Environ Monit Assess (2023) 195:478
https://doi.org/10.1007/s10661-023-11071-6

®

Check for
updates

Mapping of Phragmites in estuarine wetlands using

high-resolution aerial imagery

Matthew Walter - Pinki Mondal

Received: 7 December 2022 / Accepted: 28 February 2023 / Published online: 17 March 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract Phragmites australis is a widespread inva-
sive plant species in the USA that greatly impacts estu-
arine wetlands by creating dense patches and outcom-
peting other plants. The invasion of Phragmites into
wetland ecosystems is known to decrease biodiversity,
destroy the habitat of threatened and endangered bird
species, and alter biogeochemistry. While the impact
of Phragmites is known, the spatial extent of this spe-
cies is challenging to document due to its fragmented
occurrence. Using high-resolution imagery from the
National Agriculture Imagery Program (NAIP) from
2017, we evaluated a geospatial method of mapping
the spatial extent of Phragmites across the state of
DE. Normalized difference vegetation index (NDVI)
and principal component analysis (PCA) bands are
generated from the NAIP data and used as inputs in
a random forest classifier to achieve a high overall
accuracy for the Phragmites classification of around
95%. The classified gridded dataset has a spatial reso-
lution of 1 m and documents the spatial distribution of
Phragmites throughout the state’s estuarine wetlands
(around 11%). Such detailed classification could aid
in monitoring the spread of this invasive species over
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space and time and would inform the decision-making
process for landscape managers.
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Introduction

Invasive species are living organisms that spread rap-
idly within an environment, typically outcompeting
other organisms, leading to changes in ecosystem pro-
cesses and functioning (Ehrenfeld, 2010; Linders et al.,
2019; Vitousek et al., 1996). The cost of ecosystem
loss and required management associated with inva-
sive species was estimated to potentially reach $162.7
billion worldwide in 2017, a threefold increase per
decade since 1970 (Diagne et al., 2021). The spread of
non-native plant species through the global horticulture
trade and increasing global temperatures have created
the conditions for increased occurrences of biologi-
cal invasions (Bertelsmeier et al., 2013; Bradley et al.,
2012; Hellmann et al., 2008; Reichard & White, 2001).
Phragmites australis, also known as common reed,
has become a dominant plant in the wetlands of North
America (Chambers et al., 1999). There are two sub-
species of Phragmites australis in North America, one
native (subsp. americanus) and one non-native (subsp.
australis) (Saltonstall, 2002, 2003; Saltonstall et al.,
2004). Non-native Phragmites is considered invasive
in North America because of its rapid expansion, espe-
cially in tidal areas, and the ability to outcompete other
marsh plants, while native Phragmites is non-invasive
and much less common (Marks et al., 1994; Saltonstall,
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2002). In this paper, we use “Phragmites” in reference
to the non-native subspecies.

Phragmites is commonly found in wetland areas;
however, it also grows in dry upland areas (Avers
et al., 2014). It is a perennial grass that grows taller
than most marsh plants at 2 to 5 m in height, grow-
ing in large dense patches (Saltonstall et al., 2004).
Habitat alterations caused by the invasion of Phrag-
mites include the reduction of marsh edge, increased
aboveground biomass, and decreased salinity levels
(Windham & Lathrop, 1999). Moreover, Phragmites
lowers plant biodiversity by outcompeting marsh
plant species and communities such as Typha spp.,
marsh meadow, and sedge/grass hummock (Wilcox
et al., 2003). These alterations and losses in plant bio-
diversity negatively affect many critical animal spe-
cies living in marsh habitats. Wetlands dominated by
Phragmites patches were shown to have significantly
fewer bird species and decreased success of turtle
nesting (Benoit & Askins, 1999; Bolton & Brooks,
2010; Robichaud & Rooney, 2017).

