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Abstract. A long-standing conjecture for the traveling salesman prob-
lem (TSP) states that the integrality gap of the standard linear pro-
gramming relaxation of the TSP (sometimes called the Subtour LP or
the Held-Karp bound) is at most 4/3 for symmetric instances of the
TSP obeying the triangle inequality. In this paper we consider the half-
integral case, in which a feasible solution to the LP has solution values
in {0,1/2,1}. Karlin, Klein, and Oveis Gharan [9], in a breakthrough
result, were able to show that in the half-integral case, the integrality
gap is at most 1.49993; Gupta et al. [6] showed a slight improvement of
this result to 1.4983.

Both of these papers consider a hierarchy of critical tight sets in the
support graph of the LP solution, in which some of the sets correspond
to cycle cuts and the others to degree cuts. Here we show that if all the
sets in the hierarchy correspond to cycle cuts, then we can find a dis-
tribution of tours whose expected cost is at most 4/3 times the value
of the half-integral LP solution; sampling from the distribution gives us
a randomized 4/3-approximation algorithm. We note that known bad
cases for the integrality gap have a gap of 4/3 and have a half-integral
LP solution in which all the critical tight sets in the hierarchy are cycle
cuts; thus our result is tight.

1 Introduction

In the traveling salesman problem (TSP), we are given a set of n cities and the
costs ¢;; of traveling from city ¢ to city j for all ¢, j, and the goal of the problem
is to find the least expensive tour that visits each city exactly once and returns
to its starting point. An instance of the TSP is called symmetric if ¢;; = ¢;; for
all 7, j. Costs obey the triangle inequality (or are metric) if ¢;; < ¢; + cx; for all
i, 7, k. For ease of exposition, we consider the problem input as a complete graph
G = (V, E) for the set of cities V, with ¢, = ¢;; for edge e = (4, j). All instances
we consider will be symmetric and obey the triangle inequality.

In a breakthrough result, Karlin, Klein, and Oveis Gharan [8] gave the first
approximation algorithm with performance ratio better than 3/2, although the
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amount by which the bound was improved is quite small (approximately 10~36).
The algorithm follows the Christofides-Serdyukov template by selecting a ran-
dom spanning tree from the max-entropy distribution, then using a T-join on
the odd degree vertices of the tree to create a connected Eulerian subgraph.

One special case of the TSP is known as the half-integral case. To understand
the half-integral case, we need to introduce a well-known LP relaxation of the
TSP, sometimes called the Subtour LP or the Held-Karp bound [4,7], which is
as follows:

min E CeTe

eCE

st. z(0(v)) =2, Yvey,
x(6(5)) > 2, VS CV,S#0,
0<z. <1, Ve e E,

where §(S) is the set of all edges with exactly one endpoint in S and we use the
shorthand that x(F) = > _ zc. A half-integral solution to the Subtour LP is
one such that z. € {0,1/2,1} for all e € F, and a half-integer instance of the
TSP is one whose LP solution is half-integral.

Fig. 1. Illustration of a known worst-case example for the integrality gap for the sym-
metric TSP with triangle inequality. The figure on the left gives an (unweighted) graph,
and costs ¢;; are the shortest path lengths in the graph. The figure in the center gives
the LP solution, in which the dotted edges have value 1/2, and the solid edges have
value 1. The figure on the right gives the optimal tour. The ratio of the cost of the
optimal tour to the value of the LP solution tends to 4/3 as k increases.

The integrality gap of an LP relaxation is the worst-case ratio of an opti-
mal integer solution to the linear program to the optimal linear programming
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solution. Wolsey [13] showed that the analysis of the Christofides-Seryukov algo-
rithm could be used to show that the integrality gap of the Subtour LP is at
most 3/2. It is known that the integrality gap of the Subtour LP is at least 4/3,
due to a set of half-integral graph TSP instances shown in Fig. 1, and another set
of half-integral weighted instances due to Boyd and Sebé [2] known as k-donuts.
Schalekamp, Williamson, and van Zuylen [11] have conjectured that half-integral
instances are the worst-case instances for the integrality gap. It has long been
conjectured that the integrality gap is exactly 4/3, but until the work of Karlin
et al. there had been no progress on the conjecture for several decades.

