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ABSTRACT

We developed a computational framework that integrates commercial software components to perform
customizable technoeconomic feasibility analyses. The use of multiple software packages overcomes the
shortcomings of each to provide a detailed simulation that can be used for sensitivity analyses and op-
timizations. In this paper, the framework was used to evaluate the performance of monoclonal antibody
capture processes. To this end, the simulation framework incorporated dynamic models for the affinity
chromatography step that were validated with experimental breakthrough curves. The results were inte-
grated with an Intelligen SuperPro Designer process simulation for the evaluation of key performance in-
dicators of the operations. As proof of concept, the framework was used to perform a sensitivity analysis
and optimization for a case study in which we sought to compare membrane and resin chromatography
for disposable and reusable batch capture platforms. Two membranes and one resin were selected for the
capture media, which yielded six process alternatives to compare. The objective functions were set to be
cost of goods, process time, and buffer utilization. The results of the optimization of these process alter-
natives were a set of operating conditions that display tradeoffs between competing objectives. From this
application exercise, we conclude that the framework can handle multiple variables and objectives, and
it is adaptable to platforms with different chromatography media and operating modes. Additionally, the
framework is capable of providing ad hoc analyses for decision making in a specific production context.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Typically, biopharmaceuticals are manufactured in multiprod-
uct facilities that share resources among different programs [1].
Thus, flexible production processes capable of responding to sud-
den increases in demand are indispensable. To select the process
that provides the greatest flexibility, the techno-economic feasibil-
ity of different alternatives must be established before large in-
vestments are made in equipment and materials. Process Analyt-
ical Tools (PAT), such as mathematical models and computational
simulation tools, can be used to analyze the impact of changes
on the process prior to implementation [2]. The framework used
for this analysis must quantify the possible benefits in terms that
are relevant for the application. The models used to simulate the
process must depict the physical behavior of the operation accu-
rately and account for the impact of different variables. Finally, the
framework needs to provide parameter values for optimal opera-
tion conditions to enable a comparison of design alternatives that
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maximize process performance. Given the multiple requirements
for the technoeconomic study, there is no standalone software ca-
pable of delivering the desired results.

For the development of a computational framework that could
be implemented effectively in scenarios relevant to the biophar-
maceutical industry, we selected monoclonal antibody (mAb) pro-
duction as the model process. mAbs are used to treat chronic and
acute conditions including immunological disorders, cardiovascu-
lar diseases, many forms of cancer, and, recently, COVID-19 [3,4].
Improvements in the upstream process, like the development of
new cell lines and the adoption of perfusion technologies, have
yielded higher titers and shifted the capacity bottleneck and eco-
nomic load towards the downstream process (DSP) [5]. In this set-
ting, several techno-economic feasibility studies have been con-
ducted for mAb production, usually to evaluate continuous DSP al-
ternatives [6,7]. The capture chromatography step has been the fo-
cus of these studies. In an affinity chromatography operation, a dy-
namic model is necessary to simulate the physical phenomena in-
volved. These models vary in their complexity and applicability to
different systems [8-10]. A simulation featuring a dynamic model
is capable of predicting capture performance as a function of oper-
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ating conditions [11-14], allowing for optimization relative to these
conditions. When the simulation involves economic factors, the
frameworks frequently rely on production simulation software for
the calculation of the key performance indicator (KPI) [15]. These
economic analyses usually do not include a dynamic simulation;
thus, operating conditions affecting chromatography performance
are kept fixed [16-18]. In this regard, frameworks that incorporate
both dynamic simulations and cost analyses are preferred because
they are able to optimize economic indicators by changing process
operating conditions [19].

