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Abstract
We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically, we
show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for
complete isometric isomorphisms between their tensor algebras. In particular, this settles a conjecture of Davidson
and Kakariadis, Inter. Math. Res. Not. 2014 (2014), 1289–1311 relating to work of Arveson, Acta Math. 118 (1967),
95–109 from the 1960s, and extends related work of Kakariadis and Katsoulis, J. Noncommut. Geom. 8 (2014),
771–787.
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1. Introduction

Semicrossed products and their variants have appeared in the theory of operator algebras since the
beginning of the subject [1] and continue to be at the forefront of the theory, as they lend insight for
considerable abstraction [3, 5, 6, 10, 14, 20, 21].

A C∗-dynamical system (A, 𝛼) consists of a unital C∗-algebra A and a unital ∗-endomorphism
𝛼 : A → A. An isometric covariant representation (𝜋,𝑉) of (A, 𝛼) consists of a nondegenerate
∗-representation 𝜋 of A on a Hilbert space H and an isometry 𝑉 ∈ 𝐵(H), so that 𝜋(𝑎)𝑉 = 𝑉𝜋(𝛼(𝑎)),
for all 𝑎 ∈ A. The semicrossed product A �𝛼 Z+ is the universal operator algebra associated with
‘all’ covariant representations of (A, 𝛼), that is, the universal algebra generated by a copy of A and
an isometry v satisfying the covariance relations. In the case where 𝛼 is an automorphism of A, then
A �𝛼 Z+ is isomorphic to the subalgebra of the crossed product C∗-algebra A �𝛼 Z generated by A and
the ‘universal’ unitary u implementing the covariance relations.

One of the central problems in the study of semicrossed products is the classification problem, whose
study spans more than 50 years. This problem asks if two semicrossed products are isomorphic as
algebras exactly when the corresponding C∗-dynamical systems are outer conjugate, that is, unitarily
equivalent after a conjugation. The classification problem first appeared in the works of Arveson [1] and
Arveson and Josephson [2]. It was subsequently investigated by Peters [18], Hadwin and Hoover [9],
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Power [19] and Davidson and Katsoulis [6], who finally settled the case whereA is abelian. In the general
case where A may not be abelian, initial consideration for the isomorphism problem was given in [7, 16]
and considerable progress was made by Davidson and Kakariadis [5], who resolved the problem for
isometric isomorphisms and dynamical systems consisting of injective endomorphisms. Actually, the
work of Davidson and Kakariadis went well beyond systems consisting of injective endomorphisms. In
[5, Theorem 1.1], these authors also worked the case of epimorphic systems, and, in [5, Theorem 1.2],
they offered six additional conditions, with each one of them guaranteeing a positive resolution for the
isomorphism problem. All these partial results offered enough evidence for Davidson and Kakariadis
to conjecture1 that the isomorphism problem for isometric isomorphisms must have a positive solution
for arbitrary systems. This conjecture is now being verified here, in Corollary 2.7, thus, resolving
the isomorphism problem for unital dynamical systems and their semicrossed products at the level of
isometric isomorphisms. Our initial approach is different from that of [5] and actually allows us to
achieve more.

A multivariable C∗-dynamical system is a pair (A, 𝛼) consisting of a unital C∗-algebra A along
with unital ∗-endomorphisms 𝛼 = (𝛼1, . . . , 𝛼𝑛) of A into itself. A row isometric representation of
(A, 𝛼) consists of a nondegenerate ∗-representation 𝜋 of A on a Hilbert space H and a row isometry
𝑉 = (𝑉1, 𝑉2, . . . , 𝑉𝑛) acting on H(𝑛) , so that 𝜋(𝑎)𝑉𝑖 = 𝑉𝑖𝜋(𝛼(𝑎)), for all 𝑎 ∈ A and 𝑖 = 1, 2, . . . , 𝑛.
The tensor algebra T +(A, 𝛼) is the universal algebra generated by a copy of A and a row isometry
v satisfying the covariance relations. The tensor algebras form a tractable multivariable generalisation
of the semicrossed products; indeed, in the case where 𝑛 = 1, a multivariable system consists of a
single endomorphism 𝛼 and the corresponding tensor algebra T +(A, 𝛼) coincides with the semicrossed
product A �𝛼 Z+. One should be careful to note that there are semicrossed products of multivariable
C∗-dynamical systems as well, but these are different from the tensor algebras being discussed here (see
[8, 11, 20] for more information).

In the case where A is abelian, tensor algebras of multivariable systems were first studied in detail
by Davidson and Katsoulis [8]. These authors developed a satisfactory dilation theory and provided
invariants of a topological nature for algebraic isomorphisms, which, in certain cases, turned out to
be complete. Specifically, in [8, Definition 3.22], Davidson and Katsoulis introduced the concept of
piecewise conjugacy for classical multivariable dynamical systems, and, in [8, Theorem 3.22], they
established that if the tensor algebras are algebraically isomorphic, then the two dynamical systems
must be piecewise conjugate. However, the converse could only be established for tensor algebras with
𝑛 = 2 or 3 [8, Proposition 3.22], with a gap in the topological theory preventing a complete result.

The tensor algebras of perhaps nonabelian multivariable systems were studied in [11, 12]. In general,
the piecewise conjugacy of Davidson and Katsoulis does not generalise to this context, and even when it
does, for example, automorphic multivariable systems, it may not form a complete invariant for isometric
isomorphisms [11, Example 4.12]. In [11, Theorem 4.5(ii)], it was established that another invariant, the
unitary equivalence after a conjugation (see Definition 2.5 below) actually forms a complete invariant
for isometric isomorphisms between tensor algebras of automorphic multivariable systems. Under
various assumptions, Kakariadis and Katsoulis were able to show that the classification scheme [11,
Theorem 4.5(ii)] could be extended to more general dynamical systems, but a complete solution was
not obtained in [11] (this was pointed out as an open problem in [11, Question 1] and [13], just after
Theorem 2.6.15). All these assumptions are now being removed in this paper, and, in Theorem 2.6, we
obtain a complete classification of all tensor algebras of (unital) multivariable systems up to completely
isometric isomorphism.

