, 1930),

qk �
K
k( )rk 1 − r( )

K−k. (3)

This study concerns tests for Eqs 1–3.

2 Implementation and coding errors

There are many logical and coding issues in the studies by

Sun et al. (2021), Wang et al. (2021), andWang et al. (2022). In

this section, the ones that were found are listed. However, the

code from the study by Sun et al. (2021) is not available, and

the code from the study by Wang et al. (2021) and Wang et al.

(2022) is verbose and sparsely documented, so there might be

more implementation errors that were missed. In particular,

the following were found: 1) an incorrect model for meiosis

for autooctoploids that results in incorrect equilibrium

genotype frequencies, 2) two instances of incorrect χ
2 test

statistic calculations, 3) five instances of incorrect degrees of

freedom calculations, and 4) two instances of using unknown

parameters in an estimation scheme.

The model for meiosis in the study by Wang et al. (2021) is

incorrect. This leads to incorrect equilibrium genotype

frequencies in their “recursive” test for equilibrium, and

thus an incorrect test for equilibrium. It can be determined

that their model is incorrect by looking at what it implies when

α = 0. In this case, the distribution of gamete dosages is known

to follow a hypergeometric distribution (Table 1 from

Haldane, 1930; Huang et al., 2019). If X is the parental

genotype and Y is the gamete genotype, the reader can see

this result by thinking of the probability of obtaining Y minor

alleles out of K/2 chosen alleles from an individual with K total

TABLE 1 Segregation frequencies for an autooctoploid when there is no double reduction, either according to Table 1 from the study by Wang et al.

(2021) or according to the correct calculation using the hypergeometric distribution (Eq. 4). The two approaches are different, so the general

model for meiosis in the study by Wang et al. (2021) is incorrect.

Parent genotype Method Gamete genotype

4 3 2 1 0

8 Wang et al. (2021) 1 0 0 0 0

8 Correct 1 0 0 0 0

7 Wang et al. (2021) 9/16 3/8 1/16 0 0

7 Correct 1/2 1/2 0 0 0

6 Wang et al. (2021) 225/784 45/98 87/392 3/98 1/784

6 Correct 3/14 8/14 3/14 0 0

5 Wang et al. (2021) 25/196 75/196 285/784 45/392 9/784

5 Correct 1/14 6/14 6/14 1/14 0

4 Wang et al. (2021) 9/196 12/49 41/98 12/49 9/196

4 Correct 1/70 16/70 36/70 16/70 1/70

3 Wang et al. (2021) 9/784 45/392 285/784 75/196 25/196

3 Correct 0 1/14 6/14 6/14 1/14

2 Wang et al. (2021) 1/784 3/98 87/392 45/98 225/784

2 Correct 0 0 3/14 8/14 3/14

1 Wang et al. (2021) 0 0 1/16 3/8 9/16

1 Correct 0 0 0 1/2 1/2

0 Wang et al. (2021) 0 0 0 0 1

0 Correct 0 0 0 0 1
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alleles and X total minor alleles. Therefore, the correct

segregation frequencies are obtained via

Pr Y � y|X � x( ) �
x
y( ) K−x

K/2−y( )
K
K/2( ) . (4)

Table 1 shows that the model for meiosis from Table 1 of the

study by Wang et al. (2021) does not equal the probabilities from

Eq. 4 when α = 0, indicating that their model for meiosis is

incorrect. It can be empirically observed that their equilibrium

frequencies also do not equal binomial proportions when α = 0

(Supplementary Appendix S2), which they should (Haldane,

1930).

The χ
2 statistics testing hypotheses Eq. 1 and Eq. 2 are

implemented incorrectly in the study by Wang et al. (2022).

The χ
2 statistic in Eq. 1 of the study by Wang et al. (2022) is

correct in the study, but in their code, they left out the N term.

