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AlphaFlow: autonomous discovery and opti-
mization ofmulti-step chemistry using a self-
driven fluidic lab guided by reinforcement
learning

Amanda A. Volk1, Robert W. Epps1, Daniel T. Yonemoto2, Benjamin S. Masters2,
Felix N. Castellano 2, Kristofer G. Reyes3 & Milad Abolhasani 1

Closed-loop, autonomous experimentation enables accelerated and material-
efficient exploration of large reaction spaces without the need for user inter-
vention. However, autonomous exploration of advanced materials with com-
plex, multi-step processes and data sparse environments remains a challenge.
In this work, we present AlphaFlow, a self-driven fluidic lab capable of auton-
omous discovery of complex multi-step chemistries. AlphaFlow uses reinfor-
cement learning integrated with a modular microdroplet reactor capable of
performing reaction steps with variable sequence, phase separation, washing,
and continuous in-situ spectral monitoring. To demonstrate the power of
reinforcement learning toward high dimensionality multi-step chemistries, we
use AlphaFlow to discover and optimize synthetic routes for shell-growth of
core-shell semiconductor nanoparticles, inspired by colloidal atomic layer
deposition (cALD). Without prior knowledge of conventional cALD para-
meters, AlphaFlow successfully identified and optimized a novel multi-step
reaction route, with up to 40 parameters, that outperformed conventional
sequences. Through this work, we demonstrate the capabilities of closed-loop,
reinforcement learning-guided systems in exploring and solving challenges in
multi-step nanoparticle syntheses, while relying solely on in-house generated
data from a miniaturized microfluidic platform. Further application of Alpha-
Flow in multi-step chemistries beyond cALD can lead to accelerated funda-
mental knowledge generation as well as synthetic route discoveries and
optimization.

Integrationofmachine learning (ML)with automated experimentation
techniques in chemistry and materials science have heralded the arri-
val of new research strategies, i.e., self-driving labs (SDLs), capable of
exploring chemistry andmaterials science problemswith unparalleled

speed and efficiency1–7. These SDLs are composed of the automated
physical (experiment conduction) and digital (data processing and
algorithm-guided experiment selection) steps.While proof-of-concept
SDLs have been realized to an extent for several examples, including
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robotics-integrated lab spaces and microfluidic reaction systems8–12,
truly self-guided, exploratory autonomous research is still limited to
applications with well-studied, constrained parameter spaces. For
SDLs in chemistry andmaterials science to reachwidespreadadoption,
technologies must overcome two main barriers when dealing with
complex multi-stage chemistries: dimensionality and data scarcity.
“The curse of dimensionality” is a common term in data science that is
used to describe the exponential increase in a parameter space size as
the dimensionality of a problem increases13. This issue is prominent in
multi-step decision-making processes, including multi-step syntheses,
ubiquitous in chemistry and materials science, which exhibit large
parameter space complexity after only a few decision steps.

Precision synthesis of heterostructure quantum dots (QDs) using
the colloidal atomic layer deposition (cALD) technique is an exemplary
multi-stage chemistry with a high-dimensional experimental space.
Conventional cALD involves the sequential injection, removal, and
washing of reactants and stabilizing ligands to grow hetero-
nanostructures in a room temperature, controlled, layer-by-layer
manner. Compared to other shelling techniques that have been stu-
died in automated reactors14–17, the self-limiting, monolayer precision
of cALD makes it a promising strategy to synthesize hetero-
nanostructures with tuned confinement regimes and nanometer
scale heterostructure layers18. In addition to control over luminescent
and electronic properties, the self-limiting potential of cALD can pre-
serve the size dispersity of starting QDs. Beyond applications tometal-
chalcogenide QDs, since cALD is a room temperature synthesis tech-
nique, it may be applied tomore temperature-sensitivematerials, such
as metal halide perovskite QDs.

In cALD chemistry, with each sequence step (either a new surface
reaction, ligand addition, or wash step), the parameter space of cALD
grows exponentially (Fig. 1). Likewise, the time and material cost of
conventional parameter space exploration grows exponentially. In
addition to expanding dimensionality, each cALD cycle requires pre-
cise control over reaction sequence, relative concentrations, and
reaction time, as many reaction pathways can happen in parallel
depending on these parameters. For example, it was recently shown
that beyond colloidal stabilization, oleate ligands are necessary for
metal oxide nucleation and growth via single-phase cALD
approaches19. Such steps can also be nondeterministic. That is, the
outcome of an action taken at a given material state, like many

syntheses with complex kinetics, can change based on hidden states
which are unable to be directly quantified in situ (e.g., the surface
coverage of ligands). cALD-based chemistries, because of their
expansive parameter space, as well as laborious multi-step and
dynamic nature, require new approaches beyond existing SDLs to
explore and optimize.

Several prior studies have leveraged SDLs with retrosynthetic
planning algorithms to enable on-demand production of user-selected
small molecules through elaborate multi-step synthesis routes both
using batch20–24 and flow reactors4,5,25–27. However, these studies rely on
the integration of physics-based models with extensive applicable lit-
erature data for every individual reaction step. Therefore, the retro-
synthetic planning approach is less applicable to many of the
challenges posed by under-studied or immeasurable reaction routes.
Nanoscience, in particular, presents many reactive systems that are
difficult to reproduce from lab-to-lab or reactor-to-reactor, have lim-
ited applicable literature data, and possess complex heterogenous
structures and reaction intermediates that cannot be conclusively
identified. Consequently, many SDL studies involving nanoparticles
rely strictly on data generated by one reactor9,11,28–33. Therefore, ML
techniques which can handle sequence-dependent processes with in-
house generated data sets are imperative to solving novel complex
multi-step systems.

Reinforcement learning (RL) has recently emerged as a powerful
subset of ML, which has the potential to surpass human performance
in such dynamic systems34. Contrasting with the more commonly
applied black-box methods, which seek to identify reaction space
behaviors by observing the final outputs that result from a given set of
input parameters, RL operates by monitoring the current state of the
system and mapping an action to the resulting response from that
state. The structure of RL is inherently compatible with long, multi-
step processes because, instead of attempting to solve the entire
reaction space atonce, RL canbreakdowndecisions into isolated steps
and predict the future effects of those steps.

One notable example of the potential of RL is AlphaGo, the first
computer program to defeat a professional Goplayer in 2016, 20 years
after its Chess playing predecessor, Deep Blue35. The delay in devel-
oping both strategy game programs was due to the inability of older
algorithms (used in Deep Blue) to handle the large number of possible
moves found inGo.Algorithm-driven chemistry researchhas reached a

Fig. 1 | Curse of dimensionality in multi-step chemistry. Illustration of the
exponentially increasing complexity and required resources for a batch multi-step
synthesis consisting of four possible step choices, up to 32 sequential steps.
Reaction option estimates are based on four possible reagents, five possible

volumes, and five possible reaction times. Volume estimates are based on 10ml
startingmaterial and an additional 5ml of reagent per step. Time estimates include
preparation and sampling time and are based on 30min to start each experiment
and 5min per addition of a reagent.
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similar impasse, where a new approach, beyond traditional supervised
learning (SL), is necessary to solve and discover novel materials and
molecules with high dimensionality and dynamic syntheses. In addi-
tion to using RL-based algorithms, AlphaGo trained itself through
many iterations of trial-and-error, thereby creating a data-rich envir-
onment without prior knowledge. Algorithm-guided synthesis plat-
formsmust also be able to perform trial-and-error exploration to reach
the full potential of RL, learn from unforeseen results, and alleviate
common data scarcity and reproducibility issues in literature. RL-
based strategies have been demonstrated in silico towards process
synthesis and synthetic route discovery36–38. However, the real-time
iterative learning of RL-based approachesmakes it a powerful tool that
has not yet been integrated with closed-loop experimentation strate-
gies. Miniaturized and automated experimentation strategies have the
potential to integrate the trial-and-error aspects of RL with minimal
material and time loss upon experiment termination/failure. In addi-
tion, these strategies canmeet the data generation needs ofML-guided
experimentation.

