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Abstract

Probability distortion—the tendency to underweight larger probabilities and overweight smaller ones—is a robust empirical
phenomenon and an important driver of suboptimal choices. We reveal a novel contextual effect on probability distortion that
depends on the composition of the choice set. Probability distortion was larger in a magnitude-diverse choice set (in which
participants encountered more unique magnitudes than probabilities) but declined, resulting in more veridical weighting,
in a probability-diverse choice set (more unique probabilities than magnitudes). This effect was consistent in two, large,
independent datasets (N = 481, N = 100) and held for a subset of lotteries that were identical in the two contexts. It also
developed gradually as a function of exposure to the choice set, was independent of attentional biases to probability versus
magnitude information, and was specific to probability weighting, leaving risk attitudes unaffected. The results highlight
the importance of context when processing probabilistic information.

Keywords Decision-making - Uncertainty - Attention

Introduction

Humans routinely face consequential decisions involving
uncertain outcomes with known probabilities, that is, deci-
sions involving risk. Monetary lotteries have been extensively
used to study risky decision making in the laboratory (Holt &
Laury, 2002), and empirical choice data have provided indis-
pensable insights into human preferences for uncertainty. In
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a common experimental setup, participants are faced with a
series of choice scenarios that require a decision between two
options, each of which offers a chance (the probability) of
some reward (the magnitude). Lottery probabilities and mag-
nitudes typically vary from trial to trial so that participants
encounter diverse amounts of risk and rewards. Choice data
can then be used to estimate parameters in theoretical models
of decision making, with which theoretical predictions can
be tested and refined. Converging evidence from empirical
and theoretical work has shown that, when making decisions
under risk for explicitly stated outcomes with precise prob-
abilities (i.e., decisions from description; Hertwig & Erev,
2009), humans tend to exhibit risk aversion (i.e., preferring
smaller, safer rewards to larger, riskier ones; Holt & Laury,
2002; but see also Barron & Erev, 2003 for feedback as a
potential modulating factor) and probability distortion (i.e.,
the tendency to underweight larger probabilities and over-
weight smaller ones; Kahneman & Tversky, 1979).
Investigations into choice in the absence of risk have
revealed that participants evaluate available options dif-
ferently depending on the choice context—specifically,
the composition of the choice set. One contextual influ-
ence is range adaptation, whereby sensitivity to value var-
ies inversely with the range of the values available in the
local context (Padoa-Schioppa, 2009). Another, potentially
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related, contextual influence in trinary, risk-less choice
involves normalized value coding in which the value of
irrelevant options can impact decision making (Khaw et al.,
2017; but see also, Gluth et al., 2020). These contextual
influences have been well investigated and may play criti-
cal roles in allowing the brain to efficiently allocate limited
coding resources to the immediately relevant value range.

However, an additional contextual regularity that often
arises in risky choice but has yet to be systematically studied
concerns the frequency of encountering a given magnitude
or probability. In a typical crossed experimental design, such
as the one described in the opening paragraph, participants
encounter several probabilities and magnitudes presented in
all possible combinations, so that the frequency with which
the participant encounters each value depends on the number
of unique magnitudes and probabilities in the choice set.
For example, in a study that crosses 3 probabilities (e.g.,
0.25, 0.5, and 0.75) with 10 magnitudes (e.g., $5-$50 in $5
increments), participants confront each individual probabil-
ity much more frequently than each individual magnitude
(specifically, in a 10:3 ratio). Ample evidence suggests that
human observers can implicitly learn contextual regulari-
ties while performing a task (Sherman et al., 2020) and use
these regularities to modulate expectations (Summerfield
& de Lange, 2014). Moreover, variability influences atten-
tion (Jiang, 2018) which, in turn, can influence choice (Fie-
dler & Glockner, 2012; Glickman et al., 2019; Harrison &
Swarthout, 2019; Hunt et al., 2018; Johnson & Busemeyer,
2016; Kim et al., 2012; Smith & Krajbich, 2018; Spitmaan
et al., 2019; Stewart et al., 2016). Thus, contexts that differ
in the numbers of unique probabilities versus magnitudes
they present may induce differential attention to probability
versus magnitude information, which may influence choice.
However, it is unknown whether or how the relative frequen-
cies of unique magnitudes and probabilities in the choice set
influence decision making under uncertainty.

We examined this question by comparing choice behav-
ior in two distinct contexts: a magnitude-diverse context
in which participants were exposed, across trials, to more
unique magnitudes than unique probabilities (respectively,
21 and 5), and a probability-diverse context in which par-
ticipants were exposed to more unique probabilities than
unique magnitudes (the inverse ratio). A subset of identical
choice trials, the Overlapping Choice Set, appeared in both
contexts, allowing for direct between-group comparisons.
We found robust evidence in two independent samples that
the probability-magnitude asymmetry selectively modulated
probability distortion with no effect on risk attitudes. Partici-
pants showed lower probability distortion (i.e., their prob-
ability weighting was closer to optimal) in the probability-
diverse context relative to the magnitude-diverse context,
and this difference emerged gradually while participants
were performing the task. Moreover, the contextual effect
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on probability weighting was independent of overt attention
to choice-relevant information, suggesting that this contex-
tual manipulation affects the subjective evaluation of prob-
abilities for decision formation independently of attention.