Instead of using the framework to assess the well-studied ben-
efits of continuous process platforms, in this study we explored
membrane chromatography as an alternative to the traditional
resin capture chromatography. Recent commercial products for
membrane chromatography show possible benefits for mAb cap-
ture that make it attractive for commercial applications [20]. For
example, Purilogics and Cytiva have demonstrated the advantages
of membrane technology at short residence times over their resin-
based process alternatives [21,22]. Despite small-scale applications
being the current niche for membrane capture chromatography,
manufacturers offer membrane modules intended for large-scale
applications in other operations of the DSP. For instance, Sarto-
rius offers ion-exchange membranes for use in commercial mAb
polishing applications in the form of stackable cassettes, making it
possible to customize the membrane volume according to the pro-
duction size [23]. We expect membrane modules for commercial-
scale capture applications to be widely available soon. The overar-
ching question is whether the productivity benefits justify the re-
placement of the well-established resin-based capture chromatog-
raphy platforms in industrial production scenarios. Some techno-
economic studies have sought to answer this question [20,24];
however, new simulation tools are necessary to stay current with
the latest membrane technologies and to allow more customization
in the study. A higher level of detail and personalization allows for
the simulation of realistic manufacturing scenarios, which yields
results that are relevant for industrial applications.

In this work, we present a computational framework able to
compare and simultaneously optimize membrane- and resin-based
mAb capture platforms in disposable and reusable configurations.
The framework incorporates dynamic models and economic analy-
sis from simulation software. In the following sections, we present
the theory behind the chromatographic adsorption models used in
the dynamic simulation, the formulation of the optimization prob-
lem, and the definition of the KPIs. The applicability of the frame-
work is demonstrated with a hypothetical case study featuring
state-of-the-art stationary phases. Through this limited case study,
we will show the robustness and flexibility of the framework to
adapt to specific scenarios and processes, with the level of detail
necessary to achieve relevant results for decision-making.

2. Theory

Column breakthrough curves were simulated using computa-
tional realizations of mathematical models for membrane and resin
chromatography found in the literature [25,26]. These computed
results were validated against experimental data. This section pro-
vides an overview of our simulation-based optimization frame-
work, along with the KPIs used to develop the objective functions.

2.1. Dynamic modeling of the chromatography column

The capture process comprises a sequence of operations: load-
ing, washing, elution, and regeneration. In this work, loading and
washing are simulated as dynamic systems. We assume behavior
for the elution and regeneration steps. In the loading step, product
molecules (e.g., mAb) in the feed stream are captured by binding
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sites located on the surface of the stationary phase (membrane or
resin). Eq. (1) describes the liquid phase material balance for this
step. J is the rate of mass per unit of volume leaving the liquid
phase, C is the concentration in the liquid phase, u is the velocity
vector and w is the porosity of the media. Danckwerts boundary
conditions are used as shown in Egs. (2) and (3) [10].

w% +J=-V . @WC)+V . (DVC) (1)
—(DVC) -n = u(Cy, —C) at inflow (2)
VC . -n =0 at out flow (3)

Only longitudinal dispersion is considered, meaning the disper-
sion tensor D in Eq. (1) has a single component (D). This com-
ponent is described using a high Peclet number approximation
(Eq. (4)). The parameter alpha is used as a fitting parameter to
match experimental breakthrough curves [25].

D=oxv (4)

Once the breakthrough curve is obtained, we can estimate the
dynamic binding capacity (DBC) for any breakthrough percentage.
Eq. 5 illustrates this calculation for a 10% breakthrough (DBCyg),
where MV is the media volume, Vygy is the load volume corre-
sponding to a breakthrough value of 10% of the feed concentra-
tion. Cj, and Coyt are the concentration of the streams entering and
leaving the solid media.

o (Cin - Cout) av

J
DBC]O — Vhold MV (5 )

2.2. Resin chromatography model

In resin chromatography, the rate of adsorption onto the solid
phase is controlled by two mass-transport diffusion steps: one
from the bulk to the resin through the film surrounding the par-
ticle in the packed bed and another from the surface of the resin
particle to the binding site through the pores. In this latter case,
an additional mass balance is necessary to describe the liquid con-
centration within the pores. Resin chromatography also requires
two distinct porosities: for the bed (wy,) and for the particle (wp)
[27]. The rate of mass entering the solid phase is described by the
shrinking core model [26]. This model is defined by the existence
of two types of binding sites, each with its own adsorption rate
and mass balance. The total solid phase concentration is the sum
of the concentration for the two types of sites. In this model, the
behavior of the rate of change in the concentration in both sites is
defined by an adsorption rate and a desorption rate. The adsorp-
tion rate is proportional to the pore concentration and to a dif-
ference in concentrations in the solid phase. The derivation of the
resin equations is shown in S2-S8 of Supporting Information.

