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a b s t r a c t 

We developed a computational framework that integrates commercial software components to perform 

customizable technoeconomic feasibility analyses. The use of multiple software packages overcomes the 

shortcomings of each to provide a detailed simulation that can be used for sensitivity analyses and op- 

timizations. In this paper, the framework was used to evaluate the performance of monoclonal antibody 

capture processes. To this end, the simulation framework incorporated dynamic models for the affinity 

chromatography step that were validated with experimental breakthrough curves. The results were inte- 

grated with an Intelligen SuperPro Designer process simulation for the evaluation of key performance in- 

dicators of the operations. As proof of concept, the framework was used to perform a sensitivity analysis 

and optimization for a case study in which we sought to compare membrane and resin chromatography 

for disposable and reusable batch capture platforms. Two membranes and one resin were selected for the 

capture media, which yielded six process alternatives to compare. The objective functions were set to be 

cost of goods, process time, and buffer utilization. The results of the optimization of these process alter- 

natives were a set of operating conditions that display tradeoffs between competing objectives. From this 

application exercise, we conclude that the framework can handle multiple variables and objectives, and 

it is adaptable to platforms with different chromatography media and operating modes. Additionally, the 

framework is capable of providing ad hoc analyses for decision making in a specific production context. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Typically, biopharmaceuticals are manufactured in multiprod- 

ct facilities that share resources among different programs [1] . 

hus, flexible production processes capable of responding to sud- 

en increases in demand are indispensable. To select the process 

hat provides the greatest flexibility, the techno-economic feasibil- 

ty of different alternatives must be established before large in- 

estments are made in equipment and materials. Process Analyt- 

cal Tools (PAT), such as mathematical models and computational 

imulation tools, can be used to analyze the impact of changes 

n the process prior to implementation [2] . The framework used 

or this analysis must quantify the possible benefits in terms that 

re relevant for the application. The models used to simulate the 

rocess must depict the physical behavior of the operation accu- 

ately and account for the impact of different variables. Finally, the 

ramework needs to provide parameter values for optimal opera- 

ion conditions to enable a comparison of design alternatives that 
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aximize process performance. Given the multiple requirements 

or the technoeconomic study, there is no standalone software ca- 

able of delivering the desired results. 

For the development of a computational framework that could 

e implemented effectively in scenarios relevant to the biophar- 

aceutical industry, we selected monoclonal antibody (mAb) pro- 

uction as the model process. mAbs are used to treat chronic and 

cute conditions including immunological disorders, cardiovascu- 

ar diseases, many forms of cancer, and, recently, COVID-19 [ 3 , 4 ].

mprovements in the upstream process, like the development of 

ew cell lines and the adoption of perfusion technologies, have 

ielded higher titers and shifted the capacity bottleneck and eco- 

omic load towards the downstream process (DSP) [5] . In this set- 

ing, several techno-economic feasibility studies have been con- 

ucted for mAb production, usually to evaluate continuous DSP al- 

ernatives [ 6 , 7 ]. The capture chromatography step has been the fo- 

us of these studies. In an affinity chromatography operation, a dy- 

amic model is necessary to simulate the physical phenomena in- 

olved. These models vary in their complexity and applicability to 

ifferent systems [8–10] . A simulation featuring a dynamic model 

s capable of predicting capture performance as a function of oper- 

https://doi.org/10.1016/j.chroma.2022.463755
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chroma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chroma.2022.463755&domain=pdf
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ting conditions [11–14] , allowing for optimization relative to these 

onditions. When the simulation involves economic factors, the 

rameworks frequently rely on production simulation software for 

he calculation of the key performance indicator (KPI) [15] . These 

conomic analyses usually do not include a dynamic simulation; 

hus, operating conditions affecting chromatography performance 

re kept fixed [16–18] . In this regard, frameworks that incorporate 

oth dynamic simulations and cost analyses are preferred because 

hey are able to optimize economic indicators by changing process 

perating conditions [19] . 

Instead of using the framework to assess the well-studied ben- 

fits of continuous process platforms, in this study we explored 

embrane chromatography as an alternative to the traditional 

esin capture chromatography. Recent commercial products for 

embrane chromatography show possible benefits for mAb cap- 

ure that make it attractive for commercial applications [20] . For 

xample, Purilogics and Cytiva have demonstrated the advantages 

f membrane technology at short residence times over their resin- 

ased process alternatives [ 21 , 22 ]. Despite small-scale applications 

eing the current niche for membrane capture chromatography, 

anufacturers offer membrane modules intended for large-scale 

pplications in other operations of the DSP. For instance, Sarto- 

ius offers ion-exchange membranes for use in commercial mAb 

olishing applications in the form of stackable cassettes, making it 

ossible to customize the membrane volume according to the pro- 

uction size [23] . We expect membrane modules for commercial- 

cale capture applications to be widely available soon. The overar- 

hing question is whether the productivity benefits justify the re- 

lacement of the well-established resin-based capture chromatog- 

aphy platforms in industrial production scenarios. Some techno- 

conomic studies have sought to answer this question [ 20 , 24 ]; 

owever, new simulation tools are necessary to stay current with 

he latest membrane technologies and to allow more customization 

n the study. A higher level of detail and personalization allows for 

he simulation of realistic manufacturing scenarios, which yields 

esults that are relevant for industrial applications. 

In this work, we present a computational framework able to 

ompare and simultaneously optimize membrane- and resin-based 

Ab capture platforms in disposable and reusable configurations. 

he framework incorporates dynamic models and economic analy- 

is from simulation software. In the following sections, we present 

he theory behind the chromatographic adsorption models used in 

he dynamic simulation, the formulation of the optimization prob- 

em, and the definition of the KPIs. The applicability of the frame- 

ork is demonstrated with a hypothetical case study featuring 

tate-of-the-art stationary phases. Through this limited case study, 

e will show the robustness and flexibility of the framework to 

dapt to specific scenarios and processes, with the level of detail 

ecessary to achieve relevant results for decision-making. 