Methods

Participants A total of 581 adults were tested in two stud-
ies. Study 1 was conducted on Amazon Mechanical Turk
(“web-based,” N = 481), and Study 2 was conducted in
person at Yale University (“lab-based,” N = 100). All par-
ticipants provided informed consent. Experimental proce-
dures were approved by the institutional review boards at
Columbia University (web-based study) and Yale School of
Medicine (lab-based study), and all methods were performed
in accordance with the relevant guidelines and regulations.
Web-based study demographics: mean age: 34.08 years
(standard deviation [SD] = 9.68); gender: female, 199; male,
234; other, 2; not reported or missing, 46. Lab-based study
demographics: mean age: 26.6 years old; gender: female, 60;
male, 40. For additional details on participant demograph-
ics, see Supplementary Material, Additional Demographic
Information.

Data exclusions In the web-based study, an additional 96
people participated but were excluded due to excessive first-
order stochastic dominance violations, choosing a chance
of 5 points over a guaranteed 5 points on half or more of
the trials; this exclusion criterion was set a priori and has
been used in our previous work (Grubb et al., 2016). Ten
such people were excluded from the lab-based study. In the
web-based study, an additional 44 datasets were collected
but not included in the analysis for the following reasons: 18
datasets contained trial data for more than the programmed
number of trials, which indicates a writing error or potential
modification by the user; 18 participants completed the study
more than once (as judged by the mTurk ID), and only the
first session was included in the analysis; 8 datasets had no
mTurk ID, and we were thus unable to verify that the data
was not from a repeat session.

Experimental task In each study, participants made 210
decisions between a fixed, certain gain (web-based: 5
points; lab-based: $5) and a lottery whose magnitude and
probability of payout varied from trial to trial (Fig. 1). To
examine the relationship between choices and inspection
of the lottery attributes before the choice, we included
icons to the left and right of the fixation point indicat-
ing locations from which participants could obtain infor-
mation about magnitude or probability (Fig. 1, “Feature
location information”). In the web-based study, partici-
pants pressed a button to indicate which information
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Fig. 1 Example trial sequence from the lab-based study for a lottery
offering a 35% chance of $20. $ and % icons at fixation indicated
where magnitude and probability information for that trial’s lottery
could be found; visual fixations at those locations were required to

they wished to reveal. In the lab-based study, we used
eye-tracking and provided lottery feature information in
a gaze-contingent manner if a participant maintained fixa-
tion on the side corresponding to the icon in the display.

Experimental manipulation Participants were randomly
assigned to one of two choice sets: a magnitude-diverse
choice context, in which the variable lottery could be com-
prised of 1 of 5 unique probabilities but 1 of 21 unique mag-
nitudes, and a probability-diverse choice context, in which
the variable lottery could be comprised of 1 of 21 unique
probabilities but only 1 of 5 unique magnitudes. The range
of magnitudes and probabilities was identical in both choice
sets (respectively, magnitudes of 5-80 points/dollars and
probabilities of 0.2-0.8; see below for full choice sets). Each
lottery was presented twice (with magnitude and probability
information spatially counterbalanced), and an identical sub-
set of 25 lotteries, the Overlapping Choice Set, was present in
both choice contexts. Values that constitute the Overlapping
Choice Set are shown in bold.

reveal and keep visible the information. In the web-based study, par-
ticipants were required to press and hold the left or right arrow key
to reveal magnitude and probability information

Choice model To estimate risk attitudes and assess probabil-
ity weighting, we fit a subjective utility model and a logistic
function to the choice data. We modeled subjective utility
(SU) using the functional form:

SU(p,m) = e~ e (1)

where p and m denote, respectively, the probability and
magnitude offered by the lottery; a controls the curvature
of the utility function, and y indicates the degree of distor-
tion in the probability weighting function (Prelec, 1998). We
used a maximum likelihood fitting procedure to fit the prob-
ability of choosing the lottery on each trial using a logistic
choice function:

1
1+ e_(SU1<1x/(,—SU,¢f)/n Q)

p lotto =

For additional details on parameter recovery, parameter
identifiability, and the issue of interdependencies, see Sup-
plementary Material, Parameter Recovery and Identifiability.