2.3. Membrane chromatography model

In membrane chromatography, the feed solution passes through
the pores of the stationary phase where the binding sites are lo-
cated. This feature makes advection the controlling mechanism in
membrane chromatography [28]. In contrast, in resin-based chro-
matography, the feed solution largely flows through the interpar-
ticle void volume, and mAbs must diffuse into and through the
pores of the resin media to reach binding sites. The result is that
the DBC for membrane chromatography is insensitive to flow rate.
This allows for shorter residence times (RT) and, consequently,
faster processes [29]. The lack of long-range diffusion from the
bulk to the binding sites means that there is no additional ma-
terial balance for the pores, and the rate of material leaving the
liquid phase is equal to the adsorption rate in the solid phase [25].
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For membranes, film and pore diffusive resistance can be ne-
glected and an instantaneous adsorption process can be assumed.
In this case, the solid phase concentration is described by an equi-
librium isotherm. Different isotherm models such as Langmuir, bi-
Langmuir, steric hindrance, and spreading model can be used to
describe the thermodynamic behavior of the system [30]. These
models differ in their degrees of freedom and in the way that they
account for different molecular interactions between the adsorber
and protein, depending on factors such as ionic strength and pH
[31]. In this work, the Langmuir model was chosen because of its
simplicity and ability to fit experimental data accurately.

Usually, void volumes in membrane chromatography modules
are larger than resin-packed columns. For example, in a Sartorius
Sartobind-Q cassette, the membrane occupies 1.6 L of the total 4.5
L module inner volume [23]. At the beginning of the capture op-
eration, these spaces are filled with equilibration buffer (C=0) that
act as a diluent for the feed. To account for this effect, the void
volume was modeled as a perfectly mixed, continuously stirred
tank reactor (CSTR) located before the membrane [25]. The set of
equations describing the membrane adsorption in this simulation
is presented in S9-S13 of Supporting Information.

2.4. Wash step model

The wash step was modeled to account for adsorption that may
occur when there is still product passing through the system. In
the resin model, the adsorption rate becomes negative as C is set
to 0. Nevertheless, the total mass transfer coefficient (k) is, gen-
erally, small due to the approximation of q equal to qmax. Thus, the
model-derived mass of product eluted during the wash is negligi-
ble.

Unlike resins, the instantaneous adsorption model used for the
membranes requires modifications for the washing process. In this
case, the equilibrium condition implies that the concentration in
the solid phase will be zero if the concentration in the liquid is set
to zero, which would result in complete elution during the wash-
ing step. However, this behavior is not observed in practice, where
desorption does not occur significantly unless there is a reduction
in pH caused by the elution buffer. To account for this discrepancy,
the adsorption rate was set to zero when the model predicted neg-
ative values. This is implemented in the finite element approxima-
tion of the differential equation by setting the adsorption rate to
zero in each of the elements that constitute the membrane.

2.5. Key performance indicators

Table 1 introduces the KPIs that were used to explore the be-
havior of the simulation (through sensitivity analyses) and to de-
fine the objective functions for optimization. KPIs were selected
based on their frequent use in the literature and their capacity to
assess the efficient utilization of resources such as time, raw mate-
rials, and capture media volume. The analysis of the selected KPIs
is meant to provide insight into the influence of variables and pa-
rameters on process performance.

3. Materials and methods
3.1. Experimental breakthrough data

Purexa™A Protein A affinity membrane (0.2 mL) was purchased
from Purilogics (Greenville, SC). Hitrap Fibro™ PrismA membrane
(Cat # 17549856, 0.4 mL) was purchased from Cytiva (Bucking-
shamshire, UK). Polyethersulfone (PES) Nalgene Rapid-Flow Top Fil-
ter (0.2 pm, Cat. # 595-4520) was purchased from Thermo Fisher
Scientific (Waltham, MA). Lyophilized human immunoglobulin G
(higG > 95%) was purchased from Lee BioSolutions (Maryland

Journal of Chromatography A 1689 (2023) 463755

Heights, MO). Trisodium citrate dihydrate (>99%) was purchased
from Alfa Aesar (Ward Hill, MA). Citric acid (>99%) and phosphate
buffered saline (PBS) powder were purchased from Sigma-Aldrich
(St. Louis, MO).

