
Revisiting Garg’s 2-Approximation Algorithm

for the k-MST Problem in Graphs

Emmett Breen Renee Mirka Zichen Wang David P. Williamson

{ejb284, rem379, zw336, davidpwilliamson}@cornell.edu
Cornell University, Ithaca, NY 14850

Abstract

This paper revisits the 2-approximation algorithm for k-MST presented by Garg [9] in light of a recent paper
of Paul et al. [14]. In the k-MST problem, the goal is to return a tree spanning k vertices of minimum total
edge cost. Paul et al. [14] extend Garg’s primal-dual subroutine to improve the approximation ratios for the
budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm
and analysis to provide a cleaner version of Garg’s result. Additionally, we introduce the novel concept of
a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of
the pruning phase. Other notable updates include presenting a linear programming formulation of the k-MST
problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral
sets, and providing an explicit potential function.

1 Introduction

Given as input an undirected graph G = (V,E) and non-negative costs ce for each edge e ∈ E, the goal
of the k-MST problem is to find a tree spanning at least k vertices of minimum total cost. In the rooted case
of the problem, a special root vertex r is denoted which must be contained in the final tree, whereas no such
r exists for the unrooted case. These two cases are equivalent for the k-MST problem: Garg [9] shows that an
α-approximation algorithm for one version can be translated into an α-approximation algorithm for the other. An
α-approximation algorithm for k-MST is a polynomial-time algorithm which returns a solution at most α times
the cost of the optimal tree.

Approximation algorithms have been considered for k-MST since Ravi et al. introduced the problem [15].
They proved the problem is NP-hard and presented a 3

√
k-approximation algorithm. Since then, one line of

work by numerous authors [4, 6, 8, 3] developed a (2 + ϵ)-approximation algorithm running in time polynomial
in ϵ−1 [2]. Currently, the best known approximation is a 2-approximation algorithm by Garg using primal-dual
techniques [9]. A separate line of work considers a special case of k-MST where the input is given by n points in
the plane with edge costs determined by the Euclidean metric [15, 10, 7, 5, 13, 1, 12].

This paper focuses on Garg’s result. His 2-approximation algorithm is not only the best known for k-MST,
but Garg also shows that his algorithm leads to a 2-approximation algorithm for the k-TSP problem (where
one seeks a min-cost tour on at least k vertices instead of a tree and edge costs satisfy the triangle inequality)
and 3-approximation algorithm for the budgeted version of k-MST (where a budget B is given and one seeks to
maximize the number of vertices in a tree of cost at most B) due to an observation by Johnson et al. [11]. More
recently, Paul et al. have extended Garg’s technique to improve the approximation algorithms for the budgeted
prize-collecting traveling salesman and minimum spanning tree problems [14]. We revisit Garg’s algorithm and
analysis in light of the paper of Paul et al. In particular, we seek to provide a cleaner version of Garg’s algorithm
and analysis by adapting the results of Paul et al. We use Paul et al.’s explicit potential function and use of neutral
sets to replace the coloring scheme used by Garg. Both of these changes improve the clarity and comprehensibility
of the initial analysis. Additionally, and distinct from both previous papers, we introduce the notion of a kernel
in this primal-dual algorithm; its use in part enables a clearer visualization of the mechanics of the algorithm.
We believe this perspective yields a more accessible version of Garg’s result.

The structure of the paper is as follows. Section 2 introduces a linear programming formulation of the k-MST
problem. Section 3 describes the primal-dual subroutine used by Garg, and Section 4 provides an overview of the

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited56

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

entire algorithm along with a lower bound on the cost of the optimal tree. In Sections 5 and 6, we describe the
details of finding a specific tree through parameter setting and modifying the results of the primal-dual subroutine.
Finally, Section 7 proves the 2-approximation.

2 Linear Programming Formulation

In this section, we provide a linear programming (LP) relaxation of the k-MST problem. The constraints in
the dual LP will determine when an event happens in the primal-dual subroutine.

