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Abstract

This paper revisits the 2-approximation algorithm for k-MST presented by Garg [9] in light of a recent paper
of Paul et al. [14]. In the k-MST problem, the goal is to return a tree spanning k vertices of minimum total
edge cost. Paul et al. [14] extend Garg’s primal-dual subroutine to improve the approximation ratios for the
budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm
and analysis to provide a cleaner version of Garg’s result. Additionally, we introduce the novel concept of
a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of
the pruning phase. Other notable updates include presenting a linear programming formulation of the k-MST
problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral
sets, and providing an explicit potential function.

1 Introduction

Given as input an undirected graph G = (V, E) and non-negative costs c. for each edge e € E, the goal
of the k-MST problem is to find a tree spanning at least k vertices of minimum total cost. In the rooted case
of the problem, a special root vertex r is denoted which must be contained in the final tree, whereas no such
r exists for the unrooted case. These two cases are equivalent for the k-MST problem: Garg [9] shows that an
a-approximation algorithm for one version can be translated into an a-approximation algorithm for the other. An
a-approximation algorithm for k-MST is a polynomial-time algorithm which returns a solution at most « times
the cost of the optimal tree.

Approximation algorithms have been considered for k-MST since Ravi et al. introduced the problem [15].
They proved the problem is NP-hard and presented a 3v/k-approximation algorithm. Since then, one line of
work by numerous authors [4, 6, 8, 3] developed a (2 + €)-approximation algorithm running in time polynomial
in e=! [2]. Currently, the best known approximation is a 2-approximation algorithm by Garg using primal-dual
techniques [9]. A separate line of work considers a special case of k-MST where the input is given by n points in
the plane with edge costs determined by the Euclidean metric [15, 10, 7, 5, 13, 1, 12].

This paper focuses on Garg’s result. His 2-approximation algorithm is not only the best known for k-MST,
but Garg also shows that his algorithm leads to a 2-approximation algorithm for the A-TSP problem (where
one seeks a min-cost tour on at least k vertices instead of a tree and edge costs satisfy the triangle inequality)
and 3-approximation algorithm for the budgeted version of k-MST (where a budget B is given and one seeks to
maximize the number of vertices in a tree of cost at most B) due to an observation by Johnson et al. [11]. More
recently, Paul et al. have extended Garg’s technique to improve the approximation algorithms for the budgeted
prize-collecting traveling salesman and minimum spanning tree problems [14]. We revisit Garg’s algorithm and
analysis in light of the paper of Paul et al. In particular, we seek to provide a cleaner version of Garg’s algorithm
and analysis by adapting the results of Paul et al. We use Paul et al.’s explicit potential function and use of neutral
sets to replace the coloring scheme used by Garg. Both of these changes improve the clarity and comprehensibility
of the initial analysis. Additionally, and distinct from both previous papers, we introduce the notion of a kernel
in this primal-dual algorithm; its use in part enables a clearer visualization of the mechanics of the algorithm.
We believe this perspective yields a more accessible version of Garg’s result.

The structure of the paper is as follows. Section 2 introduces a linear programming formulation of the k-MST
problem. Section 3 describes the primal-dual subroutine used by Garg, and Section 4 provides an overview of the
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entire algorithm along with a lower bound on the cost of the optimal tree. In Sections 5 and 6, we describe the
details of finding a specific tree through parameter setting and modifying the results of the primal-dual subroutine.
Finally, Section 7 proves the 2-approximation.

2 Linear Programming Formulation

In this section, we provide a linear programming (LP) relaxation of the k-MST problem. The constraints in
the dual LP will determine when an event happens in the primal-dual subroutine.

For each S C V, let variable zg € {0,1} denote whether S constitutes the vertices of the spanning tree. For
each edge e € E, let variable z, € {0,1} denote whether edge e is included in the spanning tree. Then, the
following is a linear programming relaxation for the k-MST problem:

minimize E Cele
ecE

subject to Z Te > Z 28, VS cV,
e:e€d(S) S1:SCSt

> 1Slzs > k,

SCV

ZZSSL

scv

S, Le > 0.

The first constraint guarantees that the spanning tree is connected. If S is a strict subset of the vertices
St of a spanning tree 7', then there must be at least one edge across §(5), the cut of S. Given there are no
negative-cost edges, any optimal integral solution to the LP will be a tree and have xz, < 1 for each e € F, and
thus these constraints are omitted. We shall also be careful with our subsequent approximation algorithm to not
violate these two constraints. We can now write down the dual of this linear program:

maximize A1k — A

subject to Z ys < Ce Ve € E,
S:e€d(S)

dyur+de=MlS| VSV,
TCS

)\17)‘25y5 > 0.