Loading buffer A1 (1x PBS pH 7.4) was prepared by dissolving
1 pack of PBS powder in 1 L of deionized water from a Milli-Q®
Ultrapure purification system (Millipore Corp., Bedford, MA) and
adjusting to pH 7.4 using HCl. Elution buffer E1 was prepared by
adjusting 0.1M citric acid with 0.1M trisodium citrate until pH 3.0
was reached. Buffers were sonicated after preparation and subse-
quently filtered through a 0.2 pm PES filter. higG solutions were
prepared at 5 g/L in loading buffer A1 and filtered through a 0.2
pm PES filter.

DBC measurements were performed using an AKTA Purifier 100
chromatography system (Cytiva). Manufacturer volume specifica-
tions were used to calculate flow rate (or residence time) for each
membrane. The order of chromatographic operations was: equili-
bration, higG loading from a 150 mL superloop, washing, elution,
and washing. Membranes were equilibrated using 20 mL of buffer
A1 and loaded to at least 95% saturation with respect to the UV
signal of higG solution. Wash volume, using buffer A1, was 5 mL;
and elution volume, using buffer E1, was 5 mL. The effluent from
each membrane column was monitored using a UV detector at 280
nm.

DBC measurements were made using Eq. 5, where C;, is the
protein loading concentration, Vqgy is the volume at 10% break-
through relative to the absorbance of 5 g/L hIgG solution, Vg is
the system holdup volume measured with 2 wt% acetone in load-
ing buffer A1, and MV is the manufacturer specified membrane
volume.

MabSelect PrismA resin (Cytiva) was used as the reference for
the resin-based chromatography. The experimental breakthrough
data were obtained from the work by Sun et al.[14]. To fit the
shrinking core parameters for this resin, we selected data corre-
sponding to loading of a 2 g/L higG solution at residence times of
1, 2, and 3 min. (see Fig. 4 of Sun et al.[14]).

3.2. Dynamic model fitting and validation

Parameter values in the models were determined using opti-
mization to minimize the sum of the squared residuals between
the experimental data and the simulated model. For membranes,
the mass transport equation, Eq. (1), was closed using relation-
ships defined in Eqgs. (4), (S9), and (S11). An approximate solution
was generated by discretizing in space using streamline-upwinded
Galerkin (SUPG) finite elements and backward Euler discretization
in time [34]. The resulting system is solved using FreeFEM finite
element software [35].

Eq. (S13) was used to model the concentration entering the
membrane. The value of Vcgrg was measured experimentally to be
1.0 mL for both membrane columns. The membrane thickness was
measured as 0.4 mm for Purexa-A and 0.7 mm for Fibro Prism-
A. The porosity for both membranes was assumed to be 80% [23].
The Langmuir parameters (qmax and K) and the dispersity coeffi-
cient (o) are the fitting parameters for each membrane. They were
found by minimizing the sum of squared residuals between the
model and the data up to 80% breakthrough. This maximum break-
through was selected according to preliminary results in which
we observed the limitations of the model to describe the behav-
ior of the system at higher percentage breakthrough. One of the
derivative-free optimization algorithm in MATLAB (i.e., fminsearch)
was used to perform the optimization and obtain the fitting pa-
rameters [36]. Derivative-free algorithms require only values of the
objective function, allowing us to use the finite element model as
a black box [37].
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Table 1

Definition of the KPIs used in this work and the rationale for its selection.
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KPI
Maximum
breakthrough

Yield

Capacity
utilization (CU)
Buffer
consumption

Product
concentration
Process time

COG

Definition

Quotient of the highest concentration of product leaving the column
and the feed concentration (Cgeq) at any point during the loading and
washing steps [32].

Quotient of the total mass of mAb recovered as product in the elution
pool and the total mass of mAb loaded onto the column [26].

Quotient of the DBC before elution and the model-derived equilibrium
binding capacity (EBC) for Cgeeq [12].

Total volume of buffer consumed defined mathematically using Eq.
(6)Vhusfer = Vinedia x > MV; (6)MV; is the volume of buffer (in terms of

1
media volume) used in each of the i operations that constitute the
capture purification process.
mAb concentration in the stream leaving the column during elution.