Magnitude-diverse choice context

% 20 35 50 65 80

¥/ $ 5 6 7 8 9 10 12 14 16 18
Probability-diverse choice context

% 20 23 26 29 32 35 38 41 44 47
¥/ $ 5 10 20 40 80

20 23 26 30 35 40 48 56 64 72 80

50 53 56 59 62 65 68 71 74 77 80
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Payment At the end of the experiment, one trial was ran-
domly selected, and its outcome was realized for a real bonus
payment. In the web-based study, the magnitudes referred
to points, withx5 being equivalent to $0.05 (explained in
advance); in the lab-based study, the magnitudes indicated
amounts in U.S. dollars. In addition to this bonus payment,
participants received a flat fee of $1 (web-based study) or
$10 (lab-based study) for participating.

Eye-tracking (lab-based study) Eye position was monitored
using a Tobii Eye-Tracking system recording at 60Hz, and a
9-point calibration routine was used to calibrate the eye tracker
for each participant. During the Feature Exploration phase of
each trial (Fig. 1), real-time eye position was continuously
obtained. Magnitude and probability information was presented
at +480 pixels from the center of the screen and was only, and
selectively, revealed when horizontal eye position was greater
than 300 or less than —300 pixels from the center of the screen.

Feature-based attention index (FBAI) During a given trial,
participants could overtly attend to magnitude information,
probability information, or neither. Overt attention to neither
feature presumably reflects some degree of internal atten-
tion to the nonvisible, static reference ($5 for sure), or to
previously overtly attended information (e.g., mental con-
sideration of the magnitude and probability of the lottery
currently on offer). The proportion of time spent revealing
either feature, through a button press (web-based study)
or an eye movement (lab-based study), was calculated for
each trial, and the mean across trials was computed for each
participant.

In both studies, participants who took longer to make a
decision spent more time viewing magnitude and probability
information (Spearman correlation: web-based, r = 0.3927,
p < 0.0001; lab-based, r = 0.7745, p < 0.0001), and the
time spent viewing magnitude and probability information
were highly correlated (Spearman correlation: web-based,
r=0.8662, p < 0.0001; lab-based, r = 0.7799, p < 0.0001).
To control for these correlations, we normalized attention to
each feature by the trial’s response time and calculated for
each participant a Feature Based Attention Index (FBAI) as
the average difference in the proportion of each trial (PT)
spent attending to the two features:

FBAI = (PT ., — PT,,,;) 3)

mag p

Thus, an FBAI score of zero indicates an equivalent
amount of attention to magnitude and probability informa-
tion, increasingly positive FBAI scores indicate an increas-
ingly greater attentional bias toward magnitude information,
and increasingly negative FBAI scores indicate an increas-
ingly greater attentional bias toward probability information,
all after controlling for RT and total viewing time.
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Bootstrapped confidence intervals To create bootstrapped
confidence intervals (CI), we randomly sampled, with
replacement, 226 or 255 observers in the web-based study
(51 or 49 observers, lab-based study) from the magnitude-
diverse and probability-diverse choice context groups,
respectively. We then computed the median of each new,
random sample and repeated the process 10,000 times. The
inner 95% of the resulting distribution was extracted to
determine the bounds of the CI. This process was conducted
separately for each group and for each study.

Randomization tests on group medians To evaluate
between-group differences, we conducted the following
randomization procedure: 1) group labels were randomly
shuffled, 2) group medians were computed and the difference
was recorded after each shuffle, 3) this process was repeated
10,000 times to generate a null distribution, 4) the p-value
of the randomization test was designated as the proportion
of the null distribution greater than or equal to the actual,
empirically observed group difference. Absolute values were
used to make these two-tailed tests.

Results

In this experiment, we measured the impact of probability-
magnitude asymmetries in the choice set on risk tolerance
and probability weighting. Participants were randomly
assigned to either a magnitude-diverse choice context in
which they were exposed across trials to more unique mag-
nitudes than unique probabilities, in a 21:5 ratio, or to a
probability-diverse context that contained the converse. An
identical subset of 25 lotteries, the Overlapping Choice Set
(OCS), was present in both choice contexts. On each trial,
participants chose between a safe, certain option ($5 for
sure) and a risky lottery. To isolate and measure the amount
of goal-directed attention to each distinct lottery feature, we
took inspiration from process-tracing approaches that rely
on mouse position to selectively reveal information (John-
son et al., 1989). We presented magnitude and probability
on opposite sides of the screen (counterbalanced) and used
button-press-contingent (Study 1) and gaze-contingent pres-
entation (Study 2) to ensure that only one lottery feature was
overtly attended at a time (Fig. 1).