To produce a tree, we use a primal-dual subroutine for these formulations that will be described in the next
section. However, we first observe (similar to Paul et al.) that for any Ay and y satisfying the edge constraints,
we can find a A\e value satisfying the subset constraints. Particularly, we can let A\ be the maximum of 0 and
maxscv{M|S| =Y g c5¥sy} and we have a feasible dual solution. Therefore, a key component of this algorithm
and the following analysis is choosing a A; value leading to a primal-dual subroutine solution with a tree of the
appropriate size. In what follows, we’ll see that too small of a A; value leads to too few selected edges, whereas
a value of \; that is too large leads to too many selected edges. More details are provided in Section 5.

3 Primal-Dual Subroutine

We now present the primal-dual subroutine used by Garg. The algorithm assumes a fixed A; and, instead of
explicitly finding the minimal Ay value, greedily grows a forest with respect to a heuristic function of the dual
variables. In our case, the function is the potential that we define as below.

DEFINITION 3.1. For any subset S C V, the potential of S is

w(S) = M|S| = Y yr.

T:TCS
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DEFINITION 3.2. A subset S CV is neutral if Z yr = M|S|, or equivalently, if ys = w(S).
T:TCS

Intuitively, each vertex has a budget of A1, and we spend the budget amassed in connecting vertices to cover
the costs of the edges. In this way, we are able to consider the vertices and edges of a set S as a single variable
7(S) that measures how much budget we have left to spend on future edges. The objective is to connect k vertices
with the cheapest possible edge cost; this corresponds well to maximizing the potential.

Algorithm 1 Primal-Dual Subroutine PD();)

ys <0
PD « 0
C+ {{v}:veV}
while C # () do
raise all yg corresponding to active components uniformly until either
if ys = 7(S) then
C+—C-S
else if D g cs5(5)¥s = ce for some e between sets 51, Sz then
PD « PD W{e}

C+C-— Sl — SQ
C+CuU {51 U SQ}
end if
end while

return PD

The primal-dual subroutine is given in Algorithm 1. Described in words, initially ys = 0 for all S, and all
sets consisting of a single vertex are active. At any stage of the algorithm with active components, we uniformly
increase yg corresponding to all active components until either a set event or an edge event happens. Here, a set
event is a set becoming neutral, while an edge event is the constraint corresponding to an edge becoming tight
(that is, the dual constraint is met with equality). If a set becomes neutral, then we mark this set inactive and
remove it from the set of active components. If the dual constraint for an edge between sets S; and Sy reaches
equality, then the edge is tight. We add this edge to the set of selected edges, mark S; and Sy inactive if not
already, and mark S; U Sy active. We’ll sometimes say that we have merged the two sets.

We make a few observations about the structure of the result of the primal-dual subroutine. First, the
collection S of all sets that are ever active during the subroutine is laminar; that is, for any pair of sets A, B € S,
either A C B, B C A, or AN B = (. Initially, all sets consisting of a single vertex are active. By design, the only
way a new, larger set becomes active is through merging two previously active sets when an edge event occurs.
This maintains the laminar property. Secondly, the subroutine returns a forest. Each time an edge event occurs,
two trees are connected into a larger tree. Furthermore, no cycles can exist. If an edge (u,v) was added that
created a cycle, there must have been an active set that contained exactly one of w or v. However, since u and v
must already be connected (otherwise this edge would not complete a cycle), any active set that contains u or v
must contain them both. If two edges that would complete a cycle go tight at the same time, we choose one of
the edges through a tie-breaking procedure described in Sections 5 and 6.

We observe that this procedure always maintains a feasible dual solution. Note that all dual edge constraints
are initially satisfied with yg = 0. Furthermore, if an edge becomes tight, the sets corresponding to the endpoints
of the edge are marked inactive, so the constraint will never be violated.

Active sets play a crucial role in the subroutine, as these are the sets with the capability for growth. Because
of this, we formalize the decomposition of currently-active or once-active sets into neutral subsets and subsets of
always-active vertices through the notion of a kernel, one of the key points of distinction between our work and
Garg’s initial presentation as well as Paul et al.’s work.