This affects both their equilibrium testing results and their

random mating results. This is known because this study

reproduced their 6.602 and 6.649 values from page five of

their article (Supplementary Appendix S3). Thus, their tests

are improperly implemented.

The random mating test is implemented incorrectly in the

study by Wang et al. (2022), even after the N term is included;

that is, the authors calculate it differently than what they state in

their article. Particularly, in their code, they first estimate the

gamete frequencies via maximum likelihood, and then put the

resulting genotype frequencies through the recursive formula to

come up with equilibrium values. However, using this recursive

formula just results in the same genotype frequencies as the

equilibrium “recursive” test. So, the 6.602 value and the

6.649 value aforementioned are different merely because the

authors ran the recursive relationship for a different number

of iterations.

A total of five instances of incorrect degrees of freedom

calculations were counted for the chi-squared tests in the studies

by Sun et al. (2021), Wang et al. (2022), and Wang et al. (2021).

These calculations are described in Supplementary Appendix S6.

Thus, most of the test statistics from these three articles are

compared to the incorrect null distribution, resulting in incorrect

p-values.

The estimates of α are implemented incorrectly in the study

by Wang et al. (2022). The authors do not modularize their code

into functions, and this led to some logical errors. They have a

variable in their simulations called alpha, that is, the true

double reduction rate. Their code returns alpha1, that is,

the estimated double reduction rate. However, their EM

algorithm uses alpha, not the current version of alpha1, to

update the parental gamete frequencies. Thus, they use the true

value of α in their code that estimates α. This clearly results in

unwarranted advantages. Their simulations were rerun after that

bug was fixed, obtaining very biased estimates of α

(Supplementary Appendix S5). This indicates that either their

EM algorithm is wrong or their code is incorrect. It is hard to

judge if their EM algorithm is wrong since the EM algorithm used

to estimate α is neither in the article nor in the Supplementary

Materials. It is also noted that when the authors’

“estimate_alpha.R” was run, which should produce the

simulation results in their Table 3, it was not able to actually

reproduce their Table 3.

From what can be understood through their code (in files

“table2_power.R” and “LR.R″), Wang et al. (2021) implemented

their tests by using the true genotype frequencies when constructing

their test statistics. Needless to say, researchers would not have access

to the true genotype frequencies in reality. In their “table2_power.R,”

they set some genotype frequencies q1 and then obtain the

underlying true genotype frequencies via a perturbation of q = f

(q1, α), where α = 0. They obtain two equivalently valued variables

called prob and prob1. They use a perturbation of prob to

generate the data, and prob1 to construct the test statistic, but both

prob and prob1 are equal to q. An annotated version of

“table2_power.R” is provided in the Supplementary Material so

that it is easier for the reader to see the issue here. Though the reader

is warned, their code is rather verbose and spans 49 8.5 × 11″ pages.

Because their test statistic is impossible to be calculated in real

analyses (because it uses the true genotype frequencies), the

simulation results of Wang et al. (2021) are invalid. It is also

noted that when “table2_power.R” was run using the authors’

original code, it was not able to actually reproduce the power

results in their Table 2.

3Distinction between randommating
and equilibrium

Sun et al. (2021), Wang et al. (2022), and Wang et al. (2021)

suggest that Eqs 1 and 2 are the same hypothesis, or at least

approximately so. In their articles, they have a “recursive” test

and a “gamete-based” test that they claim both tests for

“asymptotic Hardy–Weinberg equilibrium.” Their “recursive”

test does indeed evaluate Eq. 2 (assuming α is known).

However, the “gamete-based” test actually evaluates Eq. 1.