In this work, we introduce AlphaFlow, an RL-guided SDL with
modular fluidic processing units which can autonomously generate
new chemistry knowledge and identify optimal synthetic routes for
high-complexity, multi-step reactions. The multi-step chemistry
explored by AlphaFlow is based on cALD reactions for the precision
synthesis of hetero-nanostructures39–41. With cadmium selenide
(CdSe)/cadmium sulfide (CdS) core-shell QDs as a demonstrative het-
ero-nanostructure, we use AlphaFlow to explore and discover multi-
step chemistries that exceed the shell growth capabilities of the con-
ventional cALD chemistry, without any prior knowledge of conven-
tional reagent addition orders or constraints. We show that the
developed RL-guided SDL is effective at autonomously navigating the
expansive multi-step reaction space. Without any pretraining or any
prior knowledge of conventional cALD sequences (i.e., without any
domain knowledge of reagent sequences), AlphaFlow successfully
identified a new reaction sequence that resulted in nanomaterials with
a higher absorption peak wavelength (i.e., higher shell growth) than
the conventional sequence route. In addition, AlphaFlow was able to
optimize reaction conditions to improve nanomaterial quality for the
discovered route. AlphaFlow marks the first integration of RL with
automated multi-step chemistry. Through this integration, we have
developed an SDL, contrasting to cheminformatic and retrosynthetic
planningmethods, that can autonomously and independently explore,
learn, and optimize multi-step reactions with parameter space com-
plexities exceeding 40 dimensions. In this way, the developed SDL
demonstrates strictly algorithm-driven discovery of high-level con-
cepts that were previously only accessible through manual time-,
labor-, and resource-intensive experimentation as well as human
intuition and direction—illustrated in Supplementary Fig. 1. This
autonomous experimentation strategy extends and augments the
intellectual reach of human researchers by enabling rapid, intelligent,
and constant exploration of complex reaction spaces. We expect the
further application of AlphaFlow to expand opportunities for lateral
innovation through new observations and discoveries that otherwise
could not be elucidated in high-dimensionality, dynamic reactions.

Results
SDL hardware: modular fluidic micro-processors
The developed SDL, shown in Fig. 2a, operates from a starting position
of no prior information on the reaction sequence, then rapidly gen-
erates data on a multi-step process by leveraging RL and a high-
efficiency microdroplet flow reactor. Microscale flow reactors
encompass a growing class of reaction systems that leverage the
high efficiency and facile automation capabilities of microfluidics to
produce novel insights and unique control of reactive processes42–44.
Prior studies have leveraged microscale flow reactors to achieve large
data sets through process automation, high-throughput screening,

and closed-loop experimentation10,11,28. However, microdroplet-based
systems suffer from several drawbacks with respect to the scalability
and solidmaterials handling. A variety ofmethods can be employed to
directly transfer gained knowledge from the single microdroplet sys-
tem towards larger scale systems, including non-fouling continuous
flow formats for biphasic reactions45. Further development in these
areas is required for broader application and adoption of microscale
flow reactors within SDLs.

The multi-step chemistry studies of AlphaFlow presented here
were facilitated by the versatility and data generation efficiency of the
single microdroplet system and developed modular fluidic micro-
processors. It should be noted that compared to the in situ techniques
used in this work, destructive characterization techniques, which
would require a new experiment to be started after each character-
ization, would likely have a slower throughput and less efficient data
generation. Although such techniques have been used successfully in
other ML-guided SDLs46, they may be less amenable to the data
requirements of RL-guided experimentation. To mitigate this issue, it
is possible to generate more than one reactive microdroplet to
increase data generation throughput.

As shown in Fig. 2b, the hardware of the SDL presented in this
work, utilizes a single microdroplet format (10μL). The platform fea-
tures four integratedmodules: (i) formulation, (ii) synthesis, (iii) in situ
characterization, and (iv) in-line phase separation. The formulation is
carried out by transferring the reactive droplet into an isolated reagent
injection channel, where an optical sensor is used to position the
microdroplet in a junction for the on-demand addition of the desired
reagent. Similar to the oscillatory configuration presented in prior
studies, the synthesis micro-processor oscillates the single micro-
droplet to achieve mixing and repeated spectra analysis47–49. In situ
optical sampling is conducted automatically at the end of each oscil-
lation, rapidly generatingdata sets of extracted spectral characteristics
using non-invasive measurements, including first absorption peak
wavelength (λAP), first absorption peak intensity (λPI), absorption peak-
to-valley ratio (RPV), and photoluminescence peak intensity (IPL). The
phase separation fluidic module segments off the immiscible reagent
additionphases using a precisely timed nitrogen (N2) injection into the
moving microdroplet. Additionally, the SDL is equipped with an
automatic reactor washing protocol and reagent syringe refilling
mechanism to enable uninterrupted operation over an extended per-
iod of time (over 1000 h, depending on precursor stability). The syr-
inge refilling mechanism operates by connecting the syringe to a
precursor vial, pressurized under an inert atmosphere, via a selector
valve detailed in Supplementary Fig. 3.

AlphaFlow’s hardware and software were built, from the ground
up, to be flexible toward system modifications and reaction explora-
tion. Experiments were controlled through a stepwise recipe system,
discussed in more detail in Supplementary Note 1 and Supplementary
Table 1, where a list of function blocks with specified parameters can
be executed in series to conduct larger, more complex multi-step
processes. Module development (shown in Supplementary Fig. 2) is
then streamlined, as new functions can be developed in isolation
before incorporation into the larger system. The full function opera-
tion protocols are detailed in Supplementary Figs. 3–9 and Supple-
mentary Movie 1. Furthermore, steps within each of the functions are
executed by generalizable action blocks, which call from a library of
hardware communication drivers to send commands to a large variety
of equipment. The user can individually select the specific make and
model of the equipment used in the primary control software and
seamlessly change out system components with different hardware
modules. This modular approach of AlphaFlow creates a versatile and
simple-to-use experimental platform for non-expert researchers.
Coupling these traits with the low-cost, accessible tubing-based design
of the fluidic micro-processors enables the realization of many of the
early promises of plug-and-play, droplet-based microreactors.
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Relative to the larger field of flow chemistry, the two primary
developments in the module designs of AlphaFlow, which have
enabled the exploration ofmulti-step, multi-phase chemistries, are the
isolated reagent injection network (formulation module) and the in-
line phase separation module. The reagent injection network is com-
posed of a series of valves, pressurization lines, fluidic connections,
and syringe pumps. In brief, AlphaFlow can automatically direct the
reactive microdroplet along any of the n parallel channels, where the
desired reagent can then be injected directly into the microdroplet
(n = 6 in this study). This configuration resolves one of the funda-
mental limitations of prior single microdroplet reactor designs in that
reagents may be injected in any sequence and with any time delay
between injections, without contaminating the droplet with undesired
reagents—as shown in Supplementary Fig. 10. This approach makes
single microdroplet reactors functionally more valuable tools across a
much larger range of reactive systems for SDLs and has enabled the
variation in reagent addition sequences studied within this work.

Furthermore, this strategy allows for the facile addition of extra
injection lines or alternate reaction step modules in isolated sections
of the reactor.

In addition to flexible reagents and solvent addition, many multi-
step chemistries require the removal of an immiscible phase from the
primary reactive solution. In the cALD chemistry studied in this work,
the reagent addition and washing steps are carried out through the
repeated injection and removal of a polar phase (formamide), with the
nanoparticles in the nonpolar (toluene) phase. The phase separation
module introduced in this work enables facile phase separation of
immiscible fluids with a reusable design. Prior in-line separation
methods involved the use of a permeable membrane channel50,51.
However, these methods are designed for continuous flow systems
and are, therefore, difficult to implement in a single microdroplet
microreactor due to the propensity for droplet breakup and loss in the
permeable channel. Furthermore, the use of colloidal nanoparticles
imposes the risk ofmembrane clogging, which is largely circumvented

Fig. 2 | Overview of AlphaFlow. a Illustration of an RL-based feedback loop
between the learning agent and the automated experimental environment.
b Schematic of full reactor systemwith (I) reagent injection, (II) droplet oscillation,
(III) optical sampling, (IV) phase separation, (V) waste collection, and (VI) refill
modules. c Schematics of individual module functions corresponding to (i) for-
mulation, (ii) synthesis, (iii) characterization, and (iv) phase separation. d General
flow diagram of learning agent condition selection process. e, f Block diagram of
the reaction space exploration campaigns, sequence selection, and volume-time

optimization, respectively. P1, P2, P3, and P4 correspond to an arbitrary set of
injection reagents, which for the purpose of this study, are oleylamine, sodium
sulfide, cadmium acetate, and formamide, respectively. Sequence selection was
performed using constant reagent injection volumes and reaction times and
directing the system to select the order that reagents are injected. Volume-time
optimization was conducted by using an autonomously learned order of reagent
injections, specified by the sequence selection campaign, and setting the system to
identify optimal injection volumes and reaction times for each of the twenty steps.
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through the phase separator design. In short summary of the separa-
tion system, the central control software calculates the current polar
phase microdroplet length using the microdroplet transit times and
spectral data. The microdroplet is then driven forward into a separa-
tion tee where argon segments off the formamide phase using a spe-
cific timing calculated from phase separation calibration curves
(Supplementary Fig. 11). This method allows for the precise and
reproducible separation and addition of an immiscible phase into the
reactive droplet for over 50 consecutive steps. While the in-line phase
separation is being carried out, the ML algorithm processes all the
current data and either select the next step in the reaction or termi-
nates the experiment due to non-viable reaction conditions. For
syntheses which require higher temperatures, depending on the phase
compositions of the reactive droplet, the reaction can be carried out in
the single microdroplet reactor of AlphaFlow using a heating block
housing the tube-based reactor with a carrier gas (up to 220 °C).

