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1 Introduction

The CAT(0) comparison is a certain inequality for 6 distances between 4 points in a metric space. The follow-
ing descriptions, the so-called (2+2)-comparison, is the most standard, we refer to [3, 4] for other definitions
and their equivalences.

Given a quadruple of points p, q, x, y in a metric space X, consider two model triangles (that is, a plane
triangle with the same sides) [pxy] = ˜ (pxy) and [qxy] = ˜ (qxy) with common side [xy].

If the inequality
jp − qjX 6  j˜ − ˜j + j˜ − ˜j

holds for any point z 2  [xy], then we say that the quadruple p, q, x, y satisfies CAT(0) comparison; here jp−qjX
denotes the distance from p to q in X.

y~
q~

z~

p~ x~

If CAT(0) comparison holds for any quadruple (and any of its relabeling) in a metric space X, then we say
that X is CAT(0).

It is not hard to check that if a quadruple of points satisfies CAT(0) comparison for all relabeling, then
it admits a distance-preserving inclusion into a length CAT(0) space. The following theorem generalizes this
statement to 5-point metric spaces.

1.1. Toyoda’s theorem. Let P be a 5-point metric space that satisfies CAT(0) comparison. Then P admits a
distance-preserving inclusion into a length CAT(0) space X.

Moreover, X can be chosen to be a subcomplex of a 4-simplex such that (1) each simplex in X has Euclidean
metric and (2) the inclusion maps the 5 points on P to the vertexes of the simplex.

A slightly weaker version of this theorem was proved by Tetsu Toyoda [7]. Our proof is shorter; it uses the
fact that convex spacelike hypersurfaces in R3,1 equipped with the induced length metrics are CAT(0) spaces
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[1]. We construct a distance-preserving inclusion ι of P into R4  or R3,1. In the case of R4 the convex hull K of
ι(P) can be taken as X; in the case of R3,1 we take as X a spacelike part of the boundary of K.

It is expected that any 5 point metric space P as in the theorem admits a distance-preserving inclusion in a
product of trees.

An analog of Toyoda’s theorem does not hold for 6-point sets. It can be seen by using the so-called (4+2)-
comparison introduced in [2]; this comparison holds for any length CAT(0) space, but may not hold for a space
with CAT(0) comparison (if it is not a length space).

The (4+2)-comparison is not a sucient condition for 6-point spaces. More precisely, there are 6-point
metric spaces that satisfy (4+2) and (2+2)-comparisons but do not admit a distance-preserving embedding
into a length CAT(0) space. An example was constructed by the first author; it is described in [2] right aŒer 7.2.
See the final section for related questions.

2 5-point arrays in 3-space

Denote by A  the space of all 5 point arrays in R3 that is nondegenerate in the following sense: (1) all 5 points
do not lie on one plane and (2) no three points lie on one line. Note that A  is connected.

A 5 point array x1, . . . , x5     2  R3  defines an ane map from a 4-simplex to R3 . Fix an orientation of
the 4-simplex and consider the induced orientations on its 5 facets. Each facet may be mapped in an
orientation-preserving, degenerate, or orientation-reversing way. For each array consider the triple of integers
(n+, n0, n−), where n+, n0, and n− denote the number of orientation-preserving, degenerate, or orientation-
reversing facets respectively.

Clearly n+ + n0 + n− = 5 and since all 5 points cannot lie in one plane, we have that n+ >  1, n− >  1, and
n0 6  1. Therefore, the value m = n− − n+ can take an integer value between −3 and 3; in this case, we say
that an array belongs to Am .

It defines a subdivision of A  into 7 subsets A−3 , . . . , A3  with combinatorial configuration as on the dia-
gram; quadruples in one plane are marked in gray and the triple (n+, n0, n−) is written below.

A−3

(1, 0, 4)

A−2

(1, 1, 3)

A−1

(2, 0, 3)

A0

(2, 1, 2)

A1

(3, 0, 2)

A2

(3, 1, 1)

A3

(4, 0, 1)

Every two quadrilaterals in the array have 3 common points that define a plane. If the remaining two
points lie on opposite sides from the plane, then the corresponding facets have the same orientation; if they
lie on one side, then the orientations are opposite. Therefore, the 7 subsets A−3 , . . . A3  can be described in the
following way:

A−3 — a tetrahedron with preserved orientation and one point inside.
A−2 — a tetrahedron with preserved orientation and one point on a facet.
A−1 — a double triangular pyramid formed by two tetrahedrons with preserved orientation.
A0  — a pyramid over a convex quadrilateral
A1  — a double triangular pyramid formed by two tetrahedrons with reversed orientation.
A2  — a tetrahedron with reversed orientation and one point on a facet.
A3  — a tetrahedron with reversed orientation and one point inside.
Note that the complement AnA0  has two connected components formed by A−  = A−3 [  A−2 [  A−1 and

A+  = A3  [  A2  [  A1 . Observe that each array in A−  has at least 3 positively oriented facets and each array in
A+  has at least 3 negatively oriented facets.