In the case of half-integral instances, some results are known. Momke and
Svensson [10] have shown a 4/3-approximation algorithm for half-integral graph
TSP (in which cost ¢;; is the number of edges in the shortest i-j path in an input
graph), also yielding an integrality gap of 4/3 for such instances; because of the
worst-case examples of Fig. 1, their result is tight. Boyd and Carr [1] give a 4/3-
approximation algorithm (and an integrality gap of 4/3) for a subclass of half-
integer solutions they call triangle points (in which the half-integer edges form
disjoint triangles); the examples of Fig. 1 show that their result is tight also. Boyd
and Sebd [2] give an upper bound of 10/7 for a subclass of half-integral solutions
they call square points (in which the half-integer edges form disjoint 4-cycles).
In a paper released just prior to their general improvement, Karlin, Klein, and
Oveis Gharan [9] (KKO) gave a 1.49993-approximation algorithm in the half-
integral case; in particular, they show that given a half-integral solution, they
can produce a tour of cost at most 1.49993 times the value of the corresponding
objective function. Gupta, Lee, Li, Mucha, Newman, and Sarkar [6] improve this
factor to 1.4983.

With the improvements on the 3/2 bound remaining very incremental for
weighted instances of the TSP, even in the half-integral case, we turn the question
around and look for a large class of weighted half-integral instances for which
we can prove that the 4/3 conjecture is correct, preferably one containing the
known worst-case instances.

To define our instances, we turn to some terminology of KKO. The KKO
result uses induction on a hierarchy of critical tight sets of the half-integral LP
solution z. A set S C V is tight if the corresponding LP constraint is met with
equality; that is, 2(5(S)) = 2. A set S is critical if it does not cross any other tight
set; that is, for any other tight set T', either SNT =@ or SC T or T C S. The
critical tight sets then give rise to a natural tree-like hierarchy based on subset
inclusion. KKO follow a Christofides-Serdyukov style algorithm that performs
induction on the hierarchy. In their analysis, they differentiate between cycle
cuts (in which the child nodes of a parent are linked by pairs of edges in a chain)
and degree cuts (in which the child nodes of a parent form a 4-regular graph;
more detail is given in subsequent sections).

In this paper, we will consider half-integral instances in which there are only
cycle cuts, which we will refer to as half-integral cycle cut instances. Our contri-
bution is to give a randomized %-approximation algorithm for these instances.
More precisely, we give a distribution over connected Fulerian subgraphs such
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that each edge e is used with expectation at most %xe, which implies the result
(note that edges are sometimes doubled in the Eulerian graph). Our main theo-
rem is as follows:

Theorem 1. There is a randomized 4/3-approzimation algorithm for half-
integral cycle cut instances of the TSP that produces an Eulerian tour with
expected cost at most %ZeeE Cee-

It is not hard to show that both the bad examples in Fig.1 and the k-donut
instances of Boyd and Sebd [2] are cycle cut instances (Boyd and Carr’s result
for triangle points works for the examples of Fig. 1, but not for k-donuts). Thus
our bound of 4/3 is tight and cannot be improved.

Our approach to the problem is novel and does not use the same Christofides-
Serdyukov framework as employed by KKO and others. Instead, we perform a
top-down induction on the hierarchy of critical tight sets. For each set in the
hierarchy, we define a set of “patterns” of edges incident on it such that the set
has even degree. For each pattern, we give a distribution of edges connecting
the chain of child nodes in the cycle cut, which induces a distribution of pat-
terns on each child. Crucially, we then show that there is a feasible region R
of distributions over patterns, such that if the distribution of patterns on the
parent node belongs to R, then the induced distribution on patterns on each
child node also belongs to R. Our abstract is structured as follows. We give
some needed preliminary definitions in Sect.2. We then sketch our main result
in Sect. 3, and conclude in Sect.4. Due to space constraints, some proofs are
omitted or sketched. The full paper can be accessed at https://arxiv.org/abs/
2211.04639.

2 Preliminaries

Given a half-integral LP solution z, we construct a 4-regular 4-edge-connected
multigraph G = (V, E) by including a single copy of every edge e for which
Te = % and two copies of every edge e for which z. = 1. We state the following
for general k-edge-connected multigraphs. In our setting, k = 4.

Definition 1. For a k-edge-connected multigraph G = (V, E), we say:

— Any set S CV such that |6(S)| =k (i.e., its boundary is a minimum cut) is
a tight set.

- A set S CV is proper if 2 < |S| <n—2 and a singleton if |S| = 1.

— Two sets S, 5" CV crossifall of S\ S, S'\S, SNS", and V ~ (SUS") #
are non-empty.