The semicrossed products of single variable systems and, more generally, the tensor algebras of mul-
tivariable systems are prototypical examples of tensor algebras of C∗-correspondences. These algebras
were pioneered by Muhly and Solel [15] and generalise many concrete classes of operator algebras,
including graph algebras and more. The isomorphism problem generalises in this setting and asks
if two tensor algebras of C∗-correspondences are isomorphic exactly when the C∗-correspondences

1See just below Theorem 1.1 in [5].
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are unitarily equivalent. Muhly and Solel studied this problem in [16] and resolved it affirmatively
for aperiodic C∗-correspondences and complete isomorphisms. However, many natural examples of
C∗-correspondences, including those associated with tensor algebras of multivariable systems or graph
algebras, may fail to be aperiodic. As it turns out, the unitary equivalence of the correspondences asso-
ciated with tensor algebras of multivariable systems coincides with unitary equivalence after a conjuga-
tion for the multivariable systems themselves. Therefore, our Theorem 2.6 resolves Muhly and Solel’s
classification problem for an important class of C∗-correspondences and lends support for an overall
affirmative answer of this problem. We plan to pursue this in a subsequent work.

Finally, a word about our notation. If 𝜌 : X → Y is any map between linear spaces, then its (𝑚, 𝑛)-th
ampliation is the matricial map

𝜌 (𝑚,𝑛) : 𝑀𝑚,𝑛 (X ) −→ 𝑀𝑚,𝑛 (Y); [𝑥𝑖 𝑗 ]𝑚𝑖=1
𝑛
𝑗=1 ↦−→ [𝜌(𝑥𝑖, 𝑗 )]𝑚𝑖=1

𝑛
𝑗=1.

In what follows, in order to avoid the use of heavy notation, we will be dropping the superscript (𝑚, 𝑛)
from 𝜌 (𝑚,𝑛) and the symbol 𝜌 will be used not only for the map 𝜌 itself but for all of its ampliations as
well. It goes without saying that the order of an ampliation will be easily understood form the context.

2. The main result

Suppose A is a unital C∗-algebra and 𝛼𝑖 : A → A, 1 ≤ 𝑖 ≤ 𝑛, are unital ∗-endomorphisms. Recall that
the tensor algebra T +(A, 𝛼) of the C∗-dynamical system (A, 𝛼) is generated by 𝑣1, . . . , 𝑣𝑛, which form
a row isometry 𝑣 = [𝑣1 𝑣2 . . . 𝑣𝑛] and a faithful copy of A. The row isometry v encodes the dynamics of
the dynamical system (A, 𝛼) in the sense that 𝑎𝑣𝑖 = 𝑣𝑖𝛼𝑖 (𝑎), for all 𝑎 ∈ A and 1 ≤ 𝑖 ≤ 𝑛. By definition,
the tensor algebra T +(A, 𝛼) is universal over all representations encoding the dynamics of (A, 𝛼), so
that the generating isometries 𝑣1, 𝑣2, . . . , 𝑣𝑛 are mapped to a row isometry.

Due to its universality, the tensor algebra T +(A, 𝛼) admits a gauge action

𝜁 : T −→ Aut(T +(A, 𝛼)); T � 𝜆 ↦−→ 𝜁𝜆,

so that 𝜁𝜆 (𝑎) = 𝑎, for all 𝑎 ∈ A, and 𝜁𝜆 (𝑣𝑝) = 𝜆 |𝑝 |𝑣𝑝 , where 𝑝 = 𝑖1𝑖2 . . . 𝑖𝑘 ∈ F+𝑛 is an element of the free
semigroup with n generators, |𝑝 | := 𝑘 denotes the length of p and 𝑣𝑝 := 𝑣𝑖1 𝑣𝑖2 . . . 𝑣𝑖𝑘 (we write 𝑝 = 0
is the empty word, with the understanding that |0| = 0 and 𝑣0 := 𝐼). From this gauge action, we deduce
that every element 𝑥 ∈ T +(A, 𝛼) admits a formal Fourier series development 𝑥 ∼

∑∞
𝑘=0 𝐸𝑘 (𝑥). Each

𝐸𝑘 : T +(A, 𝛼) → T +(A, 𝛼) is a completely contractive, A-module projection on the subspace of
T +(A, 𝛼) generated by elements of the form 𝑣𝑝𝑎𝑝 , with 𝑝 ∈ F+𝑛, |𝑝 | = 𝑘 and 𝑎𝑝 ∈ A. Furthermore,
𝐸0 is a multiplicative expectation onto A ⊆ T +(A, 𝛼). Finally, the formal series 𝑥 ∼

∑∞
𝑘=0 𝐸𝑘 (𝑥) is

Cesaro-convergent to 𝑥, that is,

𝑥 = lim
𝑛→∞

𝑛∑
𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝑥)

(see [8] for a comprehensive development of this theory).
The following is a key result in our investigation.

Theorem 2.1. If 𝑏 = [𝑏1 . . . 𝑏𝑛] is a strict row contraction in A, such that 𝑎𝑏𝑖 = 𝑏𝑖𝛼𝑖 (𝑎), for all 𝑎 ∈ A
and 1 ≤ 𝑖 ≤ 𝑛, then there is a completely isometric automorphism 𝜌 of T +(A, 𝛼), such that 𝜌(𝑎) = 𝑎
for 𝑎 ∈ A,

𝜌(𝑣) = (𝐼 − 𝑏𝑏∗)1/2(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣) (𝐼𝑛 − 𝑏∗𝑏)−1/2

and 𝜌 ◦ 𝜌 = id. Furthermore, 𝐸0 (𝜌(𝑣𝑖)) = 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑛.
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Proof. By hypothesis, b is a strict contraction and so ‖𝑣𝑏∗‖ < 1, which implies that 𝐼 − 𝑣𝑏∗ and
𝐷𝑏∗ := (𝐼 − 𝑏𝑏∗)1/2 are indeed invertible in A. Similarly, 𝐷𝑏 := (𝐼𝑛 − 𝑏∗𝑏)1/2 is invertible in 𝑀𝑛 (A).
One calculates