Since the authors say that Eq. 1 is about the same as Eq. 2 for

any choice of α, this is worth some exploration. As an extreme

counterexample (Supplementary Appendix S1), let p = (0, 0, 1, 0),

then hypothesis 1) states that

q1 � 0, 0, 0, 0, 1, 0, 0( ). (5)

But q1 is not at equilibrium, and one can use q1 as the starting

point for many rounds of random mating to reach equilibrium

(Eq. 2). When one does, one obtains

q2 � 0.001, 0.016, 0.082, 0.219, 0.329, 0.263, 0.088( ), (6)

when α = 0, the lower bound of the double reduction rate. One

also obtains
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q3 � 0.005, 0.032, 0.098, 0.204, 0.277, 0.251, 0.133( ), (7)

when α = 0.3, the upper bound of the double reduction rate

(Huang et al., 2019). Clearly, q1, q2, and q3 are very different. But

Sun et al. (2021), Wang et al. (2022), and Wang et al. (2021)

suggest that they should be about the same.

As a less contrived example, S1 populations (a single

generation of selfing) are technically random mating

populations, but hardly any researcher would claim that an

S1 population is at equilibrium (see Gerard (2022b) for details).

The only real data example used in the study by Wang et al.

(2022) consists of four markers from an F1 population. This is

insufficient to explore their methods, as F1 populations exhibit

neither random mating (Eq. 1) nor equilibrium (Eq. 2).

Furthermore, they did not apply their test for random mating

on these data, but rather a test for binomial frequencies (Eq. 3),

which is a standard approach, though an incorrect one for

F1 populations.

4 Distinction between allo- and
autopolyploids

Wang et al. (2021) stated on page four that “The case of

no double reduction in the autopolyploid model reduces to

allopolyploids if no preferential pairing is assumed.” Sun

et al. (2021) stated on page three that “When α = 0, the

pattern of allelic inheritance reduces from autotetraploids to

allotetraploids.” Since allopolyploids exhibit disomic

inheritance within each subgenome (Stift et al., 2010), this

is true only if all subgenomes of an allopolyploid have the

exact same allele frequency. This is likely not the case in true

allopolyploids. In an extreme example, suppose that there is

an allooctoploid population with an allele frequency of 0 in

two of its subgenomes, and an allele frequency of one in the

other two subgenomes; then the overall allele frequency is

0.5, and the allooctoploid equilibrium genotype

frequencies are

qallo � 0, 0, 0, 0, 1, 0, 0, 0, 0( ), (8)

because every individual will have two minor alleles each from

two subgenomes, and two major alleles each from two

subgenomes, and therefore, all individuals will have genotype

4. Compare this to the genotype frequencies of an autooctoploid

with allele frequency 0.5 at equilibrium when there is no double

reduction

qauto � 0.004, 0.031, 0.109, 0.219, 0.273, 0.219, 0.109, 0.031, 0.004( ).

(9)

Clearly, qallo and qauto are very different. This is not a contrived

example, as it might be the case that some subgenomes have fixed

an allele before the polyploidization event (“fixed

heterozygosity,” Cornille et al., 2016).

The tests created in the studies by Sun et al. (2021), Wang

et al. (2022), and Wang et al. (2021) are only applicable to

autopolyploids, but the only real data example in the studies by

Sun et al. (2021) andWang et al. (2021) are allopolyploids. So the

authors did not adequately evaluate their method on a reasonable

dataset.

5 Hypothesis testing strategies

The test for equilibrium (Eq. 2) in the studies by Sun et al.

(2021), Wang et al. (2021), and Wang et al. (2022) assumes that

the double reduction rate is known. But it would not be clear to

the reader that this is the case from a reading of the articles. The

double reduction rate is never known in practice.