DEFINITION 3.3. For an active set S corresponding to a tree T in the set of tight edges of PD, the kernel of S,
denoted by K(S), is the smallest cardinality subset of S such that

1. if v € S has always been part of an active set, then v € K(S),
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(a) An active and IHE.LCthG set with their kernels before (b) The new active set and its kernel after the merge.
an edge event occurring at the dashed edge.

Figure 1: These figures illustrate how the sets and kernels change when an active set merges with an inactive
set. Sets surrounded by a bold (resp. dashed) line are active (resp. inactive). Sets with a grey background are
the kernel of the smallest active or inactive set they are contained in.

2. K(S) is connected in T, and
3. for every once-active set I C S either I C K(S) or I N K(S) = 0.

The kernel of a once-active set S is the kernel at the moment S becomes neutral.

Since initially ys = 0 for all subsets S and all sets consisting of a single vertex are active, every vertex is the
kernel of itself at the start of the primal-dual subroutine. By the definition of the kernel, we know that the kernel
of a once-active (but now inactive) set is the kernel of the set when it went neutral. It remains to understand how
the kernel changes as active sets grow throughout the primal-dual subroutine. We illustrate this growth through
two possible cases:

1. an active set S merges with an inactive set I or
2. an active set S merges with another active set A.

In the first case, the kernel of S U I is simply the kernel of S. Since I was inactive at the time of the merge,
every vertex in I has been part of an inactive set. Therefore adding any vertices of I to K(S) would simply
increase the cardinality of the kernel. Since we want the minimal cardinality set maintaining connectivity (and
K(S) is already connnected since it was previously a kernel), we do not add any of the vertices of I. See Figure
1.

In the second case, the kernel of S U A will contain both the kernel of S and the kernel of A since both of
these contain vertices which have always been contained in active sets. However, we must be careful since the
edge event merging S and A may not occur on an edge connecting the kernel of S to the kernel of A and the
resulting set should be connected. In this case, we must add the fewest possible number of once-active subsets of
S and A by including only the ones on the path from K(S) to K(A). This maintains that K (SU A) is connected
in the new tree. See Figure 2.

The kernel is used in the next step of the algorithm after the primal-dual subroutine — the pruning phase.
In this phase, we want to remove sets of vertices that do not help us achieve our end goal. Particularly, we
want to remove neutral sets without disconnecting any tree in the forest returned by the primal-dual subroutine.
We do so by pruning each tree T, with vertex set Sp, in the forest returned by PD to return exactly the
edge-set determined by the kernel of Sp. In particular, a pruned tree T is given by E(K(St)) N'T where
E(S) ={(u,v) € E: u,v € S}. The following lemma shows that this has our desired effect; the proof is delayed
until Section 7. For sets S" C S C V, let dg(s)(S") = {(u,v) € E(S) :ue€ S",ve K(S) -5}

LEMMA 3.1. The kernel K(S) of a set S contains no neutral subset N C K(S) such that |5 s)(N)| = 1.

Clearly the size of each tree may decrease during the pruning phase, so measures must be taken to ensure
we have a tree of suitable size at the end of the primal-dual subroutine. Recalling that we can find a feasible Ay
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(a) Two active sets with their kernels before an edge

. (b) The new active set and its kernel after the merge.
event occurring at the dashed edge.

Figure 2: These figures illustrate how the sets and kernels change when an two active sets merge. Sets surrounded
by a bold (resp. dashed) line are active (resp. inactive). Sets with a grey background are the kernel of the smallest
active or inactive set they are contained in.

value for any A; and feasible yg solution, we carefully select A\; guaranteeing at least one kernel in our primal-
dual output forest has at least k vertices. After pruning, we execute a picking routine to obtain a tree with
exactly k vertices such that the 2-approximation holds. The details of this selection of A\; and the picking routine
implemented after the primal-dual subroutine and pruning occur are described in the following sections.