(𝐼 − 𝑏𝑣∗)−1(𝐼 − 𝑏𝑏∗)(𝐼 − 𝑣𝑏∗)−1

= (𝐼 − 𝑏𝑣∗)−1(𝐼 − 𝑏𝑣∗𝑣𝑏∗)(𝐼 − 𝑣𝑏∗)−1

= (𝐼 − 𝑏𝑣∗)−1(𝐼 − 𝑣𝑏∗ + (𝐼 − 𝑏𝑣∗)𝑣𝑏∗)(𝐼 − 𝑣𝑏∗)−1

= (𝐼 − 𝑏𝑣∗)−1 + 𝑣𝑏∗(𝐼 − 𝑣𝑏∗)−1

= (𝐼 − 𝑏𝑣∗)−1 + (𝐼 − 𝑣𝑏∗)−1 − 𝐼,

which gives for 𝑤(𝑣) := (𝐼 − 𝑏𝑏∗)1/2(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣) (𝐼 − 𝑏∗𝑏)−1/2 that

𝑤(𝑣)∗𝑤(𝑣) = 𝐷−1
𝑏 (𝑏∗ − 𝑣∗)(𝐼 − 𝑏𝑣∗)−1(𝐼 − 𝑏𝑏∗)(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝐷−1

𝑏

= 𝐷−1
𝑏 𝑣∗(𝑣𝑏∗ − 𝐼)

(
(𝐼 − 𝑏𝑣∗)−1 + (𝐼 − 𝑣𝑏∗)−1 − 𝐼

)
(𝑏𝑣∗ − 𝐼)𝑣𝐷−1

𝑏

= 𝐷−1
𝑏 𝑣∗

(
(𝐼 − 𝑣𝑏∗) + (𝐼 − 𝑏𝑣∗) − (𝐼 − 𝑣𝑏∗)(𝐼 − 𝑏𝑣∗)

)
𝑣𝐷−1

𝑏

= 𝐷−1
𝑏 𝑣∗(𝐼 − 𝑣𝑏∗𝑏𝑣∗)𝑣𝐷−1

𝑏

= 𝐷−1
𝑏 (𝐼𝑛 − 𝑏∗𝑏)𝐷−1

𝑏

= 𝐼𝑛.

Hence, 𝑤(𝑣) is a row isometry. Now by the conjugation relation in the hypothesis, we have 𝑏𝑏∗, 𝑏𝑣∗

and 𝑣𝑏∗ commute with A and 𝑏∗𝑏 commutes with diag(𝛼1 (𝑎), . . . , 𝛼𝑛 (𝑎)), 𝑎 ∈ A. Using this one gets
for 𝑎 ∈ A that

𝑎𝑤(𝑣) = 𝑎(𝐼 − 𝑏𝑏∗)−1(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣) (𝐼𝑛 − 𝑏∗𝑏)−1/2

= (𝐼 − 𝑏𝑏∗)1/2(𝐼 − 𝑣𝑏∗)−1𝑎(𝑏 − 𝑣) (𝐼𝑛 − 𝑏∗𝑏)−1/2

= (𝐼 − 𝑏𝑏∗)1/2(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣) diag(𝛼1 (𝑎), . . . , 𝛼𝑛 (𝑎)) (𝐼 − 𝑏∗𝑏)−1/2

= (𝐼 − 𝑏𝑏∗)1/2(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣) (𝐼 − 𝑏∗𝑏)−1/2 diag(𝛼1(𝑎), . . . , 𝛼𝑛 (𝑎))
= 𝑤(𝑣) diag(𝛼1 (𝑎), . . . , 𝛼𝑛 (𝑎)).

Thus, by the universal property, there exists a unique completely contractive homomorphism 𝜌 of
T +(A, 𝛼) to itself, such that

𝜌(𝑎) = 𝑎,∀𝑎 ∈ A and [𝜌(𝑣1) . . . 𝜌(𝑣𝑛)] = 𝑤(𝑣).

Lastly, recall the classical Halmos functional calculus trick: since

𝑏(𝐼𝑛 − 𝑏∗𝑏) = (𝐼 − 𝑏𝑏∗)𝑏,

then

𝑏𝐷−1
𝑏 = 𝑏(𝐼𝑛 − 𝑏∗𝑏)−1/2 = (𝐼 − 𝑏𝑏∗)−1/2𝑏 = 𝐷−1

𝑏∗ 𝑏.

This allows us to compute

[𝜌 ◦ 𝜌(𝑣1), . . . , 𝜌 ◦ 𝜌(𝑣𝑛)] = 𝑤(𝑤(𝑣))

= 𝐷𝑏∗

(
𝐼 − 𝐷𝑏∗ (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝐷−1

𝑏 𝑏∗
)−1 (

𝑏 − 𝐷𝑏∗ (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝐷−1
𝑏

)
𝐷−1

𝑏
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= 𝐷𝑏∗

(
𝐼 − 𝐷𝑏∗ (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝑏∗𝐷−1

𝑏∗

)−1 (
𝑏 − 𝐷𝑏∗ (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝐷−1

𝑏

)
𝐷−1

𝑏

= 𝐷2
𝑏∗

(
𝐼 − (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝑏∗

)−1
𝐷−1

𝑏∗

(
𝑏 − 𝐷𝑏∗ (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝐷−1

𝑏

)
𝐷−1

𝑏

= 𝐷2
𝑏∗

(
𝐼 − (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝑏∗

)−1 (
𝐷−1

𝑏∗ 𝑏 − (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝐷−1
𝑏

)
𝐷−1

𝑏

= 𝐷2
𝑏∗

(
𝐼 − (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)𝑏∗

)−1 (
𝑏 − (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)

)
𝐷−2

𝑏

= 𝐷2
𝑏∗

(
(𝐼 − 𝑣𝑏∗) − (𝑏 − 𝑣)𝑏∗

)−1
(𝐼 − 𝑣𝑏∗)

(
𝑏 − (𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣)

)
𝐷−2

𝑏

= 𝐷2
𝑏∗ (𝐼 − 𝑏𝑏∗)

(
(𝐼 − 𝑣𝑏∗)𝑏 − (𝑏 − 𝑣)

)
𝐷−2

𝑏

= (𝑣 − 𝑣𝑏∗𝑏)𝐷−2
𝑏

= 𝑣.