The “recursive” approach in the studies by Sun et al. (2021),

Wang et al. (2021), andWang et al. (2022) for equilibrium testing

is unnecessary. The equilibrium frequencies of tetraploids,

hexaploids, and octoploids in the presence of double

reduction are well documented in the excellent article of

Huang et al. (2019). For example, for hexaploids, the

equilibrium gamete frequencies are

p0 � 1 −
9 3 − α( ) 6 − α( )

9 + α( ) 9 + 2α( )
r +

27 1 − α( ) 3 − α( )

9 + α( ) 9 + 2α( )
r2( ) 1 − r( ),

(10)

p1 �
9 3 − α( ) 9 − 4α( )

9 + α( ) 9 + 2α( )
−
81 1 − α( ) 3 − α( )

9 + α( ) 9 + 2α( )
r( )r 1 − r( ), (11)

p2 �
45α 3 − α( )

9 + α( ) 9 + 2α( )
+
81 1 − α( ) 3 − α( )

9 + α( ) 9 + 2α( )
r( )r 1 − r( ), and

(12)

p3 �
20α2

9 + α( ) 9 + 2α( )
+

45α 3 − α( )

9 + α( ) 9 + 2α( )
r +

27 1 − α( ) 3 − α( )

9 + α( ) 9 + 2α( )
r2( )r.
(13)

The equilibrium genotype frequencies are discrete linear

convolutions of these proportions. Eqs 10–13 look

complicated, but they are not complicated for a computer. It

is easy to implement a likelihood approach to test for equilibrium

using these gamete frequencies, and such an approach,

advantageously, does not depend on knowing the double

reduction rate, which is a huge benefit over the iterative

approach of Sun et al. (2021), Wang et al. (2021), and Wang

et al. (2022). Indeed, this likelihood approach is what was used in

the study by Gerard (2022b).

Genotype uncertainty is a major issue in polyploids (Gerard

et al., 2018; Gerard and Ferrão, 2019; Gerard, 2021a,b), and so

methods should be adjusted to account for this uncertainty. The

standard approach to do so is using genotype likelihoods (Li

et al., 2011), and this is what was used in the studies by Gerard

(2022b) and Gerard (2022a). However, Sun et al. (2021), Wang

et al. (2021), andWang et al. (2022) approach this by aggregating

heterozygous genotypes into a single count, which leaves them
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with only enough degrees of freedom to test for binomial

frequencies Eq. 3. They thus provide no way to evaluate

hypotheses Eq. 1 and Eq. 2 in the presence of genotype

uncertainty.

6 Discussion

Here, some implementation mistakes and some

misconceptions about the genotype frequencies of

autopolyploid organisms presented in the studies by Sun

et al. (2021), Wang et al. (2021), and Wang et al. (2022)

have been discussed. Examples of how random mating and

equilibrium differ in autopolyploids, and also how allo- and

autopolyploid equilibrium genotype frequencies differ, have

been provided. Finally, it was suggested that users consider the

approaches of Gerard (2022b) and Gerard (2022a), which do

not assume that the double reduction rate is known, and can

account for genotype uncertainty through the use of genotype

likelihoods.

Sun et al. (2021), Wang et al. (2021), and Wang et al.

(2022) could have averted many of their issues if they would

have adhered to standard practices in the validation of

numeric analysis and coding. In the future, the authors are

encouraged to 1) apply unit testing (Wickham, 2011), 2) set up

continuous integration (Hilton et al., 2016), 3) implement

code review (Vable et al., 2021), 4) modularize their code into

functions, ideally, in a package (Wickham, 2015), 5) use a

workflow management software to aid in reproducibility and

decrease the chance for coding errors (Blischak et al., 2019), 6)

provide instructions (ideally automation) on specifically how

to reproduce their methods (Heil et al., 2021), and 7) post their

code on a repository that is committed to permanency and

produces DOI’s, such as Zenodo or Figshare, as this extends

the lifetime of a work’s reproducibility. It is also

recommended to encourage greater validation checks, such

as demonstrating that the authors’ test statistic produce p-

values that are uniform under the null. This alone could have

detected the test statistic and degrees of freedom issues

discussed in Section 2 (Supplementary Appendix S4).
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Abstract

This supplementary document contains additional simulations, coding examples, and other supporting

material for ŞComment on Three Papers about Hardy-Weinberg Equilibrium Tests in AutopolyploidsŤ.

