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About every convex set in
any generic Riemannian manifold

By Alexander Lytchak at Cologne and Anton Petrunin at University Park

Abstract. We give a necessary condition on a geodesic in a Riemannian manifold that
can run in some convex hypersurface. As a corollary, we obtain peculiar properties that hold
true for every convex set in any generic Riemannian manifold .M; g/. For example, if a convex
set in .M; g/ is bounded by a smooth hypersurface, then it is strictly convex.

1. Introduction

Let C be the convex hull of a compact subset Q in the Euclidean space Rm. By Cara-
théodory’s theorem [6], C is the set of all convex combinations of .mC 1/-tuples of points
on Q. Thus, C is a compact convex subset. Any point in C nQ is an inner point of a line
segment contained in C; that is, the complement C nQ does not contain extreme points of C.

The compactness of the convex hull and, therefore, the existence of a huge variety of
convex subsets with many non-extreme points on the boundary, admits a straightforward gen-
eralization to the sphere and the Lobachevsky space; moreover, it holds locally in any two-
dimensional Riemannian manifold.

Recall that a set C in a Riemannian manifold .M; g/ is called convex if for any pair of
points x; y 2 C any minimizing geodesic Œx; y� lies in C. A point in C is called extreme if it
does not lie in an interior of a geodesic in C. The convex hull of a set Q �M is the minimal
convex subset of M that contains Q.

It seems to be a folklore belief that a version of the statement above should hold true in all
Riemannian manifolds; see the discussion at mathoverflow [15]. In the present note we prove
that the somewhat counter-intuitive opposite is the case for generic Riemannian manifolds.
It agrees with the pattern: a typical object in your favorite theory looks like nothing you have
ever seen before.

Further, Riemannian manifolds will be assumed to be connected and C1-smooth. Given
a positive integer k, we say that a property P holds for Ck-generic Riemannian metric g on
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a manifold M if the property P holds for a dense G-delta set (that is, a countable intersection
of open subsets) of metric tensors in the Ck-topology.

Main Theorem 1.1. Let C be an arbitrary convex subset of a C2-generic Riemannian
manifold .M; g/. Then the set of non-extreme points in C is the union of an open set and at
most countable family of geodesics in .M; g/.

In particular, if dimM � 3 and no connected component of C is a geodesic, then the set
of extreme points of C is dense in àC.

Note that our definition of convexity does not require connectedness. However, any con-
vex subset C is locally connected, and C is connected if the manifold M is complete or C is
contained in some compact convex subset of M .

If dimM D 2, the statement is rather trivial and holds true for all Riemannian metrics
not only the generic ones. As a consequence of the main theorem for dimM � 3, we obtain
the following:

Corollary 1.2. Let Q be a closed subset of a C2-generic Riemannian manifold .M; g/
of dimension at least 3. If Q does not lie in a geodesic and the convex hull C of Q is closed
and connected, then àC � Q.

The corollary gives a positive resolution of a conjecture formulated by Marcel Berger
[2, Note 6.1.3.1], stating that convex hulls of three points in most Riemannian manifolds do
not need to be compact. Probably the following more exact form of Berger’s conjecture might
be squeezed out from our key lemma.1)

Conjecture 1.3. Let .M; g/ be an arbitrary Riemannian manifold of dimension at
least 3. If the convex hull of any 3-point subset is compact, then .M; g/ has constant curvature.

The following corollary is essentially known, for dimM D 3 its proof has been sketched
by Robert Bryant [4] and, for dimM � 4, it was proved by Thomas Murphy and Frederick
Wilhelm [13].

Corollary 1.4. Let .M; g/ be a C2-generic Riemannian manifold. Then any connected
convex subset C of .M; g/ is either contained in a geodesic or full-dimensional; that is, the
interior of C is nonempty.

The proofs are built on the following proposition. Its formulation uses the notion of rank
of a point p in a closed convex set C; we define it as the dimension of the maximal linear
subspace in the tangent cone to C at p.

Main Proposition 1.5. Suppose that C is a closed convex set in a C2-genericm-dimen-
sional Riemannian manifold .M; g/. Then all non-extreme points of C have rank either 1 orm.

In particular, if dimM � 3 and C is bounded by a C1-smooth hypersurface, then C is
strictly convex; that is, all boundary points of C are extreme.

1) More open questions are listed in Appendix B.