Therefore, by the universal property, 𝜌 ◦ 𝜌 = id and 𝜌 is a completely isometric automorphism of
T +(A, 𝛼).

To find the first Fourier coefficients of the 𝜌(𝑣𝑖), one needs to recall that 𝐸0 : T +(A, 𝛼) → A is a
completely contractive homomorphism given by sendingA to itself and sending 𝑣𝑖 to 0, 1 ≤ 𝑖 ≤ 𝑛. Thus,

𝐸0 ([𝜌(𝑣1), . . . , 𝜌(𝑣𝑛)]) = 𝐸0(𝑤(𝑣))
= 𝐸0

(
(𝐼 − 𝑏𝑏∗)1/2(𝐼 − 𝑣𝑏∗)−1(𝑏 − 𝑣) (𝐼𝑛 − 𝑏∗𝑏)−1/2)

= (𝐼 − 𝑏𝑏∗)1/2((𝐼 − 0𝑏∗))−1(𝑏 − 0) (𝐼𝑛 − 𝑏∗𝑏)−1/2

= (𝐼 − 𝑏𝑏∗)1/2𝑏(𝐼𝑛 − 𝑏∗𝑏)−1/2

= 𝑏,

with the last equality arising from a familiar functional calculus argument. �

In the proof of our next result, we make use of the orbit representations for a tensor algebra T +(A, 𝛼).
Let 𝜎 : A → 𝐵(H) be a ∗-representation. We define a representation

𝜋𝜎 : A −→ 𝐵(H ⊗ ℓ2(F+𝑛))

by

𝜋𝜎 (𝑎) (𝑥 ⊗ 𝑒𝑝) = 𝜋(𝛼𝑝 (𝑎))𝑥 ⊗ 𝑒𝑝 , 𝑎 ∈ A,

where {𝑒𝑝}𝑝∈F+𝑛 is the canonical orthonormal basis of the Fock space ℓ2(F+𝑛). Let 𝐿1, 𝐿2, . . . , 𝐿𝑛

be the Cuntz-Toeplitz isometries on ℓ2(F+𝑛). Then the representation 𝜋𝜎 , together with the isometries
𝐼⊗𝐿1, 𝐼⊗𝐿2, . . . , 𝐼⊗𝐿𝑛, form a covariant representation of (A, 𝛼) and determine the orbit representation
of T +(A, 𝛼) associated with 𝜌, which we also denote as 𝜋𝜎 .
Proposition 2.2. Let 𝜓 : T +(A, 𝛼) → T +(A, 𝛽) be a completely isometric isomorphism, and
assume that 𝜓 |A = id. If 𝑣 = [𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎 ] is the generating row isometry for T +(A, 𝛼), then
‖𝐸0 (𝜓(𝑣))‖ < 1.
Proof. Let 𝜎 : T +(A, 𝛽) −→ 𝐵(H) be a completely isometric representation of 𝑇+(A, 𝛽). Then 𝜎 ◦ 𝜓
is a completely isometric representation of 𝑇+(A, 𝛼), which coincides with 𝜎 on A. This allows us to
view both tensor algebras as being embedded in 𝐵(H) via maps that coincide on A.

Let 𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝑛𝑏 ] be the generating row isometry2 for T +(A, 𝛽). By the Fourier analysis
discussed earlier,

2Note that we are not assuming 𝑛𝑎 = 𝑛𝑏 .
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𝜓(𝑣) = lim
𝑛→∞

𝑛∑
𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝜓(𝑣))

= lim
𝑛→∞

𝑛∑
𝑘=0

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑤𝑝𝑏𝑝 ,

(2.1)

with each 𝑏𝑝 = [𝑏𝑝,1, 𝑏𝑝,2, . . . , 𝑏𝑝,𝑛𝑎 ] being a row contraction.
Assume by contradiction that ‖𝑏0‖ = ‖𝐸0 (𝜓(𝑣))‖ = 1. Then there exists a sequence of unit vectors

𝜉 𝑗 ∈ H(𝑛𝑏) , such that lim 𝑗→∞ ‖𝑏0𝜉 𝑗 ‖ = 1. Using these contractive Cesaro sums in conjunction with the
orbit representation 𝜋 := 𝜋𝜎|A applied to the vectors �𝜉 𝑗 = 𝜉 𝑗 ⊗ 𝑒0, we get

1 ≥ lim
𝑗→∞







𝜋
��


𝑛∑
𝑘=0

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑤𝑝𝑏𝑝

����𝜉 𝑗








2

= lim
𝑗→∞

𝑛∑
𝑘=0

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)2
‖𝑏𝑝𝜉 𝑗 ‖2

≥ lim
𝑗→∞

‖𝑏0𝜉 𝑗 ‖2 = 1.

This implies that lim 𝑗→∞ ‖𝑏𝑝𝜉 𝑗 ‖ = 0, for all nonempty words 𝑝 ∈ F+𝑛𝑎 .
Pick an 𝑛 ≥ 0, such that 




 𝑛∑

𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝜓(𝑣)) − 𝜓(𝑣)






 ≤ 1
2

.