This document was written in R Markdown and may be explored interactively. All code chunks are executable
in the order given. You can access the R Markdown Ąle at https://doi.org/10.5281/zenodo.7019205.

The package {hexocto} contains the code from Wang et al. (2021) and Wang et al. (2022), formatted
in package form by me so that it is easier to compare. The original repos with the original code are
https://github.com/CCBBeijing/hexaploid and https://github.com/CCBBeijing/OctoploidDeer. You can
install this package using {devtools}:

# install.packages("devtools")

devtools::install_github("dcgerard/hexocto")

The package {hwep} contains the code from Gerard (2022). I use it for comparison purposes at times. You
can install the development version via:

# install.packages("devtools")

devtools::install_github("dcgerard/hwep")

I will load these packages into R now:

library(hexocto)

library(hwep)

S1 Difference between random mating and equilibrium

Here, I numerically demonstrate the difference between random mating and equilibrium in autohexaploids.

For illustration, letŠs make an extreme example. Suppose the gamete frequencies for a hexaploid are

p <- c(0, 0, 1, 0)

p

## [1] 0 0 1 0

Then the genotype frequencies under random mating are

q <- convolve(p, rev(p), type = "open")

round(q, digits = 3)

## [1] 0 0 0 0 1 0 0

The allele frequency is
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r <- sum(0:6 * q) / 6

r

## [1] 0.667

This results in equilibrium frequencies of the following when α = 0, the lower bound,

hwep::hwefreq(r = r, alpha = 0, ploidy = 6, niter = Inf)

## [1] 0.00137 0.01646 0.08230 0.21948 0.32922 0.26337 0.08779

I can verify this by iterating the recursive scheme from Wang et al. (2022).

qw <- q

for (i in 1:20) {

qw <- hexocto::hex_onegen(yww = qw, alpha = 0)

}

qw

## [1] 0.00137 0.01646 0.08230 0.21948 0.32922 0.26337 0.08779

Equilibrium frequencies when α = 0.3, the upper bound (Huang et al. 2019), are

hwep::hwefreq(r = r, alpha = 0.3, ploidy = 6, niter = Inf)

## [1] 0.00537 0.03190 0.09792 0.20350 0.27748 0.25115 0.13268

I can also verify this by iterating the recursive scheme from Wang et al. (2022).

qw <- q

for (i in 1:20) {

qw <- hexocto::hex_onegen(yww = qw, alpha = 0.3)

}

qw

## [1] 0.00537 0.03190 0.09792 0.20350 0.27748 0.25115 0.13268

S2 Incorrect equilibrium genotype frequencies from Wang et al.
(2021)

I will begin at the same example genotype frequencies as Wang et al. (2021).

yww <- c(0.1, 0.1, 0.15, 0.1, 0.2, 0.1, 0.05, 0.1, 0.1)

Then I apply their recursive approach to obtain their equilibrium genotype frequencies

hexocto::octo_recursive(yww = yww, niter = 20, alpha = 0)

## [1] 0.0186 0.0677 0.1424 0.2064 0.2234 0.1793 0.1076 0.0443 0.0104

These are different from the theoretical binomial proportions Haldane (1930)

r <- sum(0:8 * yww) / 8

dbinom(x = 0:8, size = 8, prob = r)

## [1] 0.00577 0.04177 0.13228 0.23937 0.27071 0.19594 0.08864 0.02291 0.00259

My {hwep} package, on the other hand, correctly calculates these using my recursive formula

qcurrent <- yww

for (i in seq_len(20)) {

qcurrent <- hwep::freqnext(freq = qcurrent, alpha = c(0, 0))
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}

qcurrent

## [1] 0.00577 0.04177 0.13228 0.23937 0.27071 0.19594 0.08864 0.02291 0.00259

S3 Coding errors for χ
2 statistics

Wang et al. (2022) use the following as an example for their tests for equilibrium and random mating on
page 5 of their manuscript.

nvec <- c(29, 21, 17, 10, 10, 10, 23)

nind <- sum(nvec)

Here, I will reproduce those tests, and demonstrate that they implemented their χ2 test statistics incorrectly.