4 Algorithm Overview

In this section, we provide an overview of how the forest from the primal-dual subroutine is used to construct
a feasible k-MST. Assume we have run the primal-dual subroutine with some value of A\; to find a feasible dual
solution (y, A1, A2), though we may not know As exactly. We also have a forest F' from which we need to select a
tree spanning k vertices. In order to do so, we need to guarantee that there exists a tree in F' containing at least
k vertices after it is pruned. If the fixed A; is too small, this may not be the case as a small A\; allows sets to
become neutral earlier which limits the potential for growth. On the other hand, if A; is too large, the primal-dual
subroutine degrades to greedily selecting the cheapest edges, which is sub-optimal. In order to balance these two
scenarios, we search for an appropriate A; value. Specifically, we identify a A; value such that PD(A] ) returns
a forest where every pruned tree is too small and PD()\IL) contains at least one pruned tree large enough. Here
2~ =2 —eand 27 = x + ¢, where € is arbitrarily small. Once we have this threshold value of \;, we prune our
selected tree to return a kernel with at least k vertices and bounded cost on the corresponding tree. Finally, we
select a sub-tree of our pruned tree containing exactly k vertices.

Before describing how we choose a A; value, we derive a lower bound of the cost of the optimal k-MST in
terms of the potential function that works for any choice of A\;. In the following sections, we will see how to set
A1 to give an upper bound. Together, this will give us a 2-approximation.

Let S be the laminar set of all once-active sets plus the set of all vertices. Denote T™ the optimal k-MST,
S+ its set of vertices, and S; the set with the minimal potential in S such that Sp« C S;. Since V € S, such an
S always exists. In general, for a tree, we will refer to the set of edges by T" and the corresponding set of vertices
by ST.

LEMMA 4.1. For any S CV, Z yu < A1|S]-
U:UCS

Proof. If S was once active, then the inequality holds by the design of the primal-dual subroutine. We prove this
by induction. Suppose S7 and Sy merged to form S, and

>y < MlSul,
U:UCS,

Z yu < A1]Sal.

U:UCS,
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Initially ys = 0, so

dDow= >, w+ Y, w+ys

v:ucs U:UCS; U:UCSs
< A1]S1| + A S|
— M.

We increase yg either until S merges with another active set or until Z yu = \1]S] and S gets marked neutral.
U:UCS

In either case, we no longer increase yg, so the claim continues to hold. For an arbitrary set .S, we can partition

it into maximal disjoint laminar subsets Si, Ss, ..., S. € S. Therefore,

o= Yy <> MISi=M8)
=1

U:UCS i=1 U:UCS;
0
THEOREM 4.1. The minimal spanning tree has cost at least Ay - k — w(S1).

Proof. By the potential definition and Lemma 1,

ISt =Y yu+w(S)

U:UCSy
= > w+ Y. yw+n(S)
U:UCS) —Spx U:UCS:

UNSpx 20D
< \|S1 — S| + Z yu + 7(S1), so

U:UCSy
UNSpx#0
A1|S7+| < E yu + m(51)
U:UCS,
UNSt+#£D

<> D> wtnS)

e€Spx U:eed(U)

< > et m(Sy).

e€ St

The first inequality follows from Lemma 1. The third inequality says that for every set that intersects St«, an
edge in its cut must lie in 7. Since we only allow edges with non-negative costs, the spanning tree is minimal
when it covers exactly k vertices. By rearranging, we obtain the claim. 0

5 Setting \;

We now describe how to set A\; to enable us to pick k vertices from a pruned tree in our primal-dual subroutine
forest. Recall z7 = x — ¢ and 27 = x + ¢, where ¢ is arbitrary small. We will later use infinitesimal to refer
to variables that approximate their originals as € — 0. We adapt two lemmas from Paul et al. to the k-MST
situation. The first tells us that we can find our desired threshold value \;.

LEMMA 5.1. In polynomial time, we can find a threshold value Ay such that all pruned trees of PD(A] ) have less
than k vertices and there exists at least one pruned tree in PD(\] ) with at least k vertices.

As the details of this proof closely mirror those of Paul et al., we omit them here and refer the reader to
Lemma 2 [14]. The key idea is that the time for each set and edge event to occur can be represented as a linear
function in Ai; see Figure 3. Then by observing the threshold A\; must occur at an intersection of these lines, we
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Time Next FEvent Occurs

A Ay
: Subintervals

\J

Figure 3: Finding Threshold A;. Each line represents the time for an event to occur next in terms of A;. The
bold line shows the next event, where each segment is from a given subinterval.

can consider smaller and smaller intervals of A\ determined by the intersections until we find our desired value.
In particular, we recurse onto a smaller subinterval where the next event to occur is consistent throughout the
subinterval and consider the possible events that can follow. Eventually, there must be a time (intersection) where
the difference in next events translates to a difference in sizes of the resulting kernels; this is where our threshold
A1 occurs. The next lemma tells us two important properties regarding the primal-dual subroutine for values
around our threshold A;.