Human disturbances to wetland ecosystems have
been found to increase the spread of Phragmites. For
example, the conversion of wetlands to other land uses
such as ditches and roads facilitates the spread of Phrag-
mites by creating conditions in which Phragmites can
survive, including high variations in water level and
exposure to deicing salt (Jodoin et al., 2008). A strong
link has also been made between shoreline development
and the invasion of Phragmites, with over 90% of inter-
marsh variation of Phragmites cover attributed to shore-
line development in New England salt marshes (Silliman
& Bertness, 2004). Other disturbances such as increased
nutrient loads and clearing of other vegetation also facil-
itate the spread of Phragmites (Kettenring et al., 2012;
Minchinton & Bertness, 2003). Phragmites invasions
are of particular concern in coastal regions where marsh
migration is occurring due to sea level rise (Schieder
et al., 2018). Sea level rise is a major driver of saltwater
intrusion, the encroachment of saline water into inland
coastal ecosystems, facilitating marsh migration (Gedan
& Fernandez-Pascual, 2019). Saltwater intrusion creates
an opportunity for the salt-tolerant Phragmites to invade
where other plants have been displaced (Tully et al.,
2019). In the Delaware Bay, 32% of the forest area lost
due to saltwater intrusion was populated by a Phragmites-
dominated salt marsh in 2006 (Smith, 2013).
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To combat the negative effects caused by Phragmites,
many local governments have developed Phragmites
control programs. For example, the Delaware Phrag-
mites Control Cost-Share Program offered by the Dela-
ware Division of Fish and Wildlife and the U.S. Depart-
ment of Agriculture’s Natural Resources Conservation
Program (USDA NRCS) provides technical and finan-
cial assistance to landowners with wetlands invaded by
Phragmites on their properties (DNREC, 2022). In the
USA, land managers from public and private conserva-
tion organizations spent more than $4.6 million per year
on Phragmites management between 2005 and 2009
(Martin & Blossey, 2013). Methods of Phragmites con-
trol rely on repeated cutting, burning, and application of
herbicide (Hazelton et al., 2014; Mal & Narine, 2004).
For Phragmites control efforts to be successful, it is
critical to have accurate information on the geographic
location and extent of invasions (Anderson et al., 2021;
Bourgeau-Chavez et al., 2013). Thus, large-scale maps
of Phragmites are a critical tool in Phragmites control.
Remote sensing imagery can be utilized to create accu-
rate maps of Phragmites while reducing the time and
labor costs of in situ methods of detection. Furthermore,
Phragmites management may benefit from watershed-
scale control efforts in coastal regions (Hazelton et al.,
2014). Remote sensing techniques enable mapping
at large spatial scales and thus have the potential to
increase the effectiveness of Phragmites control efforts.

The effectiveness of remote sensing classifications for
the mapping of Phragmites to inform control efforts is
reliant on the spatial resolution, geographic extent, tem-
poral resolution, and availability of the remotely sensed
imagery. To control Phragmites, the location of invasions
should be known with accuracy and precision. Previ-
ous research has mapped Phragmites with moderate-
resolution datasets and achieved user’s accuracy from 43
to 91% for Phragmites (Bourgeau-Chavez et al., 2013,
2015; Rupasinghe & Chow-Fraser, 2019). Data should
also be available at large spatial and temporal scales for
effective and repeated watershed-level control efforts.
Many studies have mapped Phragmites at a high resolu-
tion through the use of unmanned aerial systems (UAS)
with user’s accuracy for Phragmites ranging from 31 to
82% (Abeysinghe et al., 2019; Anderson et al., 2021).
One disadvantage of relying on UAS for Phragmites
mapping is that the data collected through these efforts
are not readily available throughout the USA and often
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cover a small spatial extent. To address these challenges,
we utilized high-resolution (1 m) aerial imagery from the
National Agriculture Imagery Program (NAIP) to map
Phragmites with higher accuracy and precision com-
pared to datasets reliant on moderate-resolution imagery.
NAIP data is collected at the state scale for every state
in the USA on an approximately 2- to 3-year cycle with
data going back to 2003. The state-level geographic scale
of NAIP data also enables its use for statewide analysis.
Additionally, NAIP data is freely available and accessi-
ble through Google Earth Engine (GEE), making it eas-
ily accessible for efforts of Phragmites control. Previous
research has used NAIP images to manually identify
Phragmites to create a dataset to train a machine-learning
model with moderate-resolution Landsat images as
input (Liu et al., 2016a). Other studies have also mapped
Phragmites by using NAIP imagery as an input into
machine learning classifiers (Correll et al., 2019; Liu
et al., 2016b; Xie et al., 2015). While NAIP imagery has
been successfully used for Phragmites classification,
reviews of image classification based on NAIP imagery
alone indicate that the spectral limitations of NAIP can
lead to decreases in accuracy (Maxwell et al., 2017). To
address this limitation, Maxwell et al. (2017) suggested
simplifying NAIP-based classifications by aggregating
classes together and using spectral ratios to increase clas-
sification accuracy.