For each S ⊆ V , let variable zS ∈ {0, 1} denote whether S constitutes the vertices of the spanning tree. For
each edge e ∈ E, let variable xe ∈ {0, 1} denote whether edge e is included in the spanning tree. Then, the
following is a linear programming relaxation for the k-MST problem:

minimize
∑

e∈E

cexe

subject to
∑

e:e∈δ(S)

xe ≥
∑

ST :S⊂ST

zST
∀S ⊂ V,

∑

S⊆V

|S|zS ≥ k,

∑

S⊆V

zS ≤ 1,

zS , xe ≥ 0.

The first constraint guarantees that the spanning tree is connected. If S is a strict subset of the vertices
ST of a spanning tree T , then there must be at least one edge across δ(S), the cut of S. Given there are no
negative-cost edges, any optimal integral solution to the LP will be a tree and have xe ≤ 1 for each e ∈ E, and
thus these constraints are omitted. We shall also be careful with our subsequent approximation algorithm to not
violate these two constraints. We can now write down the dual of this linear program:

maximize λ1k − λ2

subject to
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E,

∑

T⊂S

yT + λ2 ≥ λ1|S| ∀S ⊂ V,

λ1, λ2, yS ≥ 0.

To produce a tree, we use a primal-dual subroutine for these formulations that will be described in the next
section. However, we first observe (similar to Paul et al.) that for any λ1 and y satisfying the edge constraints,
we can find a λ2 value satisfying the subset constraints. Particularly, we can let λ2 be the maximum of 0 and
maxS⊂V {λ1|S|−

∑
ST⊂S yST

} and we have a feasible dual solution. Therefore, a key component of this algorithm
and the following analysis is choosing a λ1 value leading to a primal-dual subroutine solution with a tree of the
appropriate size. In what follows, we’ll see that too small of a λ1 value leads to too few selected edges, whereas
a value of λ1 that is too large leads to too many selected edges. More details are provided in Section 5.

3 Primal-Dual Subroutine

We now present the primal-dual subroutine used by Garg. The algorithm assumes a fixed λ1 and, instead of
explicitly finding the minimal λ2 value, greedily grows a forest with respect to a heuristic function of the dual
variables. In our case, the function is the potential that we define as below.

Definition 3.1. For any subset S ⊆ V , the potential of S is

π(S) = λ1|S| −
∑

T :T⊂S

yT .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited57

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Definition 3.2. A subset S ⊆ V is neutral if
∑

T :T⊆S

yT = λ1|S|, or equivalently, if yS = π(S).

Intuitively, each vertex has a budget of λ1, and we spend the budget amassed in connecting vertices to cover
the costs of the edges. In this way, we are able to consider the vertices and edges of a set S as a single variable
π(S) that measures how much budget we have left to spend on future edges. The objective is to connect k vertices
with the cheapest possible edge cost; this corresponds well to maximizing the potential.

Algorithm 1 Primal-Dual Subroutine PD(λ1)

yS ← 0
PD ← ∅
C ← {{v} : v ∈ V }
while C ̸= ∅ do
raise all yS corresponding to active components uniformly until either
if yS = π(S) then
C ← C − S

else if
∑

S:e∈δ(S) yS = ce for some e between sets S1, S2 then

PD ← PD ∪{e}
C ← C − S1 − S2

C ← C ∪ {S1 ∪ S2}
end if

end while

return PD

The primal-dual subroutine is given in Algorithm 1. Described in words, initially yS = 0 for all S, and all
sets consisting of a single vertex are active. At any stage of the algorithm with active components, we uniformly
increase yS corresponding to all active components until either a set event or an edge event happens. Here, a set
event is a set becoming neutral, while an edge event is the constraint corresponding to an edge becoming tight
(that is, the dual constraint is met with equality). If a set becomes neutral, then we mark this set inactive and
remove it from the set of active components. If the dual constraint for an edge between sets S1 and S2 reaches
equality, then the edge is tight. We add this edge to the set of selected edges, mark S1 and S2 inactive if not
already, and mark S1 ∪ S2 active. We’ll sometimes say that we have merged the two sets.