The following are two standard facts about minimum cuts; for proofs see [5].
Lemma 1. If two tight sets S and S’ cross, then each of S~.5’, S' S, SNS’

and SU S’ are tight. Moreover, there are no edges from S~ S’ to S’ \ S, and
there are no edges from SN S’ to SUS’.
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Lemma 2. Let G = (V, E) be a k-regular k-edge-connected graph. Suppose
either |V| = 3 or G has at least one proper min cut, and every proper min
cut is crossed by some other proper min cut. Then, k is even and G forms a
cycle, with k/2 parallel edges between each adjacent pair of vertices.

We now define our class of instances.

Definition 2 (Cycle cut instance). We say a graph G is a cycle cut
instance if every non-singleton tight set S can be written as the union of two
tight sets A, B # S.

As mentioned in the introduction this condition captures the two known
integrality gap examples of the subtour LP.

We now show an equivalent definition of cycle cut instances after giving some
definitions. First, fix an arbitrary root vertex r € V, and for all cuts we consider
we will take the side which does not contain 7.

Definition 3 (Critical cuts). A critical cut is any tight set S C V ~{r} which
does not cross any other tight set.

Definition 4 (Hierarchy of critical cuts, H). Let H C 2VST be the set of
all critical cuts.

The hierarchy naturally gives rise to a parent-child relationship between sets
as follows:

Definition 5 (Child, parent, E—(S)). Let S € H such that |S| > 2. Call the
mazximal sets C' € 'H for which C' C S the children of S, and call S their parent.
Finally, define E7(S) to be the set of edges with endpoints in two different
children of S.

Definition 6 (Cycle cut, degree cut). Let S € H with |S| > 2. Then we
call S a cycle cut if when G~ S and all of the children of S are contracted,
the resulting graph forms a cycle of length at least three with two parallel edges
between each adjacent node. Otherwise, we call it a degree cut.

While this definition of a cycle cut may sound specialized, due to Lemma 2,
cycle cuts arise very naturally from collections of crossing min cuts.

Lemma 3. If G is a cycle cut instance, then for any choice of r, H is composed
only of cycle cuts (and singletons).

One can also show that if for some choice of r, H is composed only of cycle
cuts, then G is a cycle cut instance. Thus, in the remainder of the paper, we
assume H is a collection of cycle cuts.

Given S € H, let ag = G\ S and let aq,...,ax be its children in H (which
are either vertices or cycle cuts). By Lemma 2 ag, ..., ax can be arranged into a
cycle such that two edges go between each adjacent vertex. WLOG let a1, ..., ax
be in counterclockwise order starting from ag. We call a1 the leftmost child of .S
and ay, the rightmost child.
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Fig. 2. S is an example of a cycle cut with three children. In blue are contracted critical
tight sets. In gray is the rest of the graph with S contracted. As in Lemma 2, we can
see that when G \. S is contracted into a single vertex, the resulting graph is a cycle
with 2 edges between each adjacent vertex. In our recursive proof of our main theorem
in Sect. 3, we are given a distribution of Eulerian tours over G/S, so in particular on
the red edges here, and will then extend it to G with the blue critical sets contracted
by picking a distribution over the black edges. (Color figure online)

Definition 7 (External and internal cycles cuts). Let S € H such that
S # V ~{r} be a cut with parent S’. We call S external if in the ordering
ag,...,ar of S’ (as given above), S = ay or S = ai. Otherwise, call S internal.

For example, if the blue nodes in Fig. 2 are contracted cycle cuts, the left and
right nodes are external, while the middle one is internal. Note that for an cycle
cut S with parent S’, if S is external then [6(5) N§(S")| = 2, and if S is internal
then [6(S) Nd(S")| = 0.

Using the following simple fact, we will now describe our convention for
drawing and describing cycle cuts:

Lemma 4. Let A, B,C € 'H be three distinct critical cuts such that A C B and
BNC=0orBCC. Then |[6(A)Nd(C)| < 1.

Definition 8 (6%(9),8%(S9)). Let S € H be a cycle cut. We will define a parti-
tion of §(S) into two sets §(S),57(S) each consisting of two edges.

If S # V ~ {r}, then it has a parent S’. S’ has children ay,...,ar such
that S = a; for i # 0. Let §¥(S) = 6(S) N §(a;—1) and 6%(S) = &(S) N
0(@it1 (mod k+1))- In other words, we partition the edges of S into the two edges
going to the left neighbor of S in the cycle defined by S'’s children and the two
edges going to the right neighbor.