Here, we built upon previous methods of NAIP-based
classifications of Phragmites and addressed the limitations
of NAIP by focusing on only three land cover classes and
using a normalized difference vegetation index (NDVI) in
our analysis. Furthermore, we evaluated the use of princi-
pal component analysis (PCA) to create additional input
bands to improve the accuracy of our classification. This
new method of classifying Phragmites with combined
NAIP bands, NAIP-derived NDVI, and PCA bands was
used to quantify the spatial distribution of Phragmites
across the State of DE. In this paper, we answer the follow-
ing questions:

1. Can high-resolution NAIP imagery be used to
accurately classify Phragmites in the state of DE?

2. Does the use of NDVI and PCA along with NAIP
spectral bands lead to higher accuracy in the map-
ping of Phragmites when compared to using just
NAIP bands?

3. What is the spatial extent of Phragmites in DE in
20177

Materials and methods
Study area

The eastern USA state of Delaware (DE) borders the
Atlantic Ocean and is comprised of three counties from
north to south, New Castle, Kent, and Sussex (Fig. 1).
With an average elevation of just 18 m above sea level,
DE has a high number of tidal and non-tidal wetlands
in which Phragmites grows. Other types of vegetation
commonly found in DE’s estuarine wetlands include
narrowleaf cattail (Typha angustifolia), marsh elder (Iva
frutescens), saltmarsh cordgrass (Spartina alterniflora),
big saltmarsh cordgrass (Spartina cynosuroides), sea-
side goldenrod (Solidago sempervirens), three-square
bulrush (Schoenoplectus pungens), and spike saltgrass
(Distichlis spicata) (NWI, 1985). Although Phragmites
is also found in freshwater wetlands, we have mapped
them in estuarine wetlands within DE (Fig. 1) which
comprise the majority of DE’s non-forested wetlands,
where Phragmites is the most prevalent (NWI, 1985;
Saltonstall, 2002). We used the wetlands map produced
by Delaware Department of Natural Resources and
Environmental Control (DNREC) and the Conservation

New Castle

N B Estuarine Wetlands

[ ] Delaware Counties

40 Kilometers

Fig. 1 The distribution of estuarine wetlands within DE
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Management Institute (CMI) at Virginia Polytechnic
Institute and State University (Virginia Tech) for the
National Wetlands Inventory (NWI) to delineate only
estuarine wetlands—the study area here (U.S. Fish &
Wildlife Service, 2018). The total area of the estuarine
wetlands in DE is around 460 km?.

Aerial imagery data

To identify Phragmites, freely available high-resolution
imagery was used from NAIP, which is run by the United
States Department of Agriculture (USDA) and acquires
high-resolution (I m) aerial imagery of Earth’s surface
over the continental USA (NAIP, 2012). The imagery
provides spectral information in the red, green, and blue
channels beginning in 2003. Spectral information in the
near-infrared (NIR) channel also became available start-
ing in 2007 for some states (NAIP, 2012). NAIP data was
originally collected once on a 5-year cycle, but switched
to a general 3-year cycle beginning in 2009 (NAIP, 2012).

NAIP imagery is commonly used for land monitor-
ing purposes, such as mapping forest characteristics
at a high-resolution (Basu et al., 2015; Davies et al.,
2010; Hogland et al., 2018), or increasing classifica-
tion accuracy for mapping complex urban areas (Hayes
et al., 2014; Nagel & Yuan, 2016). We used NAIP data
for classifying Phragmites due to its high-resolution
and demonstrated application in plant classification
(Correll et al., 2019; Liu et al., 2016b; Xie et al., 2015).
However, NAIP data have some drawbacks such as
inconsistent temporal coverage within a year, low radi-
ometric resolution (8-bit) when compared to satellite
sensors, and large shadows in proximity to trees, build-
ings, and other large structures. NAIP data is typically
captured at the height of the growing season when
Phragmites is at its peak growth stage. Due to the lack
of trees and buildings in most estuarine wetland areas,
shadows also had little effect on our classification.

The cloud-based geospatial data processing platform
GEE was used for data compilation, processing, and
classification. GEE allows easily reproducible analyses
through its freely available script-based interface and
efficient processing of large datasets (Gorelick et al.,
2017). For this study, we used all four spectral bands
(red, green, blue, and NIR) from the most recently
captured NAIP imagery in July 2017. Available NAIP
scenes in DE were mosaiced and clipped to the bound-
ary of all estuarine wetlands throughout the state.
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Normalized difference vegetation index

To assess the use of spectral indices in our classifi-
cation, we calculated NDVI from the NAIP imagery.
NDVI is a proxy for vegetation health based on the
greenness of a vegetation “pixel” using bands from
the NIR and red portions of the electromagnetic spec-
trum. NDVI is calculated using the following equa-
tion (Rouse et al.,, 1974; Townshend et al., 1985;
Tucker et al., 1985):

NIR - red

NDVI = ————
NIR + red

NAIP-derived NDVI has previously been used as
an input band for land cover classifications because of
the additional information it provides in distinguish-
ing different vegetation types. (Hayes et al., 2014; Li
et al., 2014).