. Theory 

Column breakthrough curves were simulated using computa- 

ional realizations of mathematical models for membrane and resin 

hromatography found in the literature [ 25 , 26 ]. These computed 

esults were validated against experimental data. This section pro- 

ides an overview of our simulation-based optimization frame- 

ork, along with the KPIs used to develop the objective functions. 

.1. Dynamic modeling of the chromatography column 

The capture process comprises a sequence of operations: load- 

ng, washing, elution, and regeneration. In this work, loading and 

ashing are simulated as dynamic systems. We assume behavior 

or the elution and regeneration steps. In the loading step, product 

olecules (e.g., mAb) in the feed stream are captured by binding 
2 
ites located on the surface of the stationary phase (membrane or 

esin). Eq. (1) describes the liquid phase material balance for this 

tep. J is the rate of mass per unit of volume leaving the liquid 

hase, C is the concentration in the liquid phase, u is the velocity 

ector and ω is the porosity of the media. Danckwerts boundary 

onditions are used as shown in Eqs. (2) and (3) [10] . 

 

∂C 

∂t 
+ J = −∇ · ( uC ) + ∇ · ( D ∇C ) (1) 

( D ∇C ) · n = u ( C in −C ) at in f low (2) 

C · n = 0 at out f low (3) 

Only longitudinal dispersion is considered, meaning the disper- 

ion tensor D in Eq. (1) has a single component (D). This com- 

onent is described using a high Peclet number approximation 

 Eq. (4) ). The parameter alpha is used as a fitting parameter to 

atch experimental breakthrough curves [25] . 

 = α ∗ v (4) 

Once the breakthrough curve is obtained, we can estimate the 

ynamic binding capacity (DBC) for any breakthrough percentage. 

q. 5 illustrates this calculation for a 10% breakthrough (DBC 10 ), 

here MV is the media volume, V 10% is the load volume corre- 

ponding to a breakthrough value of 10% of the feed concentra- 

ion. C in and C out are the concentration of the streams entering and 

eaving the solid media. 

B C 10 = 

∫ V 10% 
V hold 

( C in −C out ) dV 

MV 
(5) 

.2. Resin chromatography model 

In resin chromatography, the rate of adsorption onto the solid 

hase is controlled by two mass-transport diffusion steps: one 

rom the bulk to the resin through the film surrounding the par- 

icle in the packed bed and another from the surface of the resin 

article to the binding site through the pores. In this latter case, 

n additional mass balance is necessary to describe the liquid con- 

entration within the pores. Resin chromatography also requires 

wo distinct porosities: for the bed ( ω b ) and for the particle ( ω p )

27] . The rate of mass entering the solid phase is described by the 

hrinking core model [26] . This model is defined by the existence 

f two types of binding sites, each with its own adsorption rate 

nd mass balance. The total solid phase concentration is the sum 

f the concentration for the two types of sites. In this model, the 

ehavior of the rate of change in the concentration in both sites is 

efined by an adsorption rate and a desorption rate. The adsorp- 

ion rate is proportional to the pore concentration and to a dif- 

erence in concentrations in the solid phase. The derivation of the 

esin equations is shown in S2-S8 of Supporting Information. 

.3. Membrane chromatography model 

In membrane chromatography, the feed solution passes through 

he pores of the stationary phase where the binding sites are lo- 

ated. This feature makes advection the controlling mechanism in 

embrane chromatography [28] . In contrast, in resin-based chro- 

atography, the feed solution largely flows through the interpar- 

icle void volume, and mAbs must diffuse into and through the 

ores of the resin media to reach binding sites. The result is that 

he DBC for membrane chromatography is insensitive to flow rate. 

his allows for shorter residence times (RT) and, consequently, 

aster processes [29] . The lack of long-range diffusion from the 

ulk to the binding sites means that there is no additional ma- 

erial balance for the pores, and the rate of material leaving the 

iquid phase is equal to the adsorption rate in the solid phase [25] .
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For membranes, film and pore diffusive resistance can be ne- 

lected and an instantaneous adsorption process can be assumed. 

n this case, the solid phase concentration is described by an equi- 

ibrium isotherm. Different isotherm models such as Langmuir, bi- 

angmuir, steric hindrance, and spreading model can be used to 

escribe the thermodynamic behavior of the system [30] . These 

odels differ in their degrees of freedom and in the way that they 

ccount for different molecular interactions between the adsorber 

nd protein, depending on factors such as ionic strength and pH 

31] . In this work, the Langmuir model was chosen because of its 

implicity and ability to fit experimental data accurately. 

Usually, void volumes in membrane chromatography modules 

re larger than resin-packed columns. For example, in a Sartorius 

artobind-Q cassette, the membrane occupies 1.6 L of the total 4.5 

 module inner volume [23] . At the beginning of the capture op- 

ration, these spaces are filled with equilibration buffer (C = 0) that 

ct as a diluent for the feed. To account for this effect, the void

olume was modeled as a perfectly mixed, continuously stirred 

ank reactor (CSTR) located before the membrane [25] . The set of 

quations describing the membrane adsorption in this simulation 

s presented in S9-S13 of Supporting Information. 

.4. Wash step model 

The wash step was modeled to account for adsorption that may 

ccur when there is still product passing through the system. In 

he resin model, the adsorption rate becomes negative as C is set 

o 0. Nevertheless, the total mass transfer coefficient (k total ) is, gen- 

rally, small due to the approximation of q equal to q max . Thus, the

odel-derived mass of product eluted during the wash is negligi- 

le. 

