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space and time and would inform the decision-making 
process for landscape managers.
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Introduction

Invasive species are living organisms that spread rap-
idly within an environment, typically outcompeting 
other organisms, leading to changes in ecosystem pro-
cesses and functioning (Ehrenfeld, 2010; Linders et al., 
2019; Vitousek et  al., 1996). The cost of ecosystem 
loss and required management associated with inva-
sive species was estimated to potentially reach $162.7 
billion worldwide in 2017, a threefold increase per 
decade since 1970 (Diagne et al., 2021). The spread of 
non-native plant species through the global horticulture 
trade and increasing global temperatures have created 
the conditions for increased occurrences of biologi-
cal invasions (Bertelsmeier et al., 2013; Bradley et al., 
2012; Hellmann et al., 2008; Reichard & White, 2001). 
Phragmites australis, also known as common reed, 
has become a dominant plant in the wetlands of North 
America (Chambers et  al., 1999). There are two sub-
species of Phragmites australis in North America, one 
native (subsp. americanus) and one non-native (subsp. 
australis) (Saltonstall, 2002, 2003; Saltonstall et  al., 
2004). Non-native Phragmites is considered invasive 
in North America because of its rapid expansion, espe-
cially in tidal areas, and the ability to outcompete other 
marsh plants, while native Phragmites is non-invasive 
and much less common (Marks et al., 1994; Saltonstall, 
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2002). In this paper, we use “Phragmites” in reference 
to the non-native subspecies.

Phragmites is commonly found in wetland areas; 
however, it also grows in dry upland areas (Avers 
et al., 2014). It is a perennial grass that grows taller 
than most marsh plants at 2 to 5 m in height, grow-
ing in large dense patches (Saltonstall et  al., 2004). 
Habitat alterations caused by the invasion of Phrag-
mites include the reduction of marsh edge, increased 
aboveground biomass, and decreased salinity levels 
(Windham & Lathrop, 1999). Moreover, Phragmites 
lowers plant biodiversity by outcompeting marsh 
plant species and communities such as Typha spp., 
marsh meadow, and sedge/grass hummock (Wilcox 
et al., 2003). These alterations and losses in plant bio-
diversity negatively affect many critical animal spe-
cies living in marsh habitats. Wetlands dominated by 
Phragmites patches were shown to have significantly 
fewer bird species and decreased success of turtle 
nesting (Benoit & Askins, 1999; Bolton & Brooks, 
2010; Robichaud & Rooney, 2017).

Human disturbances to wetland ecosystems have 
been found to increase the spread of Phragmites. For 
example, the conversion of wetlands to other land uses 
such as ditches and roads facilitates the spread of Phrag-
mites by creating conditions in which Phragmites can 
survive, including high variations in water level and 
exposure to deicing salt (Jodoin et al., 2008). A strong 
link has also been made between shoreline development 
and the invasion of Phragmites, with over 90% of inter-
marsh variation of Phragmites cover attributed to shore-
line development in New England salt marshes (Silliman 
& Bertness, 2004). Other disturbances such as increased 
nutrient loads and clearing of other vegetation also facil-
itate the spread of Phragmites (Kettenring et al., 2012; 
Minchinton & Bertness, 2003). Phragmites invasions 
are of particular concern in coastal regions where marsh 
migration is occurring due to sea level rise (Schieder 
et al., 2018). Sea level rise is a major driver of saltwater 
intrusion, the encroachment of saline water into inland 
coastal ecosystems, facilitating marsh migration (Gedan 
& Fernández-Pascual, 2019). Saltwater intrusion creates 
an opportunity for the salt-tolerant Phragmites to invade  
where other plants have been displaced (Tully et  al., 
2019). In the Delaware Bay, 32% of the forest area lost 
due to saltwater intrusion was populated by a Phragmites- 
dominated salt marsh in 2006 (Smith, 2013).