Sum of loading time (t;,q) and additional times (t,qq) attributed to all
other operations in the capture purification process defined by Egs.

(7) and (8).
Viaicr _ Voaren*RT
fioad = it = s, (7)

My _ Mv;
tadd = Vimedia x Z = inedia % Z o (8)

1 1
F; is the flowrate for process i, v; is the average flow velocity for
process i and hyeqi, is the column height/membrane thickness.
Quotient of operating costs of the capture purification process and the

Rationale

This KPI is used to assess the accuracy of the dynamic simulation. To
this end, the maximum breakthrough must be in the range set by the
model validation.

Yield is a key indicator of process efficiency. It quantifies mAb
recovered as a product after all process operations. Since neither
elution nor desorption during wash are simulated, a 5% product loss is
assumed based on the DBC obtained from the capture and wash
simulations.

This KPI is an indicator of efficiency in the use of media volume,
which has repercussions in the consumables cost.

This KPI accounts for the buffer used in a single batch. In addition to
being related to the buffer costs it also can be used to assess
sustainability and the overall footprint of the operation.

High product concentration is related to reduced buffer utilization and
low processing time in subsequent DSP operations.

This KPI represents the total time necessary for the processing of one
batch. This is useful to calculate either the maximum output given a
time constraint, or the time needed to process a determined number
of batches.

This KPI is an intensified measurement of cost. It enables comparison

total mass of mAb in the elution pool [15].

Productivity
product of membrane/resin volume and process time [33].

Quotient of the total mass of mAb product and the multiplication

of economic efficiency of processes with different scales of production
and yields. In this work, only consumables and buffer were considered
in the operating costs.

This KPI is a compound indicator that relates product yield to the use
of time and media. It is useful to compare the production rate of
processes with different scales.

For resins, an approximate solution to the system of partial dif-
ferential equations (PDEs) was generated using one-dimensional
flow in the vertical direction and discretizing using finite differ-
ences in space over the length of the column. The result is a set of
first-order ordinary differential equations (ODEs) that were solved
using MATLAB implementations of ODE variable time stepping al-
gorithm Ode15s [38]. Again, least squares minimization with MAT-
LAB fminsearch was used to fit the five parameters needed for
the shrinking core model (K,, ki1, ka2, km and qmax) [11] and «
for Eq. (4). For all three of the chromatography media, parame-
ters were fitted for each of three data sets with distinct residence
times. A weighted average of these values was used as the param-
eter estimate for all curves.

3.3. Framework structure

The framework employs simulation-based optimization, which
is defined using a feedback loop between an optimization algo-
rithm and a process simulation tool. The optimization algorithm
exchanges information with the simulator, selecting input param-
eters based on feedback provided through evaluation of the ob-
jective functions. In our work, the optimization was performed
in MATLAB; the simulation was performed using SuperPro De-
signer for material, time, and economic calculations; and FreeFEM
or MATLAB was used for transport modeling (Fig. 1). Communi-
cation was established using Object Linking and Embedding (OLE)
technology, which relies on the Component Object Model (COM)
architecture shared by all these software environments. After the
dynamic simulation generates the breakthrough curve for loading
and wash operations, the DBC is calculated by numerical integra-
tion per Eq. 5. In the case of membranes (FreeFEM), the DBC re-
sult is recorded in a text file and then read by MATLAB. (For resins
the DBC result is already in this environment.) Then, the DBC is
exported to an Excel file along with other information necessary
for the process system simulation. Excel is used to collect, process,

and exchange information between the optimization algorithm and
the process simulation in SuperPro Designer using Visual Basic
for Applications. Finally, the simulation outcomes are saved in
the Excel file and read by the optimization algorithm running in
MATLAB.

As the multiple simulation programs offer complementary fea-
tures, combining them enables a more comprehensive process sim-
ulation than any single software. FreeFEM, in the case of mem-
branes, and MATLAB, in the case of resins, solve the transport
equations and provide the DBC at the operating conditions spec-
ified by the MATLAB optimization algorithm. In the case of Super-
Pro Designer, we used the built-in libraries and models to perform
material balances and economic calculations used by the objec-
tive functions [39]. The objective function values were then used
to generate new design points for consideration.