LEMMA 5.2. Throughout the two subroutines PD(\]) and PD()\]), the following two properties hold:

o All active components are the same except for during infinitesimal time.

o For all S C V, the difference between yf: and yg s infinitesimal. Here y;r and yg are the dual variables
when running PD(\]) and PD()\]), respectively.

Here, again we present an overview of the proof of Lemma 3 [14] with a few minor changes. The main
observation is the claim could only fail if two different events occur at the same time in PD(\), and the events
cause lasting disparity in PD(\;) and PD(\{). Furthermore, there are four possible ways that two different
events could occur at the same time:

1. different sets go neutral in PD(\;) and PD()\]),

2. an edge goes tight in PD(\]) while a set goes neutral in PD(A]),

3. a set goes neutral in PD()\]) while an edge goes tight in PD(\]), or
4. different edges go tight in PD(\;) and PD()\}).

In the first case, the times for the two sets to go neutral must differ by an infinitesimally small amount and
thus one will go neutral immediately after the other. The second case cannot occur for this problem since the
time for a set to go neutral has a positive slope in A\; while the time for an edge to go tight has a negative slope
in )\1.

For the third case, if the tight edge has an endpoint in an active set different than the set going neutral, the
edge will still go tight immediately after the set event. If the edge going tight in PD(\]) merges the set going
neutral in PD(A]) and another neutral set, the merged set must have infinitesimally small potential and will go
neutral immediately after the edge event. This maintains the active sets. Furthermore, if an active set merges
with the set going neutral in the future in PD(A] ), the edge will go tight immediately after, still maintaining the
active sets.
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Finally, for the fourth case, if the edges are between different components one will go tight immediately after
the other (similar to the first case). Meanwhile, if they are between the same components, only one will go tight
in each subroutine but the resulting active components will be the same.

The main role of Lemma 4 is insight into the potential differences between PD(\; ) and PD()\]). In particular,
there may be subsets marked neutral in PD ()] ) but with infinitesimally small potential in PD(A]) or there may
be different edges that went tight between the same components. If, every time two events tied in PD()\), we
broke the tie by selecting what PD(A]) would do, we will end up with at least one kernel having at least k
vertices. On the other hand, we can consider breaking ties in favor of PD(A] ) one at a time. By doing so, we
will find the smallest i such that if the first 4 ties are broken according to PD(\]) and the rest by PD(A]), we
return a forest with all kernels containing less than k vertices. By Lemma 3, the dual variables only change by
an infinitesimally small amount, and the only differences occur during the pruning phase.

In finding this value of i, we have also either identified a neutral subset X such that if X remained active
our forest would contain a kernel of appropriate size, or found two edges e and f between the same components
such that adding f instead of e returns a forest containing a kernel of appropriate size. These two cases will play
a role in picking our final set of vertices in the next section.

6 Constructing a Tree

Let A1 be our found threshold value and (y, A1, A2) our feasible dual solution acquired through tie-breaking in
the manner described at the end of Section 5. Currently, all kernels of our primal-dual subroutine output forest
have fewer than k vertices, but Section 5 tells us that either we have identified a neutral subset X such that if
X remained active our forest would contain a kernel with at least k vertices (Case I) or found two edges e and f
between the same components such that adding f instead of e returns a forest containing a kernel with at least k
vertices (Case II). The final construction of our tree depends on which of these cases are present and requires us
to pick k vertices. Specifically, pick(X,w, k) returns a sub-tree of X with k vertices and contains the vertex w.
The idea is to inspect the last two subsets that merged to form the set. Suppose that X; and X5 merged to form
X, with edge (u,v) connecting them, and that X; contains w. If X contains at least k vertices, then we invoke
pick(X1,w, k). If X; has less than k vertices, then we pick all vertices in X; and continue to pick(Xs, v,k —|X1]).
We repeat the process recursively until we have picked exactly k vertices.