To combat the negative effects caused by Phragmites, 
many local governments have developed Phragmites 
control programs. For example, the Delaware Phrag-
mites Control Cost-Share Program offered by the Dela-
ware Division of Fish and Wildlife and the U.S. Depart-
ment of Agriculture’s Natural Resources Conservation 
Program (USDA NRCS) provides technical and finan-
cial assistance to landowners with wetlands invaded by 
Phragmites on their properties (DNREC, 2022). In the 
USA, land managers from public and private conserva-
tion organizations spent more than $4.6 million per year 
on Phragmites management between 2005 and 2009 
(Martin & Blossey, 2013). Methods of Phragmites con-
trol rely on repeated cutting, burning, and application of 
herbicide (Hazelton et al., 2014; Mal & Narine, 2004). 
For Phragmites control efforts to be successful, it is 
critical to have accurate information on the geographic 
location and extent of invasions (Anderson et al., 2021; 
Bourgeau-Chavez et al., 2013). Thus, large-scale maps 
of Phragmites are a critical tool in Phragmites control. 
Remote sensing imagery can be utilized to create accu-
rate maps of Phragmites while reducing the time and 
labor costs of in situ methods of detection. Furthermore, 
Phragmites management may benefit from watershed-
scale control efforts in coastal regions (Hazelton et al., 
2014). Remote sensing techniques enable mapping 
at large spatial scales and thus have the potential to 
increase the effectiveness of Phragmites control efforts.

The effectiveness of remote sensing classifications for 
the mapping of Phragmites to inform control efforts is 
reliant on the spatial resolution, geographic extent, tem-
poral resolution, and availability of the remotely sensed 
imagery. To control Phragmites, the location of invasions 
should be known with accuracy and precision. Previ-
ous research has mapped Phragmites with moderate-
resolution datasets and achieved user’s accuracy from 43 
to 91% for Phragmites (Bourgeau-Chavez et  al., 2013, 
2015; Rupasinghe & Chow-Fraser, 2019). Data should 
also be available at large spatial and temporal scales for 
effective and repeated watershed-level control efforts. 
Many studies have mapped Phragmites at a high resolu-
tion through the use of unmanned aerial systems (UAS) 
with user’s accuracy for Phragmites ranging from 31 to 
82% (Abeysinghe et  al., 2019; Anderson et  al., 2021). 
One disadvantage of relying on UAS for Phragmites 
mapping is that the data collected through these efforts 
are not readily available throughout the USA and often 
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cover a small spatial extent. To address these challenges, 
we utilized high-resolution (1 m) aerial imagery from the 
National Agriculture Imagery Program (NAIP) to map 
Phragmites with higher accuracy and precision com-
pared to datasets reliant on moderate-resolution imagery. 
NAIP data is collected at the state scale for every state 
in the USA on an approximately 2- to 3-year cycle with 
data going back to 2003. The state-level geographic scale 
of NAIP data also enables its use for statewide analysis. 
Additionally, NAIP data is freely available and accessi-
ble through Google Earth Engine (GEE), making it eas-
ily accessible for efforts of Phragmites control. Previous 
research has used NAIP images to manually identify 
Phragmites to create a dataset to train a machine-learning  
model with moderate-resolution Landsat images as 
input (Liu et al., 2016a). Other studies have also mapped 
Phragmites by using NAIP imagery as an input into 
machine learning classifiers (Correll et  al., 2019; Liu 
et al., 2016b; Xie et al., 2015). While NAIP imagery has 
been successfully used for Phragmites classification, 
reviews of image classification based on NAIP imagery 
alone indicate that the spectral limitations of NAIP can 
lead to decreases in accuracy (Maxwell et al., 2017). To 
address this limitation, Maxwell et al. (2017) suggested 
simplifying NAIP-based classifications by aggregating 
classes together and using spectral ratios to increase clas-
sification accuracy.

Here, we built upon previous methods of NAIP-based 
classifications of Phragmites and addressed the limitations 
of NAIP by focusing on only three land cover classes and 
using a normalized difference vegetation index (NDVI) in 
our analysis. Furthermore, we evaluated the use of princi-
pal component analysis (PCA) to create additional input 
bands to improve the accuracy of our classification. This 
new method of classifying Phragmites with combined 
NAIP bands, NAIP-derived NDVI, and PCA bands was 
used to quantify the spatial distribution of Phragmites 
across the State of DE. In this paper, we answer the follow-
ing questions:

1.	 Can high-resolution NAIP imagery be used to 
accurately classify Phragmites in the state of DE?

2.	 Does the use of NDVI and PCA along with NAIP 
spectral bands lead to higher accuracy in the map-
ping of Phragmites when compared to using just 
NAIP bands?

