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Abstract. We relate the existence of many infinite geodesics on Alexandrov spaces to a statement
about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves
the Liouville measure in several important cases. The analytic tools we develop have close ties to
integral geometry.
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1. Introduction

1.1. Motivation and application

The following question in the theory of Alexandrov spaces was formulated in a slightly
different way in [PP96] and remains open.

 Are there “many” infinite geodesics on any Alexandrov space without boundary?

We address this question and obtain an affirmative answer in several cases. The main new
tool is the investigation of the Taylor expansion of the average volume growth. The central
results relate the first coefficient of this expansion to the geodesic flow and show how to
control the Taylor expansion. This tool might be interesting in its own right, beyond the
realm of Alexandrov geometry.

In particular, we prove the existence of such infinite geodesics in the most classical
examples of non-smooth Alexandrov spaces:

Theorem 1.1. Let X  be the boundary of a convex body in RnC1 . Then almost every direc-
tion in the tangent bundle T X  is the starting direction of a unique infinite geodesic on X .
Moreover, the geodesic flow is defined almost everywhere and preserves the Liouville
measure.
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Apparently, the existence of a single infinite geodesic has not been known, even in the
two-dimensional case [Zam92]. Our result might appear somewhat surprising since on
most convex surfaces most points in the sense of Baire category are not inner points of
any geodesic [Zam82].

1.2. Metric-measure boundary

On a smooth manifold with boundary the geodesic flow is not defined for all times. The
amount of geodesics terminating at the boundary in a given time depends on the size of
this boundary, due to Santalo’s integral formula.

We are going to capture the size of the boundary by estimating the average volumes of
small balls and their deviations from the corresponding volumes in the Euclidean space.

Let .X; d / be a locally compact separable metric space, and  a Radon measure on X
which takes finite values on bounded subsets. For x 2  X  and r >  0 denote by B.x ; r / the
open metric ball of radius r around the point x. Consider the volume growth function br V
X  !  T0; 1/,

br .x/ VD .B.x ; r //: (1.1)

For a natural number n >  0, let ! n  be the volume of the n-dimensional unit Euclidean
ball. The deviation function

vr .x/ D  1   
!n r n

measures in a very rough sense the deviation of the metric measure space .X; d ; / from
Rn . Moreover, one can expect the behavior of vr at the origin r D  0 to reflect some
curvature-like properties of the space X ,  as in the following fundamental example.

Example 1.2. Let X n  be a smooth Riemannian manifold with Riemannian volume .
Then vr .x/ D        1        scal  r2 up to terms of higher order in r. Here scal denotes the
scalar curvature of X .

In this paper we are interested in the order of vanishing of vr at r D  0 and the first non-
vanishing coefficient; in particular we assume that vr converges to zero in some integral
sense. In most interesting metric spaces .X; d /, at least in the cases investigated here, the
only reasonable choice of the measure  for which v is “sufficiently small” in r is the n-
dimensional Hausdorff measure Hn :

Example 1.3. Let X  be a countably n-rectifiable metric space. Assume that the Radon
measure  is non-zero on open subsets of X .  If  D  H n  then the functions v converge Hn-
almost everywhere to 0. Moreover,  D  H n  is the only measure with this prop-erty
[AK00, Theorem 5.4].

Therefore, in the following, the number n will always be the Hausdorff dimension of X
and  will be the n-dimensional Hausdorff measure.

As seen in Example 1.3, most points in reasonably nice spaces are rather regular. It is
conceivable that by averaging the deviation functions vr we will smooth out the “wildest
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singularities”. The resulting objects will experience better behavior at r D  0 and tell us
more about the regularity of the space.

Thus, instead of looking at the pointwise behavior of vr at r D  0 we define the
deviation measure Vr of X  as the signed Radon measure

Vr D  vr ; (1.2)

absolutely continuous with respect to .
The vector space M.X / of signed Radon measures on X  is dual to the topological

vector space Cc .X/ of compactly supported continuous functions. We consider the space
M.X / with the topology of weak convergence. Recall that a subset F   M.X / is rela-tively
compact if and only if it is uniformly bounded: for any compact subset K   X  the values
.K / ;  2  F ,  are uniformly bounded.

The next example, fundamental for this paper, can be obtained by computations in
local coordinates. Since it is formally not needed later, we omit the details, but a rigorous
proof can be extracted from the proof of Theorem 1.7 in Section 7.

Example 1.4. Let X  be a smooth n-dimensional Riemannian manifold with boundary
@X. Then, for r !  0, the measures Vr =r converge in M.X / to cn Hn 1 for some constant
cn >  0 depending only on n.

This example suggests viewing the first Taylor coefficient of Vr as the “boundary” of the
metric measure space .X; d ; /. It motivates the following definition.

Definition 1.5. Let .X; d ; / be a metric measure space as above. Let Vr be the deviation
measure of X ,  as in (1.2). We say that X  has locally finite metric-measure boundary,
abbreviated as mm-boundary, if the family of signed Radon measures

fVr =r I  0 <  r  1g

is uniformly bounded. If l im r ! 0  Vr =r D   in M.X/, we call  the mm-boundary of X .  If  D
0 we say that X  has vanishing mm-boundary.

We refer to Subsection 1.8 and Section 8 for a discussion of examples and questions,
and now we state our central result connecting mm-boundaries to the existence of infinite
geodesics in Alexandrov spaces:

Theorem 1.6. Let X  be an Alexandrov space. If X  has vanishing mm-boundary, then
almost each direction of the tangent bundle T X  is the starting direction of an infinite
geodesic. Moreover, the geodesic flow preserves the Liouville measure on T X .

In different settings, geodesic flows on singular spaces have been investigated in [BB95]
and [Bam17].
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1.3. Size of the mm-boundary in Alexandrov spaces

The next theorem shows that, similarly to Example 1.4, the topological boundary is
closely related to the mm-boundary in Alexandrov spaces.

Theorem 1.7. Let X n  be an n-dimensional Alexandrov space. Then X  has locally finite
mm-boundary. If  D  lim Vs =s for a sequence s !  0, then  is a Radon measure and the
following hold:

(1) There is a Borel set A0 with H n . X  n A0 / D  .A0 / D  0.
(2) If the topological boundary @X is non-empty then   c H for a positive constant

c depending only on n.
(3) If the topological boundary @X is empty then .A/ D  0 for any Borel subset A   X

with H n  1 .A/ <  1 .

We believe that an Alexandrov space with empty topological boundary @X has vanishing
mm-boundary, which would solve the question of existence of infinite geodesics. This
conjecture will be proved in two cases.

Theorem 1.8. Let X n  be a convex hypersurface in Rn C 1  or let X  be a two-dimensional
Alexandrov space without boundary. Then X  has vanishing mm-boundary.

In combination with Theorem 1.6, this proves Theorem 1.1. The two-dimensional case
could be derived from the statement about convex hypersurfaces and Alexandrov’s em-
bedding theorems. Another proof follows from a much stronger result discussed in the
next subsection.

1.4. Metric-measure curvature

Motivated by Example 1.2, one can naively hope that the second Taylor coefficient at 0
of the map r !  Vr 2  M.X / describes the scalar curvature of the space.

Definition 1.9. Let X; Vr be as in Definition 1.5. If the family Vr =r2; r  1, is uniformly
bounded then we say that X  has locally finite mm-curvature. If the measures Vr =r con-
verge to a measure , we call  the mm-curvature of X .

Clearly, local finiteness of mm-curvature as defined above implies that the mm-boundary
vanishes. Thus, the following result proves Theorem 1.8 in the 2-dimensional case.

Theorem 1.10. Let X  be a 2-dimensional Alexandrov space without boundary. Then X
has locally finite mm-curvature.

This finiteness result holds true in the much greater generality of surfaces with bounded
integral curvature in the sense of Alexandrov–Zalgaller–Reshetnyak [Res93], [AZ67] (see
Section 4).

Note, however, that the mm-curvature in Theorem 1.10 need not coincide with the
“curvature measure” as defined in [AZ67], even in the case of a cone: see Example 1.14. In
particular, this shows that the mm-curvatures in 2-dimensional Alexandrov spaces are not
stable under Gromov–Hausdorff convergence.
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Remark 1.11. Nina Lebedeva and the third named author [LP17] have found a “scalar
curvature measure” on all smoothable Alexandrov spaces. There is hope, supported by
our proof of Theorem 1.10, that a better understanding of this “stable curvature measure”
will lead to some control of the mm-boundary and mm-curvature discussed here.

1.5. Relation to the Lipschitz–Killing curvatures

Let M be a compact smooth submanifold in Rn . Given r >  0, consider the volume
w.r/ D  Hn .B .M ; r // of the distance tube B.M ; r / around M. The function r !  w.r/ is a
polynomial, at least for small positive r. The coefficients of w.r/, called the Lipschitz–
Killing curvatures of M, are given as integrals of some intrinsically defined curvature
terms. Moreover, these coefficients can be localized and considered as measures on M.
We refer to [Ale18] for a short account of the theory, connection to [LP17] and further
hypothetical relations to the theory of Alexandrov spaces.

To make the formal similarity to our approach to mm-boundary and mm-curvature
more transparent, we observe that (at least for a smooth n-dimensional manifold M) the
number M H

n .B.x ; r // d Hn .x / can be interpreted as the H2n-measure of the distance
tube B .1 ; r =  2/ around the diagonal 1  in the Cartesian product M  M.

1.6. Idea of the proof of Theorem 1.6

The interpretation of the tangent bundle of M as the normal bundle of the diagonal 1  in M
M gives a connection between the measure-theoretical properties of tubes around 1  and the
dynamical properties of the geodesic flow.