SDL software: RL-guided multi-step synthesis
Shown in Fig. 2c, the developed single microdroplet reactor functions
as the environment in the RL algorithm, termed the agent, is inter-
acting with. The RL agent evaluates the state and response from the
reactor, given a prior state and action, and decides the next best action
to navigate through a high-dimensional space intelligently and effi-
ciently. In these models, the state is represented through a short-term
memory (STM) containing the four prior injection conditions. This
state definition is designed to account for the expected relevant hid-
den parameters in the reaction space, which assumes that only the last
four injections impact the current decision. While this assumption is
unlikely to apply to every achievable state, it is assumed to be a suffi-
cient heuristic for experiment selection. It should be noted that
extensions of this parameter could lead to different exploration out-
comes and a larger data requirement for the RL algorithm. The
response is then represented in the form of a reward based on the
in situ measured characteristics of the product (i.e., spectra of the
hetero-nanostructures). The agent contains a belief model composed
of an ensemble neural network regressor (ENN) that predicts the
reward for a given state and action, and a gradient-boosted decision
tree that classifies the state-action pairs as either viable or unviable.
The belief model of the agent is constantly retrained on new infor-
mation (new experimental data from the environment) to update its
understanding. After retraining, the agent uses a model-based rollout
policy to predict the outcome/reward of forward-mapped sequences
and, using a decision policy, decides the best next action take.

Selecting a reward function in RL systems is critical for the agent
to work towards the correct desired objective. In this study, there are
multiple optimization target parameters—λAP, RPV, and IPL. A widely
acceptable multi-objective optimization strategy is the use of an
objective function composed of the weighted sum of individual
objectives. However, using this form of reward in a multi-step system
can result in undesirable material properties. For example, some cALD
reaction conditions, such as the injection of cationic and anionic
reagents without washing the product, can induce a large increase in
λAP, but the final QD has a significantly lower RPV than what can be
achieved at that same λAP through slower reaction steps. As shown in
Supplementary Fig. 12A–D, this large increase in λAP can result in a
higher weighted sum reward despite inflicting considerable damage to
the nanoparticles and ultimate product quality. For this reason, we
have designed the reward to be based on the trajectory of thematerial
properties in the output parameter space, represented by the slope of
a local reward metric as a function of λAP. However, applying only a
slope reward on the weighted mean reward (local reward) and λAP
alone can also result in undesirable outcomes. Some experimental
conditions, such as the initial injection of oleylamine, result in a
reduction in both the weightedmean reward (local reward) and λAP. As
demonstrated in Supplementary Fig. 12E, F, this combined reduction in

quality increases the slope reward metric at later injection steps,
despite negatively impacting final material properties. Therefore, the
trajectory reward calculation has been modified to only consider
improvements in the local reward and to treat all changes in λAP as
positive. The reward, r, is then the fitted slope of the local reward
improvement (defined by only positive increases in a weighted sum
of λAP, RPV, and IPL) as a function of the absolute value of the change
in λAP plus λAP, within an eight-point moving window (the slope of
the improvement). This application of reward trajectory allows for the
agent to favor synthetic routes that retain high RPV, and IPL while
maintaining consistent increases in λAP.

The viability classifier used in AlphaFlow provides a predicted
probability that a state-action pair will result in a terminal condition.
Terminal conditions in this work encompass numerous situations that
can arise when working with data collection in real-world experi-
mentation. Specifically, terminal conditions include metrics that
represent irrecoverable experiments as well as erroneous data. As an
example, in this cALD case study, the reward is based heavily on the
ability to detect the first absorption peak of the hetero-nanostructures
in the reactive droplet. However, if the balance of anionic reagent and
stabilizing ligands is incorrect, the nanoparticles can become colloid-
ally unstable and transfer into the formamide phase. This scenario
results in no measurable nanoparticle features in the reactive droplet,
and that experimentwill be terminated. In short, terminal classification
can be summarized as (i) there is an undetectable volume of the
reactive droplet, (ii) there are no measurable features in the in situ
measured UV-Vis absorption spectra, or (iii) there is an insufficient
concentration of nanoparticles in the reactive droplet. In these cases,
the experiment is automatically terminated, and the droplet is sent to
waste collection. The classifier is trained on a binary representation of
terminal or non-terminal, and the regressor is trained on a constant
penalty value for terminal states, which correspond to experiments
with irrecoverably poor outcomes. It should be noted that some
fraction of all experiments will have an operational error that results in
a failed experiment regardless of the reaction parameters given. In
these cases, the experiment is given a false positive terminal classifi-
cation. While there are inherently self-correcting factors in the RL
agent, such as the valuation of uncertainty, that correct these errors,
the most effective approach is to prevent failed experiments from
occurring. The hardware of AlphaFlow exhibited a low failure rate
throughout experimentation (less than 1% of injections) and was able
to consistently operate unassisted for multiple days without notable
failure.

In themodel-based rollout policy, the RL agent of AlphaFlow uses
the beliefmodel to predict the outcome/reward of hypothetical future
action sequences and decides the next best action to take using a
decision policy applied across all predicted action sequences. This
forward mapping is conducted by cycling through the model to cal-
culate a predicted reward, given an action and prior state, for each
simulated forward action (reagent injection step). The viability prob-
ability of each step, predicted by the classifier, is multiplied with prior
steps, functioning as a discount factor to discount the likelihood of
success (and thus the reward) for steps simulated further in the future
and to classify terminal condition sequences when the probability falls
below a certain value. Maximum predicted discounted rewards in a
forward-mapped sequence are grouped by the first step in the injec-
tion sequence, and by applying an upper confidence bound (UCB)
decision policy, the standard deviation andmean reward estimates are
used to autonomously select and run the next condition.

UCB is a statistical inference policy that balances the exploration
of parameter space with the exploitation of a model. In low-
dimensional spaces, exploration can often be sufficiently conducted
using purely random condition selection52, but the multi-step chem-
istry studied here presents significant challenges due to the high
dimensionality and existence of terminal states. For example, in the
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sequence selection study, when all possible combinations of the first
three injection steps were tested, 45% of combinations resulted in
terminal conditions. Such a high failure rate can result in considerable
experimental costs before sufficient exploration of high-value regions
of the parameter space can take place. UCB circumvents this issue by
directing the reaction towards known favorable conditions, while
simultaneously exploring in regions where the model predicts poten-
tial reward.

Using the generalized RL architecture discussed, AlphaFlow was
tested in two separate campaigns: (i) autonomous discovery of viable
sequences of 20 reagent or solvent additions to efficiently carry out
cALD based on understood spectroscopic metrics and reagents—illu-
strated in Fig. 2d; (ii) self-tuning the reagent injection volume and
reaction time at each reagent injection step using the injection
sequence discovered in the first campaign—shown in Fig. 2e.

SDL case study 1: autonomous multi-step synthetic route
discovery
In the first case study of AlphaFlow, four injection options were pro-
vided for the RL algorithm—oleylamine (OAm), sodium sulfide non-
ahydrate (Na2S*9H2O, referred to in this text as Na2S), cadmium
acetate dihydrate (CdAc2*2H2O, referred in this text as CdAc2), and
formamide (FAm)—with constant injection volumes and reaction times
for each, selected based on conditions known not to result in terminal
values for the first half cycle. Each reaction step was selected in real-
time as new data from each experiment iteration was used to inform
the decisions of the RL learning agent. The RL agent tested reagent
injections by selecting one reagent at a time (using the rollout policy),
and then updating the belief model before the next action was chosen.
It should be noted that the RL agent was not given any prior domain
knowledge of the reaction sequence, which conventionally requires
the sequence of OAm-Na2S-FAm-FAm-CdAc2-FAm-FAm for one full
cycle (with phase separation steps between each injection). Further-
more, the RL agent was not explicitly required to carry out any repe-
ated pattern. Because the STM was chosen to not depend on the
injection number, the models will favor sequences that are known to
produce high rewards, regardless of their injection step number (1–20)
(although updates to models occur throughout injection sequences).
It should be noted that the reagent compositions were optimized for
the conventional literature sequence. This constraint implicitly
leverages prior literature knowledge to provide an initial basis for
performing experiments and expedite material discovery. Starting
with the literature sequence with optimized volumes, times, and
compositions also provides a direct comparison between algorithm
and human-designed synthetic strategies.