3.	 What is the spatial extent of Phragmites in DE in 
2017?

Materials and methods

Study area

The eastern USA state of Delaware (DE) borders the 
Atlantic Ocean and is comprised of three counties from 
north to south, New Castle, Kent, and Sussex (Fig. 1). 
With an average elevation of just 18 m above sea level, 
DE has a high number of tidal and non-tidal wetlands 
in which Phragmites grows. Other types of vegetation 
commonly found in DE’s estuarine wetlands include 
narrowleaf cattail (Typha angustifolia), marsh elder (Iva 
frutescens), saltmarsh cordgrass (Spartina alterniflora), 
big saltmarsh cordgrass (Spartina cynosuroides), sea-
side goldenrod (Solidago sempervirens), three-square 
bulrush (Schoenoplectus pungens), and spike saltgrass 
(Distichlis spicata) (NWI, 1985). Although Phragmites 
is also found in freshwater wetlands, we have mapped 
them in estuarine wetlands within DE (Fig.  1) which 
comprise the majority of DE’s non-forested wetlands, 
where Phragmites is the most prevalent (NWI, 1985; 
Saltonstall, 2002). We used the wetlands map produced 
by Delaware Department of Natural Resources and 
Environmental Control (DNREC) and the Conservation 

Fig. 1   The distribution of estuarine wetlands within DE
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Management Institute (CMI) at Virginia Polytechnic 
Institute and State University (Virginia Tech) for the 
National Wetlands Inventory (NWI) to delineate only 
estuarine wetlands—the study area here (U.S. Fish & 
Wildlife Service, 2018). The total area of the estuarine 
wetlands in DE is around 460 km2.

Aerial imagery data

To identify Phragmites, freely available high-resolution 
imagery was used from NAIP, which is run by the United 
States Department of Agriculture (USDA) and acquires 
high-resolution (1  m) aerial imagery of Earth’s surface 
over the continental USA (NAIP, 2012). The imagery 
provides spectral information in the red, green, and blue 
channels beginning in 2003. Spectral information in the 
near-infrared (NIR) channel also became available start-
ing in 2007 for some states (NAIP, 2012). NAIP data was 
originally collected once on a 5-year cycle, but switched 
to a general 3-year cycle beginning in 2009 (NAIP, 2012).

NAIP imagery is commonly used for land monitor-
ing purposes, such as mapping forest characteristics 
at a high-resolution (Basu et  al., 2015; Davies et  al., 
2010; Hogland et  al., 2018), or increasing classifica-
tion accuracy for mapping complex urban areas (Hayes 
et al., 2014; Nagel & Yuan, 2016). We used NAIP data 
for classifying Phragmites due to its high-resolution 
and demonstrated application in plant classification 
(Correll et al., 2019; Liu et al., 2016b; Xie et al., 2015). 
However, NAIP data have some drawbacks such as 
inconsistent temporal coverage within a year, low radi-
ometric resolution (8-bit) when compared to satellite 
sensors, and large shadows in proximity to trees, build-
ings, and other large structures. NAIP data is typically 
captured at the height of the growing season when 
Phragmites is at its peak growth stage. Due to the lack 
of trees and buildings in most estuarine wetland areas, 
shadows also had little effect on our classification.

The cloud-based geospatial data processing platform 
GEE was used for data compilation, processing, and 
classification. GEE allows easily reproducible analyses 
through its freely available script-based interface and 
efficient processing of large datasets (Gorelick et  al., 
2017). For this study, we used all four spectral bands 
(red, green, blue, and NIR) from the most recently 
captured NAIP imagery in July 2017. Available NAIP 
scenes in DE were mosaiced and clipped to the bound-
ary of all estuarine wetlands throughout the state.

Normalized difference vegetation index

To assess the use of spectral indices in our classifi-
cation, we calculated NDVI from the NAIP imagery. 
NDVI is a proxy for vegetation health based on the 
greenness of a vegetation “pixel” using bands from 
the NIR and red portions of the electromagnetic spec-
trum. NDVI is calculated using the following equa-
tion (Rouse et  al., 1974; Townshend et  al., 1985; 
Tucker et al., 1985):

NAIP-derived NDVI has previously been used as 
an input band for land cover classifications because of 
the additional information it provides in distinguish-
ing different vegetation types. (Hayes et al., 2014; Li 
et al., 2014).