Otherwise S = V ~ {r}. Then if ai,...,a;. are the children of S, let §¥(9)
consist of an arbitrary edge from 6(a1)N46(S) and an arbitrary edge from §(ax)N
5(9). Let 61(S) = 6(S) ~ 6E(9).

By Lemma 4 and the definition of 6%(9),5%(9) for S = V ~ {r}, if ' is
an external child of a cycle cut S, then |6%(S) N §(S)| = [6%(S) N ()| = 1.
This allows us to adopt the following convention for drawing cycle cuts which
we will call the caterpillar drawing of S: for an example, see Fig. 3. Formally,
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let S € H be a cycle cut with children aq,...,a; € H. Arrange ay,...,a; in a
horizontal line. First, expand a; vertically into its children (if it is not a singleton)
such that the unique edge in §%(S) N d(ay) is pointing up (if it is a singleton,
simply draw this edge pointing up. Then, expand as, ..., ax one by one into their
respective children (if they exist), placing the children vertically in increasing or
decreasing order of their index so that the edges from a; to a;y1 do not cross. If
ay is a singleton, arbitrarily choose which edge to draw pointing up. Otherwise,
let @’ be the topmost child of ag. Draw the unique edge in 6(S) N d(a’) pointing
up. There are two types of cycle cuts:

Definition 9 (Straight and twisted cycle cuts). Let S € H be a cycle cut.
If 6% (S) has both edges pointing up in the caterpillar drawing of S, then call it a
straight cycle cut. Otherwise, call it a twisted cycle cut. See Fig. 3 for examples.

————————————

Fig. 3. Caterpillar drawings of two different cycle cuts S. The red edges are in the
6%(S) partition, and the blue edges are in the 6%(S) partition. The left drawing is a
straight cycle cut, and the right is a twisted cycle cut as per Definition 9 (Color figure
online).

In the next section, we abbreviate the caterpillar drawing by contracting the
non-singleton children of S (see Fig.4). We do so partially for cleaner pictures
but also to emphasize that all the relevant information used by our construction
in the following section is contained in the abbreviated pictures.

Fig. 4. On the left is a shorthand caterpillar drawing for the straight cycle cut on the
left in Fig.3 obtained by contracting its children. Similarly for the right. We will use
this style of picture in future sections.
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3 Proof of Theorem 1

We now present a summary of the proof of our main result, a %—approximation for
half-integral cycle-cut instances of the TSP. To prove Theorem 1, we construct a
distribution of Eulerian tours such that every edge is used at most % of the time.
Since x, = % for every edge in the graph, this immediately implies that when
we sample a tour from this distribution, its expected cost is at most % times the
value of the LP. We work on the cycle cut hierarchy from the top down, and
inductively specify the distribution of edges that enter every cut.

Figure4 depicts our convention for visualizing a cycle cut as described in
Sect. 2. We say that a cycle cut is even if it contains an even number of children,
and odd otherwise. Fig. 6 illustrates the patterns we use, where “pattern” refers to
a multiset of edges that enter a cycle cut. For each pattern entering a parent cycle
cut, we give (randomized) rules which describe how to connect up its children
— this induces a distribution of patterns entering each child. We represent this
process using a Markov chain with 4 states, illustrated in Fig. 6. The figure shows
the mapping from patterns to states; the transitions will come from the rules
for connecting up the children, which we describe later. In the figure, each state
contains two pictures, which represent the parity of the edges in the patterns that
are mapped to the state. Specifically, a present edge is used exactly once, whereas
an edge that is not present may be either unused or doubled. For example, Fig. 7
illustrates all possible patterns that are captured by the top picture of state 1.
Finally, we maintain the invariant that if a cycle cut is in a given state, then each
of the two pictures are equally likely. (When we later give the rules for connecting
up the children, we will ensure this invariant is preserved.) Thus, when we say
a cycle cut is in a given state with probability p, this means the parity of the
pattern entering it follows the top picture in the state with probability £, and
the bottom picture with probability £. We will use the phrase “the distribution
of patterns entering a cycle cut C' is (p1,p2,P3,p4)” to mean that for all i €
{1,2,3,4}, C is in state ¢ with probability p;.