Unlike resins, the instantaneous adsorption model used for the 

embranes requires modifications for the washing process. In this 

ase, the equilibrium condition implies that the concentration in 

he solid phase will be zero if the concentration in the liquid is set 

o zero, which would result in complete elution during the wash- 

ng step. However, this behavior is not observed in practice, where 

esorption does not occur significantly unless there is a reduction 

n pH caused by the elution buffer. To account for this discrepancy, 

he adsorption rate was set to zero when the model predicted neg- 

tive values. This is implemented in the finite element approxima- 

ion of the differential equation by setting the adsorption rate to 

ero in each of the elements that constitute the membrane. 

.5. Key performance indicators 

Table 1 introduces the KPIs that were used to explore the be- 

avior of the simulation (through sensitivity analyses) and to de- 

ne the objective functions for optimization. KPIs were selected 

ased on their frequent use in the literature and their capacity to 

ssess the efficient utilization of resources such as time, raw mate- 

ials, and capture media volume. The analysis of the selected KPIs 

s meant to provide insight into the influence of variables and pa- 

ameters on process performance. 

. Materials and methods 

.1. Experimental breakthrough data 

Purexa TM A Protein A affinity membrane (0.2 mL) was purchased 

rom Purilogics (Greenville, SC). Hitrap Fibro TM PrismA membrane 

Cat # 17549856, 0.4 mL) was purchased from Cytiva (Bucking- 

hamshire, UK). Polyethersulfone (PES) Nalgene Rapid-Flow Top Fil- 

er (0.2 μm, Cat. # 595-4520) was purchased from Thermo Fisher 

cientific (Waltham, MA). Lyophilized human immunoglobulin G 

hIgG ≥ 95%) was purchased from Lee BioSolutions (Maryland 
3 
eights, MO). Trisodium citrate dihydrate ( ≥99%) was purchased 

rom Alfa Aesar (Ward Hill, MA). Citric acid ( > 99%) and phosphate 

uffered saline (PBS) powder were purchased from Sigma-Aldrich 

St. Louis, MO). 

Loading buffer A1 (1x PBS pH 7.4) was prepared by dissolving 

 pack of PBS powder in 1 L of deionized water from a Milli-Q®

ltrapure purification system (Millipore Corp., Bedford, MA) and 

djusting to pH 7.4 using HCl. Elution buffer E1 was prepared by 

djusting 0.1M citric acid with 0.1M trisodium citrate until pH 3.0 

as reached. Buffers were sonicated after preparation and subse- 

uently filtered through a 0.2 μm PES filter. hIgG solutions were 

repared at 5 g/L in loading buffer A1 and filtered through a 0.2 

m PES filter. 

DBC measurements were performed using an AKTA Purifier 100 

hromatography system (Cytiva). Manufacturer volume specifica- 

ions were used to calculate flow rate (or residence time) for each 

embrane. The order of chromatographic operations was: equili- 

ration, hIgG loading from a 150 mL superloop, washing, elution, 

nd washing. Membranes were equilibrated using 20 mL of buffer 

1 and loaded to at least 95% saturation with respect to the UV 

ignal of hIgG solution. Wash volume, using buffer A1, was 5 mL; 

nd elution volume, using buffer E1, was 5 mL. The effluent from 

ach membrane column was monitored using a UV detector at 280 

m. 

DBC measurements were made using Eq. 5 , where C in is the 

rotein loading concentration, V 10% is the volume at 10% break- 

hrough relative to the absorbance of 5 g/L hIgG solution, V hold is 

he system holdup volume measured with 2 wt% acetone in load- 

ng buffer A1, and MV is the manufacturer specified membrane 

olume. 

MabSelect PrismA resin (Cytiva) was used as the reference for 

he resin-based chromatography. The experimental breakthrough 

ata were obtained from the work by Sun et al. [14] . To fit the

hrinking core parameters for this resin, we selected data corre- 

ponding to loading of a 2 g/L hIgG solution at residence times of 

, 2, and 3 min. (see Fig. 4 of Sun et al. [14] ). 

.2. Dynamic model fitting and validation 

Parameter values in the models were determined using opti- 

ization to minimize the sum of the squared residuals between 

he experimental data and the simulated model. For membranes, 

he mass transport equation, Eq. (1) , was closed using relation- 

hips defined in Eqs. (4), (S9), and (S11). An approximate solution 

as generated by discretizing in space using streamline-upwinded 

alerkin (SUPG) finite elements and backward Euler discretization 

n time [34] . The resulting system is solved using FreeFEM finite 

lement software [35] . 

Eq. (S13) was used to model the concentration entering the 

embrane. The value of V CSTR was measured experimentally to be 

.0 mL for both membrane columns. The membrane thickness was 

easured as 0.4 mm for Purexa-A and 0.7 mm for Fibro Prism- 

. The porosity for both membranes was assumed to be 80% [23] . 

he Langmuir parameters (q max and K) and the dispersity coeffi- 

ient ( α) are the fitting parameters for each membrane. They were 

ound by minimizing the sum of squared residuals between the 

odel and the data up to 80% breakthrough. This maximum break- 

hrough was selected according to preliminary results in which 

e observed the limitations of the model to describe the behav- 

or of the system at higher percentage breakthrough. One of the 

erivative-free optimization algorithm in MATLAB (i.e., fminsearch) 

as used to perform the optimization and obtain the fitting pa- 

ameters [36] . Derivative-free algorithms require only values of the 

bjective function, allowing us to use the finite element model as 

 black box [37] . 
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Table 1 

Definition of the KPIs used in this work and the rationale for its selection. 

KPI Definition Rationale 

Maximum 

breakthrough 

Quotient of the highest concentration of product leaving the column 

and the feed concentration (C feed ) at any point during the loading and 

washing steps [32] . 