Lytchak and Petrunin, About every convex set 237

The proof relies on the key lemma stated in the following section; it describes a necessary
condition on a geodesic in a Riemannian manifold that stays in convex subset C. If the geodesic
lies in àC and contains a point of rank at least 2, then this condition implies a nontrivial prop-
erty of the curvature tensor. Then we show that the curvature tensor of a generic Riemannian
manifold does not meet this property. The latter part is technical but straightforward; it is done
by applying the Thom transversality theorem; see Appendix A.

2. Key lemma

Let C be a closed convex set in an m-dimensional Riemannian manifold .M; g/. Recall
that Tx D TxM denotes the tangent space of M at x. The tangent cone Kx D KxC � Tx at
x 2 C is defined as the closure of the set of all velocity vectors of geodesics that start at x and
run in C.

Given x 2 C, denote by Lx D LxC the maximal linear subspace of Kx . We define the
rank of x in C as the dimension of Lx .

Note that Kx is a convex cone in Tx; in particular, Lx D Kx \ .�Kx/. Further, Kx
coincides with Tx if and only if a neighborhood of x lies in the interior of C. In other words, x
has rank m if and only if C contains a neighborhood of x.

Given a tangent vector x 2 TpM , consider the Jacobi operators of order k

Rkx W v 7! r
k�2
x Rm.v; x/x;

where Rm denotes the curvature tensor of g; we set R1 D 0. Note that (i) Rkx W Tp ! Tp is
a self-adjoint operator, (ii) x 7! Rkx is a homogeneous polynomial of degree k, and (iii)

Rkx � x D 0

for any k and x 2 Tp. The Jacobi equation along a geodesic 
 takes the form

r
2

 0 � JCR2
 0 � J D 0:

Key Lemma 2.1. Let .M; g/ be a Riemannian manifold and let 
 W .a0; b0/!M be
a geodesic that runs in a closed convex set C � .M; g/. Then the tangent cones of C are
parallel along 
 ; that is, the parallel translation along 
 defines a bijection between the tangent
cones K
.a/C and K
.b/C for any a; b 2 .a0; b0/.

Moreover, for any a 2 .a0; b0/ the following conditions hold:

(i) For any v 2 K
.a/C we have

R2
 0.a/ � v 2 KvŒK
.a/C�:

(ii) L
.a/C is an invariant subspace of R2

 0.a/

W T
.a/ ! T
.a/.

The proof uses the fact that the parallel translation can be defined via geodesics. In a sim-
ilar way, this observation was used in [1, Section 13] and [14]. In fact, the main part of the key
lemma follows from [14].

Proof of Key Lemma 2.1. Since all statements are local, we may replace .M; g/ by its
small open convex subset. By doing so we may assume that any pair of points of .M; g/ is con-
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nected by a unique geodesic and there are no conjugate points. In particular, for any subinterval
Œa; b� � .a0; b0/ and any tangent vectors v 2 T
.a/ and w 2 T
.b/ there exists a unique Jacobi
field J along 
 such that J.a/ D v and J.b/ D w.

Since Jacobi fields are variational fields of geodesic variations, the convexity of C implies
the following:

Observation 2.2. Suppose that J is a Jacobi field along 
 and a0 < a < t < b < b0.
If J.a/ 2 K
.a/C and J.b/ 2 K
.b/C, then J.t/ 2 K
.t/C.

Choose a subinterval Œa; b� � .a0; b0/. Given a large positive integer k, consider the
arithmetic progression t0; : : : ; tkC1 such that t0 D a and tk D b.

Choose a tangent vector v0 2 T
.a/. Consider the sequence of vectors vi 2 T
.ti / defined
recursively by viC1 D 2 � Ji .tiC1/, where t 7! Ji .t/ denotes the Jacobi field along 
 such that
Ji .ti / D vi and Ji .tiC2/ D 0.

Define a map �k W T
.a/ ! T
.b/ by setting �k.v0/ WD vk . According to the observation,
if v0 2 K
.a/C, then �k.v0/ 2 K
.b/C. As observed in [1] and [14], �k.v0/ converges to the
parallel translation of v0 along 
 as k !1. Since K
.b/C is closed, the parallel translation
along 
 maps K
.a/C in K
.b/C. Switching the direction of 
 , we get the opposite inclusion.
That is, the tangent cones K
.t/C are parallel along 
 – the main part is proved.