Algorithm 2 Pick Routine pick(X, w, k)

let Xy and X5 be the two subsets that merged on edge e = (u,v) to form X
suppose with lost of generality that w € X3
if | X1| > k then
call pick(Xy1,w, k)
else if |X;| < k then
pick all vertices in X
call pick(Xa, v,k —|X1])
else
pick all vertices in X3
end if

In Case I, a set goes neutral the same time an edge goes tight; see Figure 4. Let K (S;) and K(S2) be the two
kernels of the merging two subsets S7 and Ss. If we break the tie by choosing the set event, then we would end
up with both K(S7) and K(S2) having less than k vertices. On the other hand, if we break the tie by choosing
the edge event, then the new kernel K(S; U Sy) = K(S1) UNy U---UN, U K(S2) would have at least k vertices.
Here N; denotes the neutral sets on the path from K (S7) to K(S2). Now we show how to pick exactly k vertices
from this new kernel using the pick routine. Starting from K (S;), we select neutral sets Ny, Na, ..., Ny_1 until
adding another neutral set N, will cause K (S1)UN,U---UN, to have at least k vertices. Suppose edge e = (u,v)
links Ny_1 to N, then pick(Ng,, v, r) will pick the remaining vertices needed, where r = k — |K(S1)| — 23;11 | IV; |
is the number of additional vertices we need to pick.

In Case II, two edges go tight simultaneously; see Figure 5. Again, let K(S7) and K (S2) be the two kernels
of the merging two subsets S7, S2. Denote e, f the two edges both between S; and S5. If we choose edge e, then
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(a) Sets S1 and S> and their kernels before the edge event causing e to go tight and the set event causing S> to go neutral
tie in PD(A1).

(b) Sets S1 and S> and their kernels after the tie is broken by allowing S> to go neutral.

S, U S,

(c) Set S1 US> and its kernel after the tie is broken by allowing e to go tight.

Figure 4: Case I. S5 goes neutral the same time e goes tight.
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(a) Sets S1 and S and their kernels before the edge events causing e and f to go tight tie in PD(\1).

851 US, 81 U8,

(b) Set S1 US> and its kernel after the tie is broken so(c) Set S1 U S2 and its kernel after the tie is broken so
e goes tight. f goes tight.

Figure 5: Case II. Edges e and f between S; and S go tight at the same time.

the new kernel K (S7 U Sz) = K(S1) UN; U...UN, U K(S2) would have less than k vertices, where Ny,..., N,
are the neutral sets between K (S;) and K(S3) using edge e. On the other hand, if we choose edge f, then the
new kernel K (S; U Sy) = K(S1)UNjU...UN, UK(S;) would have at least k vertices, where Nj,..., N; are
the neutral sets between K (S7) and K (S2) using edge f. The difference clearly results from the neutral sets in
between K (S7) and K (S2). Once again, we pick K(S7), N{, N}, ..., N/_; where picking N/ would give at least k
vertices and invoke pick(N/,v,r) to finish the rest (N}, v, r defined similar to Case I).

7 2-Approximation

Now that we have finished describing the mechanics of the algorithm, we can finally present the proof of the
2-approximation. Let 77 denote the tree we obtained after pruning with vertex set (kernel) K’ Ty C K’ the tree
of k vertices we obtained by the pick routine, and S, the set of vertices of Ty. Further, let v be the vertex in St
where the pick routine terminated. Before proceeding with the necessary lemmas, we present the proof of Lemma
3.1 from Section 3.

Proof. We prove this by induction on the number of events. In the base case, at the start of the primal-dual
subroutine, every vertex is the kernel of itself and no neutral sets have appeared yet.

Suppose that for the first k events the claim holds, and we consider the next event. If the (k + 1)-st event is
a set event, then a set S goes neutral. A set going neutral does not affect its kernel, so as previously, the claim
still holds for S; other sets are also unaffected so the claim holds for them.

If the (k + 1)-st event is an edge event, then an edge e between sets S; and Sy goes tight and the two sets
merge to form a new active set S. First of all, this event does not affect the kernel of S7, S, or of any other set
besides S, so the claim still holds for all of them. Since at least one of the merging sets is active, we can suppose
without loss of generality that S, is active. Then, if S5 is inactive, the kernel of S would be the kernel of S;. For
a neutral set N C K(S), [0k(s)(IN)| = 1 for some N would imply that |65 (s,)(IN)| = 1, which contradicts that
the claim holds previously.
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If S5 is active, then the kernel of S would be the kernel of S; and Sy, plus some neutral sets on the path
between the two kernels. If N C K(5), then either N is on the path between K(S7) and K(S2) or N is a subset
of K(S1) or K(S2). But every neutral set N on the path has |dxs)(N)| = 2, and by the inductive hypothesis,
no neutral subset N of K(S1) or K(S2) can have |dx(s,)(N)| =1,i=1,2.

|

Again, we utilize a result by Paul et al. (Lemma 4 in [14]).

