
1.  Introduction
Along the coast, salinization and flooding caused by sea level rise (SLR) and storm surges result in the radical 
conversion of ecosystems, in response to a host of new hydrological, geomorphological, ecological, and bioge-
ochemical dynamics (Tully et al., 2019). Saltwater intrusion and flooding events kill mature trees and suppress 
germination and seedling survival in forested areas, encouraging their retreat (Antonellini & Mollema, 2010; 
Fagherazzi, Anisfeld, et al., 2019; Fagherazzi, Nordio, et al., 2019; Kirwan & Gedan, 2019; Munns & Tester, 2008; 
Pezeshki, 1992; Schieder & Kirwan, 2019; Williams et al., 1999). These events also determine the gradual or 
sudden decline of croplands (Tully et al., 2019; Williams et al., 1999) and can slow down the leaf growth of less 
tolerant tree species in coastal urban green spaces (Hallett et al., 2018).

Lateral saltwater intrusion, where saltwater migrates inland through subsurface pathways, is considered one of the 
most impactful drivers for the salinization of most coastal areas over the long term (Barlow & Reichard, 2009). 
Though less widely studied, storm surge events, despite occurring on short temporal scales, can have greater 
impact through vertical saltwater intrusion, caused by flooding and rapid vertical infiltration of saltwater. Recov-
ery time (RT) (the duration of time between initial storm-surge inundation to the return of the groundwater 
specific conductivity to baseline conditions) and penetration depth (maximum depth reached during vertical 
infiltration) are dependent on aquifer characteristics (Yang et al., 2018). Anderson (2002) estimated an aquifer 
recovery period greater than 3 years for a major hurricane overwash in a barrier island. The RT of the coastal 
aquifer in the Pukapuka Atoll after the category 5 cyclone Percy in 2005 was estimated to be around 1 year (Terry 
& Falkland, 2010). A similar event, occurred in a lower-permeability surficial aquifer, was felt up to 8 years 
after (Xiao et al., 2019). In 2013, saltwater intrusion due to supertyphoon Haiyan contaminated sandy aquifers 
of Samar Island, Philippines. The RT was estimated in 1–2 years (Cardenas et al., 2015). The effects of the 2004 
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tsunami were felt in a shallow sandy aquifer in Sri Lanka 1–1.5 years after the event (Vithanage et al., 2012). 
Salinization triggered by hurricanes Katrina and Rita persisted until 10 months after landfall in the groundwater 
system of coastal Louisiana (Van Biersel et al., 2007).

Vulnerability of coastal areas has been shown to decrease when recharge and hydraulic gradients increase (Yang 
et al., 2018). Topography itself has an impact on groundwater salinization. Saltwater accumulated in depressions 
increases the mass of infiltrated salt, whereas connected channels can promote more extensive salinization (Yu 
et al., 2016).

Many studies have focused on the hydrological, ecological, and geomorphological consequences of hurri-
canes, characterized by large storm surges (Fagherazzi, Anisfeld, et al., 2019; Fagherazzi, Nordio, et al., 2019; 
Fernandes et al., 2018; Gardner et al., 2002; Middleton, 2016). Recently, more attention has been paid about the 
effects of frequent and moderate storm events on coastal areas (Beebe et al., 2022; Wilson et al., 2011, 2015). 
However, the coupling between hydrological processes and coastal ecosystems has not been studied in detail. 
Beebe et al. (2022) estimated the consequences of a moderate storm on submarine groundwater discharge (SGD), 
with the formation of an anomalous seawater intrusion in the groundwater system. Wilson et al. (2015) deter-
mined the magnitude and the main processes controlling temporal variations in tidally driven SGD caused by 
moderate storm surges. However, most of these studies focus on a specific site, and do not provide a broad picture 
of the groundwater response at the regional scale in different coastal environments. Here, we sought to quantify 
the effect of more frequent events on coastal groundwater dynamics, extending the analysis at the regional scale in 
very different settings, and to discuss the consequences of moderate storm surge events on the coastal ecosystems. 
Between 11 and 14 October 2019, tropical storm Melissa hit the North Atlantic shoreline from North Carolina 
to Massachusetts. The storm developed over the western Atlantic Ocean, never made landfall, and evolved from 
subtropical storm to tropical storm on 12 October (Figure 1). Coastal water levels reached between 1 and 1.5 m 
above predicted levels (National Oceanic and Atmospheric Administration [NOAA]). An event of the magnitude 
of tropical storm Melissa has a return period (RP), or frequency, of about 1–2 years. Here we synthesized avail-
able groundwater level and specific conductivity measurements collected in the North Atlantic region between 
9 and 15 October 2019, to assess the effects of a frequent, medium-intensity storm surge on coastal groundwater 
at a regional scale.