This KPI is used to assess the accuracy of the dynamic simulation. To 

this end, the maximum breakthrough must be in the range set by the 

model validation. 

Yield Quotient of the total mass of mAb recovered as product in the elution 

pool and the total mass of mAb loaded onto the column [26] . 

Yield is a key indicator of process efficiency. It quantifies mAb 

recovered as a product after all process operations. Since neither 

elution nor desorption during wash are simulated, a 5% product loss is 

assumed based on the DBC obtained from the capture and wash 

simulations. 

Capacity 

utilization (CU) 

Quotient of the DBC before elution and the model-derived equilibrium 

binding capacity (EBC) for C feed [12] . 

This KPI is an indicator of efficiency in the use of media volume, 

which has repercussions in the consumables cost. 

Buffer 

consumption 

Total volume of buffer consumed defined mathematically using Eq. 

(6) V bu f fer = V media ×
∑ 

i 

M V i (6)MV i is the volume of buffer (in terms of 

media volume) used in each of the i operations that constitute the 

capture purification process. 

This KPI accounts for the buffer used in a single batch. In addition to 

being related to the buffer costs it also can be used to assess 

sustainability and the overall footprint of the operation. 

Product 

concentration 

mAb concentration in the stream leaving the column during elution. High product concentration is related to reduced buffer utilization and 

low processing time in subsequent DSP operations. 

Process time Sum of loading time (t load ) and additional times (t add ) attributed to all 

other operations in the capture purification process defined by Eqs. 

(7) and (8). 

t load = 
V batch 
F load 

= 
V batch ∗RT 
V media 

(7) 

t add = V media ×
∑ 

i 

M V i 
F i 

= h media ×
∑ 

i 

M V i 
v i 

(8) 

F i is the flowrate for process i, v i is the average flow velocity for 

process i and h media is the column height/membrane thickness. 

This KPI represents the total time necessary for the processing of one 

batch. This is useful to calculate either the maximum output given a 

time constraint, or the time needed to process a determined number 

of batches. 

COG Quotient of operating costs of the capture purification process and the 

total mass of mAb in the elution pool [15] . 

This KPI is an intensified measurement of cost. It enables comparison 

of economic efficiency of processes with different scales of production 

and yields. In this work, only consumables and buffer were considered 

in the operating costs. 

Productivity Quotient of the total mass of mAb product and the multiplication 

product of membrane/resin volume and process time [33] . 

This KPI is a compound indicator that relates product yield to the use 

of time and media. It is useful to compare the production rate of 

processes with different scales. 
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For resins, an approximate solution to the system of partial dif- 

erential equations (PDEs) was generated using one-dimensional 

ow in the vertical direction and discretizing using finite differ- 

nces in space over the length of the column. The result is a set of

rst-order ordinary differential equations (ODEs) that were solved 

sing MATLAB implementations of ODE variable time stepping al- 

orithm Ode15s [38] . Again, least squares minimization with MAT- 

AB fminsearch was used to fit the five parameters needed for 

he shrinking core model (K a , k a1 , k a2 , k m and q max ) [11] and α
or Eq. (4) . For all three of the chromatography media, parame- 

ers were fitted for each of three data sets with distinct residence 

imes. A weighted average of these values was used as the param- 

ter estimate for all curves. 

.3. Framework structure 

The framework employs simulation-based optimization, which 

s defined using a feedback loop between an optimization algo- 

ithm and a process simulation tool. The optimization algorithm 

xchanges information with the simulator, selecting input param- 

ters based on feedback provided through evaluation of the ob- 

ective functions. In our work, the optimization was performed 

n MATLAB; the simulation was performed using SuperPro De- 

igner for material, time, and economic calculations; and FreeFEM 

r MATLAB was used for transport modeling ( Fig. 1 ). Communi- 

ation was established using Object Linking and Embedding (OLE) 

echnology, which relies on the Component Object Model (COM) 

rchitecture shared by all these software environments. After the 

ynamic simulation generates the breakthrough curve for loading 

nd wash operations, the DBC is calculated by numerical integra- 

ion per Eq. 5 . In the case of membranes (FreeFEM), the DBC re-

ult is recorded in a text file and then read by MATLAB. (For resins

he DBC result is already in this environment.) Then, the DBC is 

xported to an Excel file along with other information necessary 

or the process system simulation. Excel is used to collect, process, 
4 
nd exchange information between the optimization algorithm and 

he process simulation in SuperPro Designer using Visual Basic 

or Applications. Finally, the simulation outcomes are saved in 

he Excel file and read by the optimization algorithm running in 

ATLAB. 

As the multiple simulation programs offer complementary fea- 

ures, combining them enables a more comprehensive process sim- 

lation than any single software. FreeFEM, in the case of mem- 

ranes, and MATLAB, in the case of resins, solve the transport 

quations and provide the DBC at the operating conditions spec- 

fied by the MATLAB optimization algorithm. In the case of Super- 

ro Designer, we used the built-in libraries and models to perform 

aterial balances and economic calculations used by the objec- 

ive functions [39] . The objective function values were then used 

o generate new design points for consideration. 

.4. Case study 

The objective of the case study was to assess the benefits of 

ix process alternatives defined using three chromatography media 

n disposable and reusable platforms. The stationary phases con- 

idered were the Prism-A resin, and the Purilogics Purexa TM -A and 

ytiva Fibro PrismA membranes. The design variables were the vol- 

me of chromatography media (membrane or resin) and residence 

ime. 