Then for every 𝑗 ≥ 1, we have




𝐸0 ◦ 𝜓−1

(
𝑛∑

𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝜓(𝑣))

)
𝜉 𝑗







≤






𝐸0 ◦ 𝜓−1

(
𝑛∑

𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝜓(𝑣)) − 𝜓(𝑣)

)
𝜉 𝑗






 + ‖𝐸0 ◦ 𝜓−1 ◦ 𝜓(𝑣)𝜉 𝑗 ‖

≤






 𝑛∑
𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝜓(𝑣)) − 𝜓(𝑣)






‖𝜉 𝑗 ‖ + ‖𝐸0 (𝑣)𝜉 𝑗 ‖

≤ 1
2
+ 0 =

1
2

.

Using the fact that lim 𝑗→∞ 𝑏𝑝𝜉 𝑗 = 0, for all nonempty words 𝑝 ∈ F+𝑛𝑎 , we obtain that

lim
𝑗→∞






𝐸0 ◦ 𝜓−1

(
𝑛∑

𝑘=0

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑘 (𝜓(𝑣))

)
𝜉 𝑗







= lim

𝑗→∞







𝐸0
��


𝑛∑
𝑘=0

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝜓−1 (𝑤𝑝)𝑏𝑝

���𝜉 𝑗








= lim

𝑗→∞







 𝑛∑
𝑘=0

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝐸0

(
𝜓−1 (𝑤𝑝)

)
𝑏𝑝𝜉 𝑗
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= lim
𝑗→∞



𝐸0
(
𝜓−1(𝑤0)

)
𝑏0𝜉 𝑗




= 1,

which is a contradiction. Therefore, 𝑏0 = 𝐸0(𝜓(𝑣)) must be a strict contraction. �

Continuing with the assumptions and notation of the previous proposition and its proof, the matrix
[𝑏𝑖 𝑗 ] ∈ 𝑀𝑛𝑏 ,𝑛𝑎 (A), with entries 𝑏𝑖 𝑗 as appearing in (2.1) with |𝑝 | = 1, is called the matrix associated
with 𝜓. It has the property of intertwining the endomorphisms 𝛼1, 𝛼2, . . . , 𝛼𝑛𝑎 and 𝛽1, 𝛽2, . . . , 𝛽𝑛𝑏 in
the sense,

𝛽𝑖 (𝑎)𝑏𝑖 𝑗 = 𝑏𝑖 𝑗𝛼 𝑗 (𝑎), (2.2)

for all 𝑎 ∈ A, 1 ≤ 𝑖 ≤ 𝑛𝑏 and 1 ≤ 𝑗 ≤ 𝑛𝑎. A matrix [𝑎𝑖 𝑗 ] ∈ 𝑀𝑛𝑎 ,𝑛𝑏 (A) with similar properties is
associated with 𝜓−1. Let us observe this more closely.

Indeed, assume that 𝜓(𝑣) admits a Fourier development

𝜓(𝑣) = lim
𝑛→∞

𝑛∑
𝑘=0

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑤𝑝𝑏𝑝

= 𝑏0 + 𝑤 [𝑏𝑖 𝑗 ] + lim
𝑛→∞

𝑛∑
𝑘=2

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑤𝑝𝑏𝑝

(2.3)

as in (2.1). For any 𝑎 ∈ A and 1 ≤ 𝑗 ≤ 𝑛𝑎, we have

𝑎𝜓(𝑣 𝑗 ) = 𝜓(𝑎𝑣 𝑗 ) = 𝜓(𝑣 𝑗𝛼 𝑗 (𝑎)) = 𝜓(𝑣 𝑗 )𝛼 𝑗 (𝑎),

and so

𝑎
(
𝑏0 𝑗 +

𝑛𝑏∑
𝑖=1

𝑤𝑖𝑏𝑖 𝑗 + lim
𝑛→∞

𝑛∑
𝑘=2

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑤𝑝𝑏𝑝 𝑗

)
=

=
(
𝑏0 𝑗 +

𝑛𝑏∑
𝑖=1

𝑤𝑖𝑏𝑖 𝑗 +
𝑛∑

𝑘=2

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑤𝑝𝑏𝑝 𝑗

)
𝛼 𝑗 (𝑎).

(2.4)

Apply 𝐸0 to (2.4) to obtain

𝑎𝑏0 𝑗 = 𝑏0 𝑗𝛼 𝑗 (𝑎), (2.5)

for all 𝑎 ∈ A and 1 ≤ 𝑗 ≤ 𝑛𝑎. The relations (2.2) are obtained by applying 𝐸1 to (2.4).

Lemma 2.3. Let 𝜓 : T +(A, 𝛼) → T +(A, 𝛽) be a completely isometric isomorphism, and assume that
𝜓 |A = id. Let v and w be the generating row isometries for T +(A, 𝛼) and T +(A, 𝛽), respectively. Then
𝐸0 (𝜓(𝑣)) = 0 if and only if 𝐸0 (𝜓−1(𝑤)) = 0. In such a case, the matrices associated with 𝜓 and 𝜓−1

are inverses of each other.

Proof. Assume that 𝜓(𝑣) admits a Fourier development as in (2.3) and similarly

𝜓−1(𝑤) = 𝑎0 + 𝑣 [𝑎𝑖 𝑗 ] + lim
𝑛→∞

𝑛∑
𝑘=2

∑
|𝑞 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑣𝑞𝑎𝑞 .

Assume that 𝐸0(𝜓−1 (𝑤)) = 𝑎0 = 0.

Claim. 𝐸0(𝜓−1 (𝑤𝑝)) = 𝐸1(𝜓−1 (𝑤𝑝)) = 0, for all 𝑝 ∈ F+𝑛𝑏 with |𝑝 | ≥ 2.
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Indeed, if 𝑝 = 𝑝1 𝑝2 . . . 𝑝𝑙 , 𝑙 ≥ 2, then

𝜓−1 (𝑤𝑝) =
𝑙∏

𝑖=1
𝜓−1(𝑤𝑝𝑖 )

= lim
𝑛→∞

𝑙∏
𝑖=1

��

𝑛∑

𝑘=1

∑
|𝑞 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑣𝑞𝑎𝑞,𝑝𝑖

���.