Let us use the parallel translation along 
 to identify the tangent spaces at points on 
 .
This way we identify the tangent cones K
.t/C for all t ; denote the obtained cone by K.

For v 2 K and small " > 0, consider the unique Jacobi field J" along 
 with

J".aC "/ D J".a � "/ D v:

Due to the Jacobi equation,

J".a/ D vC 1
2
� "2 �R2
 0.a/ � vC o."

2/:

According to the observation, J".a/ 2 K for any " > 0. Since K is a closed convex cone, we
get R2
 0 � v 2 KvK – (i) is proved.

Finally,
v 2 L
.a/C ” v;�v 2 K ” KvK D K:

Therefore, if v 2 L
.a/C, then˙R2

 0.a/
� v 2 K, and henceR2


 0.a/
� v 2 L
.a/C. That is, L
.a/C

is an invariant subspace of R2

 0.a/

– (ii) is proved.

3. Main proposition

In this section we will prove Main Proposition 1.5 modulo one claim; let us introduce
notations to state it.

Let M be a smooth m-dimensional manifold with a Riemannian metric g. Suppose that
x is a nonzero tangent vector at a point p 2M . Recall that Rkx W Tp ! Tp denotes the Jacobi
operators of g of order k for a tangent vector x 2 Tp. An invariant subspace V � Tp of Rkx
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will be called exceptional if V 3 x and 1 < dimV < m. (Recall that Rkx � x D 0 for any k and
x 2 Tp. Therefore, the subspace spanned by x is always an invariant subspace ofRkx for any k.)

We will say that a metric g on a manifold M is k-exceptional if there exists a point
p 2M and a nonzero vector x 2 TpM , such that the operators R2x ; : : : ; R

k
x have a common

exceptional invariant subspace.

Claim 3.1. For any smooth manifoldM , there exists an integer k such that the Ck-gen-
eric Riemannian metric is not k-exceptional.

For k D 2 (and, probably, also for k D 3) every Riemannian metric is k-exceptional.
However, for larger k, the k-exceptionality defines more and more restrictions on the curvature
tensor. Therefore, it is not surprising that most Riemannian metrics are not k-exceptional, for
sufficiently large k. A formal proof of this claim is built on Thom transversality theorem; it
will be derived in Appendix A.

Proof of Main Proposition 1.5 modulo Claim 3.1. Suppose thatp is a non-extreme point
of C; that is, p lies on a nonconstant geodesic 
 W .a; b/! C.

According to Key Lemma 2.1, the family of maximal linear subspaces L
.t/C of K
.t/C
is parallel along 
 and invariant for R2


.t/
. Note that Lp is exceptional if and only if the rank

of p is neither 1, nor m.
Further, if a nontrivial geodesic 
 admits a parallel family Lt � T
.t/ of exceptional

invariant subspaces for all R2

.t/

, then we say that 
 is exceptional. So, it is sufficient to show
that C2-generic Riemannian manifolds .M; g/ do not have exceptional geodesics.

Choose a compact subsetK �M and " > 0. Consider the setZ.K; "/ of all Riemannian
metrics g on M such that there exists an exceptional geodesic 
 in .M; g/ that starts at a point
inK and has length ". Observe that the geodesics and the curvature tensor depend continuously
on the Riemannian metric in C2-topology. Therefore, the set Z.K; "/ is closed with respect to
the C2-topology.

Suppose that 
 is an exceptional geodesic that passes thru p in the direction x. By taking
covariant derivatives along 
 , we get that the Jacobi operators Rkx have a common exceptional
invariant subspace Lp, for all k � 2. In other words, for any integer k � 2 we have

(3.1) Zk.K/ � Z.K; "/;

whereZk.K/ is the set of all smooth Riemannian metrics onM such that for some p 2 K and
x 2 Tp n ¹0º the operators R2x ; : : : ; R

k
x have a common exceptional invariant subspace.

By the very definition of Zk.K/, it is closed with respect to Ck-topology on the space
of all Riemannian metrics on M . By Claim 3.1, we can choose k so that Zk.K/ is Ck-meager
for any K; that is, its complement is a dense G-delta set in the space of all Riemannian metrics
on M with Ck-topology.

SinceZ.K; "/ is closed with respect to the C2-topology, Claim (3.1) implies thatZ.K; "/
is C2-meager in the space of all Riemannian metrics on M .