Whereas a reusable platform regenerates the chromatography 

edia and stores it for future batches, the media in a disposable 

latform (usually contained in pre-packed columns) is used for a 

atch and discarded. To be economically feasible, the disposable 

latforms must feature lower media volumes than the reusable 

latforms for the same batch volume to process. This is achieved 

y dividing the batch volume into fractions and loading them in 

ultiple cycles. In this case study, the number of cycles is set to 

atch the lifespan of the media, i.e., the maximum number of 

ycles the media can be used before losing its performance due 
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Fig. 1. General representation of the computational framework. 
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Table 2 

Fixed design variables. 

Design Variables Value 

Ratio V membrane /V cstr 0.55 

Buffer cost $3/L 

Stationary phase cost $7358/L 

MV Wash 10 

v Wash 225 cm/h 

MV Elution 4 

v Elution 150 cm/h 

MV Regeneration I 6 

v Regeneration I 300 cm/h 

MV Regeneration II 9 

v Regeneration II 300 cm/h 

MV Equilibration 6 

v Equilibration 300 cm/h 

V batch 2000 L 

Replacement frequency 80 Cycles 
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o fouling, Protein A leakage, and other deteriorating mechanisms. 

ith this constraint, we ensured that the media is used until the 

nd of its lifespan. Finally, the number of cycles was set to be one 

or the reusable platform since the media gets used until the end 

f its lifespan independently of the number of cycles per batch, 

nd a single cycle offers the fastest operation. 

We also designed the case study to evaluate the impact of the 

ifferent process alternatives on resources that could act as con- 

traints for the feasibility of the operation. For an existing facility, 

he constraints include the cost of the operation, process footprint, 

nd allocated process time. Thus, we selected, optimized, and eval- 

ated the tradeoff among three specific KPIs that represent the uti- 

ization of each of these resources. For cost, we selected COG as 

he indicator. Buffer consumption was selected as a KPI for process 

ootprint because of the high impact that the buffer volumes have 

n the amount of waste produced in the operation. Finally, process 

ime was selected as a KPI since it can be used to set shifts and

nsure compliant holdup times. 

.5. Process simulation 

The SuperPro Designer flowsheet consists of a chromatography 

olumn unit operated under bind and elute mode. A full cycle 

onsists of load, wash, elution, and regeneration I operations. Ad- 

itional regeneration II and equilibration operations are executed 

nce per batch. Since the manufacturers of the membranes cho- 

en in this study do not currently offer modules for large scale ap- 

lications, the characteristics of such modules are estimated. The 

embrane to void volume ratio (V membrane /V cstr ) was estimated us- 

ng Sartorius Sartobind cassettes as a model (1.6 L membrane/2.9 

 void space) [23] . There is no reference for these membranes in 

arge-scale application, so we assumed a scenario where the cost 

er liter of membrane and the replacement frequency are the same 

s those of resins, which were retrieved from the SuperPro De- 

igner library. A height of 15 cm was used for the resin column; 

his is an intermediate value in the recommended range for this 

arameter [40] . Fig. 2 displays the process flowsheet and Table 2 

hows the process variables used as parameters for the processes 

n the case study. 
5

. Results and discussion 

.1. Breakthrough curves, validation, fitting parameters 

Fig. 3 shows the Purexa TM -A and Fibro PrismA membrane 

reakthrough curves at different RT for experimental and simu- 

ated data. In the experimental data, there is no observable corre- 

ation between RT and the shape of the curves, which supports the 

quilibrium adsorption model as an appropriate choice. The model 

arameters were determined by fitting the model to the data for 

, 12 and 30 s RT and averaging the resulting values. These RT 

alues were chosen because high productivity is expected for fast 

rocesses. Table 3 shows the averaged values used for the break- 

hrough simulation. Fig. 3 illustrates the good agreement between 

he empirical and simulated breakthrough curves up to 80% break- 

hrough. Above this value, steric hindrance effects begin to have a 

ore significant effect on breakthrough [41] and the model loses 

ome accuracy. 

Similarly, for resin chromatography ( Fig. 4 ), the parameter fit- 

ing was performed for each breakthrough curve and a weighted 

verage was taken ( Table 3 ). For the 1- and 2-min RTs, we ob-

erved an agreement between the simulated and experimental 
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Fig. 2. Flowsheet for the capture process simulated in SuperPro Designer. The process solutions contained in Disposable Containers for Storage (DCS) are fed with Diaphragm 

Pumps (DP) into the chromatography unit (C). The resulting product is then recovered in a vessel (V). 

Fig. 3. Experimental and simulated breakthrough curves for Purexa TM -A membrane (left) and Fibro PrismA membrane (right) at different RT. RMSE values for Purexa TM -A 

membrane curves are 0.0283, 0.0370 and 0.0419 mL/mL for 5,12 and 30s RT. RMSE values for Fibro PrismA membrane curves are 0.0347, 0.0505 and 0.0401 mL/mL for 5,12 

and 30s RT. 

Table 3 

Values for the fitting parameters 

PrismA resin parameters 

K a [L/g] k 1 [g/(L min)] k 2 [g/(L min)] k m [cm/min] q max [g/L] α [cm] 

101 ±23 0.377 ±0.137 0.199 ±0.046 0.00157 ±0.00166 139 ±11 0.0257 ±0.012 

Fibro PrismA membrane parameters 

K [L/g] qmax [g/L] α [cm] 

0.888 ±0.17 103 ±12 0.028 ±0.002 

Purexa TM -A membrane parameters 

K [L/g] qmax [g/L] α [cm] 

0.623 ±0.207 117 ±10 0.0139 ±0.0005 

b
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reakthrough curves for values up to 90% breakthrough. For the 

 min RT, good agreement between simulation and experimen- 

al data is observed up to approximately 20% (0.4 mg/mL) break- 

hrough. Notably, the laboratory column has a height of 5 cm, so, 

o maintain the same average flow velocities for the commercial- 

cale process column (15 cm), the residence time interval must be 

djusted from 1-3 min to 3-9 min. 
6 
.2. Sensitivity analysis 

The influence of the design variables on process KPIs was in- 

estigated by varying the media volume at two values of RT. 