For NAIP data to be effectively used for differenti-
ating Phragmites from other marsh plants, Phragmites 
should have a distinct spectral signature during the 
summer months of June and July when NAIP images 
are usually captured. To ensure the suitability of NAIP 
summer images for classifying Phragmites, the vegeta-
tion phenology of DE’s estuarine wetlands was assessed 
using Sentinel-2 images. A time series of monthly 
NDVI values for the entire year of 2017 was plotted for 
each of the three land cover classes using 10-m Senti-
nel-2 Level-1C images. Level-1C top of atmosphere 
reflectance was used over Level-2A bottom of atmos-
phere reflectance because Level-2A imagery was not 
globally generated until December 2018. Sentinel-2 has 
been frequently used in phenology research due to its 
high revisit frequency of 5 days and higher spatial reso-
lution (10  m) than other publicly accessible satellites 
such as Landsat (30 m) (Misra et al., 2020). NDVI was 
used as an indicator to track phenological differences in 
Phragmites and other vegetation because of its ability to 
estimate plant growth (Wu et al., 2017). Monthly medi-
ans were calculated for each of the 12 months in 2017 
when the NAIP data was collected. Sentinel-2 images 
were cloud masked using the QA60 band in GEE.

Principal component analysis

We also assessed the use of additional band transforma-
tions through PCA. PCA is a data reduction method 
that converts potentially correlated variables into a set of 

NDVI =
NIR − red

NIR + red
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uncorrelated variables (Jolliffe & Cadima, 2016; Pearson, 
1901). In our study, five PCA bands were derived from 
four spectral bands and one NDVI band. The PCA bands 
were calculated in GEE using the eigenanalysis workflow 
available on the platform (GEE, 2022). First, the input 
images were converted to 1-D arrays, from which a vari-
ance–covariance matrix was calculated. Next, the “eigen” 
command was used to calculate eigenvalues and eigen-
vectors for the variance–covariance matrix. The original 
image array was then multiplied by the eigenvectors to 
calculate the principal components. Finally, the principal 
components were normalized by their standard devia-
tions. PCA has been used in remote sensing image clas-
sification both for reducing data dimensions and directly 
as input bands to be used in classifying an image (Celik, 
2009; Chang & Yoon, 2003; Li & Yeh, 1998; Rodarmel 
& Shan, 2002).

Classification method: random forest

In this study, we developed three random forest (RF) 
models with different sets of input bands. RF is a 
machine learning algorithm that relies on an ensem-
ble of uncorrelated decision trees to make a decision; 
trees are kept uncorrelated by using a bagging method 
in which decision trees randomly sample from a dataset 
(Breiman, 2001). RF classifiers have been widely used 
in remote sensing image classifications with high accu-
racy (Belgiu & Drăgu, 2016; Gislason et al., 2006; Pal, 
2005; Rodriguez-Galiano et al., 2012). We used an RF 
classifier with 100 trees as a prior study indicated that 
more than 128 trees result in little to no performance 
gain (Oshiro et  al., 2012). The remaining parameters 
were set to their default values in GEE as follows: 
variables per split = 2 or 3 depending on the number of 
input variables (defaults to the square root of the num-
ber of variables); minimum leaf population = 1, bag 
fraction = 0.5, out-of-bag mode = false, and seed 0 (ran-
dom seed). The RF classifier used is from the Statistical 
Machine Intelligence and Learning Engine (SMILE) 
implemented in GEE. We compare three different RF 
models with different sets of input bands (Table  1). 
In the first RF model, we used the original four NAIP 
bands (red, green, blue, and NIR) as input into the clas-
sifier. In the second model, we used the four NAIP 
bands and the NDVI band. In the third RF model, we 
used the five NAIP-derived PCA bands as input (PCA 
1, PCA 2, PCA 3, PCA 4, PCA 5).

We identified three landcover classes in our clas-
sification: Phragmites, other vegetation, and water. 
Phragmites represents any area covered by Phrag-
mites. The “other vegetation” class covers all veg-
etation in the study area other than Phragmites (such 
as those listed in "Study area" section). The “water” 
class includes any pixels covered entirely by open 
water. Phragmites could be distinguished from other 
marsh vegetation due to its unique structure, mak-
ing it appear different in color and texture from sur-
rounding vegetation in the summertime NAIP images 
(Fig. 2a, b). We did not consider common land cover 
classes, such as forest or impervious surface, as these 
are rarely present within the estuarine wetlands of DE.