2.  Methods and Data
Methods and data used are explained in Texts S1 and S2 in Supporting Information S1.

3.  Results
3.1.  Increase in Groundwater Level Correlates With Distance From the Shore and Ground Elevation

Groundwater data were analyzed in wells distributed along the North Atlantic coast from North Carolina to 
Massachusetts (Figure 1, Tables S1–S3, Text S1 in Supporting Information S1). The increase in groundwater 
level during the storm surge was significantly correlated with distance from the coast (R 2 = 0.61, p < 0.05) 
(Figure 2a) and ground surface elevation (R 2 = 0.57, p < 0.05) (Figure 2b). As expected, the effect of the storm 
on groundwater levels diminishes at greater distances from the coast and higher ground elevations. Storm effects 
on groundwater reached a minimum value of 5 cm at 4 km from the coast and at a ground surface elevation of 
11  m on NAVD88 (Figure  2a). Groundwater increments could also be attributed to freshwater contributions 
from rainfall. Therefore, the analysis was repeated excluding stations that recorded high rainfall rates (Data). The 
relationship did not significantly change when these stations were excluded (Figures S1c and S1d, Texts S1 and 
S2 in Supporting Information S1). A multiple regression analysis considering both topographic elevation and 
distance from the coast as independent variables was significant (adjusted-R 2 > 0.65, p < 0.01) (Table S4, Text 
S2 in Supporting Information S1). The mean and maximum water specific conductivity of the groundwater were 
not significantly correlated to elevation, distance from the shore, or well depth (R 2 < 0.3, p > 0.05) (Figures S3, 
S4, and Text S2 in Supporting Information S1).
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3.2.  Groundwater System Recovery After Storm Surge Event

Groundwater level and specific conductivity were significantly different before and after the storm 
(t(3.24) > tcrit(2.09), p < 0.05 for groundwater level and t(3.82) > tcrit(2.31), p < 0.05 for groundwater specific 
conductivity), suggesting that the pre-storm conditions did not immediately re-establish (Figures 3, 4a, and 4b). 
The median value of groundwater level after the storm was 6.25 cm with respect to pre-storm values. The median 
specific conductivity before the storm was 13.74 mS/cm, in comparison to a median specific conductivity of 
31.50 mS/cm after the storm (Figure 4b). Overall, conductivity values reached along the North Atlantic coast 
during the Melissa storm event are comparable to seawater conductivity values, ranging from 20 in Chesapeake 
Bay (NOAA buoy id: 8635750) and 39 mS/cm in Delaware coast (NOAA buoy id: 8557380). Variability in 
groundwater levels before the storm is significantly higher than after, likely because of differences in vegetation, 
soil, and land use. Once the storm surge occurred, groundwater levels and specific conductivity became similar 
across sites.

The groundwater recovery duration from the Melissa surge varied significantly by site (t(2.78)  >  tcrit(2.31), 
p < 0.05). Our analysis suggests that groundwater levels recovered faster than groundwater specific conduc-
tivity. The median RT was 2.2 days for groundwater levels, in comparison to 20 days for specific conductivity 
(Figure 4c). Additionally, RT of groundwater specific conductivity was more variable across sites. In particular, 
recovery times for conductivity estimated in clay soil were much higher than those estimated in sandy soil. In the 

Figure 1.  Well locations along the North Atlantic coast. Melissa storm track between 11 and 14 October 2019, according to National Oceanic and Atmospheric 
Administration (a). Before 11 October the storm was classified as extratropical (dashed white line). The storm was classified as subtropical between 11 and 12 October 
(orange lines) and as tropical from 12 to 14 October (yellow lines). (b) Well distribution in a forested area in Hog Island Bay; (c) well distribution on a beach in 
Chincoteague Bay.
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clay forested area close to Hog Island Bay (VA) (Figure 1, Table S1 in Supporting Information S1), characterized 
by soil macropores and often wet, mean time to recover was 23 days. In the marshland in Leipsic (DE) (Figure 1, 
Table S1 in Supporting Information S1), characterized by clay soil, a smaller conductivity increase, due to the 
storm surge event, dampened by marshland vegetation friction, run out in a mean RT of around 4 days. In the 
sandy beach in Chincoteague Bay (DE) (Figure 1, Table S1 in Supporting Information S1), the estimated RT was 
around 17 hr on average. The RT of groundwater specific conductivity had an interquartile range of 26 days, nine 
times larger than the interquartile range of groundwater level RT (Figure 4c). Recovery time for both groundwater 
level and conductivity were found to be not correlated with distance from the ocean, ground elevation, and well 
depths (not shown). Moreover, recovery timescale of groundwater level was not clearly correlated to sediment 
type at the wells' screen, suggesting a possible strong influence of external inputs, local morphology, and vegeta-
tion (Figure S5 in Supporting Information S1).