The sequence selection campaign was conducted for 140 micro-
droplets/experiments, with a maximum of 20 injections per micro-
droplet. First, every combination of three sequential injections were
conducted to provide an initial data set for the RL agent. From there,
RL algorithms were used with UCB1 as the decision policy to build a
rapid and accurate understanding of the reactions and possible opti-
mal routes. As shown in Fig. 3a, the agent quickly identified unviable
early injection sequences and directed exploratory experiments
toward more favorable paths. After 920 total injections, the RL agent
was exploited for onemicrodroplet/experiment, without a limit on the
number of injections. In the exploitation experiment, the RL agent
selected six repeating cycles of the sequence:OAm-Na2S-FAm-Cd(Ac)2-
OAm, which bears similarities to the conventional cALD consecutive
half-cycle method (OAm-Na2S-FAm-FAm-Cd(Ac)2-FAm-FAm), illu-
strated in Fig. 3e. The RL-selected sequence mimics the half cycle
structure posed in literature53,54, where an initial sulfide layer is added
and removed, then a cadmium layer is added. Additionally, the first
three injection steps of the RL-selected sequence by AlphaFlow are
identical to the conventional sequence, which, given the systematic
exploration of these injections applied in the pretraining data set,

validates aspects of literature methods. However, the AlphaFlow-dis-
covered cALD sequence also features several notable differences from
the conventional cALD chemistry.

First, one of the FAm washing steps that occur after the first half
cycle of reagent additions (OAm-Na2S) of the conventional cALD
chemistry is removed. The one experiment where twowash steps were
performed after the first half cycle (OAm-Na2S) reached a terminal
condition after the addition of OAm. It is possible that the exploration
of this sequence was terminated by the RL agent. Regardless, the
development of the single wash step of colloidal QDs enabled con-
tinued cALD cycling with the retention of optical features.

Second, AlphaFlow discovered that the two FAm wash steps after
the addition of CdAc2 could be replaced by a single OAm injection. In
the conventional cALD chemistry, OAm is added to form ionic com-
plexes with chalcogenide ions (S2−) and cadmium reagents (Cd(Ac)2),
which enables the phase transfer and subsequent reaction of ions at
the nanoparticle surface. OAm also serves to stabilize charged nano-
particle surfaces in the nonpolar phase. It is proposed that excess
stabilizing ligands (OAm) in solution, without sufficient washing of the
nanoparticle phase, can cause the retention of ionic complexes of each
half-cycle reagent in the nonpolar phase, leading to unwanted sec-
ondary nucleation and formation of CdS nanoparticles, as well as
poorly controlled shell growth53. Thus, in conventional cALD chem-
istry, only enoughOAm is added to enable surface reactions and retain
the colloidal stability of nanoparticles in the nonpolar phase. However,
the synthetic route chosen by AlphaFlow here indicates a broader
function of stabilizing ligands during the multi-step cALD chemistry.
That is, replacing awash stepwith an additionalOAm injection enables
continued cALD cycling, with an improved first absorbance peak-to-
valley ratio (i.e., better nanoparticle size uniformity), despite oneOAm
injection being sufficient to achieve surface reactions in the first cALD
cycle and retain colloidal stability. Finally, the AlphaFlow-discovered
cALD chemistry is two full injections shorter than the conventional
cALD chemistry, which translates into a lower total experimental cost
over multiple cycles.

Due to the size of theparameter space in this system (Fig. 1),which
exceeds 1012 possible sequences, identifying and proving a global
optimum is infeasible. However, compared to a conventional cALD
sequence, AlphaFlow achieved considerable improvements without
prior literature knowledge. Shown in Fig. 3b, a conventional cALD
sequence optimized based on literature protocols was compared to
the AlphaFlow discovered route for six consecutive cycles. For the
starting CdSe QDs used in this study, the first absorption peak shift
plateaued after three cycles (i.e., halted shell growth) in the conven-
tional cycling, while the RL-selected cALD sequence continued theCdS
shelling for all six cycles. This continued growth enabled a first
absorption peak wavelength shift that is 26 nm higher and a photo-
luminescence intensity that is 450%higher than the conventional cALD
sequence. Furthermore, the AlphaFlow-selected cALD chemistry
resulted in an on average 9 nm larger peak shift (i.e., thicker shell
growth) per cycle in the cycles preceding the conventional sequence
plateau, despite implementing a shorter reagent injection and wash
sequence—Fig. 3c, d. Detailed comparisons are shown in Supplemen-
tary Fig. 13.

For these studies, oleic acid-capped CdSe QDs were used in a
diluted 0.007mM solution over the course of weeks55. However, when
the CdSe solution was freshly diluted (<2 days old), neither sequence’s
λAP plateaued within six cycles, although the RL sequence still had
improved IPL and was less affected by Na2S*9H2O/FAm solution aging
under N2 compared to the conventional cALD sequence (Supplemen-
tary Fig. 14). Combined with the differences between the RL-selected
sequence and the conventional cALD cycling, these results lead us to
consider the starting surface chemistry and sulfide solution bypro-
ducts as important considerations to cALD sequence optimization and
the basis for improvements in the RL-discovered sequence route.
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Fig. 3 | cALD sequence selection campaign results. a Illustration of all injection
sequences in the exploration runs with the exploited sequence highlighted in red.
b First absorption peak wavelength of CdSe/CdS hetero-nanostructures as a func-
tionof injectionnumber for theRL-selectedcALDchemistry and themanually input
conventional injection sequence. c UV-Vis photoluminescence and absorption (d)
spectra after each full cALD cycle for the RL-discovered and conventional cALD
sequences. e Schematic of reagent addition sequences for conventional cALD

cycles and the AlphaFlow-selected sequence. f Frequency histograms of the for-
ward predicted reward for the four reagent injection options in the cALD chemistry
exploration campaigns. The red arrow indicates the path takenwhen exploiting the
agent. Upstream injections assume prior injections followed the exploited path.
The learning agent was trained on the full data set of the cALD chemistry
exploration campaign.
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Specifically, we hypothesize that the role of decreased washing and
increased OAm, chosen by AlphaFlow and not in literaturemethods, is
multifaceted. No-wash steps and increased OAm after Cd(Ac)2 could
serve to form and retain oleate ions in solution, which passivate sur-
face defects introduced by S2− byproducts through Cd-oleate and
primary amines. A wash step is still necessary after the sulfide addition
to avoid increased chalcogenide reactant availability, which can lead to
a transition to kinetic growth56. However, interestingly, even without a
wash step after the Cd(Ac)2 addition, the eV change per cycle of the RL
sequence closely resembles successive ionic layer adsorption and
reaction (SILAR) protocols57 optimized to avoid homonuclei formation
at elevated temperatures and correlates to sub-monolayer growth
(Supplementary Fig. 15). These results suggest that OAm plays a key
role in preventing the formation of homonuclei in solution, which
could be formed from the reaction of metal reagents with the hydro-
gen sulfide in the aged sodium sulfide solution. OAm-sulfide com-
plexes alone may preferentially react at the CdSe surface than form
homonuclei at room temperature, as well as make reactive sulfide
sources available in the aged solution by preventing polysulfide
formation58,59. In this way, the cALD limiting half cycle is the sulfide-
reagent half cycle, while excess Cd2+ and OAm in solution aid surface
mobility of reactants and passivation to improve crystallinemonolayer
growth. Additional studies using AlphaFlow with different chalcogen-
ide sources, stabilizing ligands, and reaction temperatures will likely
provide more fundamental insight into complex cALD and SILAR-
based reactions.

The sequence selection behaviors of AlphaFlow can be better
understood by evaluating the forward reward prediction at each step
in the optimized cALD sequence. The algorithm simulates a collection
of action sequences four steps into the future and selects the next
injection that produces the greatest predicted future reward, shown in
Fig. 3f. This approach quickly filters out conditions with known detri-
mental effects, such as the injection of Na2S without OAm (which
causes the phase transfer of QDs) and directs selection towards more
consistent reward increases. The RL algorithm also distinguishes
betweenneutral investment conditions, such as the injection of FAmat
the first step, and conditions that provide improvements further in the
future, such as the injection of OAm. Such delayed benefits do not
appear when the predicted reward is mapped out fewer steps into the
future, see Supplementary Fig. 16, demonstrating the need for pre-
dicting rewards multiple steps ahead.