ig. 5 presents the results for reusable (single cycle) processes. The 

odel-derived EBC values for the Prism-A resin, Purexa TM -A mem- 

rane, and Fibro PrismA membrane were 87, 89, and 79 mg/mL. 
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Fig. 4. Experimental [33] and simulated breakthrough curves for Prism-A resin at 

different residence times: 1 min (300 cm/h), 2 min (150 cm/h) and 3 min (100 

cm/h). RMSE values are 0.0243, 0.0179 and 0.0557 mL/mL for 1, 2, and 3 min RT 

curves. 
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Fig. 5 A shows maximum breakthrough attained after loading 

0 0 0 L batch feed with a 5 g/L titer. For all series, we have the

ame behavior; that is, almost 100% breakthrough at low me- 

ia volumes and a gradual descent to 0% breakthrough when the 

edia volume is large enough to capture all the loaded mate- 

ial. The difference in the shape of the curves is related to both 

he characteristic EBC of the media and the system dispersion. In 

ur simulations, the curves for the resin chromatography columns 

resent sharper fronts than the membrane columns at both levels 

f residence times. Additionally, the sharpness of the resin curve 

t higher residence times is consistent with a diffusion-controlled 

rocess. 

In Fig. 5 B we observe how yield is solely a function of media

BC at low media volumes, where the stationary phase is satu- 

ated, and breakthrough is close to 100%. However, as media vol- 

me increases, dispersion effects start to play a role in yield perfor- 

ance. In membranes, dispersion makes reaching 0% breakthrough 

ifficult, provoking lower yields compared with resins at higher 

edia volumes. 

A different tendency for CU is observed in Fig. 5 C . In the region

f low media volume, where the media becomes saturated, CU is 

onstant at 100%. CU starts to decrease as media volume increases. 

or large media volumes, amount of product per unit volume to 

apture is lower than for small media volumes because load is kept 

xed. This reduction in relative load translates into low CU (under- 

tilized media). 

From the definition of buffer consum ption (Eq. 6 in Table 1 ) we

ote this value is directly proportional to media volume. Since the 

elative buffer volumes (MV i ) are fixed parameters given by the 

apture protocol ( Table 2 ), we observe a common line for all series

n Fig. 5 D . 

The behavior of buffer consumption has an effect on the final 

roduct concentration ( Fig. 5 E ) and yield. An increase in buffer 

onsumption, specifically during elution, dilutes the product. This 

s more noticeable when the media is not saturated. We observe 

hat at low volumes (complete saturation) the product concentra- 

ion is controlled by yield performance. As volume increases, the 

ise in elution buffer consumption is compensated by higher yields. 

evertheless, as yield reaches its maximum value, the concentra- 

ion becomes more dependent on media volume, and all series 

end to converge. 

The definition of process time (Eq. (7)) indicates that load time 

s inversely proportional to the media volume and proportional to 

T. The additional time (Eq. 8)) is proportional to the media bed 

eight, which is kept constant despite the changes in volume. This 

orresponds with Fig. 5 F, where we see that the RT has a strong in-
7 
uence on process time. The result is that membrane processes are 

uch faster than the resin processes, and the Purexa TM -A mem- 

rane process is slightly faster than the Fibro PrismA one. 

COG is affected by buffer consumption, yield, and media vol- 

me. The cost of the media as a consumable is proportional to its 

olume. In the same way, buffer cost is proportional to its utiliza- 

ion (which also is proportional to media volume). These costs can 

e decreased by lowering media volumes at the expense of yield. 

ield affects COG through the cost of lost product and the total 

ass of product obtained in each batch. These competing factors 

ead to a minimum COG as shown in Fig. 5 G . Figure S1 (Support-

ng Information) provides detail on this tendency and shows the 

inimum COG values and corresponding media volume for each 

rocess alternative. 

In a similar way, productivity ( Fig. 5 H ) reaches a maximum 

alue with an intermediate value of media volume. This KPI of- 

ers a comprehensive measure of capture efficiency, as it consid- 

rs how much product is obtained relative to the process time and 

edia volume used. Initially, we observe a rise in productivity as 

ncreases in media volumes correspond with increases in process 

ime and yield. This tendency continues until the point at which 

ield and process time stabilize. From this point on, any additional 

ncrease in media volume leads to a corresponding decrease in 

roductivity. Figure S2 shows the maximum values for productivity 

nd the corresponding media volumes. 

For disposable platforms ( Fig. 6 ), we observe the same KPI ten- 

encies of the reusable single cycle platforms, but at a lower me- 

ia volume scale. A volume scale from 0.5 to 2.6 L was selected 

or the sensitivity analysis to observe different maximum break- 

hroughs in the system. The minimum COG and maximum produc- 

ivity are presented in Figures S3 and S4 with their corresponding 

edia volumes. 

The previous sensitivity analyses indicate that the flow rate in- 

uences only the time dependent KPIs (process time and produc- 

ivity). In these cases, the performance increases with lower resi- 

ence time, a behavior consistent with the instantaneous adsorp- 

ion model used for membranes. Based on this, we set RT as a pro- 

ess parameter instead of a variable for membranes, fixing it at the 

ower bound of the search space (5 s). 

The resin also exhibits higher performance in time dependent 

ndicators at low RT. Unlike membranes, however, RT affects max- 

mum breakthrough, along with other indicators conditioned by 

t (yield, CU, product concentration, annual processing time, COG, 

nd productivity). We observe that all these KPI deteriorate at 

ower RTs. Thus, we select the design variables for resin processes 

o be both RT and column volume. 