Figure 2.  Increase in groundwater level during Melissa versus distance from the (a) coast and (b) ground elevation. Shaded 
areas represent 0.95 confidence interval. Flooding = sites flooded from above during Melissa, No-Flooding = sites not 
flooded from above.

Figure 3.  (a) Groundwater level and (b) specific conductivity data in Hog Island forested areas H5, M1, and L1 and in 
the deep well CT along the Chincoteague beach. Specific conductivity thresholds for Pinus taeda forests under controlled 
conditions are identified according to Woods et al. (2020). Photosynthetic activity of P. taeda is optimal when specific 
conductivity conditions are below 5 ppt in unsaturated soil conditions (Poulter et al., 2008; Woods et al., 2020).
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Ratios between groundwater recovery timescale and RP for the Melissa storm were compared to similar ratios 
derived from the literature for other storms that affected coastal sites around the world (Figure 5). Ratios repre-
sent the percent of time during which the system is characterized by an anomalous conductivity and accounts for 
both the frequency and magnitude of the events. The different hydrological settings of the study sites justify the 
ratio variability. Despite the low storm surge, Melissa ratios were similar to ratios representing very energetic 
hurricanes of category 3 and 4. This is because the RP of Melissa is much lower than a hurricane, thus increas-
ing the percent of time with salinization. During Melissa, the ratio reached a value of 0.054 in clay soils, the 
highest values calculated in the analysis. Here, clay soil and the presence of soil macropores, mostly created by 
uprooting of dead trees and dense understory vegetation, encourage water retention and water infiltration during 
storm events, significantly increasing groundwater conductivity and making recovery times longer. A lower ratio 
of 0.022 estimated in a marsh in Leipsic (DE clay soil) (Figure 1, Table S1 in Supporting Information S1) was 
related to a smaller conductivity increase occurred during the storm surge event. The smallest value of 0.01 was 
reached in a sandy beach in Chincoteague Bay (DE) (Figure 1, Table S1 in Supporting Information S1), due to 
the weaker ability of the soil to retain water.

Figure 4.  (a) Peak and after storm groundwater levels compared to pre-storm values, (b) groundwater specific conductivity values before and after a storm surge event. 
(c) Recovery timescale for groundwater level and specific conductivity.

Figure 5.  Ratios between recovery time and return period for different storm events. Data were derived from the literature 
(Anderson, 2002; Cardenas et al., 2015; Hedgespeth et al., 2021; Keim et al., 2007; Kiflai et al., 2020; McDowell et al., 1996; 
Sawyer et al., 2014; Terry & Falkland, 2010; Van Biersel et al., 2007; Vithanage et al., 2012; Wachnicka et al., 2020; 
Williams, 1993).
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4.  Discussion
The medium-intensity storm surge (RP ∼1–2  years) of Tropical Storm Melissa affected coastal groundwater 
levels and specific conductivity at a regional scale along the eastern shore of the United States. The groundwater 
level increase due to the storm surge is significantly larger in wells closer to the ocean and at lower elevation. 
Nine wells at four sites, reaching a maximum distance of 500 m from the coast, comprise a representative sample 
of coastal environments on the northeastern seaboard. In our analysis we quantify the overall effect of a moderate 
storm surge event on coastal groundwater systems located in different landscapes. For instance, similar or smaller 
events can be significantly felt in barrier islands, where run-up mechanisms encourage an increase in groundwater 
level and conductivity. The same events can be slightly or no felt in inland marshland areas, where the water signal 
reaching the wells is dampened. Tidal pumping and wave setup are the main driving forces of groundwater flow 
through the beach and they tend to exacerbate the storm surge effects on sloping surfaces (Evans & Wilson, 2017; 
Nielsen, 1999). On the other hand, during its flow from the ocean to a coastal forest bordering a marshland, 
the water energy dissipates due to marsh vegetation friction, and the storm surge effect is reduced (Leonardi 
et al., 2018; Nordio and Fagherazzi, 2022; Stark et al., 2015). While we are able to draw general conclusions from 
this limited sample, these results highlight the value of additional intensive groundwater monitoring in the coastal 
zone, to capture the dynamics of SLR and coastal saltwater intrusion. Since medium intensity storm events have 
been occurring more frequently in the last century (Knutson et al., 2010; Landsea et al., 2010), they could change 
groundwater characteristics and consequently undermine ecological communities.