2.1. Observation. Let Q be a connected subset of A  that does not intersect A0 . Then either Q  A+  or Q  A− .
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3 Associated form

In this section we recall some facts about the so-called associated form introduced in [6]; it is a quadratic
form Wx on Rn−1 associated to a given n-point array x = (x1, . . . , xn) in a metric space X.

Construction. Let 4  be the standard simplex 4  in Rn−1; that is, the first (n−1) of its vertices v1, . . . , vn form
the standard basis on Rn−1, and vn = 0.

Recall that ja − bjX denotes the distance between points a and b in the metric space X. Set

Wx(vi − vj) = jxi − xjjX

for all i and j. Note that this identity defines Wx uniquely.
The constructed quadratic form Wx will be called the form associated to the point array x.
Note that an array x = (x1, . . . , xn) in a metric space X is isometric to an array in Euclidean space if and

only if Wx(v) >  0 for any v 2  Rn−1.
In particular, the condition Wx >  0 for a triple x = (x1, x2, x3) means that all three triangle inequalities

for the distances between x1, x2, and x3 hold. For an n-point array, it implies that Wx(v) >  0 for any vector v
in a plane spanned by a triple xi , xj , xk. In particular, we get the following:

3.1. Observation. Let Wx be a form on Rn−1 associated with a point array x = (x1, . . . , xn). Suppose that L  is a
subspace of Rn−1 such that Wx(v) < 0 for any nonzero vector v 2  L. Then the projections of any 3 vertices of 4
to the quotient space Rn−1 /L are not collinear.

CAT(0) condition. Consider a point array x with 4 points. From 3.1, it follows that Wx is nonnegative on every
plane parallel to a face of the tetrahedron 4 .  In particular, Wx can have at most one negative eigenvalue.

Assume Wx(w) < 0 for some w 2  R3 . From 3.1, the line L w spanned by w is transversal to each of 4 planes
parallel to a face of 4 .

Consider the projection of 4  along L w to a transversal plane. The projection of the 4 vertices of 4  lie in
general position; that is, no three of them lie on one line. Therefore, we can see one of two combinatorial
pictures shown on the diagram. Since the set of lines L w with Wx(w) < 0 is connected, the combinatorics of
the picture does not depend on the choice of w.

3.2. Claim. If CAT(0) comparison holds in X, then the diagram on the right cannot appear.

(The converse holds as well, but we will not need it.)

Proof. Suppose we see the picture on the right.
Let [v1, v3] and [v2, v4] be the line segments of 4  that correspond to the diagonals on the picture. Denote

by m the point of [v1, v3] that corresponds to the point of intersection.

v4
v3

m

v1 v2

In the plane spanned by [v2, v4] and w, the vector w is timelike. Therefore we have the following reversed
triangle inequality:

jv2 − mj + jv4 − mj < jv2 − v4j;
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here we use shortcut ja − bj = 
p

W ( a
 
− b).

Note that the triangles [v1v2v3] and [v1v3v4] with metric induced by W are isometric to model triangles
of [x1x2x3] and [x1x3x4]. Whence (2+2)-point comparison does not hold.

The claim implies the following:

3.3. Observation. Suppose a metric on x = (x1, . . . , xn) satisfies CAT(0) comparison and Wx is its associated
form on Rn−1 . Assume that L  is a subspace of Rn−1 such that Wx(v) < 0 for any nonzero vector v 2  L. Then if the
projections of 4 vertices of 4  to the quotient space Rn−1 /L lies in one plane, then its projection looks like the
picture on the leŒ; that is, one of the points lies in the triangle formed by the remaining three points.

3.4. Corollary. Suppose a metric on x = (x1, . . . , x5) satisfies CAT(0) comparison and Wx is its associated form
on R4 . Assume that L  is a subspace of R4 such that Wx(v) < 0 for any nonzero vector v 2  L. Then dim L  6  1.

Moreover, if dim L  = 1, then the projections of the vertices of 4  to the quotient space R3  = R4 / L belong to
AnA0  (defined in the previous section).

Proof. If dim L  >  2, then dim(R4 /L) 6  2. By 3.1, these 5 projections lie in a general position; that is, no three
of these projections lie on one line. Therefore, R4 / L = 2 is the plane.