(2.6)

Since in the limit above we have 𝑙 ≥ 2 and 𝑘 ≥ 1, a development of the product involved will reveal
only terms of the form 𝑣𝑢𝑎𝑢 , with 𝑢 ∈ F+𝑛𝑎 , |𝑢 | ≥ 2 and 𝑎𝑢 ∈ A. Since both 𝐸0 and 𝐸1 are continuous,
this suffices to prove the claim.

For the proof, consider 𝑖 = 1, 2. Apply 𝜓−1 to (2.3), and use the Claim to obtain

𝐸𝑖 (𝑣) = 𝐸𝑖 (𝜓−1(𝜓(𝑣)))

= 𝐸𝑖 ((𝑏0) + 𝐸𝑖 (𝜓−1 (𝑤)) [𝑏𝑖 𝑗 ] + lim
𝑛→∞

𝑛∑
𝑘=2

∑
|𝑝 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝐸𝑖 (𝜓−1 (𝑤𝑝))𝑏𝑝

= 𝐸𝑖 (𝑏0) + 𝐸𝑖 (𝜓−1 (𝑤)) [𝑏𝑖 𝑗 ]

= 𝐸𝑖 (𝑏0) + 𝐸𝑖

(
𝑣 [𝑎𝑖 𝑗 ] + lim

𝑛→∞

𝑛∑
𝑘=2

∑
|𝑞 |=𝑘

(
1 − 𝑘

𝑛 + 1

)
𝑣𝑞𝑎𝑞

)
[𝑏𝑖 𝑗 ]

= 𝐸𝑖 (𝑏0) + 𝐸𝑖 (𝑣) [𝑎𝑖 𝑗 ] [𝑏𝑖 𝑗 ] .

For 𝑖 = 0, we obtain 0 = 𝑏0 = 𝐸0 (𝜓(𝑣)). For 𝑖 = 1, we obtain 𝑣 = 𝑣 [𝑎𝑖 𝑗 ] [𝑏𝑖 𝑗 ], and so

𝐼𝑛𝑎 = 𝑣∗𝑣 = 𝑣∗𝑣 [𝑎𝑖 𝑗 ] [𝑏𝑖 𝑗 ] = [𝑎𝑖 𝑗 ] [𝑏𝑖 𝑗 ] .

By reversing the roles of 𝜓 and 𝜓−1 and using what has been proven so far, we obtain [𝑏𝑖 𝑗 ] .[𝑎𝑖 𝑗 ] = 𝐼𝑛𝑏 .
This completes the proof. �

Corollary 2.4. Let 𝜓 : T +(A, 𝛼) → T +(A, 𝛽) be a completely isometric isomorphism, and assume
that 𝜓 |A = id. Let v be the generating row isometry for T +(A, 𝛼), and assume that 𝐸0 (𝜓(𝑣)) = 0.
Then there exists a unitary matrix 𝑢 ∈ 𝑀𝑛𝑏 ,𝑛𝑎 (A) intertwining the endomorphisms 𝛼1, 𝛼2, . . . , 𝛼𝑛𝑎 and
𝛽1, 𝛽2, . . . , 𝛽𝑛𝑏 .

Proof. According to (2.2), the matrix 𝑏 := [𝑏𝑖 𝑗 ] ∈ 𝑀𝑛𝑏 ,𝑛𝑎 (A) associated with 𝜓 intertwines the
endomorphisms 𝛼1, 𝛼2, . . . , 𝛼𝑛𝑎 and 𝛽1, 𝛽2, . . . , 𝛽𝑛𝑏 , that is,

diag(𝛽1 (𝑎), . . . , 𝛽𝑛𝑏 (𝑎))𝑏 = 𝑏 diag(𝛼1 (𝑎), . . . , 𝛼𝑛𝑎 (𝑎)), (2.7)

for all 𝑎 ∈ A. Hence, 𝑏∗𝑏 (and, therefore, |𝑏 |) commutes with diag(𝛼1 (𝑎), . . . , 𝛼𝑛𝑎 (𝑎)), for all 𝑎 ∈ A.
By Lemma 2.3, b is invertible, and so it admits a polar decomposition 𝑏 = 𝑢 |𝑏 |, with 𝑢 = 𝑀𝑛𝑏 ,𝑛𝑎 (A) a
unitary matrix. Furthermore, (2.7) implies that

diag(𝛽1 (𝑎), . . . , 𝛽𝑛𝑏 (𝑎))𝑢 |𝑏 | = 𝑢 |𝑏 | diag(𝛼1 (𝑎), . . . , 𝛼𝑛𝑎 (𝑎))
= 𝑢 diag(𝛼1 (𝑎), . . . , 𝛼𝑛𝑎 (𝑎)) |𝑏 |,

for all 𝑎 ∈ A. Since |𝑏 | is invertible, diag(𝛽1 (𝑎), . . . , 𝛽𝑛𝑏 (𝑎))𝑢 = 𝑢 diag(𝛼1(𝑎), . . . , 𝛼𝑛𝑎 (𝑎)), and the
conclusion follows. �

Motivated by the statement of the previous result, we introduce the following.

https://doi.org/10.1017/fms.2022.73 Published online by Cambridge University Press



Forum of Mathematics, Sigma 9

Definition 2.5. Two multivariable dynamical systems (A, 𝛼) and (A, 𝛽) are said to be unitarily
equivalent if there exists a unitary matrix with entries in A intertwining the two systems. Two multi-
variable dynamical systems (A, 𝛼) and (B, 𝛽) are said to be are unitarily equivalent after a conjugation
if there exists a ∗-isomorphism 𝛾 : A → B, so that the systems (A, 𝛼) and (A, 𝛾−1 ◦ 𝛽 ◦ 𝛾) are unitarily
equivalent.

Note that the above definition does not require that the multivariable systems (A, 𝛼) and (A, 𝛽) should
have the same number of maps, that is, 𝑛𝛼 = 𝑛𝛽 , where 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛𝛼 ) and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑛𝛽 ).
On the contrary, it is possible for two dynamical systems with a different number of maps to be unitarily
equivalent (see [11, Example 5.1]). Nevertheless, in that case, at least one of the systems will fail to be
automorphic, as [11, Theorem 4.4] clearly indicates.