We clarify this abstract statement by explaining the main idea of our proof of Theo-
rem 1.6 in the case of a complete smooth Riemannian manifold X  D  M. In this case the
existence of geodesics is trivial. Thus, we just sketch a new proof of the classical fact that
the geodesic flow  preserves the Liouville measure M  on T M. This proof is sufficiently
stable to be transferred to the singular situation,

Denote by  V T M !  M the tangent bundle of M. Let t V T M !  T M be the
geodesic flow for time t . Define E V T M !  M  M by

E .v / D  ..v/; .1 .v///:

By construction, E .   .v// D  J .E .v //,  where J  is the involution of M  M which
switches the coordinates. Since J  preserves the measure H2n on M  M and v !   v
preserves the Liouville measure M  on T M, the statement that  is measure preserving
hinges upon the smallness of measure-distortion of E V .T M ; M/ !  .M  M; H2n/ close
to the 0-section.

In the present case of a Riemannian manifold, this property of 1 is expressed by the fact
that the differential of E  is the identity (after suitable identifications). Similarly, in the
general case of Alexandrov spaces, we observe that the “infinitesimal” deviation (via the
canonical map E )  of 1 being measure preserving (which is what we want to show) from
J  being measure preserving (which we know) is expressed as the triviality of the mm-
boundary.
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1.7. Stability and relation to quasi-geodesics

Many Alexandrov spaces, for instance all convex hypersurfaces, appear naturally as Gro-
mov–Hausdorff limits of smooth Riemannian manifolds. However, the properties of the
geodesic flow, mm-boundaries and mm-curvature are unstable under limit operations;
see also the discussion at the end of Subsection 1.4. Thus, there is no hope to deduce
Theorem 1.10, Theorem 1.8 or Theorem 1.1 by a direct limiting argument.

For instance, being a geodesic is a local notion, not preserved under limits. However,
any limit of geodesics in a non-collapsed limit of Alexandrov spaces is a curve sharing
many properties with geodesics. These properties are used to define the so called quasi-
geodesics; see [PP96], [Pet07] and the references therein. It has been shown that any
direction is the starting direction of an infinite quasi-geodesic. One motivation for the
present paper was an attempt to prove Liouville’s theorem for the “quasi-geodesic flow”
(see Subsection 3.6).

1.8. Examples

The estimates of the mm-boundary and mm-curvature are quite involved even in quite
simple situations. The following examples are not needed later and we omit the some-
what tedious computations. Examples 1.14–1.16 should be compared with [Ber03] and
[Ber02] revealing further natural connections to the theory of Lipschitz–Killing curvature
on singular subsets of the Euclidean space.

Example 1.12. Let X  be a Riemannian manifold with a Lipschitz continuous metric.
Then X  has vanishing mm-boundary.

Example 1.13. If X  is a manifold with two-sided bounded curvature in the sense of
Alexandrov then its mm-curvature is well-defined and absolutely continuous with respect
to the Hausdorff measure.

Example 1.14. Let X  be the Euclidean cone over the circle S of length . The curvature
measure and the mm-curvature are Dirac measures concentrated at the tip of the cone. The
mass of the curvature measure is  D  2   . From Example 1.2 one would expect the mass of
the mm-curvature to be m./ D  =12. However, a straightforward calculation shows that
m./ D  =12 C  f ./,  where f . /  D  O.2/ is a non-zero function.

Example 1.15. Let X  be a finite n-dimensional simplicial complex with an intrinsic met-ric
d. Assume that the restriction of d to each simplex is given by a smooth Riemannian
metric. Then X  has a finite mm-boundary  with support on the .n      1/-skeleton X n  1.

Example 1.16. Assume that X  as in the last example is a pseudo-manifold. Then X  has
finite mm-curvature. If all simplices are flat then the mm-curvature is concentrated on the
.n      2/-skeleton.
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1.9. Structure of the paper

After preliminaries collected in Section 2, we prove Theorem 1.6 in Section 3 along the
lines sketched above. In Sections 4, 5 and 7 we prove Theorems 1.10, 1.8 and 1.7
respectively. Their proofs all rely on a decomposition of the space into a regular and a
singular part, with a quantitative estimate of the size of the singular part. Finally, on the
regular part we estimate the mm-curvature and mm-boundary by comparing them to other
natural measures on these spaces.

In the case of surfaces, the comparison measure is the classical curvature measure;
in the case of convex hypersurfaces, it is the mean curvature. Finally, in the case of a
general Alexandrov space, the comparison is given by the derivative of the metric tensor
expressed in DC-coordinates [Per95].

The needed control of the ball growth in terms of these measures is given by a the-
orem of Mario Bonk and Urs Lang in the case of surfaces, and follows from classical
convex geometry in the case of hypersurfaces. The analytical comparison result needed
for Alexandrov spaces is established in Section 6.

In the final Section 8 we collect a number of comments and open questions which
naturally arose during the work on this paper.

2. Preliminaries

2.1. Metric spaces

We refer to [BBI01] for basics on metric spaces. The distance between points x; y in a
metric space X  will be denoted by d.x; y/. By B.x ; r / we will denote the open metric ball of
radius r around a point x. For A   X  we denote by B .A; r / the open r-neighborhood
B .A; r / D B.x; r /.

A  minimizing geodesic  in a metric space X  is a map  V I  !  X  defined on an
interval I  such that for some number   0 and all t ; s 2  I,

d ..t /; .s// D  jt      sj:

In particular, we allow  to have any constant velocity   0. A  geodesic is a curve  V I  !
X  whose restriction to a small neighborhood of any point in I  is a minimizing geodesic.
Note that a geodesic is a curve of constant velocity.

2.2. Metric measure spaces

We refer to [Fed69] and [EG15] for basics on measure theory.
Let X  be a locally compact separable metric space. A  Radon measure on X  is a

measure on X  for which all compact subsets are measurable and have finite measure.
Any Radon measure defines an element of M.X/, the dual space to the topological vec-tor
space Cc .X/ of compactly supported continuous functions on X .  All elements in M.X /
are called signed Radon measures. Any  2  M.X / can be uniquely written as
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C     , where  are Radon measures concentrated on disjoint subsets. The measure jj D  C
C    is called the total variation of .

A  family F  of signed Radon measures on X  is uniformly bounded if for any compact
subset K   X  there exists a constant C . K /  >  0 such that jj.K /  C . K /  for any  2  F .  Any
uniformly bounded sequence of signed measures i has a convergent subsequence.

The following lemma will be repeatedly used.

Lemma 2.1. Let X  be a metric space with two Radon measures  and . Let r >  0 be
arbitrary and let A   X  be a Borel subset. Then

Z Z
.B.x ; r // d .x/  A .B.x ; r // d .x/:

B .A ;r /

Proof. By Fubini’s theorem the left hand side is the volume of

S D  f.y ; x/ 2  X   X  I  x 2  A ;  d .y; x/ <  rg

with respect to the product measure
 . And the right hand side is the volume of the larger set

T D  f.y ; x/ 2  X   X  I  x 2  B .A; r /; d .y; x/ <  rg

with respect to the same measure. tu

2.3. Alexandrov spaces

We assume that the reader is familiar with the basic theory of Alexandrov spaces and
refer to [BGP92] for an introduction to the subject. In this paper, an Alexandrov space is a
complete, locally compact, geodesic metric space of finite Hausdorff dimension and of
curvature bounded from below by some  2  R.  For Alexandrov spaces, an upper index will
indicate the Hausdorff dimension; that is, X n  denotes an n-dimensional Alexandrov space,
equipped with the n-dimensional Hausdorff measure Hn .

The set of starting directions of geodesics starting at a given point x 2  X n  carries
a natural metric, whose completion is the tangent space Tx D  Tx X of X  at the point x.
It is an n-dimensional Alexandrov space of non-negative curvature. Moreover, it is the
Euclidean cone over the space 6 x  of unit directions. The Euclidean cone structure defines
multiplication by positive scalars   0 on Tx X. The origin of the cone Tx X is denoted by
0 D  0x. Elements of Tx X are called tangent vectors at x, despite the fact that Tx X is not
a vector space in general. For v 2  Tx X the norm jvj of v is the distance from v to the
origin 0x.

Geodesics in X  do not branch; moreover, any two geodesics with identical starting
vectors coincide. For x 2  X  the exponential map exp is defined as follows. Let Dx
denote the set of all vectors v 2  Tx X for which there exists an (always unique) minimizing
geodesic v V T0;1U !  X  with starting direction v. Then expx is defined on Dx  as

expx .v/ D  v .1/:
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For any r >  0, the map exp sends Dx  \  B.0x ; r /  Tx X surjectively onto B.x ; r /  X .
Moreover, for a constant C  D  C ./   0 and all r <  1=C the map exp V Dx  \ B .0x ; r / !
B.x ; r / is .1 C  C r /-Lipschitz continuous.

By the Bishop–Gromov theorem, the volume br .x/ D  Hn .B .x ; r // is bounded from
above by the corresponding volume in the space of constant curvature . In particular,
br .x/  !n r n C  C r nC2 for all r  1=C, where the constant C  can be chosen as before. Thus,
the deviation measures Vr from (1.2) satisfy

Vr   C r 2 Hn

for all sufficiently small r. Here and above we can set C  D  0 if   0.
Denote by Xreg the set of all points x 2  X  with Tx X isometric to the Euclidean space.

The set Xreg has full H  -measure in X .  Any inner point of any geodesic starting on Xreg is
contained in Xreg [Pet98].