Any 5 points in a general position on the plane include 4 vertices of a convex quadrangle. The latter
contradicts 3.3.

4 Convex spacelike surfaces

Let W be a quadratic form on R4 . Suppose that W has exactly one negative eigenvalue. Choose future and
past cones C+ and C− for W; that is, C+ and C− are connected components of the set v 2  R4   W(v) < 0 . A
subset S in R4  will be called spacelike if W(x − y) >  0 for any x, y 2  S.

Let K be a convex body in R4; denote by Σ the surface of K. A point p lies on the upper side of Σ (briefly p 2
Σ+) if there is a spacelike hyperplane in R4  that supports Σ at p from above; more precisely if the Minkowski
sum fpg + C+ does not intersect K.

+

C +

K
C

Similarly, we define the lower side of Σ denoted by Σ−. Note that Σ+ and Σ− might have common points. The
subsets Σ+ and Σ− are spacelike; in particular, the length of any Lipschitz curve in these subsets can be defined
and it leads to induced intrinsic pseudometrics on Σ+ and Σ−. Abusing notation, we will not distinguish a
pseudometric space and the corresponding metric space.

4.1. Lemma. Let Σ be the surface of a convex set K in R4  and C± be the future and past cones for a quadratic
form W. Then the upper and lower sides Σ+ and Σ− of Σ equipped with the induced intrinsic metric are CAT(0)
length spaces.

Moreover, if a line segment [pq] in R4 lies on Σ±, then [pq] is a minimizing geodesic in Σ±; that is,

jp − qjΣ± = W(p − q).

This lemma is essentially stated by Anatolii Milka [1, Theorem 4]; we give a sketch of alternative proof
based on smooth approximation.
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Sketch. We can assume that W is nondegenerate; that is, aŒer a linear change of coordinates it is the standard
form on R3,1. If not, then there is a W-preserving projection of R4 to a W-nondegenerate subspace; apply this
projection and note that this subspace is isometric a subspace of R3,1.

Assume S is a smooth strictly spacelike hypersurface in R3,1 with convex epigraph. By Gauss formula, S
has nonpositive sectional curvature.

Suppose a strictly spacelike hyperplane Π cuts from S a disc D. Recall that Liberman’s lemma [1, Theo-
rem 3] implies that time coordinate is convex on any geodesic in S. We may assume that time is vanishing
on Π; therefore, by the lemma, D has a convex set in S. Therefore the Cartan–Hadamard theorem [4] implies
that that D is CAT(0).

Now suppose Dn is a sequence of smooth discs of the described type that converges to a (possibly non-
smooth) disc D. Note that the metric on Dn converges to the induced pseudometric on D. It follows that the
metric space D0 that corresponds to D is CAT(0).

The disc D might contain lightlike segments which have zero length. Note that every maximal lightlike
segment in D starts at its interior point and goes to the boundary. Consider the map ι : D !  D that sends
each maximal lightlike segment to its starting point. Note that the sublemma below implies that ι is length-
nonincreasing. Since jx − ι(x)jD = 0, we get that the D0 is isometric to the image of ι with the induced metric.

Consider the Minkowski sum
K− = K + C+;

it has a convex spacelike boundary ∂K−. Choose a strictly spacelike hyperplane Π that lies above K. Denote by
D the subset of ∂K− below Π. Let us equip D with induced intrinsic pseudometric. By construction Σ− is
isometric to ι(D). It follows that Σ− is CAT(0).

K

K D

Now suppose a line segment [pq] in R4 lies on Σ−. Choose a supporting hyperplane Π at the midpoint of
[pq]. Choose time coordinate that vanish on Π; by Liberman’s lemma, every shortest path in Σ− between p
and q has to lie on Π; that is, the intersection Σ− \  Π is a convex subset of Σ−. Therefore [pq] is convex in Σ−

which implies the second statement.

4.2. Sublemma. Let u and v be two lightlike vectors in R3,1. Suppose that the union of two half-lines s !  p+su
and t !  q + tv for s, t >  0 is a spacelike set. Then the function (s, t) !  j(p + su) − (q + tv)j is nondecreasing in both
arguments, where jwj := hw, w i  for a spacelike vector w.

Proof. Since u and v are lightlike, hu, u i  = hv, v i  = 0. Since the union of two half-lines is spacelike,
(p + su) − (q + tv) is spacelike for any s, t >  0. It follows that

0 6  j(p + su) − (q + tv)j2 =

= jp − qj2 − 2shu, q − p i  − 2thv, p − q i  − 2sthu, v i

for any s, t >  0. Therefore

hu, q − p i  6  0, hv, p − q i  6  0 hu, v i  6  0.