We make a few observations about the structure of the result of the primal-dual subroutine. First, the
collection S of all sets that are ever active during the subroutine is laminar ; that is, for any pair of sets A,B ∈ S,
either A ⊆ B, B ⊆ A, or A∩B = ∅. Initially, all sets consisting of a single vertex are active. By design, the only
way a new, larger set becomes active is through merging two previously active sets when an edge event occurs.
This maintains the laminar property. Secondly, the subroutine returns a forest. Each time an edge event occurs,
two trees are connected into a larger tree. Furthermore, no cycles can exist. If an edge (u, v) was added that
created a cycle, there must have been an active set that contained exactly one of u or v. However, since u and v

must already be connected (otherwise this edge would not complete a cycle), any active set that contains u or v
must contain them both. If two edges that would complete a cycle go tight at the same time, we choose one of
the edges through a tie-breaking procedure described in Sections 5 and 6.

We observe that this procedure always maintains a feasible dual solution. Note that all dual edge constraints
are initially satisfied with yS = 0. Furthermore, if an edge becomes tight, the sets corresponding to the endpoints
of the edge are marked inactive, so the constraint will never be violated.

Active sets play a crucial role in the subroutine, as these are the sets with the capability for growth. Because
of this, we formalize the decomposition of currently-active or once-active sets into neutral subsets and subsets of
always-active vertices through the notion of a kernel, one of the key points of distinction between our work and
Garg’s initial presentation as well as Paul et al.’s work.

Definition 3.3. For an active set S corresponding to a tree T in the set of tight edges of PD, the kernel of S,
denoted by K(S), is the smallest cardinality subset of S such that

1. if v ∈ S has always been part of an active set, then v ∈ K(S),

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited58

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Initially yS = 0, so

∑

U :U⊆S

yU =
∑

U :U⊆S1

yU +
∑

U :U⊆S2

yU + yS

≤ λ1|S1|+ λ1|S2|
= λ1|S|.

We increase yS either until S merges with another active set or until
∑

U :U⊆S

yU = λ1|S| and S gets marked neutral.

In either case, we no longer increase yS , so the claim continues to hold. For an arbitrary set S, we can partition
it into maximal disjoint laminar subsets S1, S2, ..., Sc ∈ S. Therefore,

∑

U :U⊆S

yU =

c∑

i=1

∑

U :U⊆Si

yU ≤
c∑

i=1

λ1|Si| = λ1|S|.

Theorem 4.1. The minimal spanning tree has cost at least λ1 · k − π(S1).

Proof. By the potential definition and Lemma 1,

λ1|S1| =
∑

U :U⊂S1

yU + π(S1)

=
∑

U :U⊆S1−ST∗

yU +
∑

U :U⊂S1

U∩ST∗ ̸=∅

yU + π(S1)

≤ λ1|S1 − ST∗ |+
∑

U :U⊂S1

U∩ST∗ ̸=∅

yU + π(S1), so

λ1|ST∗ | ≤
∑

U :U⊂S1

U∩ST∗ ̸=∅

yU + π(S1)

≤
∑

e∈ST∗

∑

U :e∈δ(U)

yU + π(S1)

≤
∑

e∈ST∗

ce + π(S1).

The first inequality follows from Lemma 1. The third inequality says that for every set that intersects ST∗ , an
edge in its cut must lie in T ∗. Since we only allow edges with non-negative costs, the spanning tree is minimal
when it covers exactly k vertices. By rearranging, we obtain the claim.

5 Setting λ1

We now describe how to set λ1 to enable us to pick k vertices from a pruned tree in our primal-dual subroutine
forest. Recall x− = x − ϵ and x+ = x + ϵ, where ϵ is arbitrary small. We will later use infinitesimal to refer
to variables that approximate their originals as ϵ → 0. We adapt two lemmas from Paul et al. to the k-MST
situation. The first tells us that we can find our desired threshold value λ1.

Lemma 5.1. In polynomial time, we can find a threshold value λ1 such that all pruned trees of PD(λ−
1) have less

than k vertices and there exists at least one pruned tree in PD(λ+
1) with at least k vertices.