SDL case study 2: autonomous multi-step synthesis-property
mapping
Following the autonomous discovery of the cALD injection sequence,
an RL-guided reagent volume and reaction time optimization cam-
paign was performed by AlphaFlow to further improve the spectral
properties of hetero-nanostructures achieved in the synthetic route
discovery campaign by tuning the reaction conditions at each cALD
cycle. These closed-loop experimental campaigns used the RL-
identified cALD chemistry with three different starting CdSe QD
sizes. Experimentally accessible volume and time ranges of 1 to 10 µL
and 40 to 400 s (corresponding to 1 to 10 microdroplet oscillations in
the synthesis fluidic micro-processor) were used, respectively. An
experimental budget for RL-guided exploration of ~700 injection steps
was given for each of the three different starting CdSe QD sizes. The
non-invasive, in situ spectral characterization, enabled access to the
nanoparticle properties at each droplet oscillation, transforming 700
injection steps to over 9000 total experimental conditions to be used
in MLmodel training. Like the cALD sequence exploration campaigns,
after running exploratory policies, the models were exploited to
identify optimal conditions. Within these campaigns, the STM was
cycle number and injection number dependent so that each stepof the
cALD sequences were individually optimized. This high-dimensional
approach proved to be necessary as each injection step had an optimal

volume and reaction time, which was different depending on the cycle
number and hetero-nanostructure core size. Full exploited conditions
sets are shown in Supplementary Table 2.

For the first tested CdSeQD size with a starting λAP of 480nm, the
exploitation experiment resulted in a λAP shift equivalent to the cALD
sequence selection exploitation results, while simultaneously produ-
cing a 40% higher RPV by the fourth cALD cycle, shown in Fig. 4a, b.
Furthermore, the exploitation experiment produced nanoparticles
with spectral features in the upper regions of all conducted measure-
ments, suggesting a successful exploitation of the cALD parameter
space by AlphaFlow. Similar results were found for the two other CdSe
QD samples tested—shown in Supplementary Fig. 17 and Fig. 4c, sug-
gesting that the methods employed by AlphaFlow are directly trans-
ferable to other starting nanoparticles with spectroscopic metrics.

In some injection steps, AlphaFlow-selected conditions that
would temporarily lower RPV so that a higher RPV could be achieved in
later cALD steps. This result demonstrates the RL agent’s ability to
select steps that are not immediately favorable but enable higher
rewards downstream. Like the sequence selection study, forward
prediction in the RL agent plays a critical role in achieving high
rewards. As shown in Fig. 4e, short-term reward prediction insuffi-
ciently details the impact of a chosen set of injection conditions. For
the first injection in the sequence, there is no discernable difference in
thepredicted reward fordifferentOAm injection volumes and reaction
times. However, those volumes and reaction times determine if a step
is terminal two or three injections ahead. Moreover, the optimal con-
ditions are not simply an amount of reagent above a thresholdwhich is
sufficient to complete and promote surface reactions. For example,
Fig. 4e shows that there is an optimal volume and reaction time for
OAm that, if above or below, results in worse hetero-nanostructure
properties, which are not apparent until further into the cALD cycling.
Although someof these delayednegative effects areunderstoodbased
on literature, such as the influence of too few ligands on colloidal
stability, the algorithmic determination of these optimal conditions
throughpriormethodsposes a considerable challengebecauseof non-
transferrable conditions and hidden states (such as reagent age and
nanoparticle quality), as well as inconsistent protocol reporting.
Therefore, in addition to being able to navigate the immense para-
meter space of multi-step reactions, AlphaFlow is also successful in its
optimizations because of reproducible, in-house generated data. Fur-
thermore, the optimized conditions presented could be closely repli-
cated in a conventional batch reaction system (Supplementary Fig. 18),
indicating that the synthesis routes identified by AlphaFlow are
transferable to larger scales. Compared to the presented work, opti-
mized conditions for other syntheses, including mass-transfer limited
reaction, are likely not directly transferable to batch techniques.
However, reaction pathways can still be explored and discovered. In
addition, these systems would benefit from scaled-out techniques to
make optimized conditions transferable60,61.

The performance of the RL algorithm relative to manual model-
driven studies and closed-loop Bayesian optimization (BO) methods
was tested using a digital representation of the experimental system.
Using the data generated from the 480nm QD volume and time
optimization campaign, a digital twin model was trained to provide a
prediction of the three output parameter values and the viability for
each injection,, similar to the strategies employed in prior studies52.
AlphaFlow’s digital twin was used as a stand-in for the real-world
experimentation system in a digital environment. This technique
allows for the performance of different optimization algorithms to be
compared without requiring an excessive number of real-world
experiments. Within this context, function evaluations are limited,
prohibiting the effective use ofmethods such as genetic algorithms. In
addition, there are few guarantees about the function’s properties to
be optimized, such as convexity. Within this evaluation-limited, high-
dimensional experimental context, BO and local searches, such as
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basin-hopping, are considered state-of-the-art methods for autono-
mously optimizing physical experiments. Therefore, it is critical to
investigate and demonstrate the shortcomings of such methods in
high-dimensional experimental spaces.

The first algorithm used on this system was an ENN-based BO
method. Using theUCB policy and amodel structure similar to the one
used in the RL agent, an ENN model was trained on the local reward
after all 20 reagent injections, which is equivalent to a 40-dimensional
input space. Predictably, the high-dimensional parameter space
proved to be too large a challenge for standard BOmethods. After 100
experiments (equivalent to 2000 total injections) the BO algorithm
failed to identify a set of 20 consecutive viable injection conditions,
resulting in no measured reward—see Supplementary Fig. 19. The
AlphaFlow algorithm, however, achieved a viable set of 20 reagent
injection conditions after only four experiments, with a local reward
that is 87% of the known optimum, and continued to improve the
material quality throughout 100 total experiments to a final reward
that is 94% of the known optimum. In total, the RL algorithm identified

12 viable condition sets out of the 100 attempted experiments.
Although BO is likely to perform better in optimizing only over a six-
injection cycle, equivalent to one full cALD cycle, this strategy would
not be reflective of optimizing through a 20-injection budget. That is,
optimizing within one full cALD cycle using BO does not account for
the long-term effects of actions taken in each cALD cycle. The RL
campaigns with 20-injection sequences include a moving window of
STM and forward predictions that can map the long-term effects of
prior cycle injections to predicted rewards. It is likely that if the RL
agent only had a six-injection budget, i.e., without the moving STM
mapping, the optimized six-injection sequence would be different but
worse when extrapolated through multiple cycles. It should also be
noted that strategies like BO may perform better if given the oppor-
tunity to sample from the environment, as the surrogatewasbuilt from
RL-based experimentation data.

Next, the importance of RL-based dimensionality reduction as
well as real-time decision-making, were demonstrated by exploiting
the digital twin for an optimized set of reaction conditions. The digital

Fig. 4 | Volume and time optimization campaign results of AlphaFlow. a First
absorption peak wavelength and peak-to-valley ratio (b) as a function of the full
cALD cycle number for the volume and time exploration and exploitation and the
cALD chemistry exploitation. c Absorption and photoluminescence spectra for
the complete cALD cycles of the volume and time exploitation runs on each of the
three starting CdSe nanoparticle sizes studied. d Output parameter space for the
exploration and exploitation of the three CdSe nanoparticle sizes. e Average

predicted reward for a single step in the volume and timeoptimization campaign as
a function of the injection volume and reaction time of the first injection (OAm).
Note that surface plot colors are a topographic guide to the eye. Injecting OAmhas
little immediate influence on the measured reward, but forward predicting ahead
shows that the decision significantly affects downstream reward. The RL agent was
trained on the full data set for the 480 nm CdSe nanoparticle volume and time
optimization campaign.
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twin optimum was calculated through 20 replicates of a basin
hopping function maximization using the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS)62. Similar to
the BO algorithm, the basin hopping function attempted to maximize
the local reward after 20 consecutive reagent injection conditions. It
should be noted that this global optimum method could only be
applied in adigital environment asover 50,000 simulated experiments
(equivalent to 1,000,000 reagents and solvent injections) were
required to reach the final optimum. Comparatively, since the RL-
digital twin campaigns required only 100 total experiments to reach
94% of the optimum, the opportunity cost of using RL-based algo-
rithms in a closed-loop environment is greater than global optimiza-
tion strategies. It is likely that by allowing for more experimental
campaigns with the digital twin, the AlphaFlow algorithm would reach
a reward closer to the optimum.