Their recursive test gets a chi-squared value of 6.602, which I can get here.

hex_chisq(yww = nvec / nind,

nind = nind,

niter = 8,

alpha = 0,

method = "incorrect")

## $chisq

## [1] 6.6019

##

## $df

## [1] 6

##

## $p

## [1] 0.35924

This is the ŞincorrectŤ way because they forgot to account for the number of individuals in the chi-squared
test. It should be 120 times 6.602.

# generate their equilibrium frequencies

qhat <- hex_recursive(yww = nvec / nind, niter = 8, alpha = 0)

# does not use nind

sum((qhat - (nvec / nind))ˆ2 / (qhat))

## [1] 6.6019

# correct way

nind * sum((qhat - (nvec / nind))ˆ2 / (qhat))

## [1] 792.23

For the Şgamete based testŤ, they get 6.649, but this is not correct. They were just calculating the same test
statistic as the 6.602 value, but ran it for a different number of iterations.

# Estimate gamete frequencies

hout <- hex_em(yww = nvec / nind, niter = 30)

# Feed those into recursive algorithm

rvec <- hex_recursive(yww = hout$q, niter = 8, alpha = 0)

# Incorrect way

sum((nvec/nind - rvec)ˆ2 / rvec)

## [1] 6.6487
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Here is the value they were trying to get.

# Incorrectly does not multiply by nind

sum((nvec/nind - hout$q)ˆ2 / hout$q)

## [1] 0.30123

# Correctly multiplies by nind

nind * sum((nvec/nind - hout$q)ˆ2 / hout$q)

## [1] 36.147

The authorsŠ two procedures would produce the same values if you ran them for long enough.

# "recursive test" from Wang et al. (2021)

hex_chisq(yww = nvec / nind,

nind = nind,

niter = 20,

alpha = 0,

method = "incorrect")$chisq

## [1] 6.7014

# Implementation of "gamete-based" test from Wang et al. (2021)

hout <- hex_em(yww = nvec / nind, niter = 30)

rvec <- hex_recursive(yww = hout$q, niter = 20, alpha = 0)

sum((nvec/nind - rvec)ˆ2 / rvec)

## [1] 6.7014

This is the exact same as just testing for binomial frequencies, but calculating the χ2 statistic incorrectly.

rhat <- sum(nvec / nind * 0:6) / 6

qhat <- dbinom(x = 0:6, size = 6, prob = rhat)

sum((nvec/nind - qhat)ˆ2 / qhat)

## [1] 6.7014

S4 Correct degrees of freedom

Here, I show that the method Wang et al. (2022) does not produce uniform p-values under the null of
equilibrium. I also show that my correct version, including the correct degrees of freedom of 5, not 6, does
produce uniform p-values under the null of equilibrium. I also Ąnd the correct degrees of freedom for the
recursive test in Wang et al. (2021) to be 7, not 8.

S4.1 Hexaploids

I generate data under the null of equilibrium. I then Ąt the incorrect method Wang et al. (2022), my corrected
version, and the likelihood ratio test from Gerard (2022).

qvec <- hwep::hwefreq(r = 0.5, alpha = 0.1, ploidy = 6)

nrep <- 1000

nsize <- 100000

pout_wang <- rep(NA_real_, length.out = nrep)

pout_correct <- rep(NA_real_, length.out = nrep)

pout_hwep <- rep(NA_real_, length.out = nrep)

for (i in seq_len(nrep)) {

nvec <- c(rmultinom(n = 1, size = nsize, prob = qvec))

pout_wang[[i]] <- hex_chisq(yww = nvec / sum(nvec),
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nind = sum(nvec),

alpha = 0.1,

method = "incorrect")$p

pout_correct[[i]] <- hex_chisq(yww = nvec / sum(nvec),

nind = sum(nvec),

alpha = 0.1,

method = "correct")$p

pout_hwep[[i]] <- hwep::hwelike(nvec = nvec, thresh = 0)$p_hwe

}

All of the p-values from Wang et al. (2022) are 1, so do not follow a uniform distribution.