To prove our main result, we will give a feasible region R of distributions
over the states of the Markov chain, such that: 1) If the distribution of patterns
entering a cycle cut C belongs to R, there is a way to connect up the children
of C such that the distribution on each child also belongs to R, and 2) for each
p € R, the corresponding rule for connecting the children of C' uses each edge in
E~(C) at most % = %xe of the time in expectation. The feasible region is given
in Definition 10. As long as R is nonempty, 1) and 2) are sufficient to give the
result since we can induce any distribution on the cycle cut V' \ {r}.

Definition 10 (The Feasible Region). Let

2 1
R = {(P17P2,P3,P4) € Ri ip1tp2tpst+pa=1,p1+p2= 3 P2 +ps 2> 3}.

See Fig. 5 for an visualization of R in a 2-dimensional space.
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Fig. 5. The feasible region of distributions is R = {(p,% - p,% —q,q) : (p,q) € Z},
where Z is the polytope above.

Fig. 6. The patterns and how they map to states of a Markov chain. The states are
unchanged regardless of the number of children: they are defined only with respect to
which of the edges are in. Note that we ignore doubled edges.

To describe the transitions of the Markov chain, we give (randomized) rules
that dictate, for a cycle cut C' and a pattern entering it, how to connect up its
children. These rules depend on whether C' is even or odd. The final form of
the Markov chains is illustrated in Fig.8.! The meaning of taking one transition
is as follows. Suppose the distribution of patterns entering C' is (p1,p2, P3,D4),

! In the figure, if there is a variable on an arc, it means that any transition probability
in the range of that variable is possible. For example, in Peen, we can transition
from S to Sp with probability z for any z € [0, 1]; the transition from S to Ss then
happens with probability 1 — z.
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Fig. 7. In our illustrations of the patterns entering a given cycle cut, any edge that
is not present may either be unused or doubled. Therefore, all four of the given edge
configurations are represented by the upper left most state, S.

and suppose (q1, g2, g3, q4) is the resulting distribution after one transition of a
Markov chain. What this means is that for each child of C, the distribution of
patterns entering it will be either (¢1,¢2,q3,94) or (¢2, 41,93, q4) depending on
if the child is straight or twisted, respectively (see Definition 9 and Fig.3). In
particular, it can be shown that if (g1, g2, g3, q4) is the distribution induced on a
child which is a straight cycle cut, then (g2, q1, g3, g4) would be the distribution
induced on a child which is a twisted cycle cut. Thus, it is sufficient to check that:
i) the distributions induced on straight children lie in the feasible region and ii)
if (g1, 92, g3, q4) is a distribution induced on straight children, then (g2, 1, ¢3, q4)
is also in the feasible region. This corresponds to the set of distributions induced
on the children being symmetric under this transformation.?

L—y
Peven Podd

z € [0,1),w € [0,1] zels 1],ye(s,1,z€[0,2,wel02]

Fig. 8. The variables on the arcs indicate that one can feasibly transition according to
any probability in the range.

2 Note that the feasible region is not symmetric under this transformation. The dis-
tribution induced on the children is thus a symmetric subset of the feasible region.
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Proposition 1. For any cycle cut C' € H and any distribution of patterns enter-
ing C, there is a way to connect its children so that the induced distribution on
each child is given by 1) applying the corresponding Markov chain in Fig. 8, and
then 2) swapping the first two coordinates if the child is twisted.

Proof (Sketch). The proof involves going through the 8 cases one by one (depend-
ing on the parity of the cut, and which of the 4 states it is in), and showing that
in each case, there is a (randomized) rule for connecting the children that achieve
the transitions in Fig. 8. To illustrate the main idea, we show the rule in the case
that C is even and in state 4.

In this case, the rule for connecting the children of C' is illustrated in Fig.9.
Let w € [0,1]. With probability w, we make all children transition to state 2.
To do this, first suppose C has all 4 single edges entering it (the top picture in
the left box). In this case, we consider the pairs of edges in E—(C) from left
to right, and alternate 1) doubling one of the two edges with equal probability
(shown by the dotted black edges), and 2) using both edges (shown by the solid
black edges). Because C' is even, the rightmost pair of edges ends up falling in
case 1) of the alternating rule, and so all children transition to state 2. The case
where all the edges entering C' are used an even number of times (the bottom
picture in the left box) is quite similar, except we begin the alternating rule by
using both edges.