From the sensitivity analysis, we note the behavior of the KPIs 

s follows: maximum breakthrough defines the behavior of yield 

nd CU; buffer utilization is directly proportional to the media vol- 

me; and process time is a function of media volume, RT, and col- 

mn height/membrane thickness. The behavior of all other KPIs 

s explained by the interaction of yield, CU, buffer utilization, and 

rocess time. 

When comparing disposable against reusable single cycle pro- 

esses, we observe that the performance of most KPIs is compara- 

le. This is the case with maximum breakthrough, yield, CU, and 

roduct concentration. In contrast, time-dependent KPIs, namely 

rocess time and productivity, are affected proportionally by the 

eduction in media volume. In the case of buffer consumption, we 

bserve that the proportional reduction in media volume is com- 

ensated by a proportional increase in the number of cycles. This 

ituation causes the wash, elution, and regeneration I buffer vol- 

mes to be the same as for single cycle platforms. Nevertheless, 

quilibration and regeneration II are operations that take place 

nly once per batch. Thus, the lower media volume causes a re- 

uction in the buffer utilization for these operations. This effect 
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Fig. 5. Single cycle process sensitivity analyses for different KPI varying media volume for two values of residence time and three stationary phases. Fig. S1 (Supporting 

Information) provides detail on this tendency and shows the minimum COG values and corresponding media volume for each process alternative. Fig. S2 shows the maximum 

values for productivity and the corresponding media volumes. 
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ranslates into a reduction in total buffer consumption for dispos- 

ble platforms compared with the single cycle process. These ten- 

encies can be better observed when looking at the Pareto fronts 

resented in the next section. We see that disposable platforms 

ave significantly higher process times than single cycle platforms. 

n contrast, disposable platforms require lower buffer consumption 

nd have a slightly lower COG. 
8 
.3. KPI tradeoff and optimization 

Pareto fronts were generated using the multi-objective genetic 

lgorithm (GA) in MATLAB [42] . When a single objective (i.e., COG) 

as needed, other derivative-free algorithms could be used. For 

ach of the six platforms, the optimization results for the GA were 

btained using five generations each with 25 members. The GA 
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Fig. 6. Disposable media process sensitivity analyses for different KPI varying media volume for the different stationary phases. The minimum COG and maximum produc- 

tivity are presented in Figs. S3 and S4 with their corresponding media volumes. 
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as set to optimize media volume for membrane-based platforms, 

nd media volume and RT for resin-based platforms. Based on the 

ensitivity analysis, the search space was defined to be [ 40 ,200] L 

f media for the single cycle processes and [0.6-2.5] L for the dis- 

osable platforms. For the case of resin, a RT search space of [3- 

] min was selected based on the range in which the model was 
tted. c

9 
In the case of the Pareto fronts for buffer consumption and cy- 

le time ( Fig. 7 ), the optimal process configurations contain mem- 

rane volumes from the entire search space. This occurs because 

ny improvement in cycle time is detrimental to buffer consum p- 

ion, and vice-versa. This behavior can be observed in the sensi- 

ivity analisis ( Figs. 5 and 6 ) where the buffer consumption in- 

reases steadly with increases in media volume. Meanwhile, pro- 
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Fig. 7. Pareto fronts for process time and buffer utilization optimization for the dif- 

ferent stationary phases in reusable single cycle and disposable configurations. 

Fig. 8. Pareto fronts for process time and COG optimization for the different sta- 

tionary phases in reusable single cycle and disposable configurations. 
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Fig. 9. Pareto fronts for buffer utilization and COG optimization for the different 

stationary phases in reusable single cycle and disposable configurations. 
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ess time decreases monotonically. Because of the much longer 

esidence times in resin-based processes we observe a large dif- 

erence in process time compared with membrane platforms. 

In Fig. 8 , the COG and process time points along the Pareto 

ront represent membrane volume configurations spanning from a 

inimum value in COG (corresponding to around 180 L for sin- 

le cycle platforms and 2.4 L for disposable platforms) to the top 

nd of the search space. This behavior is consistent with the ten- 

ency of cycle time to decrease when media volume increases. De- 

pite having RT as an additional variable, resins follow the same 

endency with respect to volume, which is the main contributor 

o these KPI. We observe how resins can achieve lower COG than 

embranes due to the higher DBC, at the cost of high RT. 

For the COG and buffer Pareto fronts ( Fig. 9 ), the membrane 

olume spans from the value corresponding to the minimum COG 

owards the lower end of the search space (40L of media for the 

ingle cycle processes and 0.6L for the disposable platforms). This 

s consistent with the tendency of this indicator to decrease at 

ow media volumes. As discussed in the sensitivity analysis, the 

uffer utilization constantly increases with media volume while 

OG reaches a minimum. Initially, as media volume increases, the 

ccompanying yield decreases COG even as buffer consumption in- 

reases. 

The final selection of the best process configuration will depend 

n the user’s priorities and resources. However, it is possible to 

xplore the process alternatives for our case study from the opti- 

al operating conditions contained in the Pareto fronts. Comparing 

he membrane alternatives, the Purexa TM -A offers a slightly shorter 

rocess time than the Fibro PrismA membrane. In contrast the Fi- 

ro PrismA membrane offers lower COG values due to its higher 
10 
ield. At the moment, none of the membrane manufacturers offer 

odules suitable for large scale production processes, so the ac- 

ual performance will depend on the void volume and the price of 

 real module. 