3.4. Case study

The objective of the case study was to assess the benefits of
six process alternatives defined using three chromatography media
on disposable and reusable platforms. The stationary phases con-
sidered were the Prism-A resin, and the Purilogics Purexa™-A and
Cytiva Fibro PrismA membranes. The design variables were the vol-
ume of chromatography media (membrane or resin) and residence
time.

Whereas a reusable platform regenerates the chromatography
media and stores it for future batches, the media in a disposable
platform (usually contained in pre-packed columns) is used for a
batch and discarded. To be economically feasible, the disposable
platforms must feature lower media volumes than the reusable
platforms for the same batch volume to process. This is achieved
by dividing the batch volume into fractions and loading them in
multiple cycles. In this case study, the number of cycles is set to
match the lifespan of the media, i.e., the maximum number of
cycles the media can be used before losing its performance due
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Fig. 1. General representation of the computational framework.

to fouling, Protein A leakage, and other deteriorating mechanisms.
With this constraint, we ensured that the media is used until the
end of its lifespan. Finally, the number of cycles was set to be one
for the reusable platform since the media gets used until the end
of its lifespan independently of the number of cycles per batch,
and a single cycle offers the fastest operation.

We also designed the case study to evaluate the impact of the
different process alternatives on resources that could act as con-
straints for the feasibility of the operation. For an existing facility,
the constraints include the cost of the operation, process footprint,
and allocated process time. Thus, we selected, optimized, and eval-
uated the tradeoff among three specific KPIs that represent the uti-
lization of each of these resources. For cost, we selected COG as
the indicator. Buffer consumption was selected as a KPI for process
footprint because of the high impact that the buffer volumes have
in the amount of waste produced in the operation. Finally, process
time was selected as a KPI since it can be used to set shifts and
ensure compliant holdup times.

3.5. Process simulation

The SuperPro Designer flowsheet consists of a chromatography
column unit operated under bind and elute mode. A full cycle
consists of load, wash, elution, and regeneration I operations. Ad-
ditional regeneration II and equilibration operations are executed
once per batch. Since the manufacturers of the membranes cho-
sen in this study do not currently offer modules for large scale ap-
plications, the characteristics of such modules are estimated. The
membrane to void volume ratio (Vembrane/Vestr) Was estimated us-
ing Sartorius Sartobind cassettes as a model (1.6 L membrane/2.9
L void space) [23]. There is no reference for these membranes in
large-scale application, so we assumed a scenario where the cost
per liter of membrane and the replacement frequency are the same
as those of resins, which were retrieved from the SuperPro De-
signer library. A height of 15 cm was used for the resin column;
this is an intermediate value in the recommended range for this
parameter [40]. Fig. 2 displays the process flowsheet and Table 2
shows the process variables used as parameters for the processes
in the case study.

Table 2

Fixed design variables.
Design Variables Value
Ratio Vmembrane/vcstr 0.55
Buffer cost $3/L
Stationary phase cost $7358/L
MV Wash 10
v Wash 225 cm/h
MV Elution 4
v Elution 150 cm/h
MV Regeneration [ 6
v Regeneration | 300 cm/h
MV Regeneration II 9
v Regeneration Il 300 cm/h
MV Equilibration 6
v Equilibration 300 cm/h
Vhatch 2000 L
Replacement frequency 80 Cycles

4. Results and discussion
4.1. Breakthrough curves, validation, fitting parameters

Fig. 3 shows the Purexa™-A and Fibro PrismA membrane
breakthrough curves at different RT for experimental and simu-
lated data. In the experimental data, there is no observable corre-
lation between RT and the shape of the curves, which supports the
equilibrium adsorption model as an appropriate choice. The model
parameters were determined by fitting the model to the data for
5, 12 and 30 s RT and averaging the resulting values. These RT
values were chosen because high productivity is expected for fast
processes. Table 3 shows the averaged values used for the break-
through simulation. Fig. 3 illustrates the good agreement between
the empirical and simulated breakthrough curves up to 80% break-
through. Above this value, steric hindrance effects begin to have a
more significant effect on breakthrough [41] and the model loses
some accuracy.