In a manual model-driven study, an experimentalist will compile
all available data and train a model to illustrate strong predictability.
Then the model will be exploited to generate a full set of test condi-
tions to be used in real experiments. To evaluate this strategy with
cALD, the basin hopping optimum conditions were tested in Alpha-
Flow’s platform. As shown in Supplementary Fig. 20, the parameters
predicted by the digital twin showed strong agreement with the
experimental values for RPV and λPI, with the 20 reagent injection
predictions falling within 0.04 and 0.008 of the measured values,
respectively. However, an overly optimistic prediction was made for
λAP, and the 20-injection measurement deviated from the prediction
by 15 nm. Due to the inaccurately high λAP prediction, the local reward
from the basin hopping optimum prediction was 10% higher than the
same conditions performed in AlphaFlow’s real-world closed-loop
platform. Additionally, both the predicted and real-world basin hop-
ping optimum local rewards were lower than that of the real-world
AlphaFlow conditions. This result could be attributed to the real-time
adaptation of AlphaFlow experiments to updates in thematerial states,
illustrating the importance of closed-loop experimentation strategies.
Extensive exploitation of a high-dimensional model does not account
for deviations that are likely to occur during experimentation, espe-
cially in complex and sensitive multi-step nanomaterial syntheses,
which tend to have nondeterministic actions compared to organic
syntheses and other RL-based applications such as multi-step strategy
games. Updating the belief models during RL-guided experiments by
AlphaFlow provides the necessary adjustments for these deviations
and allows for more precise tuning of reagent injection conditions. In
addition, accounting for real-world deviations in complex parameter
space can aid in building foundational knowledge about the nature of
complex hidden states.

Discussion
The intelligent robotic research assistant presented in this work helps
to resolve a dimensionality barrier in algorithm-guided multi-step
chemistry and enables SDLs to optimize and discover synthesis routes
in more complex, sparsely populated problem spaces. AlphaFlow
effectively explored and optimized a 40-dimensional parameter space
with a chemical consumptionof less thanonefive-hundredthofwhat is
needed through manual methods and at a data generation rate
equivalent to the throughput of more than 100 researchers working
simultaneously. Coupling this experimental capability with real-time,
intelligent decision-making enabled control over a reaction spacewith
complexity well beyond all prior SDL studies. Further implementation
of the SDL presented in this work will enhance the efficiency with
which high-dimensionality, dynamic, multi-step reactions may be stu-
died, thereby extending the intellectual reach and innovative cap-
abilities of researchers and leading to novel insights into multi-step
processes and advanced functional materials. As an example, Alpha-
Flow enables facile future exploration and exploitation studies of
cALD-based chemistries, previously limited by large parameter spaces,

dynamic reactions, and arduous experimentation to create next-
generation high-performance semiconductor nano-heterostructures
for applications in energy and chemical technologies. Beyond intelli-
gent experimentation, the high-throughput data generation cap-
abilities of AlphaFlow alone may be useful for other algorithm-guided
studies and fundamental insights into multi-stage chemistries. To
perform such datamining of SDL-generated information in an efficient
and reproducible way, the eventual creation of standardizations in
(meta)data reporting and experimental setups would be beneficial.

In addition, this work demonstrates the potential of RL in solving
complex, multi-step reactions, enabling algorithm-guided exploration
of syntheses that may be influenced by dynamic time scales, hidden
states, synthesis step order, or even unstable intermediates and
reagents. For example, outside of colloidal nanoscience, the presented
RL approaches may be of value to conventional atomic layer deposi-
tion and molecular layer deposition processes. Although these pro-
cesses are usually carried out in self-limiting growth regimes, it is
possible that novel insights about film composition and performance
could be found by using RL algorithm-based exploration of reactant
sequence, partial pressure, temperature, purging, and exposure times.
Furthermore, AlphaFlow has applications in telescoped reactions,
where unstable intermediates form time-sensitive, hidden states that
are critical components of the reaction system.

Methods
Chemical preparation
The full chemical inventory is included in Supplementary Note 2.

Formamide degassing. All formamide used in reagent preparation
andwashing in the reaction systemwasfirst degassed and flushedwith
nitrogen. This process was carried out by first degassing 80mL of
formamide under a vacuum for 18 h with vigorous stirring. After
degassing, the vial was repressurized with nitrogen and then held
under a vacuum for 30 s. This cycle was repeated three times before
the final pressurization.

Toluene drying. All toluene used for reference collection, CdSe dilu-
tion, and the OAmmixture was dried over molecular sieves for at least
48 h before use.

Sulfide reagent. The sulfide reagent was prepared by adding a stir bar
and 200mgof sodium sulfide nonahydrate into a 25mL round bottom
flask with a septum. While under vacuum, 20mL of degassed for-
mamide was injected into the sodium sulfide flask. The flask was then
left under vacuum and vigorous stirring for 2 h, followed by three
cycles of nitrogen pressurization and flushing. After final nitrogen
pressurization, the reagent was wrapped in parafilm and loaded into
the reactor system, and left to sit for an additional 5 h before use.

Note that the sulfide reagent is sensitive to environmental expo-
sure and aging time. After the stirring step, the solids should be
completely dissolved, and the solution should be transparent. If the
solution has any solids remainingor a slight yellow tint, the reagentwill
not behave as reported. Additionally, the vial cannot be agitated or
moved after loading into the reactor.

Cadmium reagent. The cadmium reagent was prepared by adding
30mg of cadmium acetate to a 15mL glass vial with a septum. While
under vacuum, 10mL of degassed formamide was added to the vial.
The vial was held under a vacuum and swirled occasionally until all
solids were fully dissolved—approximately 3min. The vial was then
pressurized with nitrogen and wrapped in parafilm before use.

Oleylamine-toluene mixture. The OAm solution was prepared under
ambient conditions by adding 9.25mLof toluene to 750 µLofOAmand
shaking until combined.
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CdSe quantum dot synthesis. The synthesis procedure was adopted
from the previous methods63. A Cd precursor was prepared by dis-
solving 0.240 g CdO (1.87mmol), 2mL OA (6.30mmol), and 10mL
ODE (31.25mmol) in a 250mL three-necked round bottom flask and
heated to 100 °C under vacuum for 30min while stirring. Simulta-
neously, a Se precursor was prepared by dissolving 0.100 g Se
(1.27mmol) in 10mLODE ina 250mL three-necked roundbottomflask
and heated to 100 °C under vacuum for 30minwhile stirring. After the
elapsed 30min, the Cd precursor was exposed to nitrogen and heated
until the solution turned colorless (~200 °C) and then decreased to
100 °C. Simultaneously, the Se solution was exposed to nitrogen and
heated slowly to 300 °C and maintained at that temperature until all
the black Se powder was dissolved, and the solution turned a yellow
color.Once the Se is dissolved, the Se precursorwas reduced to 240 °C
prior to injection, and a degassed syringe was used to inject 12mL of
the Cd precursor. The reaction mixture times were then monitored
and altered to yield the desired wavelength. Once the necessary
reaction time expired, the heating mantel was removed, and 40mL of
ice-cold toluene was injected to quench the reaction. The CdSe
quantum dots (QDs) were allowed to cool to room temperature and
washed. After the solution was cooled, the QDs were precipitated first
by the addition of acetone (1mL acetone:1.5mL QDs) and centrifuga-
tion. Small pellets then precipitated out to the bottom, which was the
excess OA, and the red solution was kept for further washing. To fur-
ther remove excess OA, the QD solutionwas centrifuged again with no
acetone, and the liquid was further separated from the OA. Then,
acetone was added in a ratio of ~6mL acetone:1mL QD solution to
further precipitate the QDs, and subsequent centrifugation was repe-
ated three times. Ethanol was then added in the sameproportions, and
this processwas repeated 3 times. After the final precipitation, theQDs
were redissolved in ~5mL toluene.

Reactor operation protocols
The full equipment inventory used to build the system is included in
SupplementaryNote 3. A complete processflowdiagramof the system
configuration used in this study is shown in Supplementary Fig. 21.