Variable importance

We calculated variable importance from the RF clas-
sification to determine which spectral bands are more 
effective in the classification of Phragmites. Variable 
importance is a measure of the influence that each 
individual input variable has on the output of a model. 
In remote sensing, the variable importance derived 
from RF land cover classifications has been used 
to identify the most relevant data (Belgiu & Drăgu, 
2016). Two common methods used to measure variable 
importance from RF models are out-of-bag error and 
Gini impurity (Breiman, 2001; Breiman et  al., 1984; 
Han et  al., 2016). In this paper, variable importance 
was calculated as Gini impurity from the SMILE, in 
GEE (SMILE, 2022). Gini impurity-based importance 
measures the impurity each time a node is split. Impu-
rity is the probability of incorrectly classifying a ran-
dom sample in the dataset given that it was randomly 
labeled by the class distribution. The decrease in impu-
rity is summed for each variable across each tree. The 
result of the Gini impurity is a single value for each 
input variable estimating the importance of that vari-
able on the output of the model.

Table 1   Summary of all three RF model input bands

Input bands

Model 1 Red, green, blue, NIR
Model 2 Red, green, blue, NIR, NDVI
Model 3 PCA 1, PCA 2, PCA 3, PCA 4, PCA 5
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Reference data

The initial set of reference data was collected in the 
field by recording point locations of Phragmites patches 
in estuarine wetlands within New Castle County, DE 
(Fig.  2c, d). Points were collected using the mobile 
application Epicollect5 by finding patches of Phrag-
mites along roads and footpaths in New Castle and Kent 
County. One point was collected along the edge of each 
individual connected patch of Phragmites. These points 
were then adjusted to the center of the patch using the 
software ArcGIS Pro. Further reference points were col-
lected by visual inspection of the NAIP aerial imagery 
and the PCA bands. Points collected through the visual 
assessment of the NAIP imagery were then verified  

using Google Earth Pro’s street view, which was effec-
tively used to identify Phragmites patches that could 
be seen from the road. Reference points for 500 Phrag-
mites and 400 other marsh plants were collected using 
this method. In addition, 150 water points were selected 
solely based on the NAIP imagery, resulting in a total 
of 1050 reference points that were then used for train-
ing and testing the RF classifier.

Accuracy assessment

An accuracy assessment was conducted to assess and 
compare the performance of each RF model. A total 
of 70% reference points (n = 731; Phragmites = 340, 
other vegetation = 283, water = 108) were used to train 

Fig. 2   Phragmites patches 
in an estuarine wetland as 
seen from a Google Street 
View and on a b NAIP true 
color image for the same 
location. Maps of all the 
collected reference points 
across three landcover 
classes for c training the 
machine learning classifier 
(70% of reference points) 
and d testing the accuracy 
of the classification (30% of 
reference points)
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the classifier, and 30% (n = 319; Phragmites = 160, 
other vegetation = 117, water = 42) were used to test 
the accuracy of the predictions. The accuracy of the 
classifications was assessed using an error matrix and 
kappa coefficient, a commonly used method in remote 
sensing image classification (Rwanga & Ndambuki, 
2017). The total number of points that were correctly 
predicted was divided by the total number of test 
points to calculate the overall accuracy, an indicator 
of how closely the supervised classification matched 
human observations. A user’s accuracy and the pro-
ducer’s accuracy were then calculated. The user’s 
accuracy is calculated by dividing the number of cor-
rectly classified reference points in a single class by 
the total number of reference points being assigned to 
that class by the classifier. This represents an error of 
commission and is useful in determining how accu-
rately each land cover is being classified. Producer’s 
accuracy is the number of correctly classified refer-
ence points divided by the total number of reference 
points and reflects an error of omission. In addition, 
a kappa coefficient was calculated to evaluate the 
results of the classification in comparison to random 
guessing. (Cohen, 1960; Congalton, 1991).

Results

Effectiveness of NAIP for classifying Phragmites

The overall accuracies for all three RF Models were 
greater than 90%, indicating that they all can be used 
to quantify Phragmites with confidence. RF model 1 
using the four NAIP bands alone achieved a high over-
all accuracy of 94% and kappa of 0.90 (Table 2). RF 
model 2 with an NDVI band in addition to the four 
NAIP bands achieved a similar overall accuracy of 
94% and slightly lower kappa of 0.89 compared to 
RF model 1. RF model 3 which utilized PCA bands 
only yielded the highest overall accuracy of 95% and 
a kappa coefficient of 0.92. The increase in overall 
accuracy between RF model 1 or 2 and 3 was due to 
an increase in the user’s accuracy for the Phragmites 
class, increasing from 94–95 to 97% and an increase 
in producer’s accuracy for the other vegetation class, 
which increased from 92–93 to 96%. When classify-
ing marshes dominated by Phragmites, all three mod-
els tended to yield similar results (Fig.  3a–d). Dif-
ferences in model output can better be observed in 
marshes dominated by plants other than Phragmites, 