Participants’ choices evidenced lawful behavior, alle-
viating potential concerns about the spatial separation of
lottery information. To facilitate a direct, between-group
comparison of model-free data, choices from the Overlap-
ping Choice Set trials are shown in Fig. 2. The proportion
of lottery choices increased as the magnitude (two left
panels) and probability (two right panels) of winning the
lottery increased, confirming sensitivity to these experi-
mental features. The proportion of lottery choices, in each
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Fig. 2 Proportion of lottery choices confirms lawful behavior. Prefer-
ence for the lottery increases as magnitude and probability of reward
increases

experiment and in each group, was substantially less than
what an expected value framework predicts (0.64 for the
Overlapping Choice Set lotteries), confirming the presence
of risk aversion with this model-free metric of risk toler-
ance. Web-based, magnitude-diverse choice context: 0.44
(median), [0.42, 0.49] (bootstrapped 95% CI); web-based,
probability-diverse choice context: 0.48, [0.44, 0.50]; lab-
based, magnitude-diverse choice context: 0.46, [0.44, 0.52];
lab-based, probability-diverse choice context: 0.54, [0.48,
0.58].

In reporting the results of the remaining analyses, we first
present the outcome when all trials in each choice context
are considered, which maximizes statistical power. We then
present the outcome when only trials from the Overlapping
Choice Set are considered, which rules out the possibility
that our results are an artifact of the precise magnitude-
probability pairs used in the analysis.

Experimentally manipulating the choice set had a con-
sistent impact on probability weighting, without affecting
other parameters of the choice function. We fit the SU model
and logistic function to individual choice data from all tri-
als and compared the resultant distributions of parameters
independently in each study (Fig. 3A, Table 1, Table 2).
For participants in the magnitude-diverse choice context,
median y estimates and their corresponding 95% confidence

web-based
N=481

= } i
lab-based } ns
N=100 -
web-based
N=481
lab-based } *
N=100

Median parameter estimate with 95% Cl

B magnitude-diverse
M probability-diverse

Alpha
(risk tolerance)

Gamma
(prob. weighting)

[0 magnitude-diverse OCS
[0 probability-diverse OCS

web-based I } nes.
N=474 o S

lab-based

—

Alpha
(risk tolerance)

g web-based H— } . %
E.—E, N=474 |—-'—|
E [
82
'S lab-based T
& N=100 — &
0 0.5 1 1.5

Median parameter estimate with 95% Cl

Fig.3 Median parameter estimates from both studies. A) All trials.
Error bars, bootstrapped 95% confidence intervals. ***p < 0.0001; *p
< 0.05; n.s., not significantly different. B) Trials from the overlapping
choice set (OCS), **p < 0.005. Seven participants in the web-based
study are excluded because the MLE fitting procedure failed to con-
verge with the limited number of trials

intervals were less than one—indicating a nonlinear proba-
bility weighting function. In contrast, median y estimates for
participants in the probability-diverse choice context were
near one—indicating a linear probability weighting function.
In both studies, y estimates differed significantly between
groups (web-based: p < 0.0001; lab-based: p = 0.0134), but
the degree of risk aversion was statistically indistinguish-
able between groups (web-based: p = 0.8526; lab-based:
p = 0.2995), as were estimates of o, the slope of the logis-
tic choice function (web-based: p = 0.4887; lab-based: p =
0.5020).

Crucially, the effect of the global choice set on prob-
ability distortion held when we restricted our analysis to
trials in the Overlapping Choice Set (23.8% of the data;
Fig. 3B). When we examined this subset of choice scenar-
ios that were identical in each group, we again found that
in both studies, y estimates differed significantly between
groups (web-based: p = 0.0021; lab-based: p = 0.0390),
with statistically indistinguishable estimates of risk toler-
ance (web-based: p = 0.8000; lab-based: p = 0.2263) and
the slope of the logistic choice function (web-based: p =
0.4793; lab-based: p = 0.5718). Given that the lotteries
in the Overlapping Choice Set were identical, and given
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Table 1 Web-based study with key tracing (N = 481)

Alpha (risk preference)

Gamma (probability weighting)

Magnitude-Diverse

Probability-Diverse

Magnitude-Diverse Probability-Diverse

Median estimate 0.4676
Bootstrapped 95% CI [0.4220, 0.5297]
Cl includes 1? N N
p=0.8526

0.4760

Between-group randomiza-
tion test

[0.4188, 0.5266]

0.7302 1.0146
[0.6699, 0.8431] [0.9336, 1.1165]
N Y

p < 0.0001

Median parameter estimates and statistical results from individual fits. Significant group differences are shown in bold

Table 2 Lab-based study with eye-tracking (N = 100)

Alpha (risk preference)

Gamma (probability weighting)

Magnitude-Diverse

Probability-Diverse

Magnitude-Diverse Probability-Diverse

Median estimate 0.4984
Bootstrapped 95% CI [0.4442,0.6481]
Clincludes 1? N N
p =0.2995

0.5571

Between-group randomiza-
tion test

[0.4865, 0.6676]

0.7813 1.0745
[0.6929, 0.9312] [0.7921, 1.3187]
N Y

p=0.0134

Median parameter estimates and statistical results from individual fits. Significant group differences are shown in bold

that group assignment was random, the only thing that can
account for this between-group difference in probability
weighting is the wider context in which these choices were
embedded (i.e., the global choice set).