The topological boundary @X of X  can be defined as the closure of the set of all
points x 2  X  with Tx X isometric to a Euclidean half-space. Up to a subset of Hausdorff
dimension n      2, @X is an .n      1/-dimensional Lipschitz manifold.

2.4. Volume and bi-Lipschitz maps

Let  D  H n  be a Radon measure on the metric space X .  Let U  X  and V  Rn  be open
and assume that there is a surjective .1 C  /-bi-Lipschitz map f  V U !  V , that is,

1 jf .x /      f .y /j
1 C                d .x; y/

for any distinct points x; y 2  U.
Let A   U satisfy B .A ; .1  C  /r/  U and B . f .A/ ; .1  C  /r/  V . Then, for all

x 2  A,

.1 C  / 2n  
br .x/ 

 .1 C  /2n: (2.1)
n

Therefore, if  is sufficiently small, then jVr j.A/  3nHn .A/:

3. Liouville measure and geodesics

3.1. Tangent bundle and Liouville measure

Let X  be an n-dimensional Alexandrov space. Denote by T X  the disjoint union of the
tangent spaces at all points,

T X  D Tx X:
x 2 X

Let  V T X  !  X  be the footpoint projection, so .T X /  D  fxg for any x 2  X .  For a subset
K   X  denote by T K  the inverse image  1 .K /  D T X .  Given r >  0,
denote by T r K  the set of all vectors in T K  of norm smaller than r.
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The Riemannian structure on the set of regular points discussed in [OS94] (see
also [KMS01], [Per95]) provides T Xreg with the structure of a Euclidean vector bundle
over Xreg . In this topology, for any sequence of geodesics i in Xreg converging to a
geodesic , the starting directions of i converge to the starting direction of .

On the Euclidean vector bundle T Xreg over Xreg we have a natural choice of measure,
which locally coincides with the product measure of H      and the Lebesgue measures on
the fibers. More precisely, it is the unique Borel measure M  on T Xreg such that for any
Borel set A   T Xreg,

Z
M . A /  D  H n . A  \  Tx X/ d Hn.x/:

X

We extend M  to a measure on T X  by setting M . T  X  n T Xreg/ to be 0.
By definition, a subset A   T X  is M-measurable if there exists a Borel subset

A0  A  \  T Xreg such that for Hn-almost all x 2  X  the intersection . A  n A0/ \  Tx X has H
-measure zero in Tx X.

For any  >  0, we have M . A /  D  n M . A /  for any measurable set A   T X .  The
involution I  V T Xreg !  T Xreg defined by I .v/ D   v preserves M  since it preserves the
Lebesgue measure in each tangent space.

3.2. Geodesic flow

Let us define the geodesic flow  on a maximal subset F  of T X   R.
For any v 2  Tx X we set 0.v/ D  v. If no geodesic starts in the direction of v, the value

t .v/ will not be defined for t D  0. If such a geodesic v exists, then v can be uniquely
extended to a maximal half-open interval v V T0; a/ !  X .  For t  a the value t .v/ will not
be defined. For 0 <  t <  a we set t .v/ to be  .t / 2  T .t / X, the starting direction of v V Tt; a/
!  X  at v .t /.

If the geodesic v V T0; a/ !  X  extends to an (again uniquely defined, maximal)
geodesic v V .b; a/ !  X  for some b <  0 then we define t .v/ for b <  t <  0 to be  .t / as
above.

We denote by F  the set of all pairs .v; t / 2  T X   R  for which t .v/ is defined. For
>  0, for t ; s 2  R  and v 2  Tx X we have

t .v/ D  t .v/     and     t Cs .v/ D  t .s .v//;

whenever the right hand sides are defined.
The partial flow  preserves the norm of tangent vectors. Since inner points of

geodesics starting in Xreg are contained in Xreg , the set T Xreg is invariant under the flow .
By construction, the domain of the definition of the geodesic flow almost includes the

domain of the definition of the exponential map. More precisely, consider the set

D  D  
[  

Dx   T X ;
x 2 X
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that is, the set of all vectors v 2  T X  for which exp .v/ is defined. Note that D   D  for
any 0    1. Moreover, for all v 2  D  and all 0   <  1 the geodesic flow 1.v/ is defined
(equivalently .v; 1/ 2  F )  and

.1.v// D  exp.v/.v/:

Thus, for M-almost all v 2  D  we have the following:

 v 2  T Xreg ;
 1.v/ 2  T Xreg is defined, hence .v; 1/ 2  F ;
w D   1.v/ 2  D  and

..w/; exp.w// D  .exp.v/; .v// 2  X   X : (3.1)

3.3. Measurability

In order to use measure-theoretic arguments we will need the following lemma (see also
Subsection 3.6).

Lemma 3.1. The set F   T X R  is measurable with respect to the product of the Liou-ville
measure M  on T X  and the Lebesgue measure on R. Moreover the map V F  !  T X  is
measurable.

Proof. Fix .v; / 2  F  and set .t / D  t .v/, t 2  T0;1U. Note that there exists some k >  0
such that the restriction of  to any subinterval of length 1=k is a (minimizing) geodesic.
We will call such a  a k-geodesic and write .v; / 2  Fk .

The limit of any converging sequence of k-geodesics is a k-geodesic. It follows that
F 0 D  F k  \  .T Xreg  R/ is a closed set in T Xreg  R.  Therefore, F  \  .T Xreg  R/ is a
countable union of closed subsets F  , hence is measurable. Moreover, the restriction V
F 0 !  T Xreg is continuous, and therefore V F  \  .T Xreg  R/ !  T Xreg is a Borel-
measurable map.

Since M.X nX r e g /  D  0, the statement follows. tu

3.4. Liouville property

Denote by G the set of all vectors v 2  T X  such that t .v/ is defined for all t 2  R.  Note that
G contains the 0-section; it is invariant under multiplication by any  >  0 and under the
geodesic flow . Moreover, G \  T Xreg is invariant under the involution I .v/ D   v.

Definition 3.2. We say that an Alexandrov space X  has the Liouville property if
M . T  X  n G/ D  0 and for any t 2  R  the geodesic flow t V G !  G preserves the Liouville
measure.

The Liouville property can be checked infinitesimally using the following lemma.
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Lemma 3.3. An Alexandrov space X  does not have the Liouville property if and only if
there is a compact subset K   X ,  a positive number " and a sequence of positive numbers rm

!  0 with the following property. For every m, there exists a Borel subset Am  T r m K such
that

"r nC1  M . A m /       M.1 .Am //: (3.2)

Here 1 .Am / is the set of all 1.v/; v 2  Am , for which 1.v/ is defined.

Proof. If at least one rm with the above property exists, then X  does not have the Liouville
property by definition.

Assume that X  does not have the Liouville property. Then, by homogeneity of the
geodesic flow, either 1 is undefined on a subset of T X  with positive measure, or 1 does not
preserve the measure M .  In both cases we can find a compact subset K 1   Xreg , a Borel
subset A   T K 1  and " >  0 such that

" <  M . A /       M.1 .A//:

Since
1 .A/ D  22

 
2 A

 
D  21  1

 
2 A;

we deduce
" 

 M
 1 A

 
     M

 
1
 1 A

C  M
 

1
 

2 A
 
     M

 
1
 

1
 

2 A:

Thus, taking either A1=2 VD 2 A or A1=2 VD 1 . 2 A/ we infer

2nC1 <  M.A1 = 2 /      M.1 .A1=2 //:

The set A1=2 constructed above is contained in T 1=2K1=2, where K1=2 D  B.K1 ; 1=2/.
Iterating the above procedure we obtain, for rm D  1=2 , a subset Ar      T m Km  with

K m  D  B . K m  1; rm/ such that (3.2) holds true.
The claim follows since all K m  are contained in the set B .K1 ; 1/, whose closure is

compact, by completeness of X .                                                                                                  ut

Remark 3.4. The completeness of the space X  is used in the proof of Theorem 1.6 only
once, namely in the last line of the above proof.

3.5. Relation to the mm-boundary

Let us interpret the deviation measures V from (1.2) in suitable geometric terms.
Let K   X  be measurable and let r >  0 be arbitrary. Since H n . X  n Xreg / D  0, we

have
M . T  r K / D  !n r n H n .K /:
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Denote now by U r .K / the set of all pairs .x; y/ 2  X   X  with x 2  K  and d .x; y/ <  r.
By Fubini’s theorem the set U r .K / is H n

 H n  D  H2n measurable and we have
Z

H2n .U r .K // D  br .x/ d Hn.x/:
K

Taking both equations together, we see that the signed measure V expresses the differ-
ence between H2n and M .  More precisely,

Vr .K / D  
!n r n 

 
M . T  r K /      H2n .U r .K //: (3.3)

The following statement is a reformulation of Theorem 1.6.

Theorem 3.5. If an Alexandrov space X  has vanishing mm-boundary then it has the
Liouville property.

Proof. Assume that X  does not have the Liouville property. Consider the compact subset K
X ,  the positive numbers "; rm and the Borel subsets Am  T r m K provided by Lemma 3.3.