summary(pout_wang)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1 1 1 1 1 1

The QQ-plot of the correct p-values follow a uniform distribution.

library(ggplot2)

qplot(sample = pout_correct, geom = "qq", distribution = qunif) +

geom_abline()
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The QQ-plot of the {hwep} p-values follow a uniform distribution.

qplot(sample = pout_hwep, geom = "qq", distribution = qunif) +

geom_abline()
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S4.2 Octoploids

I generate data under the incorrect model of Wang et al. (2021), calculating the χ2 statistic each iteration.

yww1 <- c(0, 0, 0, 0, 1, 0, 0, 0, 0)

qvec <- octo_recursive(yww = yww1)

nrep <- 1000

nsize <- 100000

chstat_octo <- rep(NA_real_, length.out = nrep)

for (i in seq_len(nrep)) {

nvec <- c(rmultinom(n = 1, size = nsize, prob = qvec))

qemp <- nvec / sum(nvec)

qnew <- octo_recursive(yww = qemp)

chstat_octo[[i]] <- sum((qnew - qemp)ˆ2 / qnew) * sum(nvec)

}

The degrees of freedom is not 8:

pocto <- pchisq(q = chstat_octo, df = 8, lower.tail = FALSE)

qplot(sample = pocto, geom = "qq", distribution = qunif) +

geom_abline()
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The degrees of freedom is 7:

pocto <- pchisq(q = chstat_octo, df = 7, lower.tail = FALSE)

qplot(sample = pocto, geom = "qq", distribution = qunif) +

geom_abline()
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S5 Simulation study to estimate α

The model Wang et al. (2022) used to create an estimator for α is actually different from (1) and (2). Their
model to estimate double reduction says that (i) parent genotypes frequencies satisfy q̃ = p ∗ p for some p,
and (ii) the current genotype frequencies are q = f(q̃, α). So this indicates random mating for parents, and
one update of random mating for children given the double reduction rate.

I ran simulations with p = (1, 1, 1, 1)/4 or p = (0.1, 0.2, 0.3, 0.4), n ∈ ¶100, 200, 400♢, and
α ∈ ¶0, 1/7, 1/5, 3/11♢. This mimics the simulation settings from Wang et al. (2022). I ran each
unique combination of parameter settings for 100 replications. Each replication, I generated data according
to the assumed model from Wang et al. (2022), then used their code to obtain estimates of p and α. I always
initialized the algorithm at α = 0 and p = (1, 1, 1, 1)/4.

Below is my simulation code.

## Parameter settings ----

pvec1 <- rep(1, 4) / 4

qvec1 <- convolve(pvec1, rev(pvec1), type = "open")

pvec2 <- c(0.1, 0.2, 0.3, 0.4)

qvec2 <- convolve(pvec2, rev(pvec2), type = "open")

niter <- 100

paramdf <- expand.grid(seed = seq_len(niter),

n = c(100, 200, 400),

alpha = c(0, 1/7, 1/5, 3/11),

truth = c("A", "B"))

## Estimates to fill in ----

paramdf$alphahat <- NA_real_

paramdf$p0hat <- NA_real_

paramdf$p1hat <- NA_real_

paramdf$p2hat <- NA_real_

paramdf$p3hat <- NA_real_
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## Simulations ----

for (i in seq_len(nrow(paramdf))) {

set.seed(paramdf$seed[[i]])

## offspring genotype frequencies

if (paramdf$truth[[i]] == "A") {

qoff <- hex_onegen(yww = qvec1, alpha = paramdf$alpha[[i]])