Recall that two (single variable) dynamical systems are said to be outer conjugate if there is a ∗-
isomorphism 𝛾 : A → B and a unitary 𝑢 ∈ A, such that

𝛼(𝑐) = 𝑢(𝛾−1 ◦ 𝛽 ◦ 𝛾(𝑐))𝑢∗.

Therefore, in that case, the concept of unitary equivalence after a conjugation coincides with that of outer
conjugacy. Davidson and Kakariadis [5] established that outer conjugacy of the systems implies that the
associated tensor algebras are completely isometrically isomorphic. They showed that the converse is true
in several broad cases (injective, surjective, etc.) and, specifically, when ‖𝐸 (𝜓(𝑣))‖ < 2

3
√

3−1 ≈ 0.1547
[5, Remark 3.6]. For multivariable dynamical systems consisting of automorphisms, Kakariadis and
Katsoulis have shown [11, Theorem 4.5] that the isomorphism of the tensor algebras is equivalent to
unitary equivalence after a conjugation for the associated dynamical systems. A similar result was shown
for arbitrary dynamical systems, provided that the pertinent C∗-algebras are stably finite [11, Theorem
5.2]. Our next result removes all these conditions and establishes a complete result for the unital case.

Theorem 2.6. If 𝜓 : T +(A, 𝛼) → T +(B, 𝛽) is a completely isometric isomorphism, then (A, 𝛼) and
(B, 𝛽) are unitarily equivalent after a conjugation.

Proof. Without loss of generality, we may assume that A = B and 𝜓 |A = id. Indeed, it is well known
that the restriction of the isomorphism 𝜓 on A ⊆ T +(A, 𝛼) induces a ∗-isomorphism 𝛾 : A → B of
the diagonals of the two tensor algebras (see, for instance, [7, Proposition 3.1]). The dynamical systems
(B, 𝛽) and (A, 𝛾−1 ◦ 𝛽 ◦ 𝛾) are conjugate via 𝛾, and so there exists a completely isometric isomorphism
𝜑 : T +(B, 𝛽) → T +(A, 𝛾−1 ◦ 𝛽 ◦ 𝛾), so that 𝜑|B = 𝛾−1. Hence, 𝜑 ◦𝜓 establishes a completely isometric
isomorphism between T +(A, 𝛼) and T +(A, 𝛾−1 ◦ 𝛽 ◦ 𝛾), whose restriction on A is the identity map.
Therefore, if 𝛾 is not the identity map to begin with, then replace 𝜓 with 𝜑 ◦ 𝜓 and establish the
conclusion for the dynamical systems (A, 𝛼) and (A, 𝛾−1 ◦ 𝛽 ◦ 𝛾).

For the proof, if 𝑣 = [𝑣1 𝑣2 . . . 𝑣𝑛] is the generating row isometry in T +(A, 𝛼), then Proposition 2.2
gives that 𝑏0 = 𝐸0(𝜓(𝑣)) is a strict row contraction. Combined with (2.5), this implies that 𝑏0 satisfies
the conditions of Theorem 2.1, and so there exists a completely isometric automorphism 𝜌 of T +(A, 𝛼),
such that

𝜌(𝑣) = (𝐼 − 𝑏0𝑏∗
0)

1/2(𝐼 − 𝑣𝑏∗
0)

−1(𝑏0 − 𝑣) (𝐼𝑛 − 𝑏∗
0𝑏0)−1/2.

Since 𝐸0 is multiplicative, we obtain that

𝐸0 (𝜓 ◦ 𝜌(𝑣)) = 𝐸0 ◦ 𝜓
(
𝐷𝑏∗

0
(𝐼 − 𝑣𝑏∗

0)
−1(𝑏0 − 𝑣)𝐷𝑏0

)
= 𝐷𝑏∗

0
𝐸0((𝐼 − 𝜓(𝑣𝑏∗

0))
−1(𝑏0 − 𝐸0 (𝜓(𝑣)))𝐷𝑏0

= 𝐷𝑏∗
0
𝐸0((𝐼 − 𝜓(𝑣𝑏∗

0))
−1(𝑏0 − 𝑏0)𝐷𝑏0

= 0.

Therefore, 𝜓 ◦ 𝜌 satisfies the requirements of Corollary 2.4 and the conclusion follows. �
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Of course, the converse of Theorem 2.6 is also true. If two multivariable systems (A, 𝛼) and (B, 𝛽) are
unitarily equivalent after a conjugation, then the associated C∗-correspondences are unitarily equivalent,
and so the tensor algebras T +(A, 𝛼) and T +(B, 𝛽) are completely isometrically isomorphic (see [12,
Theorem 4.5] and the discussion preceding it). Hence, Theorem 2.6 provides a complete classification
of tensor algebras up to complete isomorphism. For semicrossed products, we can say something more.
Corollary 2.7. Let (A, 𝛼) and (B, 𝛽) be two unital C∗-dynamical systems. Then A �𝛼 Z+ and B �𝛽 Z+
are isometrically isomorphic if and only if (A, 𝛼) and (B, 𝛽) are outer conjugate.
Proof. The result follows from Theorem 2.6 and the fact that contractive representations of semi-
crossed products associated with unital endomorphisms are always completely contractive [15,
Corollary 3.14]. �

3. Concluding remarks and open problems

(i) As we mentioned in the Introduction, Davidson and Kakariadis [5, Theorem 1.1] provide six different
properties for a dynamical system, with each one of them guaranteeing that the isomorphism problem
has a positive resolution. It is instructive to observe that there are dynamical systems that do not satisfy
any of their properties. Therefore, our Corollary 2.7 verifies the conjecture of Davidson and Kakariadis
by going beyond the realm of [5, Theorem 1.1].