Let Y be the closure of B .K ; 1/.  Recall that D   T X  is the set of all vectors at which the
exponential map is defined. For r >  0, denote by D r  the intersection of D  with T rY and
consider the “total exponential map” E V D r  !  X   X  given by

E .v / D  ..v/; .exp.v///:

As above, let U r D  U r .Y / be the set of all pairs .y; x/ 2  X   X  with y 2  Y and
d.x; y/ <  r. Note that

E .D r /  D  Ur : (3.4)

Moreover, for any fixed x 2  Y , the restriction of E  to D  \  D r  is a .1 C  Cr 2/-Lipschitz
continuous map from Dx   Tx X onto the set U r \ .fx g X / (see Subsection 2.3). Thus, for all
sufficiently small r, and any Borel subset S  Dx  \  D  , we have

Hn .E .S //  .1 C  4nCr 2/Hn.S/:

Using the definition of the Liouville measure M  and Fubini’s formula for the product
measure H2n D  H n

 H n  on X   X  we obtain, for any M-measurable subset S of Dr ,

H2n .E .S //  .1 C  4nCr 2 /M.S/: (3.5)

Due to (3.3), the vanishing of the mm-boundary of X  implies

r ! 0  r nC1 jM .T  rY /      H2n.U r /j D  0: (3.6)

Thus, up to terms of order higher than r nC1, the map E  does not increase the measure of
subsets, but the total mass of the image coincides with the total mass of the target.
Therefore, E  is measure preserving up to terms of order higher than r nC1 on all subsets
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of T rY . More precisely, for every  >  0, there is s >  0 with the following property. For
all 0 <  r <  s and all measurable subsets S  D r  we have

0  M . T  rY /      M . D r /  <  r nC1 ; jH2n .E .S //      M.S /j  <  r nC1: (3.7)

Indeed, violation of the first inequality would imply by (3.5) an upper bound on H2n.U r / D
H2n .E .D r //, which would contradict (3.6). Similarly, (3.5) provides the right upper
bound for M .S /  in the second inequality. On the other hand, (3.5) applied to T rY n S
together with (3.6) imply the right lower bound for M.S /.

For any measurable subset S  D r  \  T K  we now claim that

jH2n .E .S //      M.1 .S //j <  2r nC1: (3.8)

In order to prove (3.8), let S C  be the subset of all vectors v 2  S for which  .v/ exists
and is contained in T Xreg . For all v 2  S C , we have  1.v/ 2  D r  and, due to (3.1),

E .  1.v// D  J .E .v //:

The involution I .v/ D   v is M-preserving on T Xreg . And the involution J  V X   X  !  X
X  given by J .x ; y / D  .y; x/ preserves H  . Therefore, from (3.7) we deduce

jH2n .E .S C //      M.1 .S C //j  <  r nC1: (3.9)

On the other hand, by construction,

M . S  n S C / D  0     and     1 .S n S C / \  T Xreg D  ; :

Hence, applying (3.7), we see that

jH2n .E .S //      H2n .E .S C //j <  r nC1 and     M . 1 .S  n SC // D  0:
Together with (3.9) this finishes the proof of (3.8).

Coming back to our subsets Am  T rm K , we have

"r nC1  M . A m /       M.1 .Am //  M . A m /       M . 1 . A m  \  Drm //:

Setting Sm D  Am \ D r m  we estimate the right hand side as the sum of the following three
terms:

jM.A m /       M.Sm /j;

jM.Sm /      H2n .E .Sm //j;

jH2n .E .Sm //      M.1 .Sm /j:

In view of (3.7) and (3.8) this sum is bounded above by 4r nC1 for all large m.
Therefore

"r nC1 <  4r nC1

for all large m. Since  is an arbitrary positive number, this is a contradiction. ut

3.6. Quasi-geodesic flow

Finally, we discuss some relations to quasi-geodesics, referring the reader to [Pet07]
for the basic properties of such curves. Recall that whenever a unit speed minimizing
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geodesic v V T0;aU !  X  start at a point x in the direction v then this is the unique quasi-
geodesic defined on the interval T0;aU [PP96, p. 8], thus the same statement is also true for
(local) geodesics v.

Using this and the fact that a limit of quasi-geodesics is a quasi-geodesic, it is not
difficult to conclude that the partial geodesic flow V F  \ T  Xreg !  T Xreg defined above is
continuous. The latter statement slightly strengthens Lemma 3.1.

As in Subsection 3.1, we have a canonical measure M 1  on the unit tangent bundle
6 X   T X  of X ,  which we also call the Liouville measure. Whenever X  has the Liouville
property, the geodesic flow is defined M 1

 H1-almost everywhere on 6 X   R  and preserves M 1 .  In this case for M1-almost each
unit direction there exists exactly one quasi-geodesic starting in this direction.

Let now X  be an Alexandrov space with topological boundary @X and let Z  be the
doubling X  t@ X X ,  which is an Alexandrov space without boundary [Per91]. Quasi-
geodesics in X  are exactly the projections of the quasi-geodesics in Z  under the folding f  V
Z  !  X .  From this we deduce that if Z  has the Liouville property, then M1-almost each
direction v 2  6 X  is the starting direction of a unique infinite quasi-geodesic in X .
Moreover, in this case, the corresponding quasi-geodesic flow preserves M 1 .

Finally, as an application of Theorems 1.6 and 1.7 we see that the above assumptions
are fulfilled whenever the complement X  n @X has vanishing mm-boundary. Indeed, in
this case the mm-boundary of Z  must be concentrated on @X  Z ,  hence it must be trivial
by Theorem 1.7(3).

4. Surfaces with bounded integral curvature in the sense of Alexandrov

4.1. Preparations

We assume that the reader is familiar with the theory of surfaces with bounded integral
curvature (see [AZ67] and [Res93]).

Let X  be a surface with bounded integral curvature; it is a locally geodesic metric
space, homeomorphic to a two-dimensional surface. It has Hausdorff dimension 2 and the
Hausdorff measure H 2  is a Radon measure on X .  There is another signed Radon measure
on X ,  called the curvature measure, which will be denoted • [Res93, Section 8]. We will
not assume that X  is complete.

We will derive Theorem 1.10 as a consequence of the following weak local version of
a theorem of Mario Bonk and Urs Lang [BL03], which relates the curvature measure to
the volume of balls.

Lemma 4.1. There exists some 0 >  0 with the following property. Let X  be a surface with
bounded integral curvature and let • 2  M.X / be its curvature measure. Assume X  is
homeomorphic to a plane and j•j.X/ <  0. Then for any point x 2  X  and r >  0 such that
B .x ; r / is compact we have

1   
br .x/  

 3j•j.B.x; r //:
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Proof. Set  D  j•j.B.x; r //. By continuity, it is sufficient to prove that 1   bs .x/   3 for any s
<  r. Using approximations of the metric on X  by polyhedral metrics [Res93, Theorems
8.4.3, 8.1.9], we assume from now on that X  is polyhedral and homeomorphic to R2 .

Claim. There exists a complete polyhedral surface X  homeomorphic to a plane such that
X  contains a copy of B.x ; s / and the curvature measure • of X  satisfies j•j.X/ <  3.

Once the claim is proven, [BL03] provides a bi-Lipschitz map f  V X  !  R2  with constant
L   1 C       3      . Since  is small, an application of (2.1) finishes the proof of the lemma. It

remains to prove the Claim, certainly well-known to experts. Take some r >  t >  s
and consider the compact metric ball B .x ; t /  B.x ; r /. We may assume that the bound-ary
St of B .x ; t / does not contain singular points of X .  By [Res93, Theorems 9.1, 9.3], the
boundary St is a (piecewise smooth) Jordan curve once 0 <  2, moreover, the negative part
of the geodesic curvature  of S satisfies j j.S /  . Since X  is homeomorphic to a plane, this
implies that B .x ; t / is homeomorphic to a closed disk D 2  in R2 .

We find a polygonal Jordan curve 0  in B.x ; t / approximating St such that the negative
part of the geodesic curvature of 0  is smaller than 2. Consider the closed Jordan domain Y
bounded by 0 , which can be assumed to contain B.x ; s/. Now we glue to Y , along any
edge of 0 , a flat half-strip. The boundary of the arising polyhedral surface consists of pairs
of rays  emanating from the vertices V1; : : : ; Vk of 0 . The rays  enclose an angle equal
to 2  i , where   i  is the angle of 0  at Vi measured in Y . In order to finish the
construction of X  we glue a flat sector of angle i between i     if i  >  0, and we glue i
together if i   0. Since Y was a polyhedral disk, the arising space X  is a complete
polyhedral plane. All of the singularities of X  are contained in B.x ; s/ [  fV1; : : : ; Vkg.
Moreover, by construction, the curvature measure • of X  satisfies

•.Vi / D  minf0; i g:

We deduce
j•j.X/ D  j• .B.x; s//j C  j•j.0/   C  j j.0/ <  3:

This finishes the proof of the Claim and of Lemma 4.1. tu

4.2. Local finiteness of mm-curvature

Now we are ready to prove the following generalization of Theorem 1.10.

Theorem 4.2. Let X  be an Alexandrov surface with integral curvature bounds. Then,
equipped with the Hausdorff measure H2 , the space X  has locally finite mm-curvature.

Proof. Let again • denote the curvature measure of X .  Let 0 >  0 be sufficiently small and
satisfy the conclusion of Lemma 4.1. The statement of Theorem 4.2 is local, so we need to
prove it only in a small neighbourhood of any point. Thus we may (and will) as-sume that
there is a point x0 2  X  such that j•j.Xnfx0g/ <  0 and that X  is homeomorphic to a plane.
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Let A   X  be compact. Choose some " >  0 such that the closure of B .A; 2"/ in X  is
compact and H2 .B.x0 ; 3r // <  1 r2 for any 0 <  2r <  " [Res93, Lemma 8.1.1].