For NAIP data to be effectively used for differenti-
ating Phragmites from other marsh plants, Phragmites
should have a distinct spectral signature during the
summer months of June and July when NAIP images
are usually captured. To ensure the suitability of NAIP
summer images for classifying Phragmites, the vegeta-
tion phenology of DE’s estuarine wetlands was assessed
using Sentinel-2 images. A time series of monthly
NDVI values for the entire year of 2017 was plotted for
each of the three land cover classes using 10-m Senti-
nel-2 Level-1C images. Level-1C top of atmosphere
reflectance was used over Level-2A bottom of atmos-
phere reflectance because Level-2A imagery was not
globally generated until December 2018. Sentinel-2 has
been frequently used in phenology research due to its
high revisit frequency of 5 days and higher spatial reso-
Iution (10 m) than other publicly accessible satellites
such as Landsat (30 m) (Misra et al., 2020). NDVI was
used as an indicator to track phenological differences in
Phragmites and other vegetation because of its ability to
estimate plant growth (Wu et al., 2017). Monthly medi-
ans were calculated for each of the 12 months in 2017
when the NAIP data was collected. Sentinel-2 images
were cloud masked using the QA60 band in GEE.

Principal component analysis
‘We also assessed the use of additional band transforma-

tions through PCA. PCA is a data reduction method
that converts potentially correlated variables into a set of
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uncorrelated variables (Jolliffe & Cadima, 2016; Pearson,
1901). In our study, five PCA bands were derived from
four spectral bands and one NDVI band. The PCA bands
were calculated in GEE using the eigenanalysis workflow
available on the platform (GEE, 2022). First, the input
images were converted to 1-D arrays, from which a vari-
ance—covariance matrix was calculated. Next, the “eigen”
command was used to calculate eigenvalues and eigen-
vectors for the variance—covariance matrix. The original
image array was then multiplied by the eigenvectors to
calculate the principal components. Finally, the principal
components were normalized by their standard devia-
tions. PCA has been used in remote sensing image clas-
sification both for reducing data dimensions and directly
as input bands to be used in classifying an image (Celik,
2009; Chang & Yoon, 2003; Li & Yeh, 1998; Rodarmel
& Shan, 2002).

Classification method: random forest

In this study, we developed three random forest (RF)
models with different sets of input bands. RF is a
machine learning algorithm that relies on an ensem-
ble of uncorrelated decision trees to make a decision;
trees are kept uncorrelated by using a bagging method
in which decision trees randomly sample from a dataset
(Breiman, 2001). RF classifiers have been widely used
in remote sensing image classifications with high accu-
racy (Belgiu & Dragu, 2016; Gislason et al., 2006; Pal,
2005; Rodriguez-Galiano et al., 2012). We used an RF
classifier with 100 trees as a prior study indicated that
more than 128 trees result in little to no performance
gain (Oshiro et al., 2012). The remaining parameters
were set to their default values in GEE as follows:
variables per split=2 or 3 depending on the number of
input variables (defaults to the square root of the num-
ber of variables); minimum leaf population=1, bag
fraction=0.5, out-of-bag mode =false, and seed O (ran-
dom seed). The RF classifier used is from the Statistical
Machine Intelligence and Learning Engine (SMILE)
implemented in GEE. We compare three different RF
models with different sets of input bands (Table 1).
In the first RF model, we used the original four NAIP
bands (red, green, blue, and NIR) as input into the clas-
sifier. In the second model, we used the four NAIP
bands and the NDVI band. In the third RF model, we
used the five NAIP-derived PCA bands as input (PCA
1, PCA 2,PCA 3, PCA 4,PCA)S).

We identified three landcover classes in our clas-
sification: Phragmites, other vegetation, and water.
Phragmites represents any area covered by Phrag-
mites. The “other vegetation” class covers all veg-
etation in the study area other than Phragmites (such
as those listed in "Study area" section). The “water”
class includes any pixels covered entirely by open
water. Phragmites could be distinguished from other
marsh vegetation due to its unique structure, mak-
ing it appear different in color and texture from sur-
rounding vegetation in the summertime NAIP images
(Fig. 2a, b). We did not consider common land cover
classes, such as forest or impervious surface, as these
are rarely present within the estuarine wetlands of DE.