Automated experiment conduction in the single microdroplet
reactor is divided into distinct actionmodules thatmay be called in the
desired order. These modules are initial nanoparticle injection (Sup-
plementary Figs. 3A–4C), additional reagent injection (Supplementary
Fig. 5A–D), optical spectra collection & oscillation (Supplementary
Fig. 6A–D),phase separation (SupplementaryFig. 7A–D),dropletwaste
and reactor cleaning (Supplementary Fig. 8A–E), and syringe refilling
(Supplementary Fig. 9A–C). An alternative protocol enables droplet
oscillations without sampling, which allows for longer reaction time
studies, but for the purpose of generating data in this study, sampling
was conducted with each oscillation. Additionally, a sub-protocol is
called whenever the position of the primary selector valves needs to
change.

Changing the positions of the primary selector valves requires a
specific sequence to avoiddroplet breakup in the downstreamchannel
(Supplementary Figs. 3A–9C). During regular reactor operation, pres-
sure variations can develop among the isolated injection channels. For
example, if a small pressure decrease occurs in an injection channel
due to regular leakage, then the downstream selector valve is switched
to the low-pressure channel, and the droplet will rapidly move
upstream during pressure equilibration. This rapid movement often
causes the droplet to separate into several smaller droplets, thereby
terminating the experiment prematurely. To account for this chal-
lenge, an upstream pressurization valve was added before the
upstream primary selector.

Additionally, throughout each experiment, the system must
identify where the droplet is positioned in the reactor with a high
degree of precision (mm and ms scale position and timing). This is
done by reading the voltage output through a collection of low-cost,

infrared phase sensors positioned throughout the system. The phase
sensors operate by waiting until the voltage reading increases past a
specified threshold, indicating that the droplet is at the position of the
phase sensor, and remains past that threshold for a set duration—
approximately 200ms. The threshold is set every time the phase
sensor is called by taking the current reading, which presumably is of
an empty tube, then adding0.4 V. Thismethodproved to be robust for
continuous reactor operation, but further operational consistencywas
achieved by timing the individual steps in each of the protocols and
only calling the phase sensors within a timewindowwhere the droplet
is expected it appears.

Reference collection, reactive phase isolation, and feature
isolation
The formamide and toluene absorption references are collected by
injecting a 10 µL droplet of formamide into the reactor, collecting five
replicates of absorption data, injecting a 10 µL droplet of toluene, then
collecting another five replicates of the absorption data. During the
sampling process, spectra are continuously collected over approxi-
mately 4 s, so many saved spectra are taken off the carrier gas. To
isolate the droplet, all spectra with light source signal intensities at
770 nm above 36,000 counts are saved—see Supplementary Fig. 22A.
Thefinal spectra for each sample collection are calculated by removing
the highest and lowest 90% of counts for all measured wavelengths.
Then, the final reference spectra are calculated by averaging the
spectra from all five replicates—shown in Supplementary Fig. 22B, C.
During the operation of the experimental system, new reference
spectra would be collected every time the user came in physical con-
tact with any part of the system and at least once every 24h.

In addition to calculating the Beer–Lambert absorption spectra,
these references are used for phase isolation on reactive droplets
during regular system operation. Like the reference phase extraction
method, the signal intensity of the biphasic droplet at 770 nm is used
to identify the reactive phase. All spectra collected with absorption
counts within ±2000 of either reference at 770 nm is groupedwith the
corresponding reference phase. The same trimmedmeanprocedure is
used to isolate the relevant spectra from the phase subgroups. The
final reported spectra are calculated using Beer–Lambert absorption
(A):

A= � log10

ISample � IDR
ILR � IDR

� �
ð1Þ

Where ISample is the isolated reactive phase spectra, IDR is the absorp-
tion dark reference, and ILR is the absorption light reference, for for-
mamide or toluene.

Photoluminescence spectra are extracted similarly, except there
is not a clear feature in the raw spectral data at anywavelength that can
be consistently used to identify the reactive droplet phases. Instead,
the spectra are sorted by photoluminescence intensity, and five sam-
ples with the highest peaks in the expected photoluminescence range
(480 to 680 nm) are averaged with a 50% trimmed mean.

Due to the size of the data sets and the autonomous approach
used in this work, robust methods for automating the extraction of
spectral features are critical. The followingmethodswereoptimized to
produce consistent identification of features across a diverse set of
spectra. First, a third-order polynomial Savitzky-Golay filter with a 21-
frame window was used to smooth the absorption spectra—shown in
Supplementary Fig. 23. Note that all reported spectra in this manu-
script have not been smoothed, but smoothing was applied for feature
extraction.

The smoothed spectra were then resampled using an antialiasing
lowpass filter through theMatlab (Version 2021b) function resample to
interpolate between spectra measurements. Next, the first absorption
peak position was detected using the Matlab function findpeakswith a
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minimum peak prominence of 0.002. The prominence filter was
applied to ensure that local maxima due to noise were not included in
the set of potential peaks. Finally, the first absorption peak position is
assigned to the highest wavelength detected peak within the range of
350 to 750 nm. This position is also used for the absorption peak
height. For the peak-to-valley ratio, the valley height is calculated by
measuring the lowest absorption value in the range of 100nm before
the first absorption peak wavelength.

Terminal condition metrics
For training the classifier model and setting penalties in the regressor,
unviable reaction conditions, also referred to as terminal conditions,
need to be distinguished from viable conditions. An experiment is
labeled terminal if any of the following are true:
1. Less than 75% of the total droplet is assigned to either the toluene

or formamide phase. The total length of the droplet is measured
through the light source signal at 770 nm, where all spectra with
values above 30,000 counts are considered part of the droplet. If
75% of the spectra do not fall within the formamide and toluene
ranges specified in the section above, then there is a high prob-
ability that the solution has become colloidally unstable.

2. Less than 25%of the total droplet is assigned to the toluene phase.
This condition can occur when there is colloidal instability in the
toluene phase, or there is not enough toluene to consistently
continue the experiment. Toluene can be lost throughout
experiments due to absorption into the formamide phase or
imperfect phase separation steps.

3. There are no detectable first absorption peaks, using the mini-
mum peak prominence filter. Peaks at the boundary of the 350 to
750 nm range are not included.

4. The absorption signal at 350nm is below 0.03. If the concentra-
tion of the quantum dot is low enough, signal to noise ratio can
become too low to effectively continue measurements. The con-
centration of quantum dots can decrease if there is an excessive
dilution of the toluene phase or, more commonly, there is a
dropout into the formamide phase.

Droplet length measurement
Droplet phase lengths (LTol and LFAm) are calculated using the droplet
velocity from the phase sensors (uDroplet) and the phase passing time
(t(Pass,Tol) and t(Pass,FAm)) from the absorption spectra. Velocities are
calculated by measuring the time to pass from the phase sensor at the
beginning of the reactor spiral to the phase sensor before the flow cell
(t(ReactorTransit)), which has a fixed tubing length of 55 cm. This velocity
ismeasuredwith every optical sampling cycle. Thephasepassing times
are calculated by measuring the integral of the sampling time and a
binary array corresponding to positively identified phases in the time-
resolved absorption spectra. The droplet length is simply calculated
with:

uDroplet = LReactor=tReactor Transit ð2Þ

LTol = uDroplettPass,Tol ð3Þ

LFAm = uDroplettPass,FAm ð4Þ

Using this method, 29 randomly selected formamide and toluene
injection volume combinations, each ranging from 3 to 10 µL, were
briefly oscillated at 800 µL/min and measured for their phase length.
As shown in Supplementary Fig. 24A, B, the measurement technique
shows a strong linear relationship between the injection volume and
the measured phase length. The toluene, which for this study used a
timed injection froma continuous flowcarrier pump, showed a slightly
higher variance than the formamide injection, which used a high-end

syringe pumpwith a 500uL glass syringe. However, this discrepancy is
likely due to the injection precisions of the two methods and not a
factor of the technique itself. A second test was run using a single 3 µL
toluene droplet—injected with a syringe pump—with repeated droplet
length measurements at randomly selected volumetric flow rates
(Supplementary Fig. 24C). The mean length prediction does not scale
with the droplet velocity—a linear fit of the data set results in a slope of
1.9 × 10−7 cm/[uL/min]—but the measurement variance increases with
higher flow rates. This change is likely associated with the sampling
step time resolution.

To ensure that solvent loss does not occur during regular reactor
operation, droplet length measurements were taken over 50 to 100
oscillations through various sections of the reactor. Full details are
shown in Supplementary Note 4 and Fig. 25.

