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AA
rubber band is stretched around a pebble, and it
crosses itself at several points (see Figure 1). The
combinatorics of self-crossings can be described by

a closed plane curve—it is the rubber band in a parame-
terization of the surface with one point removed. For
example, if you could turn the pebble around, you would
see that the self-crossings are described by the plane curve
in Figure 1(b).

We assume that the surface of the pebble is strongly
convex, smooth, and frictionless; in this case, the rubber
band models a closed geodesic. Suppose that we are
interested in possible patterns of self-crossings. More pre-
cisely, what are the possible combinatoric types of self-
crossings of a closed geodesic on a strongly convex smooth
closed surface?

Consider the six possible patterns with three double
crossings, shown in Figure 2. Configurations 1, 2, 3, and 4
can be realized as mirror-symmetric geodesics on mirror-
symmetric surfaces; the projections on the plane of sym-
metry are sketched in Figure 3.

Further, we will discuss forbidden configurations, that is,
configurations that cannot appear for a closed geodesic.
These are configurations 5 and 6 in Figure 2.

Determining the forbidden configurations is a good
exercise—it can be explained to anyone, but an answer
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Figure 2. The six possible patterns with three double

crossings.
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Figure 1. (a) A rubber band stretched around a pebble is

described (b) by a closed plane curve.
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requires a considerable part of the theory. The reader is
welcome to check that there are no forbidden patterns with
fewer than three double crossings and to try the cases with
more self-crossings (see [2, Figures 15–17]). By the way, is
there an algorithm for solving the general case? Our ques-
tion is closely related to the so-called flat knot types of
geodesics; see [1] and the references therein.

In what follows, we discuss the Gauss–Bonnet formula
as well as the Alexandrov–Toponogov theorem and apply
them to forbidden configurations 5 and 6. These theorems
are covered in the textbook [3], which I like, but they are
treated in plenty of other places as well.

Gauss–Bonnet and Configuration 5
Suppose that � is an n-gon with geodesic sides in a surface
�. Recall that by the Gauss–Bonnet formula, the sum of the
external angles of � equals

2 � p � vð�Þ �
Z
�

K ;

where vð�Þ denotes the Euler characteristic of �, and K is
the Gaussian curvature of �.

Further, we assume that � is a closed strongly convex
surface. In this case:

� � has strictly positive Gaussian curvature;

� � is homeomorphic to the sphere, and therefore

vð�Þ ¼ 2;

� � is homeomorphic to the disk, and therefore

vð�Þ ¼ 1.

It follows that the sum of the internal angles of � is greater
than ðn� 2Þ � p. In particular, if � is a triangle with angles
a, b, and c, then

(∗) α + β + γ > π.

The Gauss–Bonnet formula can be applied to the whole
surface; it implies that the integral of the Gaussian curva-
ture along � is exactly 4 � p.

Configuration 5 Is Forbidden

Suppose there is a geodesic with self-crossings as in Fig-
ure 4. It divides the surface � into one triangle, say �, one
hexagon, and three monogons. Denote by a, b, and c the
internal angles of �.

Note that the three monogons have internal angles a, b,
and c. By Gauss–Bonnet, the integrals of the Gaussian
curvature along these monogons are respectively pþ a,
pþ b, and pþ c. By ð�Þ, the integral of the Gaussian cur-
vature along the three monogons exceeds 4 � p. But 4 � p is

the integral of the Gaussian curvature along the whole
surface—a contradiction.

Alexandrov–Toponogov and Configuration 6
Let � be a geodesic triangle with angles a, b, and c on the
surface �. Assume that the sides of � are length-minimiz-
ing among the curves in � with the same endpoints. Then
the inequality ð�Þ can be made more exact.

Namely, consider the model triangle ~� of �; that is, ~� is
a plane triangle with equal corresponding sides. Since the
sides are length-minimizing, they satisfy the triangle
inequality; therefore, the model triangle is well defined.

Denote by ~a, ~b, and ~c the angles of ~�. Then

(∗∗) α > α̃, β > β̃, γ > γ̃.

Since ~aþ ~bþ ~c ¼ p, this inequality implies ð�Þ.
The inequality ð��Þ easily follows from the proof of the

Alexandrov–Toponogov theorem, which implies that ð��Þ
holds for triangles with length-minimizing sides in the
whole surface. The proof is left as an exercise for those
familiar with the Alexandrov–Toponogov theorem; others
may simply accept it as true.

Configuration 6 Is Forbidden

Suppose that such a geodesic n exists; assume that its arcs
and angles are labeled as in Figure 5(a). Applying the
Gauss–Bonnet formula to the quadrangle and pentagon
that n cuts from the surface, we get that

( ***) 2·α < β + γ, 2·β + 2·γ < π + α,

and therefore a \ p
3 :

Consider the part of n without the arc labeled by a. It
cuts from the surface a pentagon � with sides and angles as
shown in Figure 5(b).

Let us add additional vertices on the sides of � so that
each side becomes length-minimizing in �, as shown in
Figure 5(c). Choose a vertex and join it by shortest paths in
� to every other vertex. Consider a model triangle for each
triangle in the obtained subdivision of �. The model tri-
angles lie in the plane, and we suppose that they share
sides as in �. By the comparison inequality ð��Þ, the angles
of the model triangles do not exceed the corresponding
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Figure 3. The projections on the plane of symmetry of

configurations 1–4 in Figure 2.
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Figure 4. Configuration 5.
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angles of the original triangle. Therefore, the model trian-

gles form a convex plane polygon, say ~�, such that:

� The five angles of ~� that correspond to the angles of

� do not exceed those.

� Each side of ~� equals the corresponding small side

of �.

It remains to show that no convex plane polygon meets
these two conditions.

Let us orient the sides of an alleged polygon ~� coun-
terclockwise. Denote the obtained vectors by s1; � � � ; sk;
Figure 6(a). Note that the vectors si point toward the
complement of the white sectors with their angles marked,
as shown in Figure 6(b). The sum of the magnitudes of the
vectors in each black sector is also marked (each black
sector corresponds to a side of �).

By ( ), we can choose a vector r, as shown in the
figure, such that u [ p�b

2 and w [ p�c
2 . Note that ( ) implies

the inequalities on inner products

hr ;ui \ 0; hr ; vi \ 0; hr ;wi \ 0;

hr ; vi þ hr ; v0i \ 0; hr ;wi þ hr ;w0i \ 0:

for any unit vectors v, v0, w, and w0 in the marked black
sectors. It follows that

hr ; s1i þ � � � þ hr ; ski \ 0:

On the other hand, the vectors si circumambulate ~�; so the
sum has to vanish—a contradiction.
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Figure 6. The sides of ~� oriented counterclockwise.
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Figure 5. Configuration 6.
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