Variable importance

We calculated variable importance from the RF clas-
sification to determine which spectral bands are more
effective in the classification of Phragmites. Variable
importance is a measure of the influence that each
individual input variable has on the output of a model.
In remote sensing, the variable importance derived
from RF land cover classifications has been used
to identify the most relevant data (Belgiu & Dragu,
2016). Two common methods used to measure variable
importance from RF models are out-of-bag error and
Gini impurity (Breiman, 2001; Breiman et al., 1984;
Han et al., 2016). In this paper, variable importance
was calculated as Gini impurity from the SMILE, in
GEE (SMILE, 2022). Gini impurity-based importance
measures the impurity each time a node is split. Impu-
rity is the probability of incorrectly classifying a ran-
dom sample in the dataset given that it was randomly
labeled by the class distribution. The decrease in impu-
rity is summed for each variable across each tree. The
result of the Gini impurity is a single value for each
input variable estimating the importance of that vari-
able on the output of the model.

Table 1 Summary of all three RF model input bands

Input bands
Model 1 Red, green, blue, NIR
Model 2 Red, green, blue, NIR, NDVI
Model 3 PCA 1,PCA 2,PCA 3,PCA 4,PCA 5
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Fig. 2 Phragmites patches
in an estuarine wetland as
seen from a Google Street
View and on a b NAIP true
color image for the same
location. Maps of all the
collected reference points
across three landcover
classes for ¢ training the
machine learning classifier
(70% of reference points)
and d testing the accuracy
of the classification (30% of
reference points)

amese——

—

Reference data

The initial set of reference data was collected in the
field by recording point locations of Phragmites patches
in estuarine wetlands within New Castle County, DE
(Fig. 2c, d). Points were collected using the mobile
application Epicollect5 by finding patches of Phrag-
mites along roads and footpaths in New Castle and Kent
County. One point was collected along the edge of each
individual connected patch of Phragmites. These points
were then adjusted to the center of the patch using the
software ArcGIS Pro. Further reference points were col-
lected by visual inspection of the NAIP aerial imagery
and the PCA bands. Points collected through the visual
assessment of the NAIP imagery were then verified

@ Springer

a) Google Street View

b) NAIP True Color
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d) Test Points

10 Kilomsters

using Google Earth Pro’s street view, which was effec-
tively used to identify Phragmites patches that could
be seen from the road. Reference points for 500 Phrag-
mites and 400 other marsh plants were collected using
this method. In addition, 150 water points were selected
solely based on the NAIP imagery, resulting in a total
of 1050 reference points that were then used for train-
ing and testing the RF classifier.

Accuracy assessment

An accuracy assessment was conducted to assess and
compare the performance of each RF model. A total
of 70% reference points (n=731; Phragmites=340,
other vegetation =283, water=108) were used to train
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the classifier, and 30% (n=319; Phragmites=160,
other vegetation=117, water=42) were used to test
the accuracy of the predictions. The accuracy of the
classifications was assessed using an error matrix and
kappa coefficient, a commonly used method in remote
sensing image classification (Rwanga & Ndambuki,
2017). The total number of points that were correctly
predicted was divided by the total number of test
points to calculate the overall accuracy, an indicator
of how closely the supervised classification matched
human observations. A user’s accuracy and the pro-
ducer’s accuracy were then calculated. The user’s
accuracy is calculated by dividing the number of cor-
rectly classified reference points in a single class by
the total number of reference points being assigned to
that class by the classifier. This represents an error of
commission and is useful in determining how accu-
rately each land cover is being classified. Producer’s
accuracy is the number of correctly classified refer-
ence points divided by the total number of reference
points and reflects an error of omission. In addition,
a kappa coefficient was calculated to evaluate the
results of the classification in comparison to random
guessing. (Cohen, 1960; Congalton, 1991).

Results
Effectiveness of NAIP for classifying Phragmites

The overall accuracies for all three RF Models were
greater than 90%, indicating that they all can be used
to quantify Phragmites with confidence. RF model 1
using the four NAIP bands alone achieved a high over-
all accuracy of 94% and kappa of 0.90 (Table 2). RF
model 2 with an NDVI band in addition to the four
NAIP bands achieved a similar overall accuracy of
94% and slightly lower kappa of 0.89 compared to
RF model 1. RF model 3 which utilized PCA bands
only yielded the highest overall accuracy of 95% and
a kappa coefficient of 0.92. The increase in overall
accuracy between RF model 1 or 2 and 3 was due to
an increase in the user’s accuracy for the Phragmites
class, increasing from 94-95 to 97% and an increase
in producer’s accuracy for the other vegetation class,
which increased from 92-93 to 96%. When classify-
ing marshes dominated by Phragmites, all three mod-
els tended to yield similar results (Fig. 3a—d). Dif-
ferences in model output can better be observed in
marshes dominated by plants other than Phragmites,