} else {

qoff <- hex_onegen(yww = qvec2, alpha = paramdf$alpha[[i]])

}

## sample of offspring

nvec <- c(rmultinom(n = 1, size = paramdf$n[[i]], prob = qoff))

## estimate parameters

hout <- hex_estdr(NN = nvec, niter = 1000, tol = 0)

paramdf$alphahat[[i]] <- hout$alpha

paramdf$p0hat[[i]] <- hout$p[[1]]

paramdf$p1hat[[i]] <- hout$p[[2]]

paramdf$p2hat[[i]] <- hout$p[[3]]

paramdf$p3hat[[i]] <- hout$p[[4]]

}

write.csv(x = paramdf, file = "./sims.csv", row.names = FALSE)

The estimates of α are very biased (Figure S1), and the estimates of p are somewhat biased (Figure S2).

S6 Degrees of Freedom Calculations

Here, I list out the Ąve instances of incorrect degrees of freedom calculations from Sun et al. (2021), Wang et
al. (2022), and Wang et al. (2021).

The degrees of freedom for the both the equilibrium and random mating tests are incorrect in Sun et al.
(2021). They list the degrees of freedom to be four in both tests. But there are already four free parameters
under the alternative (since q0 + q1 + q2 + q3 + q4 = 1). Since Sun et al. (2021) assume the double reduction
rate is known, under the null of equilibrium there is one free parameter (the allele frequency), and so the
degrees of freedom for the test for equilibrium is 4 − 1 = 3, not 4. Under the null of random mating, there
are 2 free parameters (since p0 + p1 + p2 = 1), and so the degrees of freedom for the test of random mating is
4 − 2 = 2, not 4.

The degrees of freedom for the random mating test is incorrect in Wang et al. (2022). On page 4 of Wang et
al. (2022), the authors say about their test for random mating that Şthis test statistic follows the chi-square
distribution with an unknown degree of freedom. However, we can empirically determine it as a value between
7 - 1 - 1 = 5 to 7 - 1 = 6.Ť I can theoretically determine the degrees of freedom here. There are 6 free
parameters under the alternative (since q0 + q1 + q2 + q3 + q4 + q5 + q6 = 1), and there are 3 free parameters
under the null (since p0 + p1 + p2 + p3 = 1), and so the degrees of freedom is 6 - 3 = 3, which is neither 5 nor
6.

The degrees of freedom for the recursive test is incorrect in Wang et al. (2022). They say, right after their
equation (1) that the degrees of freedom is 6. But there are already 6 free parameters under the alternative.
Because Wang et al. (2022) assume the double reduction rate is known, there is only 1 free parameter under
the null, the allele frequency. Thus, the true degrees of freedom is 6 - 1 = 5, not 6. See Appendix S4 for an
empirical demonstration.

The degrees of freedom for the recursive test is incorrect in Wang et al. (2021). Right after their equation (3),
they state that their χ2 statistic Şis thought to follow a chi-square distribution with eight degrees of freedom.Ť
But there are already 8 parameters under the alternative (since

∑
8

k=0
qk = 1). The number of parameters
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under the null is unclear since they are using a different (incorrect) model for meiosis than I have studied for
octoploids, but it likely at least 1 (for the allele frequency). Empirically, it seems the degrees of freedom is 7,
not 8 (Appendix S4).
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S7 Supplementary Figures
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Figure S1: Estimates of α (y-axis) stratiĄed by sample size (x-axis) and true α (facets) using the method of
Wang et al. (2022). The red dashed horizontal line is the true α in each facet. The estimates are way off.
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Figure S2: Estimates of pk (y-axis) for k = 0, 1, 2, 3 (row facets) for different sample sizes (x-axis) and
different initial values (truth or random) using the method of Wang et al. (2022). The red dashed horizontal
line is the true pk in each facet. The estimates are somewhat biased.
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