Each one of the following conditions on a C∗-dynamical system (A, 𝛼) is sufficient for [5, Theorem
1.1] to apply:
(1) A has trivial centre.
(2) A is abelian.
(3) A is finite, that is, no proper isometries.
(4) 𝛼(A)′ is finite.
(5) 𝛼(𝑅𝛼) = 𝑅𝛼, where 𝑅𝛼 = ∪𝑘≥1 ker(𝛼𝑘 ).
(6) 𝛼(𝑅⊥

𝛼) ⊆ 𝑅⊥
𝛼.

We claim that for each 𝑖 = 1, 2, . . . , 6, there exists a dynamical system (A𝑖 , 𝛼𝑖) that fails the correspond-
ing condition (𝑖) from the above list. It is easy to see then that the dynamical system (⊕6

𝑖=1A𝑖 , ⊕6
𝑖=1𝛼𝑖)

will fail all six conditions.
The existence of dynamical systems that do not satisfy any one of the conditions (1), (2) or (3) is

a trivial matter. For condition (4), let H be a separable Hilbert space and let 𝐵(H), 𝐾 (H) denote the
bounded and compact operators, respectively, acting on H. Let

A4 = 𝐵(H) ⊗ 𝐾 (H) + C(𝐼 ⊗ 𝐼)

acting on H ⊗ H, and let 𝛼4 be the unital endomorphism of A defined as

𝛼4(𝑆 + 𝜆𝐼 ⊗ 𝐼) = 𝜆𝐼 ⊗ 𝐼, 𝑆 ∈ 𝐵(H) ⊗ 𝐾 (H), 𝜆 ∈ C.

The dynamical system (A4, 𝛼4) fails property (4) from the above list.
For condition (6), let H and 𝐾 (H) be as in the previous paragraph and consider

A6 = (𝐾 (H) + C𝐼) ⊕ C𝐼

acting on H ⊕ H and let 𝛼6 be the unital endomorphism of A6 defined as

𝛼6 (𝐾 + 𝜆𝐼, 𝜇𝐼) = (𝜇𝐼, 𝜆𝐼), 𝐾 ∈ 𝐾 (H), 𝜆, 𝜇 ∈ C.

It is clear that ker(𝛼𝑘
6 ) = 𝐾 (H) ⊕0, for all 𝑘 ≥ 1, and so 𝑅𝛼 = 𝐾 (H) ⊕0. Therefore, 𝑅⊥

𝛼6
= 0⊕C𝐼, and so

𝛼6 (𝑅⊥
𝛼6
) = C𝐼 ⊕ 0 � 0 ⊕ C𝐼 = 𝑅⊥

𝛼6
,
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that is, (A6, 𝛼6) does not satisfy (6). Note also that

𝛼6 (𝑅𝛼6) = 0 ≠ 𝑅𝛼6 ,

and so (A6, 𝛼6) does not satisfy (5) as well.
(ii) Could one obtain Corollary 2.7 by just using the earlier techniques of Davidson and Kakariadis

[5]? Notice that their [5, Remark 3.6] would imply Corollary 2.7, provided that one could establish the
existence of an isomorphism 𝜓 that satisfies the technical requirement ‖𝐸 (𝜓(𝑣))‖ < 2

3
√

3−1 ≈ 0.1547.
However, the existence of such an isomorphism was not established in [5] and it does not seem likely
that the techniques of [5] alone could do that. Our Theorem 2.1 and Proposition 2.2 show now that
such an isomorphism 𝜓 exists and satisfies the much stronger condition ‖𝐸 (𝜓(𝑣))‖ = 0 (this actually
provides a slightly different proof of Corollary 2.7). Our approach in Theorem 2.1 is much different
from that of [5], and it is inspired by the works of Muhly and Solel [17] and Davidson, Ramsey and
Shalit [4], which were actually available during the writing of [5].

Note that a multivariable analogue of [5, Remark 3.6] does not exist in the literature, thus, necessitating
the approach that we followed in the proof of Theorem 2.6.

(iii) Even though we provide a complete invariant for completely isometric isomorphisms,
Theorem 2.6 is not the end of the story for the isomorphism problem for tensor algebras of multi-
variable dynamical systems. There are still questions that need to be addressed, and the following two
seem to be the most important.

Question 3.1. Does Theorem 2.6 hold for algebraic isomorphisms? Is unitary equivalence after a
conjugation a complete invariant for algebraic isomorphisms between tensor algebras of multivariable
dynamical systems?

Indeed, a great deal of work on isomorphisms between tensor algebras of abelian multivariable
systems addresses algebraic isomorphisms. In general, it is possible for nonselfadjoint operator algebras,
even tensor algebras, to be algebraically or bicontinuously isomorphic without being isometrically
isomorphic. So Question 3.1 above whether the various concepts of isomorphism coincide for tensor
algebras of multivariable dynamical systems. Remarkably, to this date, there has been no work addressing
algebraic isomorphisms between tensor algebras of nonabelian multivariable systems. One reason for that
is perhaps the fact that algebraic isomorphisms between nonselfadjoint operator algebras do not preserve
the diagonal, and so the techniques developed for isometric isomorphisms are not applicable here.
Hopefully, the progress achieved in this paper will finally facilitate the study of algebraic isomorphisms
beyond the abelian case.

Question 3.2. Is piecewise conjugacy a complete invariant for completely isometric isomorphisms
between tensor algebras of multivariable dynamical systems over abelian C∗-algebras?

This important question goes back to the memoirs of Davidson and Katsoulis [8, Conjecture 3.26],
and the second half of [8] was actually occupied with partial solutions to this question. In light of
Theorem 2.6, this question essentially asks whether piecewise conjugacy and unitary equivalence after
a conjugation coincide as invariants for multivariable dynamical systems over abelian C∗-algebras; in
this form, the question was raised in [11, Question 2]. As we mentioned in the Introduction of this paper,
this question does not make sense in the generality of multivariable dynamical systems over-nonabelian
C∗-algebras. Hence, the invariant we offer here is the only one available beyond the abelian case.
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