Table 2 Confusion
matrices and accuracy

Reference points

assessments for both RF Classified points Phragmites Other Water User’s accuracy ~ Producer’s
models vegetation accuracy

RF model 1
Phragmites 151 8 0 95% 94%
Other vegetation 9 109 2 91% 93%
Water 0 0 40 100% 95%
Overall accuracy 94%
Kappa 0.9

RF model 2
Phragmites 150 9 0 94% 94%
Other vegetation 9 109 2 91% 92%
Water 0 0 40 100% 95%
Overall accuracy 94%
Kappa 0.89

RF model 3
Phragmites 154 5 0 97% 95%
Other vegetation 8 110 2 92% 96%
Water 0 0 40 100% 95%
Overall accuracy 95%
Kappa 0.92

@ Springer



478 Page8of 16

Environ Monit Assess (2023) 195:478

a)NAIP True Color

13

Marsh dominated by
Phragmites

e) NAIP True Color

Marsh dominated by
vegetation other than
Phragmites

Fig. 3 Comparison of results from the three RF models for a
marsh dominated by Phragmites (a—d) and a marsh dominated
by other vegetation (e-h). a, e visualize the red, green, and blue
bands from the NAIP which are used as input into the model,
b, f show results from RF model 1 which uses the four original

where model 1 and model 2 overpredict the Phrag-
mites class compared to model 3 (Fig. 3e-h). To quan-
tify the extent of Phragmites in DE, the output from
RF model 3 was used due to its higher overall accu-
racy, kappa, user’s accuracy for the Phragmites class,
and decreased likelihood to overpredict Phragmites.

Monthly NDVI data from Sentinel-2 in 2017 reveals
that the spectral signature of Phragmites is the most dis-
tinct from other vegetation and water during June and
July (Fig. 4). Moreover, the NDVI values of Phragmites
are distinct from those of other vegetation throughout
the months of May through October, thus justifying the
use of summer and early fall NAIP images in Phrag-
mites identification.

=== Phragmites Other Vegetation Water

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3

Sentinel-2 NDVI Value

1 2 3 4 5 6 7 8 9 10 11 12
Month

Fig. 4 Monthly NDVI values for the three land cover classes
for 2017
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b)RF Model 1 (4 NAIP bands)  C)RF Model 2 (4 NAIP bands + NDVI) ()RF Model 3 (5 PCA bands)

-

[llPhragmites [_|Other Vegetation [_|Water

f) RF Model 1 (4 NAIP bands) g)RF Model 2 (4 NAIP bands + NDVI) h)RF Model 3 (5 PCA bands)

A

NAIP bands, ¢, g show results from RF model 2 which use the
four NAIP bands and an NDVI band, and d, h show the results
from RF model 3 which uses five PCA bands derived from the
NAIP and NDVI bands

Variable importance of NDVI and PCA bands

The NIR band has the highest variable importance in
RF model 1 (Fig. 5a) followed by the blue band. In
RF model 2, the NDVI band has the highest variable
importance, followed by the blue band (Fig. 5b). In
RF model 3, the PCA 1 band has the highest impor-
tance followed by PCA 3 (Fig. 5c). The histograms in
Fig. 6 show the pixel values for the classified points
across all ten NAIP-derived bands used in this study
with notable differences observed for different bands.
For example, the pixel values of PCA 1 and 3 for the
Phragmites class are higher than the values for the
other vegetation and water classes (Fig. 6h), result-
ing in separable spectral clusters. Conversely, the red
band’s pixel values show little separation between
Phragmites and other vegetation (Fig. 6b).

Spatial extent of Phragmites in DE

Our findings indicate that Phragmites is widespread
throughout DE; however, there are spatial variations
between counties. We estimate that 11% of the estuarine
wetland area in DE is covered by Phragmites, totaling
52 km? (Fig. 7a). Of DE’s three counties, New Castle
has the highest percentage of estuarine wetlands covered
by Phragmites at 17% (Fig. 7c), while having the least
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a) RF Model 1 b) RF Model 2 c) RF Model 3

NIR NDVI PCAS
Red NIR PCA4
Red PCA3
Green
Green PCA2
Blue
PCA1
0 50 100 150 200 0 25 50 75 100 125 150 175 0 20 40 60 80 100 120