As the details of this proof closely mirror those of Paul et al., we omit them here and refer the reader to
Lemma 2 [14]. The key idea is that the time for each set and edge event to occur can be represented as a linear
function in λ1; see Figure 3. Then by observing the threshold λ1 must occur at an intersection of these lines, we

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited61

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Finally, for the fourth case, if the edges are between different components one will go tight immediately after
the other (similar to the first case). Meanwhile, if they are between the same components, only one will go tight
in each subroutine but the resulting active components will be the same.

The main role of Lemma 4 is insight into the potential differences between PD(λ−
1) and PD(λ+

1). In particular,
there may be subsets marked neutral in PD(λ−

1) but with infinitesimally small potential in PD(λ+
1) or there may

be different edges that went tight between the same components. If, every time two events tied in PD(λ), we
broke the tie by selecting what PD(λ+

1) would do, we will end up with at least one kernel having at least k

vertices. On the other hand, we can consider breaking ties in favor of PD(λ−
1) one at a time. By doing so, we

will find the smallest i such that if the first i ties are broken according to PD(λ−
1) and the rest by PD(λ+

1), we
return a forest with all kernels containing less than k vertices. By Lemma 3, the dual variables only change by
an infinitesimally small amount, and the only differences occur during the pruning phase.

In finding this value of i, we have also either identified a neutral subset X such that if X remained active
our forest would contain a kernel of appropriate size, or found two edges e and f between the same components
such that adding f instead of e returns a forest containing a kernel of appropriate size. These two cases will play
a role in picking our final set of vertices in the next section.

6 Constructing a Tree

Let λ1 be our found threshold value and (y, λ1, λ2) our feasible dual solution acquired through tie-breaking in
the manner described at the end of Section 5. Currently, all kernels of our primal-dual subroutine output forest
have fewer than k vertices, but Section 5 tells us that either we have identified a neutral subset X such that if
X remained active our forest would contain a kernel with at least k vertices (Case I) or found two edges e and f

between the same components such that adding f instead of e returns a forest containing a kernel with at least k
vertices (Case II). The final construction of our tree depends on which of these cases are present and requires us
to pick k vertices. Specifically, pick(X,w, k) returns a sub-tree of X with k vertices and contains the vertex w.
The idea is to inspect the last two subsets that merged to form the set. Suppose that X1 and X2 merged to form
X, with edge (u, v) connecting them, and that X1 contains w. If X1 contains at least k vertices, then we invoke
pick(X1, w, k). If X1 has less than k vertices, then we pick all vertices in X1 and continue to pick(X2, v, k−|X1|).
We repeat the process recursively until we have picked exactly k vertices.

Algorithm 2 Pick Routine pick(X,w, k)

let X1 and X2 be the two subsets that merged on edge e = (u, v) to form X

suppose with lost of generality that w ∈ X1

if |X1| > k then

call pick(X1, w, k)
else if |X1| < k then

pick all vertices in X1

call pick(X2, v, k − |X1|)
else

pick all vertices in X1

end if

In Case I, a set goes neutral the same time an edge goes tight; see Figure 4. Let K(S1) and K(S2) be the two
kernels of the merging two subsets S1 and S2. If we break the tie by choosing the set event, then we would end
up with both K(S1) and K(S2) having less than k vertices. On the other hand, if we break the tie by choosing
the edge event, then the new kernel K(S1 ∪ S2) = K(S1) ∪N1 ∪ · · · ∪Np ∪K(S2) would have at least k vertices.
Here Ni denotes the neutral sets on the path from K(S1) to K(S2). Now we show how to pick exactly k vertices
from this new kernel using the pick routine. Starting from K(S1), we select neutral sets N1, N2, . . . , Nq−1 until
adding another neutral set Nq will cause K(S1)∪N1∪· · ·∪Nq to have at least k vertices. Suppose edge e = (u, v)

links Nq−1 to Nq, then pick(Nq, v, r) will pick the remaining vertices needed, where r = k− |K(S1)| −
∑q−1

i=1 |Ni|
is the number of additional vertices we need to pick.