Comparing the alternatives for single cycle operation, the resin- 

ased process offers an advantage over membranes in terms of 

OG, as it reaches a minimum value that is 28-30% lower than the 

owest values for the Fibro PrismA and Purexa TM -A membranes. 

his comes with a high cost in terms of process time, which is 107 

nd 122 times longer than the Fibro PrismA and Purexa TM -A. De- 

pite the significantly longer process time, this value ranges from 

.1 to 3.1 h for all points in the Pareto front for the reusable resin

latform, which is within a standard 8 h work shift. In the case of 

isposable processes, the membrane platforms are the only options 

ble to attain process times suitable for one shift operation. While 

he process time for these platforms is in the range of 1.0-4.5 h, 

he resin based disposable process has a process time of 113-188 

. Finally, we can see how an increase in COG is the difference 

etween a resin-based reusable platform and a membrane-based 

isposable platform, the latter of which is more efficient in terms 

f buffer consumption for the same range of process time. Finally, 

o compare all process alternatives we present the minimum KPI 

alues observed in this study in Table 4 . In this table, the optimal

PI values are normalized using the reusable resin platform as the 

ase case. 

.4. Framework advantages and limitations 

With a case study featuring both resin and membrane media, 

e demonstrated the ability of the framework to handle different 

ypes of media. However, the framework offers the option to eval- 

ate addition media alternatives such as monoliths. If the media 

an be described using the previously presented models, then a 

hange in parameters is the only requirement to adapt the frame- 

ork. Otherwise, additional modifications may be needed, e.g., us- 

ng a different isotherm equation to describe adsorption equilib- 

ium. With these considerations, the framework could be used to 

imulate other affinity and non-affinity media used for capture or 

olishing operations. 

The modular structure of the framework (see Fig. 1 ) offers the 

dvantage of adjusting the level of detail of the simulation accord- 

ng to the user needs and knowledge of the operation. For exam- 

le, if the parameters affecting breakthrough curves are kept fixed, 

he yield would be fixed as well, thus the dynamic simulation 

odule could be eliminated. Moreover, other process simulation 

oftware with different features could be used instead of SuperPro 

esigner depending on the user’s preference and resources −given 
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Table 4 

Platform performance summary. Reusable Prism-A resin was selected as the base case. 

Media 

Operating 

condition RT Media Vol. 

Normalized minimum 

COG Process t Buffer Cons. 

Prism-A resin Reusable [3-9] min [40,200] L 1 1 1 

Prism-A resin Disposable [3-9] min [0.6-2.5] L 0.9 53.9 0.58 

Fibro Prism-A 

memb. 

Reusable 5 s [40,200] L 1.4 0.01 1.00 

Fibro Prism-A 

memb. 

Disposable 5 s [0.6-2.5] L 1.2 0.58 0.58 

Purexa-A 

memb. 

Reusable 5 s [40,200] L 1.4 0.01 1.00 

Purexa-A 

memb. 

Disposable 5 s [0.6-2.5] L 1.2 0.50 0.58 
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he software supports OLE technology). This structure allows the 

ramework to simulate operations other than capture chromatog- 

aphy. 

In the case study, we assess the capacity of the framework to 

ield optimized process conditions for different combinations of 

hree KPI. Nevertheless, it is possible to select one or several of the 

ight KPI that the simulation provides as objective functions for 

he optimization problem. It also is possible to select different pro- 

ess parameters as variables. For example, instead of having media 

olume as a variable to find an optimal process time we could set 

edia volume as a parameter and set flowrate as the variable to 

ptimize productivity. This way, the new framework offers the ad- 

antage of customizing the optimization according to the problem 

haracteristics. 

Currently the framework has some limitations in optimization 

apacity and computational efficiency. It is capable of simulating 

nly batch processes with continuous variables. In ongoing effort s, 

e are expanding its capacities to simulate multi-column contin- 

ous and semi-continuous platforms. The optimization algorithm 

or those platforms must handle mixed-integer values for variables 

ike number of columns or cycles. The additional variables and 

ore complex simulations are expected to have a considerable im- 

act on the computational requirements for the optimization. Con- 

equently, new strategies need to be implemented to improve the 

omputational efficiency of the framework. Given that one of the 

bjectives of this framework is the ease of implementation, the ca- 

acity to run on a general-purpose computer is essential. 

. Conclusions 

A computational framework was developed for evaluating the 

erformance of antibody capture processes. The proposed frame- 

ork is robust and adaptable to specific products and platforms. 

he simulation elements of the framework are based on funda- 

ental knowledge of the process, and its parameters can be ob- 

ained from experimental data. Results from the sensitivity analy- 

es show how changes in process parameters impact the KPI in a 

onsistent manner. This framework is flexible and capable of yield- 

ng customized information according to the user’s needs. The KPI 

an be changed or modified according to the characteristics of a 

articular scenario and used to define objective functions for mul- 

iple or single objective optimization. The proposed approach of 

ntegrating different software proved to be effective in developing 

etailed simulations without requiring customized software devel- 

pment. 

The applicability of the framework was demonstrated with a 

ase study that aimed to assess the technoeconomic feasibility of a 

embrane-based processes in the context of large-scale produc- 

ion. In this study, six process alternatives were optimized and 

ompared based on selected KPI (process time, COG, and buffer 
11 
onsumption). In the cases considered in this work, membrane 

latforms are attractive due to the short process time, though they 

resent slightly higher COG than the resin platform in disposable 

nd reusable configurations. This characteristic is essential in dis- 

osable platforms in which process times are considerably longer 

ue to the multicycle operation. The disposable alternatives offer 

ther benefits that are not investigated in this work. These benefits 

nclude the elimination of sanitization and cleaning steps, reduc- 

ion of storage space utilization, reduced capital investment, amor- 

ization of the media cost, and reduction of the requirements for 

he production clean rooms. Based on the data of the case study, 

e believe membrane chromatography may be preferred in scenar- 

os where disposable platforms are wanted and process time is a 

oncern. 
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