Similarly, for resin chromatography (Fig. 4), the parameter fit-
ting was performed for each breakthrough curve and a weighted
average was taken (Table 3). For the 1- and 2-min RTs, we ob-
served an agreement between the simulated and experimental
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Fig. 2. Flowsheet for the capture process simulated in SuperPro Designer. The process solutions contained in Disposable Containers for Storage (DCS) are fed with Diaphragm
Pumps (DP) into the chromatography unit (C). The resulting product is then recovered in a vessel (V).
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Fig. 3. Experimental and simulated breakthrough curves for Purexa™-A membrane (left) and Fibro PrismA membrane (right) at different RT. RMSE values for Purexa™-A
membrane curves are 0.0283, 0.0370 and 0.0419 mL/mL for 5,12 and 30s RT. RMSE values for Fibro PrismA membrane curves are 0.0347, 0.0505 and 0.0401 mL/mL for 5,12

and 30s RT.

Table 3
Values for the fitting parameters

PrismA resin parameters

Ky [L/g] ky [g/(L min)] k; [g/(L min)]
101+£23 0.37740.137 0.199+0.046
Fibro PrismA membrane parameters

K [L/g]

0.888+0.17

Purexa™-A membrane parameters

K [L/g]

0.623+0.207

Km [cm/min] Qmax [g/L] a [cm]

0.00157+0.00166 139+11 0.0257+0.012
qmax [g/L] o [cm]
103+12 0.028+0.002
qmax [g/L] o [cm]
117+10 0.0139+0.0005

breakthrough curves for values up to 90% breakthrough. For the
3 min RT, good agreement between simulation and experimen-
tal data is observed up to approximately 20% (0.4 mg/mL) break-
through. Notably, the laboratory column has a height of 5 c¢m, so,
to maintain the same average flow velocities for the commercial-
scale process column (15 cm), the residence time interval must be
adjusted from 1-3 min to 3-9 min.

4.2. Sensitivity analysis

The influence of the design variables on process KPIs was in-
vestigated by varying the media volume at two values of RT.
Fig. 5 presents the results for reusable (single cycle) processes. The
model-derived EBC values for the Prism-A resin, Purexa™-A mem-
brane, and Fibro PrismA membrane were 87, 89, and 79 mg/mL.
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Fig. 4. Experimental [33] and simulated breakthrough curves for Prism-A resin at
different residence times: 1 min (300 cm/h), 2 min (150 cm/h) and 3 min (100
cm/h). RMSE values are 0.0243, 0.0179 and 0.0557 mL/mL for 1, 2, and 3 min RT
curves.

Fig. 5A shows maximum breakthrough attained after loading
2000 L batch feed with a 5 g/L titer. For all series, we have the
same behavior; that is, almost 100% breakthrough at low me-
dia volumes and a gradual descent to 0% breakthrough when the
media volume is large enough to capture all the loaded mate-
rial. The difference in the shape of the curves is related to both
the characteristic EBC of the media and the system dispersion. In
our simulations, the curves for the resin chromatography columns
present sharper fronts than the membrane columns at both levels
of residence times. Additionally, the sharpness of the resin curve
at higher residence times is consistent with a diffusion-controlled
process.

In Fig. 5B we observe how yield is solely a function of media
EBC at low media volumes, where the stationary phase is satu-
rated, and breakthrough is close to 100%. However, as media vol-
ume increases, dispersion effects start to play a role in yield perfor-
mance. In membranes, dispersion makes reaching 0% breakthrough
difficult, provoking lower yields compared with resins at higher
media volumes.

A different tendency for CU is observed in Fig. 5C. In the region
of low media volume, where the media becomes saturated, CU is
constant at 100%. CU starts to decrease as media volume increases.
For large media volumes, amount of product per unit volume to
capture is lower than for small media volumes because load is kept
fixed. This reduction in relative load translates into low CU (under-
utilized media).

From the definition of buffer consumption (Eq. 6 in Table 1) we
note this value is directly proportional to media volume. Since the
relative buffer volumes (MV;) are fixed parameters given by the
capture protocol (Table 2), we observe a common line for all series
in Fig. 5D.