Variable Importance Variable Importance Variable Importance

Fig. 5 The variable importance of each input band used in all three RF models using Gini impurity. Higher values for an input band
indicate higher importance of that band in increasing classification accuracy

area covered by Phragmites at 15 km?® (Fig. 7b). Kent Finally, Sussex County has the lowest percentage of
County has the second highest percentage of estuarine estuarine wetlands covered by Phragmites at 9%, total-
wetlands covered in Phragmites at 11% while also hav- ing 17 km’.

ing the highest area covered by Phragmites at 19 km?.
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Fig. 6 Histograms of the digital values for pixels in each input band from the NAIP, NDVI, and PCA grouped by the manual clas-
sification of the land cover classified for that pixel (Phragmites, other vegetation, or water)
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Fig. 7 Classification results
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Discussion

In this study, we achieved an overall high accuracy of
94%-95% in classifying Phragmites, irrespective of the
NAIP-derived input bands used. However, the mapping
of Phragmites using remote sensing presents several
challenges, such as those stemming from similar spec-
tral signatures between Phragmites and other marsh
vegetation and the large diversity of marsh vegetation
creating overlapping spectral signatures. Despite having
limited spectral and seasonal information, NAIP images
from the summer of 2017 provided sufficient details
for Phragmites to be visually distinguishable from other
vegetation within DE’s estuarine wetlands. Phragmites
patches have a distinct color and texture, primarily due
to their distinct values in the blue and NIR portions
of the electromagnetic spectrum compared to other
marsh vegetation in the surrounding areas (Fig. 6). The
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spectral separation of Phragmites from other vegetation
and water was greatest during summer months, mean-
ing that NAIP data which is typically collected during
summer is an effective source for mapping Phragmites.
This result is consistent with another study which found
that the separability of Phragmites from most other
vegetation types was greatest during July based on mul-
tispectral moderate-resolution satellite data (Rupasin-
ghe & Chow-Fraser, 2019).

The NAIP data provides a clear visual distinction
between the three land cover classes (Phragmites, other
vegetation, and water) (Fig. 8a, b). The first three PCA-
derived NAIP bands also show this distinction (Phrag-
mites, other vegetation, and water), with Phragmites
appearing in a darker color compared to the surround-
ing vegetation (Fig. 8d). This aligns with prior research
that has concluded that the first few PCA bands of a
remotely sensed image generally reduce noise compared
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Fig. 8 Visualizations of a
Phragmites patch (a) with a
true color composite from
the NAIP (b), the third PCA
band (c¢), the first three PCA
bands (d), and a classified
image using RF model 3 (e)

~a) Basemap

Patch

to the final components (Fung & LeDrew, 1987). This
visual distinction is most evident in the PCA 3 band,
which demonstrates a sharp contrast between the Phrag-
mites and surrounding vegetation, as Phragmites
appears in bright whitish color compared to the darker
gray of other vegetation and water (Fig. 8c). Thus, clas-
sified images from 1 year with such distinct separability
between Phragmites and other vegetation from the PCA
3 band can facilitate effective “on-the-screen” collec-
tion of large volumes of reference data to train and test
machine learning models for other years, minimizing the
need for in situ data collection on an annual basis.

The user’s accuracy for Phragmites of 97% obtained
through the use of NAIP bands, NDVI, and PCA is com-
parable to or higher than those achieved in prior studies
using other remote sensing methods for mapping Phrag-
mites. For example, Bourgeau-Chavez et al. (2013) and
Bourgeau-Chavez et al. (2015) used synthetic aperture
radar (SAR) to map Phragmites with a user’s accuracy of
43% and 64% respectively. Pengra et al. (2007) mapped
Phragmites with a user’s accuracy of 61.1% using hyper-
spectral remote sensing. Samiappan et al. (2016) and
Abeysinghe et al. (2019) achieved a high user’s accuracy
for Phragmites mapping (between 94 and 99% at dif-
ferent sites) through the use of high-resolution imagery
captured by an unmanned aerial system (UAS) and com-
puted bands such as a gray-level co-occurrence matrix
(GLCM), NDVI, and canopy height model (CHM).
This paper presents a method with comparable accu-
racy, and the use of freely accessible NAIP data with
coverage across the USA on a cloud computing plat-
form, thus making it more affordable in terms of cost,
time, and computational power. A similar NAIP-based
classification of Phragmites that utilized the four NAIP
bands (red, green, blue, and near-infrared) and multiple
wetland plant species as output classes achieved a user’s