Converging evidence that the choice set exerts an impact
on probability distortion, but not on risk tolerance or choice
stochasticity, was obtained using a different modeling
approach. We simultaneously fit the choice model to all
participants’ data, clustering the standard errors (SE) on
participants and allowing each parameter to vary as a linear
function of the choice context and experimental setting
(Gilaie-Dotan et al., 2014; Grubb et al., 2016; Harrison,
2008; Harrison & Rutstrom, 2008). This produced coefficients
indicating the extent to which risk tolerance (o), distortions
in the probability weighting function (y), and the slope of the
logistic choice function () depended on the composition of
the choice context and on the experimental setting (Model 1:
a = By + B, X isMagnitudeDiverse + p, X isLabBased;y =
Bo + By X isMagnitudeDiverse + P, X isLabBased,
6 = By + B, X isMagnitudeDiverse + P, X isLabBased,
where isMagnitudeDiverse and isLabBased are dummy
predictors representing, respectively, the choice context and
experimental setting). Consistent with the results presented
above, we observed a significant negative coefficient for the
isMagnitudeDiverse predictor in Model 1 (z-test: n = 122,010,
SE clustered on 581 participants, z = -3.25, p = 0.001),
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indicating greater distortion in the probability weighting
function (i.e., more probability weighting) for participants
in the magnitude-diverse choice environment, compared
with those in the probability-diverse choice environment
(Table 3)." The isMagnitudeDiverse coefficients for o and &
were not significant (ps < 0.373), indicating that the choice
environment manipulation specifically affected probability
weighting. Repeating this modeling approach for Overlapping
Choice Set trials produced consistent results: we again found
a significant, negative coefficient for our dummy predictor
isMagnitudeDiverse on y only (z-test: n = 29,050, SE clustered
on 581 participants, z = —2.98, p = 0.003; Table 4).

If our experimentally induced manipulation of probability
distortion relies on exposure to the choice environment, we
might expect the effect to grow as the experiment progresses.
To assess this possibility, we fit the SU model to trial-number-
based deciles of choice data from all participants in each choice
context (10 bins of 21 trials each) and clustered the standard

! While it is true that participants in the lab-based study were found
to be significantly more risk tolerant than those in the web-based
study, we are agnostic as to whether or not this result is causally
related to study location or some other methodological difference
between the two studies (e.g., differences in the payout scheme).
Unlike the choice set assignment, we did not randomly assign partici-
pants to participate in the lab or via the web.
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Table 3 Web- and lab-based studies combined (N = 581), all trials

Model 1 Coef. Robust SE Z p 95% CI

Risk tolerance («)

isMagnitudeDiverse 0.0164 0.0184 0.89 0.373 -0.0197 0.0525
isLabBased 0.0551 0.0220 2.51 0.012 0.0120 0.0982
constant 0.4497 0.0133 33.74 0.000 0.4236 0.4759
Probability weighting (y)

isMagnitudeDiverse -0.1639 0.0505 -3.25 0.001 -0.2628 -0.0650
isLabBased 0.1124 0.0582 1.93 0.053 -0.0016 0.2265
constant 0.8350 0.0403 20.72 0.000 0.7560 0.9140
Logistic slope (o)

isMagnitudeDiverse -0.0010 0.0539 -0.02 0.986 -0.1065 0.1046
isLabBased -0.0971 0.0547 -1.77 0.076 -0.2044 0.0101
constant 0.7202 0.0401 17.96 0.000 0.6416 0.7988

Parameter estimates and statistical results. Robust SE, standard error clustered on participant. CI, confidence interval. Coefficients significantly

different from zero in bold

Table 4 Web- and lab-based studies combined (N = 581), Overlapping Choice Set

Model 1 - OCS Coef. Robust SE zZ p 95% CI

Risk tolerance (a)

isMagnitudeDiverse -0.0103 0.0179 —-0.58 0.565 -0.0455 0.0249
isLabBased 0.0600 0.0213 2.81 0.005 0.0181 0.1018
constant 0.4647 0.0135 3431 0.000 0.4382 0.4913
Probability weighting (y)

isMagnitudeDiverse -0.1458 0.0490 -2.98 0.003 -0.2418 -0.0498
isLabBased 0.1228 0.0563 2.18 0.029 0.0125 0.2330
constant 0.7757 0.0393 19.74 0.000 0.6987 0.8527
Logistic slope (o)

isMagnitudeDiverse -0.0587 0.0501 -1.17 0.241 -0.1568 0.0394
isLabBased -0.0949 0.0529 -1.80 0.073 -0.1985 0.0087
constant 0.7360 0.0397 18.56 0.000 0.6583 0.8138

Parameter estimates and statistical results. Robust SE, standard error clustered on participant. CI, confidence interval. Coefficients significantly

different from zero in bold

error at the participant level. Figure 4 shows the resultant
parameter estimates for each decile and for each choice con-
text. Confidence intervals indicate that the two groups exhibited
minimal, and highly similar, probability weighting at the start
of the experiment, but by the 85" trial, the two groups reliably
diverged. Risk tolerance appears to be relatively stable through-
out the duration of the experiment and, consistent with previ-
ous results, does not differ between groups. Given the limited
number of choices in the Overlapping Choice Set, this analysis
focuses only on the trials from the full choice set.