Whence the result.

Assume v is a nonzero vector in R4  and p 2  Σ. We say that p lies on the upper side of Σ with respect to v
(briefly p 2  Σ+(v)) if p + tv 2  K for any t > 0. Correspondingly, p lies on the lower side of Σ with respect to v
(briefly p 2  Σ−(v)) if p + tv 2  K for any t < 0.
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4.3. Observation. Let K be a compact convex set in R4  and C± be the future and past cones for a quadratic
form W. Then the upper (lower) side of the boundary surface Σ of K can be described as the intersection of the
upper (respectively lower) sides of Σ with respect to all vectors v 2  C+; that is,

Σ± = 
\  

Σ±(v).
v2C+

5 Proof assembling

Proof of Toyoda’s theorem. Let fx1 , . . . , x5g be the points in P. Choose a 5-simplex 4  in R4 ; denote by W the
form associated with the point array (x1, . . . , x5).

If W >  0, then P admits a distance preserving embedding into Euclidean 4-space, so one can take the
convex hull of its image as X.

Suppose W(v) < 0 for some v 2  R4 . Since P is CAT(0), 3.4 implies that W has exactly one negative
eigenvalue. Moreover, if a line L  is spanned by a vector v such that W(v) < 0, then the projection of the
vertices of the simplex to R3  = R4 / L belongs to AnA0 .

The space of such lines L  is connected. By 2.1, we can assume that all the projections belong to A− . That
is, we can choose timelike orientation such that for any v 2  C+ the lower part Σ−(v) of Σ = ∂ 4  has at least 3
facets of 4 .

In particular, Σ−(v) contains all edges of 4  for any v 2  C+. By 4.3, Σ− contains all edges of 4 .  By 4.1, Σ−

with induced (pseudo)metric is a length CAT(0) space.
Since all edges of 4  lie in Σ−, the inclusion P , !  Σ− is distance preserving. Whence we can take X = Σ−.
Finally, observe that in each case X is a subcomplex of 4  that includes all edges and has a model metric

on each simplex.

6 Remarks

Let us recall the definition of graph comparison given by Vladimir Zolotov and the authors [5] and use it to
formulate a few related questions.

Let Γ  be a graph with vertices v1, . . . , vn. A metric space X is said to meet the Γ-comparison if for any set
of points in X labeled by vertices of Γ  there is a model configuration v1, . . . , vn in the Hilbert space H  such
that if vj is adjacent to vj, then

jvi − vj jH 6  jvi − vjjX

and if vj is nonadjacent to vj, then
jvi − vj jH >  jvi − vjjX .

The C4-comparison (for the 4-cycle C4 on the diagram) defines CAT(0) comparison. Tetsu Toyoda have
shown that C4-comparison imlies graph comparisons for all cycles Cn [8]; remakably, the metric space is not
assumed to be intrinsic. The O3-comparison (for the octahedron graph O3 on the diagram) defines another

C4 O3

comparison. Since O3 contains C4 as an induced subgraph, we get that O3-comparison is stronger than C4-
comparison.
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6.1. Open question. Is it true that octahedron-comparison holds in any 6 points in a length CAT(0) space?
And, assuming the answer is armative, what about the converse: is it true that any 6-point metric space

that satisfies octahedron-comparison admits a distance preserving embedding in a length CAT(0) space?

The analogous questions for spaces with nonnegative curvature in the sense of Alexandrov (briefly
CBB(0)) are open as well. The CBB(0) comparison is equivalent to the 3-tree comparison (for the tripod-tree
shown first on the following diagram). It turns out that any length CBB(0) space satisfies the comparison for

: : :

3-tree 4-tree 5-tree 6-tree

2(2)-tree 3(1)-tree

the other trees on the diagram; it is formed by an infinite family of star-shaped trees and two trees with 6 ver-
tices [2, 5]. (The 4-tree comparison (the second tree on the diagram) is equivalent to the so-called (4+1)-point
comparison in the terminology of [2].)

We expect that this comparison provides a necessary and sucient condition for 5-point sets. Namely,
we expect an armative answer to the following stronger question.

6.2. Question.     Suppose a 5-point metric space P satisfies the 4-tree comparison. Is it true that P admits a
distance preserving embedding into a length CBB(0) space?

Finally, let us mention a related question about a 6-point condition.

6.3. Question. Suppose a 6-point metric space P satisfies the 5-tree, 2(2)-tree, and 3(1)-tree comparisons. Is it
true that P admits a distance preserving embedding into a length CBB(0) space?
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