Choose a nested sequence of compact setsK1 � K2 � � � � that coverM . Set "n D 1
n

and

Z.M/ D
[
n

Z.Kn; "n/I

since Z.Kn; "n/ is C2-meager for every n, so is Z.M/.
It remains to note that g 2 Z.M/ if and only if .M; g/ has an exceptional geodesic.
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4. Main theorem

The following proposition is a special case of a result of Nan Li and Aaron Naber
[10, Theorem 1.6]. It also can be deduced from the result of Luděk Zajíček [16].

Proposition 4.1. Let C be a closed convex set in a Riemannian manifold .M; g/. Then
the set of points in C with rank at most k is countably k-rectifiable; that is, this set can be
covered by images of a countable set of Lipschitz maps Rk ! .M; g/. In particular, this set
contains at most countably many disjoint Borel sets with positive k-dimensional Hausdorff
measure.

Proof of Corollary 1.4 and Main Theorem 1.1. We may assume that C is connected. In
addition, assume that C is closed.

According to [5, Theorem 1.6], a connected closed convex set C in a Riemannian mani-
fold .M; g/ is homeomorphic to a manifold with boundary, say B. Moreover, the complement
C nB is a totally geodesic submanifold of .M; g/; denote its dimension by d .

The tangent cone KpC at any p 2 C nB is a d -dimensional linear space. By Main Propo-
sition 1.5, d D 0; 1, orm. If d D 0, then C is a single point. If d D 1, then C nB is a geodesic
in .M; g/; hence C is contained in a geodesic as well. If d D m, then by the invariance of
domain we have C nB is open in M ; that is, C is full-dimensional – Corollary 1.4 is proved.

By Main Proposition 1.5 any non-extreme point x 2 àC has rank 1. Thus, there is a unique
line in KxC and it is the tangent line of a geodesic 
 � C that has p as an inner point.

Let us extend 
 to a maximal open interval so that 
 stays in C; note that p uniquely
defines 
 . By the main statement of the key lemma, all points on 
 lie on àC. By definition, all
such geodesics consist of non-extreme points.

It gives a subdivision of non-extreme points of àC into geodesics with positive lengths.
By Proposition 4.1, there are only countably many such geodesics.

If C is not closed, consider its closure NC; denote by NB its boundary. Note that NC is locally
convex and the above arguments apply to closed locally convex subsets without changes.
Observe that any non-extreme point of C is a non-extreme point of NC and NC n NB � C (see
[5, Lemma 1.5]). Hence, the statement follows.

Few words before the proof of Corollary 1.2. Let Q be a subset of a Riemannian
manifoldM . SetQ D Q0 and let inductivelyQiC1 to be the union of all minimizing geodesics
between pairs of points ofQi . By definition, the increasing countable union C D

S
i Qi is the

convex hull of Q. By this description, any point in C nQ is a non-extreme point of the convex
set C.

Note that if M is complete and Q is compact, then each Qi is compact. In the Euclidean
space M D Rm (as well as in the round sphere or in the Lobachevsky space) Carathéodory’s
theorem [6] implies CDQm. As a consequence of Corollary 1.2, we will know that in a generic
Riemannian manifold the convex hull C of Q is strictly larger than Qi , for all i .

Proof of Corollary 1.2. Without loss of generality we can assume that C is a proper
subset of M ; in particular, àC ¤ ¿. Since Q is not contained in a geodesic, by the main
theorem, C has a nontrivial interior. By the construction of C above, any point x 2 C nQ is
not an extreme point of C.
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Assume àC 6� Q. By the main theorem, the topological manifold àC is the union of the
closed subset Q \ àC and a countable union of geodesics. But àC nQ is an .m � 1/-dimen-
sional topological manifold. By dimensional reasons, it is not a union of countably many
rectifiable curves – a contradiction.

A. Normalization of metrics

This appendix is devoted to the algebra of curvature tensor and its covariant derivatives
that leads to a proof of Claim 3.1.

Choose an m-dimensional Euclidean space T. Denote by S the space of self-adjoint
operators on T.

Consider the space G of germs of Riemannian metrics on T at 0 that coincide with the
canonical metric at 0. Any germ in G can be described by hG � v;wi, where x 7! Gx is a smooth
function T! S such that G0 D id.