Our data suggest that a medium-intensity storm surge can negatively affect groundwater dynamics, preventing 
a complete recovery once the storm surge stops. Soil needs time to drain to restore the levels present before the 
storm surge. Drainage can require between 1 and 10 days in the absence of similar events. As the soil starts 
to drain, the salt concentration in the groundwater tends to decrease. The recovery timescale in shallow aqui-
fers is around 10 times higher for specific conductivity than for groundwater level. Inter-storm arrival times 
(Khaertidova & Longobardi, 2013) and hydrogeological characteristics control RT (Knutson et al., 2010; Terry 
& Falkland, 2010; Yang et al., 2018). Evapotranspiration rate can also accelerate the groundwater level recov-
ery (Gardner et al., 2002). At the same time, storm surge salinization is exacerbated by both evaporation and 
evapotranspiration processes. In intertidal coastal areas, salinity values are often higher than those recorded in 
seawater (Geng & Boufadel, 2015; Geng et al., 2016, 2021; Rajmohan et al., 2021). This especially occurs in the 
upper intertidal zone, that is less affected by tides and waves inundation, so that the new water can dilute pore 
water salinity (Geng et al., 2016). When meteorological conditions are favorable to high evaporation (i.e., high 
temperature and low humidity) capillary fringe increase soil moisture in the upper soil layer, encouraging water 
evaporation and consequently salt concentration (Geng & Boufadel, 2015; Geng et al., 2016, 2021). Groundwater 
modeling conducted on sandy beaches suggests a doubling in salinity in the intertidal zone when evaporation is 
considered (Geng & Boufadel, 2015). Geng and Boufadel (2015), showed that after maximum salinity values are 
reached during a spring tide, salinity decreased slowly due to the brackish water surrounding the beach site. After 
storm surge events, salinity values are higher, and evapotranspiration likely increases salinization with deleterious 
effects for non-salt tolerant ecosystems. The estimated time to recover from a medium-intensity storm surge event 
is shorter than the RT after a hurricane (Cardenas et al., 2015; Vithanage et al., 2012). However, hurricanes are 
less frequent, and therefore the relative time during which salinization occurs is shorter.

Specific conductivity dynamics follow the groundwater level and an upward salt flux toward the root zone can 
trigger changes in plant health (Mohamed et al., 2000; Munns & Tester, 2008). A recovery timescale of months 
for groundwater specific conductivity can be crucial for salt-intolerant vegetation, particularly if it occurs with 
a RP of only 1 or 2 years. In this scenario, along forested areas close to marshland, mature trees can defoliate or 
die (Fagherazzi, Anisfeld, et al., 2019; Fagherazzi, Nordio, et al., 2019). Pinus taeda dominates maritime forests 
in the southern portion of our study region (Hog Island and Chesapeake Bay sites). This tree is moderately 
flood-tolerant (Pezeshki, 1992) and able to establish and survive in specific conductivity conditions up to 5 ppt 
(∼8 mS/cm at 20°C) (Poulter et al., 2008; Woods et al., 2020). Seedlings are more sensitive to specific conduc-
tivity increase while mature trees can show greater salt tolerance (Kirwan et  al.,  2007; Poulter et  al.,  2008). 
Woods et al. (2020) observed that, under controlled conditions in a growth chamber, Pinus taeda germination 
was unaffected at up to 10 ppt (∼17 mS/cm at 20°C) salinity and germination was reduced by half when salinity 
was 20 ppt (∼32 mS/cm at 20°C). The groundwater specific conductivity levels reached during the Melissa storm 
surge were between two and five times higher than the tolerated conductivity levels. These high salinity levels 
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can affect photosynthetic dynamics, stomatal conductance, and biomass production (Pezeshki, 1992). Stress due 
to inundation can compound the stress of saltwater exposure (Pezeshki, 1992; Poulter et al., 2008). Pitch pine 
(Pinus rigida), black oak (Quercus velutina), and white oak (Quercus alba) dominate forests at the Wellfleet site 
(Hall et al., 2002; Smith et al., 2011). Pitch pines are quite intolerant to salt spray (Griffiths & Orians, 2004) and 
succumb to total immersion in two to 4 weeks (Craine & Orians, 2006). Oaks, however, can survive but only 
at conductivity levels up to 4 mS/cm (Kotuby-Amacher et al., 2000). In farmland sites, salinity levels tolerated 
by the crops are generally up to 2 ppt (∼4 mS/cm at 20°C) (Tully et al., 2019), much lower than salinity levels 
reached during Melissa. Storm surge events not only directly affect the survival of native species, but also encour-
age encroachment of more flooding and salt tolerant plants that establish in the disturbed ecosystem (Noto & 
Shurin, 2017).