b) NAIP True Color

I Phragmites
Other Vegetation
Water

accuracy of 85% and a producer’s accuracy of 85-99%
for Phragmites (Xie et al., 2015). Our results showed
that including an NDVI band (calculated using red and
NIR bands) does not drastically change classification
accuracy because similar information is already included
through the direct use of the red and NIR bands as classi-
fier inputs. The use of PCA leads to slightly more accu-
rate results. The high accuracy of this method in addi-
tion to the large spatial coverage of input data makes it
suitable for identifying Phragmites invasions for control
efforts in estuarine wetlands in the northeastern USA at
a state-wide level. Because of the regular release of new
NAIP data, with imagery being collected for half of the
USA every year, this method also enables the regular
monitoring of Phragmites. Frequent monitoring is essen-
tial for Phragmites which has the ability to spread rapidly
in marsh areas undergoing land-use conversions (Jodoin
et al., 2008; Rice et al., 2000; Saltonstall, 2002). Such
frequent monitoring can inform and improve manage-
ment efforts to mitigate the negative impacts associated
with Phragmites invasions such as a loss of biodiversity,
hydrological alterations, and changes in ecosystem func-
tioning (Meyerson et al., 2009).

While this method achieves a high overall accuracy,
classification error still exists, mainly from misclas-
sification between Phragmites and other vegetation.
While the use of PCA bands reduced the misclassifi-
cation of Phragmites, classification uncertainty often
stems from the wide diversity of marsh plants. Across
a large study area, even relatively small amounts of
misclassifications may compound and lead to imper-
fect estimates of the total land area under Phragmites.
Future research may benefit from determining which
plant types are most commonly being confused for
Phragmites and better training the classifier for these
plant types in order to reduce classification errors.
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Based on our classification, Phragmites makes up a
higher percentage of the estuarine wetland area in New
Castle County when compared to DE’s other two coun-
ties. New Castle is also the most urbanized county in
DE, with 31% of its area being comprised of impervi-
ous land cover compared to 9% in both Kent and Sus-
sex County (Walter & Mondal, 2019). This result is
consistent with other studies on the spread of Phrag-
mites, which have shown increased spread in areas with
more urban and suburban land uses (King et al., 2007,
McCormick et al., 2010; Tulbure & Johnston, 2010).
Research in the Chesapeake Bay found that Phragmites
invasions were highly correlated with shoreline agri-
culture based on visual assessments between 2001 and
2005 (Chambers et al., 2008). However, we find that
Kent County has the lowest percentage of Phragmites
in 2017 while having the highest percentage of crop-
land at 49% compared to 45% in Sussex and 30% in
New Castle (Walter & Mondal, 2019).

Our results show that Phragmites makes up a large
portion of DE’s estuarine ecosystems, covering 11%
of all estuarine wetlands throughout the state. Climate
change-induced saltwater intrusion has already begun
to affect soil chemistry in the Eastern USA creating
new habitat for Phragmites (Smith, 2013; Tully et al.,
2019). The invasion of Phragmites has been observed
in areas of forest-marsh transition caused by saltwater
intrusion, leading to the degradation of wildlife habi-
tat (Taylor et al., 2020). The rate of saltwater intru-
sion is likely to increase over the next decades as the
rate of sea level rise increases; projections estimate
0.25-0.30 m of sea level rise along the USA coastline
by 2050, the same level of increase as seen between
1920 and 2020 (Sweet et al., 2022). As anthropogeni-
cally induced conditions continue to reshape our land
and provide new opportunities for Phragmites inva-
sions, the effective control of Phragmites will have
increasing importance in ecosystem management.

Conclusions

This study demonstrates the ability to classify Phrag-
mites on a state-wide geographic scale within estuarine
wetland environments. This method is easy and cost-
effective to reproduce as it utilizes the freely available
NAIP dataset provided by the USDA and GEE code that
has been made publicly available. The use of PCA on the
original NAIP bands and NDVI as an input into the RF
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model led to higher overall classification accuracy (95%)
than that achieved through the use of the four original
NAIP bands alone (94%). However, classification based
on the original four NAIP bands might provide a simpler
option for land managers. Utilizing remote sensing to
map Phragmites in estuaries at the state level, especially
in coastal states such as DE, can create a useful inven-
tory of where Phragmites is growing. This may be useful
information for programs such as the Phragmites control
cost-share program run by the Delaware Division of Fish
and Wildlife which aims to control the spread of Phrag-
mites. Through the use of NAIP data, there is the poten-
tial to map Phragmites at 2- to 3-year intervals. By creat-
ing biennial or triennial geospatial datasets in the future,
the spread of Phragmites can be monitored to understand
how effectively the spread is being managed.
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