Table 2   Confusion 
matrices and accuracy 
assessments for both RF 
models

Reference points

Classified points Phragmites Other 
vegetation

Water User’s accuracy Producer’s 
accuracy

RF model 1
  Phragmites 151 8 0 95% 94%
  Other vegetation 9 109 2 91% 93%
  Water 0 0 40 100% 95%
  Overall accuracy 94%
  Kappa 0.9

RF model 2
  Phragmites 150 9 0 94% 94%
  Other vegetation 9 109 2 91% 92%
  Water 0 0 40 100% 95%
  Overall accuracy 94%
  Kappa 0.89

RF model 3
  Phragmites 154 5 0 97% 95%
  Other vegetation 8 110 2 92% 96%
  Water 0 0 40 100% 95%
  Overall accuracy 95%
  Kappa 0.92
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where model 1 and model 2 overpredict the Phrag-
mites class compared to model 3 (Fig. 3e–h). To quan-
tify the extent of Phragmites in DE, the output from 
RF model 3 was used due to its higher overall accu-
racy, kappa, user’s accuracy for the Phragmites class, 
and decreased likelihood to overpredict Phragmites.

Monthly NDVI data from Sentinel-2 in 2017 reveals 
that the spectral signature of Phragmites is the most dis-
tinct from other vegetation and water during June and 
July (Fig. 4). Moreover, the NDVI values of Phragmites 
are distinct from those of other vegetation throughout 
the months of May through October, thus justifying the 
use of summer and early fall NAIP images in Phrag-
mites identification.

Variable importance of NDVI and PCA bands

The NIR band has the highest variable importance in 
RF model 1 (Fig. 5a) followed by the blue band. In 
RF model 2, the NDVI band has the highest variable 
importance, followed by the blue band (Fig.  5b). In 
RF model 3, the PCA 1 band has the highest impor-
tance followed by PCA 3 (Fig. 5c). The histograms in 
Fig. 6 show the pixel values for the classified points 
across all ten NAIP-derived bands used in this study 
with notable differences observed for different bands. 
For example, the pixel values of PCA 1 and 3 for the 
Phragmites class are higher than the values for the 
other vegetation and water classes (Fig.  6h), result-
ing in separable spectral clusters. Conversely, the red 
band’s pixel values show little separation between 
Phragmites and other vegetation (Fig. 6b).

Spatial extent of Phragmites in DE

Our findings indicate that Phragmites is widespread 
throughout DE; however, there are spatial variations 
between counties. We estimate that 11% of the estuarine 
wetland area in DE is covered by Phragmites, totaling 
52 km2 (Fig. 7a). Of DE’s three counties, New Castle 
has the highest percentage of estuarine wetlands covered  
by Phragmites at 17% (Fig. 7c), while having the least 

Fig. 3   Comparison of results from the three RF models for a 
marsh dominated by Phragmites (a–d) and a marsh dominated 
by other vegetation (e–h). a, e visualize the red, green, and blue 
bands from the NAIP which are used as input into the model, 
b, f show results from RF model 1 which uses the four original 

NAIP bands, c, g show results from RF model 2 which use the 
four NAIP bands and an NDVI band, and d, h show the results 
from RF model 3 which uses five PCA bands derived from the 
NAIP and NDVI bands

Fig. 4   Monthly NDVI values for the three land cover classes 
for 2017
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area covered by Phragmites at 15 km2 (Fig. 7b). Kent 
County has the second highest percentage of estuarine 
wetlands covered in Phragmites at 11% while also hav-
ing the highest area covered by Phragmites at 19 km2 . 

Finally, Sussex County has the lowest percentage of 
estuarine wetlands covered by Phragmites at 9%, total-
ing 17 km2.