Our experimental paradigm also was designed to meas-
ure overt attention to magnitude and probability information,

allowing us to test whether differences in attention can explain
differences in choice. Because our contexts differed in the
relative numbers of unique values of magnitude versus proba-
bility, the most relevant attention metric is the extent to which
participants are biased to attend to one or the other dimension.
Thus, we devised a feature-based attentional index (FBAI,
Methods) such that FBAI scores greater than zero indicate
an attentional preference for magnitude information, whereas
FBALI scores less than zero indicate a bias toward probability
information. We found that an attentional bias for magnitude
information is associated with less risk aversion and an atten-
tional bias toward probability information is associated with

@ Springer
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Fig.4 Probability weighting and risk tolerance as a function of task
exposure. See main text for details. Error bars, 95% confidence intervals

lower probability distortion. To show the consistency and reli-
ability of these correlations, Fig. 5 depicts Spearman rank-
order correlations for all trials, separately for each group and
separately for each study. Restricting this analysis to the Over-
lapping Choice Set trials only, we observed consistent patterns
of relationships between FBAL, risk tolerance, and probability
weighting (Table 5), but given the much smaller number of
trials in the subset, these correlations were statistically robust
only in the web-based study, where the sample size was more
than four times as large. We observed similar results with
linear mixed-effects models in which we regressed trial-level
FBAI on trial-level probability, trial-level magnitude, trial-
level EV, subject-level gamma parameter rank, subject-level
alpha parameter rank, and a dummy variable indicating group
(see Supplementary Material, Linear Mixed-effect Models
with Trial-level FBAI). In short, across all four LME models
(web- based and lab-based datasets, assessing all trials and
overlapping choice set trials), individual risk tolerance was
positively correlated with trial-level FBAI, after controlling
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for the aforementioned variables (Tables S10-S13). For three
of the four models, individual probability weighting was nega-
tively correlated with trial-level FBALI, after controlling for the
aforementioned variables (Tables S10-S13); in the remaining
regression (lab-based, overlapping choice set), this p-value
was 0.0622 (Table S13).

Given the correlations between overt attention and choice
within each individual context, we next asked if the attentional
biases could explain the contextual differences in probability
weighting. The evidence did not support this hypothesis. We
reasoned that, if attentional biases explained the contextual
modulations, FBAI should differ across the two contexts.
However, while a difference was found in the lab study using
eye-tracking (with median FBAI scores of 0.0121, 95% CI
= [0.0049, 0.0208] in the magnitude-diverse context versus
—0.0126, 95% CI = [-0.0246, 0.0072] in the probability-
diverse context; between-group randomization test: p =
0.0033), this difference was not replicated in the Overlapping
Choice Set (lab study, randomization test: p > 0.8; magni-
tude-diverse, median = 0.0004, 95% CI = [-0.0110, 0.0192];
probability-diverse, median = 0.0025, 95% CI = [-0.0145
0.0205]) or in the web-based study (All trials: randomization
test: p = 0.1076; magnitude-diverse, median = 0.0005, 95% CI
= [-0.0003, 0.0013]; probability-diverse, median = 0.0015,
95% CI = [0.0006, 0.0025]. OCS trials: randomization test:
p = 0.1203; magnitude-diverse, median = 0.0004, 95% CI =
[—0.0008, 0.0025]; probability-diverse, median = 0.0025, 95%
CI = [0.0005, 0.0047]). Thus, the contextual effects on FBAI
were inconsistently replicated, making it improbable that they
mediated between-group changes in probability weighting
(which, as we noted above, were highly reliable in both par-
ticipant samples and in the full and Overlapping Choice Set).