According to our analysis, the estimated groundwater recovery times are sufficiently lower than the RP of Melissa 
so we can suppose that, in absence of external competitors, once original conditions are re-established, vegetation 
regeneration restarts. However, SLR and global warming will decrease the RP of these storms in the near future, 
and a subtropical storm event like Melissa will have more drastic consequences. For example, with a sea level 
increase of 50 cm, the magnitude of a storm surge like Melissa could become comparable to storm surges that 
today have a return time between 5 and 14 years (Figure S6 in Supporting Information S1). Therefore, moderate 
but frequent storm events could affect ecosystems survival, frequently changing hydrological conditions and 
consequently stressing photosynthetic activity of native species (Budke et al., 2008; Vreugdenhil et al., 2006). 
Although major hurricanes and storms have catastrophic consequences on society and economy, moderate but 
frequent storm surge events also contribute to ecological change.

Our analysis indicates that the groundwater level and specific conductivity are similar across the studied wells 
after Melissa, suggesting more homogeneous groundwater post-storm conditions. This mainly occurs in shal-
low aquifers. Hydrological variability can be a crucial driver of biodiversity at most scales of analysis (Konar 
et al., 2013). Therefore, this homogenizing phenomenon might drastically reduce biodiversity and consequently 
affect ecosystem functioning (Konar et al., 2013). At some coastal locations, SLR and frequent tropical storms 
are already reshaping the landscape with an irreversible impact on biodiversity (Allen & Lendemer, 2016; Burkett 
et al., 2008), and consequently affect socio-economic development (Midgley, 2012; Sylvain & Wall, 2011). Here 
we put forward the hypothesis that homogenization of conductivity and groundwater levels driven by moderate 
storms can be partly responsible for loss of biodiversity.

The United States Geological Survey (USGS) stations used herein do not include specific conductivity measure-
ments. The paucity of available conductivity data hampered our analysis on the extent of groundwater salinization 
due to Tropical Storm Melissa. Conductivity monitoring across a broad swath of the coastal zone is imperative to 
detect how climate change affects coastal groundwater resources. Our study is unique because in the past, salin-
ization and flooding due to storm surge events have been investigated at the continental scale using only numer-
ical models (Guimond & Michael, 2021; Knutson et al., 2010; Paldor & Michael, 2021; Yang et al., 2018). This 
research illustrates the value of field studies of saltwater intrusion and highlights a broader need for large-scale 
data sets.

5.  Conclusions
Our analysis demonstrates that frequent storm surges (RP ∼1–2 years) affect groundwater at a regional scale. 
Groundwater level and specific conductivity increased after Tropical Storm Melissa up to 4  km inland. The 
change in groundwater level decreased with elevation and distance from the coast. Recovery time of groundwater 
specific conductivity was 10 times greater than the RT of water level in shallow wells. A frequency-magnitude 
analysis indicates that the percent of time with salinization after Melissa is of the same order if not higher than the 
relative salinization periods of energetic hurricanes and tsunamis, highlighting the potential damage of moderate 
but frequent storms on coastal ecosystems.

Long high-conductivity periods can trigger forest dieback and favor the encroachment of new vegetation species. 
Groundwater level and specific conductivity after the storm surge were more uniform. This homogenizing process 
can trigger loss in biodiversity, encouraging the establishment of monotonic halophyte vegetation. Large-scale 
efforts to monitor groundwater conductivity in the coastal zone can help to characterize the effect of ever-more 
frequent storms on groundwater and related ecosystems to inform resource management.
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Data Availability Statement
Part of the data supporting findings of this research are openly available in the Long Term Ecologi-
cal Research-Virginia Coast Reserve (LTER-VCR) at https://doi.org/10.6073/pasta/942a5a981e6e986c-
5fa1a9a9cd2eb8b7, in the National Oceanic and Atmospheric Association (NOAA) repository at 
https://www.noaa.gov/ and in the United States Geological Survey (USGS) repository at https://doi.org/10.5066/
P9XQ27F5 and https://doi.org/10.5066/F7P55KJN.
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