Fig. 5   The variable importance of each input band used in all three RF models using Gini impurity. Higher values for an input band 
indicate higher importance of that band in increasing classification accuracy

Fig. 6   Histograms of the digital values for pixels in each input band from the NAIP, NDVI, and PCA grouped by the manual clas-
sification of the land cover classified for that pixel (Phragmites, other vegetation, or water)
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Discussion

In this study, we achieved an overall high accuracy of 
94%–95% in classifying Phragmites, irrespective of the 
NAIP-derived input bands used. However, the mapping 
of Phragmites using remote sensing presents several 
challenges, such as those stemming from similar spec-
tral signatures between Phragmites and other marsh 
vegetation and the large diversity of marsh vegetation 
creating overlapping spectral signatures. Despite having 
limited spectral and seasonal information, NAIP images 
from  the summer of  2017 provided sufficient details  
for Phragmites to be visually distinguishable from other 
vegetation within DE’s estuarine wetlands. Phragmites 
patches have a distinct color and texture, primarily due 
to their distinct values in the blue and NIR portions 
of the electromagnetic spectrum compared to other 
marsh vegetation in the surrounding areas (Fig. 6). The 

spectral separation of Phragmites from other vegetation 
and water was greatest during summer months, mean-
ing that NAIP data which is typically collected during 
summer is an effective source for mapping Phragmites. 
This result is consistent with another study which found 
that the separability of Phragmites from most other 
vegetation types was greatest during July based on mul-
tispectral moderate-resolution satellite data (Rupasin-
ghe & Chow-Fraser, 2019).

The NAIP data provides a clear visual distinction 
between the three land cover classes (Phragmites, other 
vegetation, and water) (Fig. 8a, b). The first three PCA-
derived NAIP bands also show this distinction (Phrag-
mites, other vegetation, and water), with Phragmites 
appearing in a darker color compared to the surround-
ing vegetation (Fig. 8d). This aligns with prior research 
that has concluded that the first few PCA bands of a 
remotely sensed image generally reduce noise compared 

Fig. 7   Classification results 
from the most accurate 
RF model, RF model 3. 
The left panel shows the 
spatial distribution of 
Phragmites in the classified 
land cover image (a). Right 
panels show the total area 
under the Phragmites class 
in each DE county (b) and 
the percentage of classified 
wetland areas covered by 
Phragmites (c)

Page 10 of 16478



Environ Monit Assess (2023) 195:478

1 3
Vol.: (0123456789)

to the final components (Fung & LeDrew, 1987). This 
visual distinction is most evident in the PCA 3 band,  
which demonstrates a sharp contrast between the Phrag-
mites and surrounding vegetation, as Phragmites 
appears in bright whitish color compared to the darker 
gray of other vegetation and water (Fig. 8c). Thus, clas-
sified images from 1 year with such distinct separability 
between Phragmites and other vegetation from the PCA 
3 band can facilitate effective “on-the-screen” collec-
tion of large volumes of reference data to train and test 
machine learning models for other years, minimizing the 
need for in situ data collection on an annual basis.

The user’s accuracy for Phragmites of 97% obtained 
through the use of NAIP bands, NDVI, and PCA is com-
parable to or higher than those achieved in prior studies 
using other remote sensing methods for mapping Phrag-
mites. For example, Bourgeau-Chavez et al. (2013) and 
Bourgeau-Chavez et  al. (2015) used synthetic aperture 
radar (SAR) to map Phragmites with a user’s accuracy of 
43% and 64% respectively. Pengra et al. (2007) mapped 
Phragmites with a user’s accuracy of 61.1% using hyper-
spectral remote sensing. Samiappan et  al. (2016) and 
Abeysinghe et al. (2019) achieved a high user’s accuracy 
for Phragmites mapping (between 94 and 99% at dif-
ferent sites) through the use of high-resolution imagery 
captured by an unmanned aerial system (UAS) and com-
puted bands such as a gray-level co-occurrence matrix 
(GLCM), NDVI, and canopy height model (CHM). 
This paper presents a method with comparable accu-
racy, and the use of freely accessible NAIP data with 
coverage across the USA on a cloud computing plat-
form, thus making it more affordable in terms of cost, 
time, and computational power. A similar NAIP-based 
classification of Phragmites that utilized the four NAIP 
bands (red, green, blue, and near-infrared) and multiple 
wetland plant species as output classes achieved a user’s 

accuracy of 85% and a producer’s accuracy of 85–99% 
for Phragmites (Xie et  al., 2015). Our results showed 
that including an NDVI band (calculated using red and 
NIR bands) does not drastically change classification 
accuracy because similar information is already included 
through the direct use of the red and NIR bands as classi-
fier inputs. The use of PCA leads to slightly more accu-
rate results. The high accuracy of this method in addi-
tion to the large spatial coverage of input data makes it 
suitable for identifying Phragmites invasions for control 
efforts in estuarine wetlands in the northeastern USA at 
a state-wide level. Because of the regular release of new 
NAIP data, with imagery being collected for half of the 
USA every year, this method also enables the regular 
monitoring of Phragmites. Frequent monitoring is essen-
tial for Phragmites which has the ability to spread rapidly 
in marsh areas undergoing land-use conversions (Jodoin 
et  al., 2008; Rice et  al., 2000; Saltonstall, 2002). Such 
frequent monitoring can inform and improve manage-
ment efforts to mitigate the negative impacts associated 
with Phragmites invasions such as a loss of biodiversity, 
hydrological alterations, and changes in ecosystem func-
tioning (Meyerson et al., 2009).