Phase separator
Phase separator operation relies on a timed reversal of the primary
carrierflowpumpwhile the separatorpumpcontinues toflow forward.
The timing of this reversal is based on themeasured formamide phase
length, as determined by the most recent optical sampling protocol,
and the separator delay calibration curve. This curve was calculated by
testing 16 biphasic droplets composed of 6 µL of toluene and 6 µL of
formamide. For each of the droplets, a random flow reversal delay time
(tDelay) from 1600 to 2600ms was applied in the separation protocol.
By measuring the total droplet length before and after separation for
each of the delay times, a specific change in droplet length (ΔLDroplet)
was associated with a specific delay. As shown in Supplementary
Fig. 11A, this relationship was fitted to produce the equation:

tDelay =
4LDroplet + 1:23 cm

0:00105 cm
ms

ð5Þ

Operation of the adaptive phase separation system applied amodified
version of this calibration curve, which used the measured formamide
phase length and a 0.1 cm removal buffer:

tDelay =
LFAm + 1:13 cm
0:00105 cm

ms
ð6Þ

The adaptive separation system was tested by conducting separations
on biphasic droplets of random toluene and formamide volume
combinations—the same droplets that were used to generate Supple-
mentary Fig. 22A, B. Phase lengths weremeasured before and after the
separation protocol for each. As shown in Supplementary Fig. 11B–E,
this method produced consistent retention of the toluene phase and
near-complete removal of the formamide phase.

Note thatwithminormodifications to theflow reversal timing and
flow balancing arrangement, this method is applicable to the removal
of the alternate phase, i.e., the encapsulating phase.

Reaction conduction precision
Successful navigation of a large parameter space requires a high
degree of precision in experiment conduction44. Because the case
study system relies on specifying a sequence of reagent injections, it is
important to verify that a given sequence will reproducibly result in a
specific set of optical features. As shown in Supplementary Fig. 26, five
replicates of conventional full cycles were conducted on the reactor.
Throughout the entire cycle, all five replicates produced optical fea-
tures within proximity to each other. The final spectra of the cycles,
after seven sequential injections, had standard deviations of 0.004 for
the absorption intensity at 350 nm, 0.01 for the peak-to-valley ratio,
0.4 nm for the first absorption peak position, 0.002 nm for the
absorption half-width at half-maximum, and 2.5 s for the experiment
conduction time (after 57min of continuous operation each cycle).
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Similarly, it is also important to verify that experiments may be
conducted independently of each other. If, for example, a specific set
of reaction steps caused fouling of the reactor channel that could not
be sufficiently removed, then thenext experimentwouldnot behave as
expected. To verify the efficacy of the washing protocol and the
independence of each new experiment, four random injections were
added to a new droplet, then the washing/waste protocol was applied,
and a full cycle was conducted on a new droplet. This sequence was
repeated five times (Supplementary Fig. 27). Despite using a different
injection sequence in between each full cycle experiment, the full
cycles showed a reproducibility similar to the consecutive full cycles
across all optical features. While there was no visible aggregation on
the tubing wall at any point during experiment conduction, the entire
reactor tubing was replaced once every 1000 experiments. Addition-
ally, consistency of the automatic refilling procedure of the precursors
is critical to ensure continuous experimentation over an extended
period by AlphaFlow. Supplementary Fig. 31 shows the reliability of the
automated precursor refilling module of AlphaFlow over 14 refilling
cycles.

Sodium sulfide age consideration
All reagents and nanoparticles in this study had high stability within
the timespans they were used, except for the sodium sulfide solution.
Sodium sulfide, in formamide in this case, forms a diverse composition
of byproducts depending on the moisture content, oxygen content,
available ligands, and aging time49. Over time, the same reagent can
produce varied results for the same injection conditions. After pre-
paring a new batch of sodium sulfide reagent, the first sequence of a
conventional half cycle was repeated continuously (CdSe > OAm >
Na2S > FAm> FAm) over 60 h. The final optical features after each half-
cycle are shown in Supplementary Fig. 28A, B. Early half-cycles result in
a lower first absorption peak and peak-to-valley ratio than those of
later cycles. Furthermore, our prior work with Na2S reagents has
indicated that variable results are expected beyond the 60hmaximum
shown.However, if the data is isolated to the aging range of 4.5 to 60h,
the variance across all half-cycle end features is manageable—shown in
Supplementary Table 3. For all experiments conducted in the rein-
forcement learning studies, sodium sulfide solutions preparedwithin 5
to 60 h were used.

Reinforcement learning algorithm overview
A detailed description of the RL agent is provided in Supplementary
Note 5, and all code used is available online (GitHub)64–67 at the address
listed below. In summary, the algorithm operates by conducting three
sequential steps: (1) formatting all new data sets for training, (2)
building the belief model, and (3) executing the rollout policy.

The data formatting step generates a set of state-action pairs and
the corresponding responses. The state is comprised of a machine-
readable sequence of the three previous precursor injection condi-
tions. In the sequence selection study, this short-term memory is
formed by one-hot encoding for the four possible injections on each
step, then the action, which represents the most recent injection, is
also encoded, and added to the string. The final state-action pair used
for model training is then a sixteen-member string of binary values.
The volume and time optimization studies generated a similar state-
action sequence, except the injection number and cycle number were
tracked, eachwith an integer value. The short-termmemory and action
steps were generated by adding non-dimensional forms of the injec-
tion volumes and reaction times selected at each step. As a result, the
state-action pair string for the volume and time optimizations com-
prised of two integer values, four continuous values for the injection
volumes, and four discrete values for the reaction time (where each
level is one full oscillation). Each of these strings were paired with a
resulting response value, represented by either terminal classification,
discussed previously, or the slope reward. The slope reward is

calculated by conducting a linear fit on the local reward improvement
(a weightedmean of the three target parameters, λAP, RPV, and IPL, with
only increasing values) for the eight previous measurements as a
function of λAP.

The belief model is built by training an ensemble neural network
regressor, and gradient-boosted decision tree classifier on the fully
formatted data set. Each member of the regressor ensemble is
assigned a randomly selected architecture and a random training set
comprised of 75% of the total available data set. The regressor is then
trained to map state-action pairs to a resulting slope reward. The
classifier is trained on the full data set and is set to map state-action
pairs to a terminal or non-terminal condition.

The rollout policy evaluates the belief model predictions for
future action sequences and returns a recommendation for the next
action to take on the real system. Every possible set of action
sequences for four actions into the future are evaluated by pre-
dicting the reward for each action in a branch. The performance of
each action sequence branch is quantified by the highest achieved
reward in the sequence. The action sequences are then grouped by
their first action. A decision policy is then applied to the first action
groups to determine which next action provides the most value.
During reaction space exploration, an upper confidence bounds
policy was used. This method seeks to maximize both the mean and
the standard deviation of the predicted performance for each of the
action groups, which is intended to direct experiments where there
is both a high chance of achieving high-quality materials and a high
chance of sampling in regions with greater model uncertainty.
During exploitation experiments, which occurred after exploration,
the decision policy sought only to maximize the mean predicted
performance.

Digital twin studies
Digital twin structure. The digital twin is composed of four models:
the viability classifier, change in absorption peak wavelength regres-
sor, absorption peak intensity regressor, and peak-to-valley ratio
regressor—shown in Supplementary Fig. 30. The viability classifier uses
the same structure used in the RL beliefmodel. All three regressors use
the same ensemble neural network structure as the RL belief model
with the following modifications: The absorption peak wavelength,
absorption peak intensity, and peak-to-valley regressors used a 10, 10,
and 75% subsampling rate, respectively. All regressors had an ensem-
ble size of 200, erroneous data not caught by the automated proces-
sing scripts was filtered out, and the ensemble mean prediction uses
data trimming for all predictions outside one standard deviation from
the median.

Bayesian optimization algorithm. The BO algorithm used in the
digital twin study follows the same design implemented in prior
work11,52,68. The belief model is a 20-member ensemble neural network
with the same structure as that used in the RL belief model. The
algorithm uses a UCB decision policy with the predicted value (qUCB)
defined as:

qUCB =μrL +
1ffiffiffi
2

p σrL ð7Þ

Where μrL is the mean predicted reward for a set of input conditions
and σrL is the standard deviation of the prediction. The belief model
was trainedon local reward after all 20-injection conditions are applied
(i.e., 40 total input parameters).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The source data generated in this study have been deposited in the
repository “AlphaFlow” (https://github.com/AbolhasaniLab).

Code availability
The source code for the data formatting, reinforcement learning
algorithms, and surrogate models have been deposited in the reposi-
tory “AlphaFlow” (https://github.com/AbolhasaniLab). Within this
repository, notebook demos of the sequence selection and volume
and time optimization are also available.
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