In Case II, two edges go tight simultaneously; see Figure 5. Again, let K(S1) and K(S2) be the two kernels
of the merging two subsets S1, S2. Denote e, f the two edges both between S1 and S2. If we choose edge e, then

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited63

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

If S2 is active, then the kernel of S would be the kernel of S1 and S2, plus some neutral sets on the path
between the two kernels. If N ⊂ K(S), then either N is on the path between K(S1) and K(S2) or N is a subset
of K(S1) or K(S2). But every neutral set N on the path has |δK(S)(N)| = 2, and by the inductive hypothesis,
no neutral subset N of K(S1) or K(S2) can have |δK(Si)(N)| = 1, i = 1, 2.

Again, we utilize a result by Paul et al. (Lemma 4 in [14]).

Lemma 7.1. ∑

e∈T0

∑

S:e∈δ(S)

yS ≤ 2
∑

U :U∩ST0
̸=∅

v ̸∈U

yU .

Proof. We will prove the inequality for any arbitrary iteration in the primal-dual algorithm. Consider an iteration
in which we let C be the current set of components C such that |δ(C) ∩ T0| ≥ 1. We can partition C into active
components CA and inactive components CI . Let v be the final vertex picked and Cv be the unique set in C
containing v.

We claim that if Cv ∈ CA, then
∑

C∈CA
|δ(C)∩T0| ≤ 2|CA|−2, otherwise if Cv ∈ CI , then

∑
C∈CA

|δ(C)∩T0| ≤
2|CA| − 1. Suppose for now that the claim is true. We now prove the inequality in Lemma 4 by induction on
the algorithm. At the start of the algorithm, with yS = 0 for all S, both sides of the inequality are equal to
0. At each iteration, let ϵ be the amount that we raise yC for each active component C ∈ CA. The LHS of the
inequality increases by

∑
C∈CA

|δ(C)∩T0|ϵ, while the RHS of the inequality increases by either 2|CA|ϵ (if Cv ∈ CI)
or 2(|CA| − 1)ϵ = (2|CA| − 2)ϵ (if Cv ∈ CA). Then given the claim, the inequality continues to hold inductively.
Thus the lemma statement will hold at the end of the algorithm.

To prove the claim, first suppose that Cv is inactive. By Lemma 1, all other neutral subsets of ST0
have degree

at least 2. Since v is the last vertex added, Cv is the only inactive component such that possibly |δ(Cv)∩T0| = 1.
Thus we have ∑

C∈CI

|δ(C) ∩ T0| ≥ 2|CI | − 1.

Note that edges of T0 link components in C to form a tree, so

∑

C∈CA

|δ(C) ∩ T0|+
∑

C∈CI

|δ(C) ∩ T0| ≤ 2|CA|+ 2|CI | − 2.

Then the last two inequalities imply ∑

C∈CA

|δ(C) ∩ T0| ≤ 2|CA| − 1,

and the claim holds for this case.
Now consider the case where Cv ∈ CA. By a similar logic, there is no component C ∈ CI such that

|δ(C) ∩ T0| = 1, and therefore
∑

C∈CI

|δ(C) ∩ T0| ≥ 2|CI |, implying

∑

C∈CA

|δ(C) ∩ T0| ≤ 2|CA| − 2,

and the claim holds for this case, so the proof of the lemma is complete.

The result of Lemma 7.1 allows us to prove the following upper bound on the cost of our tree.

Theorem 7.1. The picked tree has cost at most 2(λ1 · k − π(S2)), where S2 is the maximal potential set that
contains the picked tree.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited66

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. By the pick procedure, vertices in S2−ST0
are either (i) in a pruned neutral subset N ′

i or (ii) in the subset
Np where we started our pick procedure. Thus, we have S2 =

⋃
N ′

i ∪ (Np − ST0
) ∪ ST0

. Since N ′
i are neutral, we

have
λ1| ∪N ′

i | =
∑

U :U⊆∪N ′

i

yU .

Np is also neutral, and we can partition its subsets into two types: ones that contain vertices in Np − ST0

and ones that do not. Then we have

λ1|Np| =
∑

U :U⊂Np

U∩(Np−ST0
) ̸=∅

yU +
∑

U :U⊆Np∩ST0

yU ≤
∑

U :U⊆Np

U∩(Np−ST0
) ̸=∅

yU + λ1|Np ∩ ST0
|

by Lemma 1 which implies

λ1|Np − ST0
| ≤

∑

U :U⊆Np

U∩(Np−ST0
) ̸=∅

yU .