On the other hand, with probability 1 — w, we transition back to state 4.
This is accomplished by using each pair of edges in the top case of state 4, and
by doubling one edge from each pair uniformly at random in the bottom case of
state 4. The net transition probabilities are then (0, w,0,1 —w), where w can be
any number from 0 to 1. a

+ (1-w)

Fig. 9. Transition for state 4 in the even case.

We ensure that in all cases, each edge in E—(C) is used %, %, 1, 1 times in

expectation if the pattern entering C' belongs to state 1, 2, 3, 4, respectively.
Therefore, if p = (p1,p2,P3,ps) are the probabilities that we are in states 1, 2,
3, 4 respectively, then each edge in E—(C) is used exactly %pl + %pQ +p3+ps =
1-— %(pl + p2) of the time in expectation. Thus to get a %—approximation, it is
necessary that p; + p2 > % Note that if p € R, then p; + py = %, so that each
edge is used exactly % of the time.
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To complete the proof, we only need show that if the distribution of patterns
entering a cycle cut C' belongs to R, then the induced distributions on the
children also belong to R. Thus R is sufficient, in sense that if the distribution
entering a cycle cut belongs to R, then it is possible to get a %—approximation
all the way down the hierarchy using the Markov chains in Fig. 8. Moreover, we
are able to show that R is necessary; if the distribution entering a cycle cut does

4

not belong to R, then it is impossible to obtain a 3-approximation using our

Markov chains. In this sense, R is the largest feasible region using our technique.

Theorem 2. 1. (R is sufficient) If the distribution of patterns entering a cycle
cut belongs to R, then there are feasible Markov chains (among the ones shown
in Fig. 8) such that the induced distribution entering each child also belongs
to R.

2. (R is mecessary) Suppose the distribution of patterns entering a cycle cut
does not belong to R. Then it is not possible to obtain a %—appro:rimation

using the Markov chains in Fig. 8.

Proof (Sketch). For 1), we show that for any p € R and for C even or odd,
there are feasible values for the transition probabilities of the corresponding
Markov chain such that the resulting distribution q € R (and also q with its
first two coordinates swapped is in R.) The values of the transition probabilities
are derived as a function of p. For 2), we consider an arbitrary distribution p
(not necessarily in R), and let g™ and q® be the distributions obtained by
applying Peen once and twice, respectively. We then argue that p must belong
to R in order for gV and q(® to each have their first two coordinates sum to at
least % O

Example. To give the reader some more intuition, we give a specific exam-
ple of how to maintain distributions in R on all the cuts in the hierarchy by
choosing appropriate transition probabilities on the Markov chains in Fig. 8. Let
p = (%, %, %, %) and q = (%, %, %, é) (i.e. q is p with the first two coordinates
swapped). It is easy to check that p,q € R. We now show for any half-integral
cycle cut instance, it is possible to make it so that the distribution entering any
cycle cut is either p or q.

To see this, let C' be a cycle cut and suppose C' is odd. Set the transition
probabilities in Pogq to be x = y = z = w = % For these probabilities, it
is easy to check that P,qqp = Poa¢q = p.° On the other hand, if C is even,
setting 2 = w = 1 in Payen gives Poenp = P, and setting z = %,w = 1 gives
Peyenq = p- Thus, as long as the distribution entering C' is p or q, we can make
the distribution on each child of C be either p or q.

Together with Proposition 1, this already proves a %—approximation for half-
integral cycle cut instances. The additional contribution of Theorem 2 is an exact
characterization of the region of distributions that give a %—approximation using

our techniques.

3 In fact, it can be checked that for these probabilities, Poaq maps every distribution
(whose first two coordinates sum to 2), to p.
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4 Conclusion and Open Questions

Our result leads to several interesting open questions. One such open question is
whether our result extends to the case of cycle cuts for non-half-integral solutions.
We believe this to be possible through a more refined understanding of the
patterns that result from considering non-half-integral solutions.

Clearly a better understanding of what happens in the case of degree cuts is
needed to make substantial progress on the overall half-integral case. We think
it is possible to improve incrementally on the 1.4983-approximation of Gupta et
al. [6] by using a combination of ideas from this paper with a few other small
improvements. Recall that in a degree cut, each vertex has degree four, there
are no parallel edges, and every proper cut has at least six edges crossing it.
Ideally one would be able to show that any distribution on a parent cut lying in
the feasible region of Fig.5 could be used to induce a distribution on patterns
of the children of the degree cut in a subregion of the feasible region with each
edge used at most 2/3 of the time; such a result would lead immediately to a
4/3 integrality gap for half-integral instances.
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