The k-jet of G is defined by the Taylor polynomial of G of degree k

(A.1) Gx D idCG1x C � � � CG
k
x C o.jxj

k/;

where x 7! Gix is a homogeneous polynomial T! S of degree i .
We note that every array of homogeneous polynomials G1; : : : ; Gk W T! S such that

degGi D i appears in (A.1) for the germ in G defined by

(A.2) Gx D idCG1x C � � � CG
k
x :

The space of k-jets of germs in G will be denoted by G k .
A germ in G will be called normal if the standard coordinates on T coincide with normal

coordinates of the germ in a neighborhood of the origin. By the Gauss lemma, a germ defined
by G is normal if and only if

(A.3) Gx � x D x

for all small x 2 T. The subspace of normal germs in G and their k-jets will be denoted by N

and N k , respectively.
Suppose that G describes a germ in N and G1; : : : ; Gk be as in (A.1). By (A.3)

(A.4) Gix � x D 0

for any i . Moreover, for an array of polynomials G1; : : : ; Gk W T! S such that Gi is homo-
geneous of degree i and (A.4) holds for each i , the sum (A.2) defines a normal k-jet; that is,
(A.4) is the only condition on the normality of jets.

Christoffel symbols vanish in normal coordinates, thus, G1 D 0, for G 2 N .
Choose x 2 T; denote by Sx the subspace of the operators S 2 S such that S � x D 0.

By (A.4), Gix 2 Sx for any germ in N . The following claim says that Gix can be chosen
arbitrarily in Sx for i � 2 and x ¤ 0.

Claim A.1. Given x ¤ 0 in T and a sequence of operators A2; : : : ; Ak 2 Sx, there is
a germ .G1; : : : ; Gk/ in N k such that Gix D Ai for any i � 2.
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Proof. For any unit vector y in T perpendicular to x, consider the orthogonal projec-
tion P y in T onto the line generated by y. Diagonalizing operators in Sx, we see that such
projections P y generate Sx as a vector space.

The subspace N k is described by (A.4), hence it defines a linear subspace of Skx . Thus,
it suffices to verify the following: For any 2 � j � k and any unit vector y in T perpendicular
to x, there exists a germ .G1; : : : ; Gk/ in N k such that Gjx D P y and Gi D 0 for i ¤ j .

Such a normal germ can be constructed as a product of a surface of revolution (corre-
sponding to the .x; y/-plane) and a Euclidean space.

Suppose that a germ in G is described by G W T! S . Consider its array of Jacobi opera-
tors .R1; : : : ; Rk/ at the origin; recall that R1 D 0. The identities in Section 2 imply that any
such array .R1; : : : ; Rk/ belongs to the space Rk defined by the following conditions:

(i) each Ri W T! S is a homogeneous polynomial,

(ii) degRi D i ,

(iii) Rix � x D 0 for any i and x 2 T.

Note that these conditions are exactly the same as for Gi in N k . Therefore, Rk can be
identified with N k , but we will keep separate notations for them.

The expression of the curvature tensor in terms of the metric and its derivatives defines
a natural algebraic map

�k W G
k
! Rk :

For any k � 2, any G 2 N k and .R1; : : : ; Rk/ D �k.G/, we have

Gk D ak �R
k
C Ak;

where ak is a nonzero constant and Ak is a field of self-adjoint operators that can be written
as a polynomial of R2; : : : ; Rk�2. This statement follows easily from the formula derived by
Oldřich Kowalski and Martin Belger [9, Proposition 2.2]. (In fact, ak D �2 � k�1kC1

, but we will
not need it.)

Hence, the map �k admits an algebraic inverse map::

Claim A.2. The restriction �kjN k is an algebraic diffeomorphism N k $ Rk .

Applying Claim A.1, we get the following:

Corollary A.3. Given x ¤ 0 in T and a sequence of operators A2; : : : ; Ak 2 Sx, there
is a germ N k with Jacobi operators Rix D Ai for any i � 2.

Proposition A.4. The map �k W G k ! Rk is an algebraic submersion. (See Figure 1.)

Proof. Evidently, �k is algebraic.
Any germ in G becomes normal if the space T is reparametrized by its exponential map.