Let r <  " be arbitrary. For any x 2  B.x0; 2r / we have

br .x/ D  H2 .B .x ; r //  H2 .B.x0 ; 3r //  " r
2:

For any x 2= B.x0; r / we have j•j.B.x; r // <  0. Thus, by Lemma 4.1,

1   
br .x/

  3j•j.B.x; r //:

For the deviation measures Vr from (1.2) we estimate

jVr j.A \  B.x0; 2r//  jVr j.B.x0; 2r//  
 
1 C  " H

2 .B.x0 ; 2r //  
 
1 C  " " r

2:

On the other hand,
Z

jVr j.A n B.x0; 2r// 3j•j.B.x ; r // d H2.x/
AnB.x0 ;2r /

 3 H2.B.x ; r // d j•j.x/;
B.A;r /nB.x0 ;2r /

where we have used Lemma 2.1 in the last step. For any x in the domain of integration of
the last integral, we have H2 .B.x ; r // D  b .x/  2r2, by Lemma 4.1, once  has been chosen
to be sufficiently small. We deduce jVr j.A n B.x0; 2r//  60r2.

Thus, for some constant C  D  C ."/ and all r <  ", we obtain

jVr j.A/ D  jVr j.A n B.x0; 2r// C  jVr j.A \  B.x0; 2r//  Cr 2:

This finishes the proof of the theorem. ut

5. Convex hypersurfaces

In this section we are going to prove Theorem 1.1.
The proof will follow from Theorem 1.6 by comparing the mm-boundary with the

mean curvature measure on convex hypersurfaces.
It is possible to deduce the theorem without a reference to Theorem 1.7, from

Lemma 5.2 alone, but the use of Theorem 1.7 shortens the proof.
All results in this section are local, but for simplicity we consider only closed con-

vex hypersurfaces. The hypersurfaces will always be equipped with the induced intrinsic
metric.

We assume that the reader is familiar with the basics of the theory of convex functions
and convex geometry.
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5.1. Mean curvature

Let X  be a convex hypersurface in RnC1 . Recall that there exists a Radon measure K
on X ,  called the mean curvature measure (see [Sch93], [Fed59]).

The measure K  has the following properties. For smooth hypersurfaces X ,  we have
K  D  Hn , where  is the usual mean curvature function of X .  The mean curvature
measure is stable under Hausdorff convergence of convex hypersurfaces in RnC1 . If the
hypersurface is rescaled by , the mean curvature K  is rescaled by n 1.

A  point x in the convex hypersurface X  is called smooth if there is a unique support-
ing hyperplane of X  at this point. For any smooth point x 2  X ,  any sequence x 2  X
converging to x and any sequence of positive numbers t converging to 0, the sequence of
convex hypersurfaces X  obtained from X  by the dilatation by the factor 1=t centered at
the point x converges to the tangent hyperplane of X  at x.

The stability of the mean curvature measure K ,  vanishing of K  on flat hyperplanes
and the behavior of K  under rescalings give

Lemma 5.1. Let X  be a convex hypersurface in RnC1 . Let A  be a compact set of smooth
points in X  and  >  0. Then there exists some t >  0 such that

K.B .y ; r //  rn 1

for any y 2  B .A; t / and any 0 <  r <  t .

Thus, the following lemma applies to all small balls in a neighborhood of any smooth
point.

Lemma 5.2. There exist numbers  ; C  >  0 depending only on n with the following
property. Let X  be a convex hypersurface in RnC1 . Let x 2  X  be a point and r >  0 be
such that the mean curvature K  satisfies K.B .x ; 6r // <  rn 1 with  <  0. Then

1   br .x/  < C K.B.x ; 6r / / r 1 n: (5.1)
n

Proof. By rescaling, it suffices to prove the existence of 0 ; C >  0 such that the lemma
holds for r D  1. By approximation, it is sufficient to prove the result for smooth convex
hypersurfaces.

Fix a sufficiently small "0 >  0. The mean curvature vanishes on B.x ; 6/ if and only
if B.x ; 6/ is contained in a flat hyperplane. Due to the stability of K  under convergence,
if 0 is small, then the ball U D  B.x ; 5/  X  is close to a flat hyperplane in RnC1 . Thus, we
may assume that the tangent hyperplanes to points in U are " -close to the tangent
space W D  Tx X  RnC1 . Therefore, U is the graph f.x ; f .x//g of a convex function f
V V !  R  defined on an open subset V  W . Moreover, V contains the ball of radius 4 in
W around x. Denote by B.x; 2/W the ball of radius 2 in W around x. Set

a VD sup fjr f .y /j I y 2  B.x ; 2/W g:
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If 0 is small, then a <  "0. The orthogonal projection P  V U !  V is 1-Lipschitz and the
restriction of the inverse P to B.x ; 2/W has Lipschitz constant

p
1  C  a2  1 C  a2  1 C  "2:

Applying (2.1) we only need to prove that a <  C  for a constant C .
Denote by jD 2 f j the largest eigenvalue of the Hessian D 2 f .  Since f  is convex and

" is small, the mean curvature .x/ at the point .x ; f .x // of the graph U of f  satisfies
.x/  2 jD

2 f j. Hence, the conclusion follows from the following statement.

Claim. Let f  V B  !  R  be a smooth convex function on the open ball B  D  B.0; 4/  Rn . If
f .0/ D  j r f .0/ j  D  0 then, for some C  D  C .n/ >  0,

Z
sup     j r f .y / j   C jD 2 f j:

y2B.0;2/                                     B

By convexity, it is sufficient to find some C  D  C .n/ >  0 with
Z

sup     jf .y /j  C jD 2 f j (5.2)
y2B.0;3/                                 B

(see also [EG15, Theorem 6.7]).
First note that f .z/   0 for all z since f .0/ D  j r f .0/ j  D  0 and f  is convex.
In order to verify (5.2), we can multiply f  by a constant and assume that f  takes

its maximum on the closed ball B .0; 3/ at the point y0 and f .y0 / D  1. Convexity of f
implies that jy0j D  3. Since f .0/ D  0 and f  is convex, we must have f .y /  1=3 for all y
2  B.0; 1/.

By convexity and the choice of y0, the restriction of f  to the supporting hyperplane
H  of B .0; 3/ at y0 is bounded from below by 1. Consider the ball S of radius 1=2 in H
around y0. For any point z 2  S consider the restriction

fz .t / D  f
 
z   3 y0; t 2  T0;6U;

to the segment of length 6 starting at z orthogonal to H . Then

fz .0/  1; fz .3/  1=3; fz .6/  0:

Thus for some t 2  .0; 3/ we have f 0.t /   2=9 and for some t 2  .3; 6/ we have
f 0.t /   1=9. Therefore

Z
f 00.t/ dt :

0

Integrating over S we obtain by Fubini’s theorem a uniform positive lower bound on
B  jD

2 f j. This finishes the proof of (5.2). Hence the Claim and the lemma follow.         tu
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5.2. The proof

The next theorem is the first part of Theorem 1.8; the second part follows from Theo-
rem 4.2. In combination with Theorem 1.6, it also finishes the proof of Theorem 1.1.

Theorem 5.3. Let X  be a convex hypersurface in RnC1 . Then it has vanishing mm-
boundary.

Proof. Since X  has locally finite mm-boundary by Theorem 1.7, it suffices to prove that
any partial limit measure  of a sequence 1 V j  for r !  0 must be the zero measure. Fix

a partial limit measure . By Theorem 1.7, .A/ D  0 for any Borel subset A   X
with H n  1 .A/ <  1 .  Let Y  X  be the set of smooth points of X .  The complement X n Y is
a countable union of subsets with finite .n   1/-dimensional Hausdorff measure (see
[Zaj79] and [Sch93, Theorem 1.4]), so . X  n Y / D  0. Therefore, it is sufficient to prove .A/
D  0 for any compact subset A   Y .

Fix a compact subset A   Y and let  >  0 be an arbitrary sufficiently small number.
Consider 1 >  t >  0 provided by Lemma 5.1. Let U be the open set B .A; t /.

Assume 0 <  r <  t . Applying Lemma 5.2, for x 2  U we get
Z

jVr j.U /  Cr 1 n K.B.y ; 6r // d Hn .y /
U Z

 Cr 1 n Hn .B.y ; 6r // d K.y /
B.A;7t /

 Cr 1 n .6r /n K.B.A; 7t //I

we have used Lemma 2.1 in the second inequality and the Bishop–Gromov inequality in
the last inequality. Hence

jj.A/  jj.U /  C 6n K.B .A; 7//:

Since  can be chosen arbitrarily small, we obtain jj.A/ D  0.
This finishes the proof of the claim, and therefore of Theorem 5.3. tu

6. An integral inequality for Riemannian metrics

6.1. The smooth case

We start by estimating from above the deviation measure Vr on a smooth Riemannian
manifold in terms of the first derivatives of the metric. We do not know how to prove a
similar estimate from below (see Problem 8.3). However, for the applications to Alexan-
drov spaces discussed in the next section, the estimate from below is a consequence of
the theorem of Bishop–Gromov.

For a smooth Riemannian metric g defined on an open subset U  Rn  we denote by
jg0jV U !  T0; 1/ the sum i;j ;k @
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Proposition 6.1. There exists a constant C  D  C .n/ >  1 with the following property. Let U
Rn  be an open subset with a smooth Riemannian metric g which is .1 C  1=C/-bi-Lipschitz
to the background Euclidean metric. Let A   U be a Borel subset. Let r >  0 be such that
B .A; 2r / is relatively compact in U. Then

Z
Vr .A/  C r jg0j:

B.A;2r /

Proof. We will denote by C  various (explicit) constants which depend only on n.
We will use the following notations. We denote by j  j and L n  respectively the norm and

the Lebesgue measure on Rn . For x 2  U we denote by gx the Riemannian tensor at x and by
j  jx the corresponding norm. The Hausdorff measure of the Riemannian metric g has the
form u L  with u D det.gij /.