The linear mixed-effect models mentioned above also sup-
port this conclusion, as none of the models produced a signifi-
cant effect of context (Tables S10-S13). A possible concern,
however, is that these trial-level analyses may have missed
contextual effects expressed at the individual subject level. To
address this concern, we conducted additional subject-level
analyses in which we fit the participants’ probability distortion
parameter (gamma) as a function of context and FBAI. Using
the ranked gamma coefficients in the Overlapping Choice Set,
we fit them with 3 alternative models in which the predictors
were the ranked FBAI scores from the Overlapping Choice
Set (Table 6, Model 1), a dummy predictor of context (isMag-
nitudeDiverse; Table 6, Model 3) or both the FBAI ranks and
the dummy predictor (Table 6, Model 2). We reasoned that,
if the FBAI accounted for the context effect, the latter effect
should diminish or disappear in the simultaneous model. In
contrast to this hypothesis, the coefficients for each term were
approximately the same whether the predictors were entered
individually or together, suggesting that the FBAI/gamma and
context/gamma relationships were similar if we did or did not
control for the other factor.
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Fig.5 Attention—choice correlations using individually estimated choice set. Red circles: participants in the probability-diverse choice
model parameters. Top row: web-based study. Bottom row: lab-based set. Samples sizes for each Spearman correlation given by largest
study. Leftmost columns: probability weighting. Rightmost columns: rank in each panel
risk tolerance. Blue circles: participants in the magnitude-diverse
Table 5 Attention—choice correlations using individually estimated model parameters from the OCS trials only
Web-Based Lab-Based
Alpha Gamma Alpha Gamma
OCS trials MD PD MD PD MD PD MD PB
Correlation with FBAI 0.2722 0.1360 —0.3107 —0.3057 0.1866 0.1236 —0.2393 —0.1495
p-value <0.001 0.0309 <0.001 <0.001 0.1899 0.3973 0.0908 0.3054
MD magnitude-diverse, PD probability-diverse. Coefficients significantly different from zero in bold
Table 6 Attention—choice correlations and between-group differences in probability weighting
Web-based Lab-based
Coefficient p-value Coefficient p-value
Model 1: gamma ~ FBAI
FBAI —-0.29504 <0.001 -0.2007 0.0453
Model 2: ¢ ¢
gamma ~ FBAI + isMagnitudeDiverse
FBAI —-0.3065 <0.001 -0.1998 0.0439
isMagnitudeDiverse —38.708 0.00132 -10.164 0.0752
Model 3: ¢ ¢
gamma ~ isMagnitudeDiverse
isMagnitudeDiverse -31.883 0.01130 -10.224 0.0780

See text for details. Double-headed arrows indicate relevant comparisons
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Discussion

We report a novel effect of the choice context on probability
weighting during risky choice: a dependence on the ratio of
unique magnitudes and probabilities in the choice set. Par-
ticipants who experienced a choice set in which five unique
probabilities were paired with 21 unique magnitudes made
choices consistent with distorted probability weighting:
overweighting of low probabilities and underweighting of
high ones. In contrast, participants who experienced the
converse (21 unique probabilities paired with five unique
magnitudes) made choices consistent with a more veridical
(i.e., optimal) assessment of probability information. Sev-
eral lines of evidence attest to the robustness of this context
effect. First, the effect replicated in two independent samples
of participants who completed the task on Amazon Mechani-
cal Turk and in the laboratory. Second, the effect held for
a subset of lotteries that were identical in the two contexts,
ruling out artifacts related to different choice options. Third,
this context effect was specific to probability weighting with-
out affecting risk aversion or the stochasticity of the choice,
ruling out that it was due to nonspecific factors like arousal
or general engagement in the task. Finally, the context effect
emerged during the experiment, with between-group differ-
ences in probability weighting developing gradually as a
function of exposure to the choice set, as would be expected
if it were due to gradual learning of the context-specific
probability/magnitude contingencies.

The context effect on probability weighting could not
be accounted for by effects commonly discussed in the lit-
erature in the context of risk-less choice. In our design, the
probabilities and magnitudes that participants encountered
spanned identical ranges in both choice sets, so between-
group differences in probability weighting could not be
explained by range adaptation (Padoa-Schioppa, 2009).
Moreover, the values in the two contexts had nearly iden-
tical means (probability, 0.5 in both contexts; magnitude,
28.5 vs. 31), and we did not include an irrelevant option in
either choice context, ruling out potential explanations based
on normalized value coding (Khaw et al., 2017) and value-
based attention to irrelevant options (Gluth et al., 2020).
Thus, our findings suggest that probability weighting is spe-
cifically sensitive to the number of discrete probabilities (vs.
magnitudes), or to the precision of the probabilities, in the
global choice context.