This defines the normalization map G
�
�! N . Since the curvature tensors does not change under

this (or any other) coordinate change, it follows that � commutes with �k W G ;N ! Rk .
By Claim A.2, N k

�k
 ! Rk is a diffeomorphism. The maps

G k
�k
�! Rk �k

 !N k
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G N

G k N k

Rk

�

�

�k

�k

�k

�k

Figure 1

together with the forgetful maps G ! G k and N ! N k commute. In particular, we get a map
G k

�k
�! N k that commutes with the forgetful maps and the normalization �. Hence, �k and �k

commute.
Note that the inclusion N

�
,! G is a right inverse of �. Moreover, by changing the

parametrization on T to normal coordinates of a given germ G in G , we may assume that
G lies in the image of �. Therefore, there is an inclusion N k

�k
,! G k that is a right inverse of �

such that its image contains any given jet in G k . It follows that G k
�k

�! N k is a submersion,
hence the result.

Proof of Claim 3.1. Denote by QG k the space of all k-jets of Riemannian metrics at a
given point p. Denote by Q†k all jets in QG k such that for some nonzero tangent vector x 2 Tp
the Jacobi operators R2x ; : : : ; R

k
x have a common exceptional invariant subspace.

By Tarski–Seidenberg theorem, Q†k is semialgebraic; in particular it is stratified. Due to
the Thom transversality theorem [7, Theorem 2.3.2], it is sufficient to show that for any point
p the codimension of Q†k in QG k is larger than m D dimM .

This is a pointwise statement; therefore we may fix p from now on.
A jet in QG 0 is described by the metric tensor g0 on T D TpM . Note that the forgetful

map QG k ! QG 0 is a fiber bundle. Furthermore, the restriction of this forgetful map to Q† is also
a fiber bundle. Thus, it suffices to prove that the intersection†k of Q†k with a fiber of QG k ! QG 0

has codimension at leastm. Note that the fiber of the forgetful map over the Euclidean structure
on T given by g0 is exactly the space G k investigated above.

In other words, if we choose a chart T!M , then g0 defines an inclusion G k ,! QG k ,
and it is sufficient to show that

(A.5) codim†k !1 as k !1I

here we consider †k D Q†k \ G k as a subset of G k .
Denote by L the semialgebraic set of all pairs .L; x/, where L is a subspace of T such

that 1 < dimL < m, and x 2 L n ¹0º. Given .L; x/ 2 L, denote by †k.L; x/ the subset of jets
in G k such that L is an invariant subspace of all Jacobi operators Rix for any i � k.

Choose .L; x/ 2 L. We claim that Proposition A.4 implies

(A.6) codim†k.L; x/!1 as k !1:

Indeed, a normal germ .G1; : : : ; Gk/ belongs to†k.L; x/ if and only if all the Jacobi operators
R2x ; : : : ; R

k
x 2 Sx have invariant subspace L. The codimension of the space of .k � 1/-tuples
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in Sx that all have L as invariant subspace grows with k. By Proposition A.4 and Corollary A.3
the composition G k ! Rk ! Sk�1x that sends a germ to the array of its Jacobi operators
.R2x ; : : : ; R

k
x / is a submersion. Therefore, (A.6) follows.

Observe that
codim†k � codim†k.L; x/ � dim L:

Therefore, (A.5) follows.

B. Final remarks

We expect that the following question admits an affirmative answer.

Question B.1. Is it true that any Riemannian manifold .M; g/ contains a nontrivial
geodesic that runs in the boundary of some convex subset?

There is a good chance that the argument of Albert Borbély [3, Lemma 2.1] can be
modified to answer the following question. Assuming that the answer is affirmative, it can be
combined with the main proposition to derive further restrictions on convex hulls in generic
Riemannian manifolds.

Question B.2. Let C be the closure of a convex hull of a set Q in a Riemannian mani-
fold. Then all points of C with rank at most 1 lie on minimizing geodesics between points
in Q.

The presented argument, when properly extended to infinite-dimensional manifolds,
might lead to a negative answer to the following question of Mikhael Gromov [8, 6.B1(f)].

Question B.3. Let X be a complete CAT.0/ space (not necessarily locally compact).
Is it true that any compact set of X lies in a compact convex subset?

A surprising behavior of convex sets in complete (but not locally compact) CAT.0/ spaces
is discussed by Nicolas Monod [12].

Finally, let us mention that there is a result of Anatoliy Milka [11, Section 4] about rank
of points on geodesics in the intrinsic metric of convex surfaces; it is closely related to our main
proposition but goes in the opposite direction.

Acknowledgement. We thank Mohammad Ghomi and Frederick Wilhelm for their
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