For x 2  R  , we consider the function K  V U !  T0; 1/ given by

K .x /  D  sup jvjxCt v :
jvjx D1          t D0

By smoothness of the determinant and the square root, we find a constant C1 such that for
all x 2  U we have

ju0.x/j  C1jg0.x/j     and     K .x /   C1jg0.x/j: (6.1)

We fix A   X  and r >  0 as in the formulation of the proposition. For x 2  U denote by B
the metric ball B.x ; r / in U, and B x the metric ball of radius r in the Euclidean norm j
jx . In this Euclidean metric the ball B x has measure

Z
!  rn D  u.x/ d Ln :

B x

Thus, in order to estimate the deviation measure Vr , we only need to control the sum-
mands on the right of the following inequality:

Z
!n r n      br .x/  u.x /Ln .B x n Bx / C ju.x/      u.y/j d Ln.y/: (6.2)

Bx

We may assume that the bi-Lipschitz constant 1 C  1=C is close to 1, so that 1=2 <
u <  2. Moreover, we may assume Bx and B x are contained in the ball of radius 4 r
around x with respect to the Euclidean metric.

In order to bound the first summand, for x 2  A  and jvjx D  1, we set lx to be the
length of the segment Tx; x C  vU in the Riemannian metric g. Then we compute

Z r Z r Z rZ t
l      r D jvjxCt v dt  jvjx dt K . x  C  sv/ ds dt

0                                      0                               0          0
r r r

K . x  C  sv/ ds dt D  r K . x  C  sv/ ds:
0          0                                                              0
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Observe now that the intersection of B x n B  with the ray starting at x in the direction of v
has H1-measure (with respect to the norm j  jx) at most 2.lx   r/, once the bi-Lipschitz
constant 1 C  1=C is close to 1. Integrating in polar coordinates over the ball B x  .Rn ; j
jx/ we infer that

Z Z  u.x /Ln .B x

n Bx /  rn 1                        2r        K . x  C  sv/ ds d Hn 1.v/
Z v2Sx 0

D  2rn K .y /jy      xjn 1u.x/ d Ln.y/;
B x

where Sn 1 is the unit sphere in .Rn ; j  jx/.
To get a similar estimate of the other summand in (6.2), we only need to recall the

following inequality from [EG15, Lemma 4.1], valid for any C1 function u on a Euclidean
ball: 

Z Z
ju.y/      u.x/j d Ln.y/  C2r n ju0.y/j  jy      xj1 n d Ln .y/:

jx y j<r                                                                             jx y j<r

Taking both estimates together with (6.1), embedding Bx and B x in slightly larger Eu-
clidean balls and using 1=2 <  u <  2, we conclude that

Z
!n r n      br .x/  C3r n jg0.y/j  jy      xj1 n d Ln .y/:

jx y j< 3 r

We divide both sides by !n r n and integrate over A. Since the bi-Lipschitz constant is
close to 1, we see that

Z Z
V .A/  C jg0.y/j  jy      xj1 n d Ln .y / d Ln .x /

Z
A jx y j< 4 r

 C4 jg0.y/j  jy      xj1 n d Ln .x / d Ln .y / B.A;2r /        jx y j< 3 r

D  
4

C4 jg0.y/jr d Ln .y /;
B.A;2r /

where we have used Lemma 2.1 in the second inequality. This finishes the proof of Propo-
sition 6.1.                                                                                                                                         tu

6.2. Functions of bounded variation

Let U be an open subset of Rn . A  function f  2  L1 .U / is of class B V  (bounded variation)
if its first partial derivatives, @f

i     (here and below always in the sense of distributions) are
signed Radon measures with finite mass  @f

i .U /. We denote by TDf U the Radon measure

i  
@f

i 
 on U. If f  V U !  R  is a B V  function which is continuous on a subset R

U with H n  1 .U n R / D  0 then the Radon measure TDf U vanishes on all Borel subsets A
U with H n  1 .A/ <  1  [GL80].
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Let f  V U !  R  be of class BV.  Then for Hn-almost every point x 2  U there exists an
affine function f x  V Rn  !  R  such that for the B V  function hx D  f       f x  we have

lim
1     

Z
jhxj D  0     and

B.x ;r / r ! 0  rn TDhxU.B.x; r// D  0I (6.3)

see [EG15, Theorem 6.1(2), (3)] for the second equality, and use the Holder inequality
and [EG15, Theorem 6.1(1)] for the first equality.

6.3. Almost Riemannian metric spaces

The following definition provides a suitable description of a large part of any Alexandrov
space (see Section 7).

Let C  D  C .n/ be the constant determined in Proposition 6.1. We will call a locally
geodesic metric space X  an almost Riemannian metric space if it has the following prop-
erties (see [AB15] for a careful discussion of such DC0-Riemannian manifolds in the
language of [AB15] and [Per95]):

(1) There is a Borel subset R   X ,  called the subset of regular points, satisfying
H n  1 . X  n R/ D  0 and with the following properties.

(2) Any minimizing geodesic  in X  can be approximated by curves i in R  such that
the lengths of i converge to the length of .

(3) For any x 2  X ,  there is a neighborhood U of x, called a regular chart, and a bi-
Lipschitz map V U !  O onto an open subset O  Rn , with bi-Lipschitz constant less
than 1 C  1=C and with the following properties.

(4) There is a continuous Riemannian tensor gij  on .U \  R / such that gij  is a function of
bounded variation on O for each 1  i ; j   n.

(5) The length of any curve   R  can be computed as the length of ./ via this
Riemannian tensor g.

For any regular chart U as above, we set N0 .U / to be the Radon measure Tg0U on U
given as the sum of the Radon measures TDgij U over the coordinates gij  of the metric
tensor g. For an almost Riemannian metric space X ,  we define an outer measure N  on X  in
the following way. For a subset A   X ,  we consider all coverings A  Ui by
countably many regular charts Ui and let N .A /  be the infimum of the sums         N0 .Ui /
over all such coverings. This is indeed an outer measure, which takes finite values on
compact subsets. Since N  satisfies the Caratheodory criterion [EG15, Theorem 1.9], it is
indeed a Radon measure. We will call N  the minimal metric derivative measure on the
almost Riemannian metric space X .

Lemma 6.2. Let X n  be an almost Riemannian metric space and let N  be its minimal met-ric
derivative measure. Then N .A/  D  0 for any Borel subset A   X  with H n  1 .A/ <  1 .  There
exists a Borel subset C   X  of full Hn-measure in X  with N . C /  D  0, thus N  is absolutely
singular with respect to Hn .
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Proof. Clearly, both claims are local. Hence we need to verify them only in a regular
chart U, which we identify with its image .U /  Rn . The first statement follows directly

from the continuity of the metric tensor g on U \  R  and the result of [GL80] cited above.
In order to verify the second claim we only need to show the following statement (see

also [EG15, Section 1.6]). For almost all x 2  U there is another regular chart V 3  x
such that the derivative measure Th0U of the Riemannian tensor h in the chart V has n-
dimensional density 0 at x, thus

r ! 0  rn Th0U.B.x; r// D  0: (6.4)

Here and below, the ball B.x ; r / over which we integrate can be equally considered with
respect to the Euclidean metric or to the original metric on U, since they are bi-Lipschitz
equivalent. In order to prove (6.4), we follow [Per95, Section 4.2] and consider the Rie-
mannian tensor g of the original chart U. Applying (6.3) to the coordinates of g, we
find for Hn-almost all x 2  U a smooth symmetric 2-tensor gO D  gOx on U such that for u D
g      gO we have

lim
1     

Z
kuk D  0     and

B.x ;r /
lim 

rn TDuU.B.x; r// D  0: (6.5)

The first statement implies that gO is indeed a Riemannian metric in a neighborhood U0
of x.

Fix such a point x, a neighborhood U and gO. Consider a small neighborhood W
of 0 in Rn  and let  V W !  U be the exponential map with respect to the metric gO.
Then .0/ D  x, D .0/ D  Id and the pull-back Riemannian metric h D  .gO/ has zero
derivative at 0. Since D  is the identity, the bi-Lipschitz constant of the restriction F  D
1   to a sufficiently small neighborhood V of x is still less than 1 C  1=C. Hence, F  V V
!  Rn  is a regular chart.

The Riemannian tensor h in this chart equals h C  .g   gO/. Now, Dh.0/ D  0, thus (6.4)
holds for h instead of h. For the other summand .u/, the density estimate (6.4) follows
from (6.5) and the fact that  is a C2-diffeomorphism if W is sufficiently small. This
finishes the proof of Lemma 6.2. ut

6.4. The upper bound on the deviation measures

Continuing to denote by C  D  C .n/ the constant from Proposition 6.1 we show

Corollary 6.3. Let U be a regular chart of an almost Riemannian metric space X .  Iden-
tifying U with its image O D  .U /, let g be the metric tensor and let N0  D  TDgU be the
derivative of the metric tensor. For any Borel subset A   U and any r such that B.A; 3r / is
relatively compact in U we have

Vr .A/  2C  N0 .B.A; 3r //:
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Proof. Consider a relatively compact open subset V  U which contains B.A; 2r /. Ap-ply
(coordinatewise) the standard mollifying construction to the Riemannian tensor g. For all
small positive ", we thus obtain smooth metrics g on V with the following properties. The
total derivatives jg0 j, considered as measures, satisfy jg0 j  N0  on V [Zie89, The-orem
5.3.1]. Since g is pointwise 1=C-close to the Euclidean inner product, the same is true for
g". For all sufficiently small " the 2r-tubular neighborhood of A  with respect to g" is
contained in the 3r-tubular neighborhood around A  with respect to the original distance in
X .  Moreover, g" converges to g pointwise at all points of R  [Zie89, Theorem 1.6.1].