One plausible mechanism that may have explained our
result involves changes in attention to the choice-relevant
features. Many previous studies have shown that differences
in attention—directed either to the lottery as a whole (Hunt
et al., 2018; Smith & Krajbich, 2018; Stewart et al., 2016)
or to its constituent parts (Fiedler & Glockner, 2012; Glick-
man et al., 2019; Harrison & Swarthout, 2019; Johnson &
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Busemeyer, 2016; Kim et al., 2012; Spitmaan et al., 2019)—
can explain differences in risky choice. Other authors have
proposed that variability in a decision-relevant dimension
influences attention (Horan et al., 2019; Pearce & Mack-
intosh, 2010) and saliency (Bordalo et al., 2012). Thus,
participants may have differentially attended to probability
versus magnitude information in the two contexts, poten-
tially enabling them to estimate more veridically the prob-
ability in the probability-diverse relative to the magnitude-
diverse context. In contrast to this prediction, we found that
the robust group differences in probability weighting were
not accompanied by analogous differences in attention.
Consistent with an earlier study by Pachur and colleagues
(2018), who looked at attention to outcome and probability
information for gains and losses, we found that, in the gain
domain, an attentional bias toward magnitude information
was predictive of reduced risk aversion while a bias toward
probability information was predictive of reduced probabil-
ity distortion. However, these correlations were only found
within each context and could not explain the differences
in choice across contexts. The attention-choice correlations
were approximately equivalent in the magnitude-diverse
and probability-diverse contexts and controlling for atten-
tion did not alter the magnitude of the context effect on
probability weighting. Thus, our findings suggest that the
mechanisms by which context affects probability distortion
are independent of our measure of selective attention—the
time that participants allocated to inspecting magnitude
versus probability information. An important question for
future research, which may require a direct experimental
manipulation of attention to resolve, is whether the effects
are mediated by other aspects of selective attention, such as
attention-induced changes in perceptual sensitivity and/or
internal prioritization of (e.g., time spent thinking about)
each type of information.

In the absence of an explanation based on overt attention,
a plausible mechanism for our contextual effect involves dif-
ferences in expectation for probability information. Predic-
tive coding theories (Friston, 2010) posit that brains use a
“simple but remarkable powerful trick or stratagem” to “get
to know the world and act in it. [...] That trick is trying to
guess at the incoming sensory stimulations as they arrive,
using what [is known] about the world” (p.1, Clark, 2016).
Psychophysical and neuroscientific evidence that expecta-
tion plays a fundamental role in perceptual decision making
is quickly amassing (Egner et al., 2010; Kok et al., 2013;
Rao & Ballard, 1999; Richter et al., 2018; for a review,
Summerfield & de Lange, 2014), with extensive empirical
work confirming that “[p]erception and perceptual decision-
making are strongly facilitated by prior knowledge about
the probabilistic structure of the world” (p. 764, de Lange
et al., 2018). Thus, in our experiment, participants may have
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implicitly learned the set of values available in a context,
creating expectations that then influenced their treatment of
probability information.

The effects of expectations may be mediated by several
mechanisms. One possibility is related to the fact that the
probability-diverse set included some “atypical” probabilities
(e.g., 0.23,0.62, 0.77), whereas the magnitude-diverse con-
text contained more “standard” probabilities (e.g., 0.2, 0.5,
0.8). If participants bring to the task expectations, derived
from long-term experience, about the probabilities and mag-
nitude values that they are more likely to encounter in an
experiment (i.e., expectations about common probabilities
encountered in everyday life), this may influence their use of
probability information. It is possible that participants in the
probability-diverse environment find their expectations vio-
lated by the presence of many “atypical” probabilities, which
causes a change in how they use probability information;
such an implicit violation would not occur for the magnitude-
diverse group, because they only encounter “standard” prob-
abilities. A second possible explanation may lie in the fact
that participants experienced more repeated exposure to the
same unique probability in the magnitude-diverse relative
to the probability-diverse context. The greater probability
distortion in the magnitude-diverse set may come from short-
term adaptation or repetition suppression driven by repeated
and frequent exposure to the same probabilities (Grill-Spec-
tor et al., 2006; Krekelberg et al., 2006). A third hypothesis
is based on the fact that participants could better anticipate
the unique probability of each trial in the magnitude-diverse
relative to the probability-diverse set (i.e., each unique prob-
ability had, respectively, a 1/5 chance vs. only 1/21 in the
two contexts), suggesting that probability distortion may be
enhanced by a better prior expectation of the specific prob-
ability. Dissecting the possible contributions of nonstandard
probabilities, repetition suppression and prior expectations to
our context effect will be important topics for future research.

A salient feature of our data was that, while between-
group differences in probability weighting emerged gradu-
ally as a function of exposure to the choice context, risk tol-
erance remained constant and was insensitive to context. The
stability of risk attitudes we found in this task is consistent
with previous findings that risk tolerance is related to gray
matter thickness in the parietal lobe—a structural parameter
that is unlikely to change rapidly during an experimental
session (Gilaie-Dotan et al., 2014; Grubb et al., 2016; Jung
et al., 2018; Quan et al., 2022). Thus, although risk atti-
tudes show marked differences in different domains and with
different methods of elicitation (Hertwig et al., 2019), our
results suggest that, for monetary lotteries, these attitudes
are robust to differences in the composition of the choice set
and are modulated by contextual factors distinct from those
affecting probability weighting.

Conclusions

We documented a novel effect on probability weighting
related to the number of discrete probabilities and magni-
tudes in the choice set, which provides a novel experimental
manipulation for investigating the mechanisms of probability
weighting and its implications for decision formation.
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