LEMMA 7.1.

Z Z Ys <2 Z Yu-

e€Ty S:e€d(S) U:UNST,#0
vgU

Proof. We will prove the inequality for any arbitrary iteration in the primal-dual algorithm. Consider an iteration
in which we let C be the current set of components C' such that |§(C) NTp| > 1. We can partition C into active
components C4 and inactive components C;. Let v be the final vertex picked and C, be the unique set in C
containing v.

We claim that if C, € Ca, then Y e, [6(C)NTy| < 2|Ca|—2, otherwise if C,, € Cy, then Y e, [6(C)NTp| <
2|C4| — 1. Suppose for now that the claim is true. We now prove the inequality in Lemma 4 by induction on
the algorithm. At the start of the algorithm, with yg = 0 for all S, both sides of the inequality are equal to
0. At each iteration, let € be the amount that we raise yo for each active component C € C4. The LHS of the
inequality increases by > occ, [6(C)NTole, while the RHS of the inequality increases by either 2|Cale (if C, € Cr)
or 2(|Ca| — 1)e = (2|Ca| — 2)e (if C,, € C4). Then given the claim, the inequality continues to hold inductively.
Thus the lemma statement will hold at the end of the algorithm.

To prove the claim, first suppose that C,, is inactive. By Lemma 1, all other neutral subsets of St, have degree
at least 2. Since v is the last vertex added, C, is the only inactive component such that possibly |6(C,) NTo| = 1.
Thus we have

Z 16(C) NTo| > 2[Cr| — 1.

ceCr
Note that edges of Ty link components in C to form a tree, so

S ) NTol+ > 16(C) NTo| < 2(Cal +2(Cs| — 2.
CceCa CeCr

Then the last two inequalities imply

D 18(C)NTy| < 21Cal - 1,
CceCa

and the claim holds for this case.
Now consider the case where C,, € C4. By a similar logic, there is no component C € C; such that
|0(C)NTy| =1, and therefore

> 16(C) N Tyl > 2|Cy, implying
CeCy
D 18(C)n Tyl < 21Cal -2,
CeCap

and the claim holds for this case, so the proof of the lemma is complete. 0
The result of Lemma 7.1 allows us to prove the following upper bound on the cost of our tree.

THEOREM 7.1. The picked tree has cost at most 2(A1 - k — w(S2)), where Sy is the mazimal potential set that
contains the picked tree.
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Proof. By the pick procedure, vertices in Sy — St, are either (i) in a pruned neutral subset N/ or (ii) in the subset
N, where we started our pick procedure. Thus, we have Sy = |J N} U (N, — S1;,) U St,. Since N/ are neutral, we
have
M| UN| = Z yu-
U:UCUN!

N, is also neutral, and we can partition its subsets into two types: ones that contain vertices in IV, — St
and ones that do not. Then we have

M= Y o+ D> w s D> w AN, NSy
U:UCN, U:UCN,NSx, U:UCN,
UN(Np =Sy )70 UN(N,— S, )#0

by Lemma 1 which implies

ANy = S| < > Y-
U.UCN,
UN(Np—S1) 20

Combining with Lemma 7.1, this gives us

MISal = D yu +w(S)

U:UCSs
> Z yu + Z yu + Z yu + m(S2)
U:UNSt, #0 U:UCN, U:UCUN!
vgU UN(Np—St,)#0
1

252 Z yS+)\1|Np_SO‘+)‘1|UNZ'/|+7T(52).
e€Ty S:e€d(S)

Rearranging gives A1|St,| > %ZeeTo Ce + m(52). d

Combining our lower bound from Theorem 1 with the upper bound in Theorem 2, we achieve the 2-
approximation.

THEOREM 7.2. The tree returned by the picked routine has at most twice the cost of the optimal spanning tree of
k vertices, that is

Z Cce <2 Z Ce.-

ecTy ecT™

Proof. Recall from Theorem 1 we have that

> e =Mk —w(S),

ecT*

where S is the set with minimal potential in S that contains St«. Since we include the set of all vertices V(G)
in S, the fact that both S~ and Sg, are subsets of V(@) implies that 7(S2) > 7(V(G)) and 7(S1) < 7#(V(G)).
Thus we have

Z Ce <2(A1 -k —m(S2)) by Theorem 2
ecTy
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