Denote by d" the distance function induced by g". From the last statement and the
properties (2), (5) in the definition of an almost Riemannian metric space we deduce that

lim sup fjd" .x; y/      d .x; y/j I x; y 2  V ; d .x; y/ <  rg D  0:

Finally, the Hausdorff measures of the Riemannian metrics g" converge on V to the Haus-
dorff measure of V with respect to the original metric.

Now the result follows directly from Proposition 6.1 applied to the metrics g", by
letting " go to 0.                                                                                                                             tu

As a consequence of Corollary 6.3, the minimal metric derivative measure bounds from
above the deviation measure Vr on any almost Riemannian metric space:

Lemma 6.4. Let X  be an almost Riemannian metric space with metric derivative mea-
sure N . Then for any compact subset A   X ,  there exists some r0 >  0 such that for all r <
r0 we have

Vr .A/  2r .n C  2/C N .A/:
Proof. Cover A  by finitely many regular charts Ui such that N0 .Ui / is sufficiently
close to N .A/.  Since the covering dimension of X  is n, we find a finite covering V
of A  which refines the first covering but has intersection multiplicity less than n C  2.
Considering each V as a subchart of the corresponding chart Ui we see that

X
N 0 . V  /  .n C  2 /

X
N . A / :

Consider r0 >  0 such that for any x 2  A  the ball B.x ; 4r0/ is contained in one of
the sets V . Denote by A  the set of all such x. Then Vr .A/         Vr .A / and, due to

Corollary 6.3, Vr .A /  2C  r  N0.V /. Combining these inequalities finishes the proof. tu

7. Alexandrov spaces

7.1. Strained points

Strainers and strainer maps are basic tools for Alexandrov spaces (see [BGP92], [OS94],
[KMS01]) and will play an important role in the proof of Theorem 1.7.

Let us list the main properties of the subsets of strained points. We fix a natural num-
ber n. Then for all sufficiently large A  and any 0 <  r;   1=A2 the following properties
hold true for all n-dimensional Alexandrov spaces X  of curvature   1:
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(1) The set Xr;  of points in X  which have an Ar-long .n; /-strainer is open in X .  For s
<  r, we have Xr;   Xs ;  [BGP92, 9.7].

(2) Assume a sequence . X  ; xi / of Alexandrov spaces of curvature   1 converges to an n-
dimensional Alexandrov space .X; x / in the pointed Gromov–Hausdorff topology. If x
2  Xr;  then, for all large i , the point xi has an Ar-long .n; /-strainer in X i .

(3) Rescaling X  with a constant   1 sends the subset Xr;  to a subset .X/r;  of the
rescaled Alexandrov space X .

(4) The union X  VD Xr;  contains the set Xreg of all regular points of X .  The
Hausdorff dimension of the set X  n . X  [ @ X/ is at most n      2 [BGP92, 10.6, 10.6.1,
12.8].

(5) For any point x 2  Xr;  there are natural distance coordinates V B.x ; 3r / !  Rn  which
are .1 C "/-bi-Lipschitz onto an open subset O  R  . Here, " !  0 as A  !  1  [BGP92,
9.4].

(6) The chart  can be smoothed to satisfy the following property [OS94, Theorem B].
There exists a continuous Riemannian metric g on .Xreg \ B .x ; 3r //  O such that for
any curve   Xreg \  B.x ; 3r / its length coincides with the length of ./ with respect to
the Riemannian metric g.

(7) The metric tensor g on a chart O defined above is of bounded variation on O [Per95,
4.2] (see also [AB15]).

The last three statements in the above list together with the density and convexity of
the set Xreg of regular points imply the following.

Corollary 7.1. In the above notations, the subset X   X  is an almost Riemannian
metric space if A  is sufficiently large.

In fact, the arguments in [Per95, 4.2] provide a slightly more precise version of (7) in the
above list:

Lemma 7.2. In the notations above, the constant A  can be chosen so large that the fol-
lowing holds true. The derivative measure Tg0U of the Riemannian tensor g in the canon-
ical distance chart O satisfies Tg0U.O/  Ar n 1, where O is the image .B.x ; 2r //  O D
.B.x; 3r //.

Proof. We only sketch the proof, referring to [Per95] for details. First we fix r D  1=A2.
The fact that g has bounded variation in the chart O follows in [Per95, Section 4.2]

by writing the coordinates of g as a universal smooth map 8 .f1 ; : : : ; f/  of a finite
number of distance functions f  on X  and their partial derivatives, both expressed in the
chart . It is shown in [Per95, Section 3] that any such distance function f  is expressed in
the chart O as a difference of two L-Lipschitz and -concave functions, where L ;  depend
only on the semiconcavity of the corresponding distance functions in X .  Since we have
fixed r >  0, the numbers ; L  can be chosen independently of X .  Thus, f  can be written in
the chart O as the difference of two convex functions with universal Lipschitz constants L0.
Therefore, for any unit vector v 2  Rn , we have a uniform bound on the total mass of the

Radon measure @2f     .O/. This implies that all partial second derivatives

of f  have uniformly bounded mass on O (see also [EG15, Theorem 6.8]).
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From this we deduce a uniform bound A0 on the total mass Tg0U.O/ for the fixed value
of r0 D  1=A2.

For any r <  r we rescale the space by r =r. The total mass of the Riemannian tensor
g is then rescaled by .r0=r/n 1. Thus,

Tg0U.O/  A0r1 nrn 1:

We finish the proof by replacing A  by max.A; A0r 1 n/. tu

Now we use Corollary 6.3 to deduce

Proposition 7.3. Let C  D  C .n/ and A  D  A.n/ be the constants from Proposition 6:1
and Lemma 7:2. For any point x 2  Xr;,  any s <  r and any Borel subset K   B.x ; r / the
deviation measure Vs satisfies Vs .K /  2C Ar :

7.2. Decomposition in good balls

Let the constant A  be as above. A  ball B.x ; r / in X n  will be called good if x 2  Xr;,  and bad
otherwise. In this subsection we give a controlled covering result (see also Problem 8.10
and its resolution in [LiN19] strengthening the next result).

Proposition 7.4. Let X n  be an n-dimensional Alexandrov space without boundary. For
every compact W  X  and every  >  n   2 there exists q D  q .W; / >  0 with the following
property. For every x 2  W and every s <  1 there exists a countable collection of good balls
Bm D  B.xm; rm/  X  such that

(1) r     <  s for all m;
(2) Hn .B .x ; s / n B  / D  0;
(3) m r  <  qs.

The proof will be obtained by a recursive application of the following lemma.

Lemma 7.5. There is an integer N D  N .W; / with the following property. For any p
2  W and  <  1 the ball B .p; / can be covered by at most N balls B i  D  B.xi ; ri /

such that r <   for all i , and
ri <  2 ;

i 2BAD

where i  2  BAD means that B i  is a bad ball.

Proof. Assume the contrary. Thus we can find a sequence of balls K l  D  B.pl ; l / such that
pl 2  W , l <  1 and one needs at least l balls to cover K l  so that the conditions in the lemma
are fulfilled.

Taking a subsequence we may assume that the following limit exists in the pointed
Gromov–Hausdorff metric:  

1 
X; p 

 
 !  .Y; p/: m
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Since the points pm range over a compact subset of X  and m <  1, the sequence is non-
collapsing, i.e. Y is an n-dimensional Alexandrov space. By Perelman’s stability theorem,
@Y is empty. Therefore, S VD .Y n Y/ \ B .p; 2/ is a compact set of Hausdorff dimension  n
2.

By the definition of Hausdroff dimension, we can cover S by a finite number of balls
B i  D  B.xi ; ri / such that

ri <  .1=2/ :
i

Any point in the remaining compact set K n Bi  is contained in Y. Therefore a small
ball centered at any point of this set is good. By compactness, we can cover K n Bi  by
a finite number of good balls. Let N be the total number of balls in the resulting covering of
K .

Lifting the constructed covering to K l ,  for all large l, we cover the ball K l  by at
most N balls satisfying the conditions of the lemma. This contradiction to our assumption
finishes the proof of the lemma. tu

Proof of Proposition 7.4. Cover B.x ; s / by N balls as in Lemma 7.5 and call this cover-ing
F1 .  Now cover every bad ball from F 1  by at most N balls provided by Lemma 7.5.
Together with the good balls from F 1  the new balls define a covering F 2  of B.x ; s/.
Continuing in this way, define for each natural number k a covering F k  of B.x ; s/.

Denote by gl     and gl     the sum of ri     over good, respectively bad, balls B.xi ; ri / in
the covering F l .  Then, by construction, gl C1 <  2 gl     and gl C1  gl     C  Ngl . Therefore, gl
2 g1 and gl     is uniformly bounded from above. The volume of the union of bad balls
in F l  is at most g     and converges to 0 as l !  1 .

Let F  be the set of all good balls B  D  B .x ; r / from all the coverings F l .  Then
H  .B .x ; s / n F  B   l i m l ! 1  gl     D  0. On the other hand, by construction,

B  2 F  
r  D  

l
lim gl      3Ns:

Setting q D  3N finishes the proof. ut

7.3. Final step

Now we can provide

Proof of Theorem 1.7. Let X  be a fixed n-dimensional Alexandrov space. By the inequal-ity
of Bishop–Gromov, the deviation measures Vr are uniformly bounded from below by a
quadratic term in r. Thus in order to control the mm-boundary we only need to bound Vr
from above on balls in X .