Combining with Lemma 7.1, this gives us

λ1|S2| =
∑

U :U⊂S2

yU + π(S2)

≥
∑

U :U∩ST0
̸=∅

v ̸∈U

yU +
∑

U :U⊂Np

U∩(Np−ST0
) ̸=∅

yU +
∑

U :U⊆∪N ′

i

yU + π(S2)

≥ 1

2

∑

e∈T0

∑

S:e∈δ(S)

yS + λ1|Np − S0|+ λ1|
⋃

N ′
i |+ π(S2).

Rearranging gives λ1|ST0
| ≥ 1

2

∑
e∈T0

ce + π(S2).

Combining our lower bound from Theorem 1 with the upper bound in Theorem 2, we achieve the 2-
approximation.

Theorem 7.2. The tree returned by the picked routine has at most twice the cost of the optimal spanning tree of
k vertices, that is ∑

e∈T0

ce ≤ 2
∑

e∈T∗

ce.

Proof. Recall from Theorem 1 we have that

∑

e∈T∗

ce ≥ λ1 · k − π(S1),

where S1 is the set with minimal potential in S that contains ST∗ . Since we include the set of all vertices V (G)
in S, the fact that both ST∗ and ST0

are subsets of V (G) implies that π(S2) ≥ π(V (G)) and π(S1) ≤ π(V (G)).
Thus we have

∑

e∈T0

ce ≤ 2(λ1 · k − π(S2)) by Theorem 2

≤ 2(λ1 · k − π(S1))

≤ 2
∑

e∈T∗

ce.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited67

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

References

[1] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, in
Journal of the ACM, 45 (1998), pp. 753–782.

[2] S. Arora and G. Karakostas, A 2+ ϵ approximation algorithm for the k-MST problem, in Mathematical Programming
Series A, 107 (2006), pp. 491–504.

[3] S. Arya and H. Ramesh, A 2.5-factor approximation algorithm for the k-MST problem, Information Processing Letters,
65.3 (1998), pp. 117–118.

[4] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, Improved approximation guarantees for minimum-weight k-trees and
prize-collecting salesmen, in Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing,
1995, pp. 277–283.

[5] A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation for the k-MST problem in the plane, in
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 1995, pp. 294–302.

[6] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for the k MST problem (Extended
Abstract), in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, 1996, pp. 442–448.

[7] D. Eppstein, Faster geometric K-point MST approximation, in Comput. Geom., 8 (1997), pp. 231–240.
[8] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in Proceedings of 37th Conference on

Foundations of Computer Science, 1996, pp. 302–309.
[9] N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, in Proceedings of the 37th Annual

ACM Symposium on Theory of Computing, 2005, pp. 396–402.
[10] N. Garg and D. S. Hochbaum, An O(log k) approximation algorithm for the k minimum spanning tree problem in the

plane, in Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 1994, pp. 432–438.
[11] D. S. Johnson, M. Minkoff, and S. Phillips, The prize collecting Steiner tree problem: theory and practice, in

Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 760–769.
[12] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation

scheme for geometric TSP, k-MST, and related problems, in SIAM Journal on Computing, 28 (1999), pp. 1298–1309.
[13] J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation algorithm for the geometric

k-MST problem in the plane, SIAM Journal on Computing, 28.3 (1998), pp. 771–781.
[14] A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson, Budgeted prize-collecting traveling salesman and

minimum spanning tree problems, Mathematics of Operations Research, 45 (2020), pp. 576–590.
[15] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning trees short or small, in SIAM

Journal on Discrete Mathematics, 9 (1996), pp. 178–200.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited68

D
o
w

n
lo

ad
ed

 0
6
/0

8
/2

3
 t

o
 1

3
2
.2

3
6
.1

7
8
.5

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Linear Programming Formulation
	Primal-Dual Subroutine
	Algorithm Overview
	Setting parameters
	Constructing a Tree
	2-Approximation