While this method achieves a high overall accuracy, 
classification error still exists, mainly from misclas-
sification between Phragmites and other vegetation. 
While the use of PCA bands reduced the misclassifi-
cation of Phragmites, classification uncertainty often 
stems from the wide diversity of marsh plants. Across 
a large study area, even relatively small amounts of 
misclassifications may compound and lead to imper-
fect estimates of the total land area under Phragmites. 
Future research may benefit from determining which 
plant types are most commonly being confused for 
Phragmites and better training the classifier for these 
plant types in order to reduce classification errors.

Fig. 8   Visualizations of a 
Phragmites patch (a) with a 
true color composite from 
the NAIP (b), the third PCA 
band (c), the first three PCA 
bands (d), and a classified 
image using RF model 3 (e)
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Based on our classification, Phragmites makes up a 
higher percentage of the estuarine wetland area in New 
Castle County when compared to DE’s other two coun-
ties. New Castle is also the most urbanized county in 
DE, with 31% of its area being comprised of impervi-
ous land cover compared to 9% in both Kent and Sus-
sex County (Walter & Mondal, 2019). This result is 
consistent with other studies on the spread of Phrag-
mites, which have shown increased spread in areas with 
more urban and suburban land uses (King et al., 2007; 
McCormick et  al., 2010; Tulbure & Johnston, 2010). 
Research in the Chesapeake Bay found that Phragmites 
invasions were highly correlated with shoreline agri-
culture based on visual assessments between 2001 and 
2005 (Chambers et  al., 2008). However, we find that 
Kent County has the lowest percentage of Phragmites 
in 2017 while having the highest percentage of crop-
land at 49% compared to 45% in Sussex and 30% in 
New Castle (Walter & Mondal, 2019).

Our results show that Phragmites makes up a large 
portion of DE’s estuarine ecosystems, covering 11% 
of all estuarine wetlands throughout the state. Climate 
change-induced saltwater intrusion has already begun 
to affect soil chemistry in the Eastern USA creating 
new habitat for Phragmites (Smith, 2013; Tully et al., 
2019). The invasion of Phragmites has been observed 
in areas of forest-marsh transition caused by saltwater 
intrusion, leading to the degradation of wildlife habi-
tat (Taylor et  al., 2020). The rate of saltwater intru-
sion is likely to increase over the next decades as the 
rate of sea level rise increases; projections estimate 
0.25–0.30 m of sea level rise along the USA coastline 
by 2050, the same level of increase as seen between 
1920 and 2020 (Sweet et al., 2022). As anthropogeni-
cally induced conditions continue to reshape our land 
and provide new opportunities for Phragmites inva-
sions, the effective control of Phragmites will have 
increasing importance in ecosystem management.

Conclusions

This study demonstrates the ability to classify Phrag-
mites on a state-wide geographic scale within estuarine 
wetland environments. This method is easy and cost-
effective to reproduce as it utilizes the freely available 
NAIP dataset provided by the USDA and GEE code that 
has been made publicly available. The use of PCA on the 
original NAIP bands and NDVI as an input into the RF 

model led to higher overall classification accuracy (95%) 
than that achieved through the use of the four original 
NAIP bands alone (94%). However, classification based 
on the original four NAIP bands might provide a simpler 
option for land managers. Utilizing remote sensing to 
map Phragmites in estuaries at the state level, especially 
in coastal states such as DE, can create a useful inven-
tory of where Phragmites is growing. This may be useful 
information for programs such as the Phragmites control 
cost-share program run by the Delaware Division of Fish 
and Wildlife which aims to control the spread of Phrag-
mites. Through the use of NAIP data, there is the poten-
tial to map Phragmites at 2- to 3-year intervals. By creat-
ing biennial or triennial geospatial datasets in the future, 
the spread of Phragmites can be monitored to understand 
how effectively the spread is being managed.
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