Let the constants A ; C  be as above, so that Proposition 7.3 can be applied.
First assume that @X is empty. Let W  X  be an arbitrary compact subset. Fix  D  n

3=2 and choose the constant q as in Proposition 7.4. For any x 2  W and s <  1
consider the good balls B  D  B .x ; r / provided by Proposition 7.4 and set K 0 D B  .
Let r <  1=A2 be sufficiently small. Since H n . K  n K 0/ D  0, we have Vr .K / D  Vr .K 0/.
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For all m with r <  rm, we apply Proposition 7.3 to infer that

Vr .Bm \  K /   2CAr r n 1:

On the other hand, for rm <  r, we have

Vr .Bm \  K /   Hn .Bm /  2!n r n <  2!nr r n 1:

Summing and using rn 1 <  r  we obtain

Vr .K /  
X

V r . B m  \  K /   .2C A C  2!n/qr s: m
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(7.1)

This proves that X  has locally finite mm-boundary. As already mentioned and used above,
any signed Radon measure  obtained as a limit of a sequence Vr =r for some r !  0 must
be non-negative, hence a Radon measure. We fix such a .

Inequality (7.1) implies that  has finite -dimensional density at every point of X ,  in
particular,  vanishes on subsets of Hausdorff dimension  n      2. Thus . X  n X /  D  0.

Recall that X  is an almost Riemannian space. Denote by N  its minimal metric deriva-
tive measure. We extend it to a measure on all of X  (still denoted by N ) by setting it to
be 0 on X n X .  By Lemma 6.4 the Radon measure  is absolutely continuous with respect to
N  on compact subsets of X .  Now (1) and (3) of Theorem 1.7 follow from Lemma 6.2.
This finishes the proof in the case @X D  ; .

Assume now that @X D  ;  and consider the doubling Y D  X  t@ X X  of X .  Consider
X  as a convex subset of Y and let K   X  be compact. We find a constant L  >  0
such that for all sufficiently small r >  0, we have H n . K  \  B.@X; 2r//  Lr .  (This
follows, for example, by the coarea formula using the Lipschitz properties of the gradient
flow of the distance function d.; @X/ which is semiconcave.) On the other hand, for
x 2  K  n B.@X; r/, the volumes of the r-ball in X  and in Y coincide. Since Y has locally
finite mm-boundary, we deduce that Vr .K / (computed in the space X )  is bounded from
above by L r  C Vr .K /,  where Vr .K / is the deviation measure of K  considered as a subset
of Y . This implies that Vr =r is uniformly bounded for r !  0. Thus X  has locally finite
mm-boundary as well.

Any limit of a sequence Vr =r for some r !  0 must again be non-negative, hence
a Radon measure. Outside of @X,  coincides with the restriction of the corresponding
measure defined on Y . From the corresponding statement about Y we deduce that  is sin-
gular with respect to Hn . Moreover,  vanishes on all subsets S  X  n @X with H n  1.S/
finite.

It remains to prove (2), i.e. to show that the restriction of  to @X is at least cHn 1 for a
universal constant c D  c.n/. This statement is local on @X and needs to be verified only in
small neighborhoods of points x whose tangent Tx X is isometric to a flat half-space.

We fix such a point x 2  @X. We further fix a sufficiently small " >  0 and find a small
neighborhood U of x in X  which is .1 C  "/-bi-Lipschitz to a half-ball in the Euclidean
space. Choose an arbitrary s >  0 such that B.x ; 2s/  U. Let K  D  B .x ; s/ \  @X be the
closed ball of radius s in @X with respect to the ambient metric. Due to [EG15,
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Section 1.6], it is sufficient to prove that . K /   c0sn 1 for a universal constant c0
depending only on the dimension.

In order to prove this inequality, we consider any open neighborhood V of K  in X .
For all small r >  0, the neighborhood V contains B .K ; 2r /. Once " has been chosen
sufficiently small, for any point z 2  B  K ;  10 r the ball B.z; r / in X  has volume at most
.1      k1/!nr . Here k1 D  k1.n/ >  0 is a universal constant. Moreover, the set B  K ;  10 r
has volume at least 20 r !n 1s . Integrating over V (and using the inequality of Bishop–
Gromov on the complement of B  K ;  10 r ) we deduce that

Vr .V /  k1 20 !n 1rsn 1      k3r2

for some k depending only on the volume of V and independent of r. Dividing by r and
letting it go to 0 we obtain .V /  k4sn 1 for a universal constant k4 >  0. Since the
neighborhood V of K  was arbitrary, we infer the same inequality for K  instead of V ,
finishing the proof. tu

8. Questions and comments

8.1. Manifolds

The notions of mm-boundary and mm-curvature are very easy to define but difficult to
control. For instance, the examples mentioned in the introduction require a fair amount of
computations and estimates. On the other hand, interesting examples seem to be difficult to
construct as well. The first question in this direction is:

Problem 8.1. Construct a closed manifold with a continuous Riemannian metric that
does not have finite mm-boundary.

The following problem is motivated by our approach to Theorem 1.7 in Sections 6 and 7.

Problem 8.2. Let X  be an almost Riemannian space. Can the minimal metric derivative
measure be non-zero?

In the language of DC-calculus discussed in [AB15], this question can be reformulated as
follows. Given a compact subset K  on any DC0-Riemannian manifold and any " >  0, can
one cover K  by charts such that the total mass of the derivative of the metric tensor in
these coordinates is bounded by "? Note that the minimal metric derivative measure must
vanish if the metric can be locally defined by a Riemannian tensor of class W 1;1, since
the metric derivative measure is singular with respect to the Hausdorff measure by Lemma
6.2.

The following question is motivated by Lemma 6.4 and potential applications to
geodesic flows of spaces with curvature bounded from above (see also Problem 8.12).

Problem 8.3. Let X  be an almost Riemannian space. Can one use the minimal metric
derivative measure in order to control the deviation measures Vr from below?
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8.2. Surfaces and hypersurfaces

The answer to the following question is non-trivial in view of Example 1.14.

Problem 8.4. Can one express the mm-curvature of an Alexandrov surface in terms of its
curvature measure?

In view of Theorem 1.10 it is reasonable to expect an affirmative answer to the following
question.

Problem 8.5. Do convex hypersurfaces of Rn  have locally finite mm-curvature?

A  natural approach to this question is related to the following conjectural generalization
of the Bonk–Lang theorem [BL03]:

Problem 8.6. Let X  be a convex hypersurface sufficiently close to a flat hyperplane. Can
we bound the optimal bi-Lipschitz constant for maps into the Euclidean space in terms of
the total scalar curvature?

Some natural generalizations of our Theorem 5.3 are possible. Probably, slightly refined
arguments can be used to prove that any DC-submanifold of a Euclidean space has van-
ishing mm-boundary. Using the embedding theorem of Nash, this would also provide an
easy generalization of Theorems 5.3 and 1.1 to convex hypersurfaces of smooth Rieman-
nian manifolds.

8.3. Alexandrov geometry and beyond

As the next generalization of Theorem 1.1, one should study the case of smoothable
Alexandrov spaces.

Problem 8.7. Does the mm-boundary vanish in smoothable Alexandrov spaces? Are
there relations to scalar curvature measures defined in [LP17]?

Due to the observation after Problem 8.2, the vanishing of mm-boundary would follow
from the existence of slightly smoother coordinates than the ones provided by Perelman’s
DC-structure.

Problem 8.8. Let X  be an Alexandrov space. Can one introduce coordinates on a neigh-
borhood of the set of regular points such that the metric is locally given by a Riemannian
tensor of class W 1;1?

In the two-dimensional case, the answer to this question is “yes” by the work of Reshet-
nyak [Res93] (see also [AB16]).

Due to Theorem 1.6, an affirmative answer to the following question should be ex-
pected. A  partial answer has been announced by Jerome Bertrand.

Problem 8.9. Are there further connections between the size of the mm-boundary of an
Alexandrov space X ,  the existence of the geodesic flow and the “average size” of the cut
loci of points in X ?
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Should one have a chance to go beyond mm-boundary and towards mm-curvature, one
would definitely need to improve the decomposition statement of Proposition 7.4, which
provides geometric control of the size of the set of singular points of an Alexandrov space.

Problem 8.10. Can one replace  >  n   2 by  D  n   2 in the statement of Proposi-
tion 7:4?

In the meantime, an affirmative answer has been provided in [LiN19].
It is interesting to understand if our results provide a quantitative version of bi-

Lipschitz closeness of small balls to Euclidean balls. It is known [BGP92] that there exist
.n; / !  0 as  !  0 such that if X  D  X n  is an Alexandrov space of curvature   1 and x
2  X  with !n r n   Hn .B .x ; r //  rn then B.x; r=4/ is .1 C  .n; //-bi-Lipschitz to a Euclidean
ball.

Problem 8.11. Can .n; / above be chosen of the form C .n/?

It is also natural to look at what happens for spaces with curvature bounded above:

Problem 8.12. Can one obtain similar estimates and applications for the mm-boundary in
geodesically complete spaces with upper curvature bounds? Note that such spaces share
many properties with Alexandrov spaces [LN19].

Finally, it seems reasonable to expect some generalizations to spaces with Ricci curvature
bounds, for instance:

Problem 8.13. Can one control the mm-boundary of non-collapsed limits of Riemannian
manifolds with Ricci curvature bounded below? Can one expect something like a geodesic
flow in this setting?

From the work of Jeff Cheeger and Aaron Naber [CN15] it should follow that on any non-
collapsed limit of manifolds with both-sided Ricci curvature bounds, the mm-curvature is
locally finite and the mm-boundary is zero. Vanishing of the mm-boundary should then
imply that the geodesic flow is defined almost everywhere and preserves the Liouville
measure by the same argument as in the proof of Theorem 1.6.
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