The behavior of buffer consumption has an effect on the final
product concentration (Fig. 5E) and yield. An increase in buffer
consumption, specifically during elution, dilutes the product. This
is more noticeable when the media is not saturated. We observe
that at low volumes (complete saturation) the product concentra-
tion is controlled by yield performance. As volume increases, the
rise in elution buffer consumption is compensated by higher yields.
Nevertheless, as yield reaches its maximum value, the concentra-
tion becomes more dependent on media volume, and all series
tend to converge.

The definition of process time (Eq. (7)) indicates that load time
is inversely proportional to the media volume and proportional to
RT. The additional time (Eq. 8)) is proportional to the media bed
height, which is kept constant despite the changes in volume. This
corresponds with Fig. 5F, where we see that the RT has a strong in-
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fluence on process time. The result is that membrane processes are
much faster than the resin processes, and the Purexa™-A mem-
brane process is slightly faster than the Fibro PrismA one.

COG is affected by buffer consumption, yield, and media vol-
ume. The cost of the media as a consumable is proportional to its
volume. In the same way, buffer cost is proportional to its utiliza-
tion (which also is proportional to media volume). These costs can
be decreased by lowering media volumes at the expense of yield.
Yield affects COG through the cost of lost product and the total
mass of product obtained in each batch. These competing factors
lead to a minimum COG as shown in Fig. 5G. Figure S1 (Support-
ing Information) provides detail on this tendency and shows the
minimum COG values and corresponding media volume for each
process alternative.

In a similar way, productivity (Fig. 5H) reaches a maximum
value with an intermediate value of media volume. This KPI of-
fers a comprehensive measure of capture efficiency, as it consid-
ers how much product is obtained relative to the process time and
media volume used. Initially, we observe a rise in productivity as
increases in media volumes correspond with increases in process
time and yield. This tendency continues until the point at which
yield and process time stabilize. From this point on, any additional
increase in media volume leads to a corresponding decrease in
productivity. Figure S2 shows the maximum values for productivity
and the corresponding media volumes.

For disposable platforms (Fig. 6), we observe the same KPI ten-
dencies of the reusable single cycle platforms, but at a lower me-
dia volume scale. A volume scale from 0.5 to 2.6 L was selected
for the sensitivity analysis to observe different maximum break-
throughs in the system. The minimum COG and maximum produc-
tivity are presented in Figures S3 and S4 with their corresponding
media volumes.

The previous sensitivity analyses indicate that the flow rate in-
fluences only the time dependent KPIs (process time and produc-
tivity). In these cases, the performance increases with lower resi-
dence time, a behavior consistent with the instantaneous adsorp-
tion model used for membranes. Based on this, we set RT as a pro-
cess parameter instead of a variable for membranes, fixing it at the
lower bound of the search space (5 s).

The resin also exhibits higher performance in time dependent
indicators at low RT. Unlike membranes, however, RT affects max-
imum breakthrough, along with other indicators conditioned by
it (yield, CU, product concentration, annual processing time, COG,
and productivity). We observe that all these KPI deteriorate at
lower RTs. Thus, we select the design variables for resin processes
to be both RT and column volume.

From the sensitivity analysis, we note the behavior of the KPIs
as follows: maximum breakthrough defines the behavior of yield
and CU; buffer utilization is directly proportional to the media vol-
ume; and process time is a function of media volume, RT, and col-
umn height/membrane thickness. The behavior of all other KPIs
is explained by the interaction of yield, CU, buffer utilization, and
process time.

When comparing disposable against reusable single cycle pro-
cesses, we observe that the performance of most KPIs is compara-
ble. This is the case with maximum breakthrough, yield, CU, and
product concentration. In contrast, time-dependent KPIs, namely
process time and productivity, are affected proportionally by the
reduction in media volume. In the case of buffer consumption, we
observe that the proportional reduction in media volume is com-
pensated by a proportional increase in the number of cycles. This
situation causes the wash, elution, and regeneration I buffer vol-
umes to be the same as for single cycle platforms. Nevertheless,
equilibration and regeneration II are operations that take place
only once per batch. Thus, the lower media volume causes a re-
duction in the buffer utilization for these operations. This effect
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Fig. 5. Single cycle process sensitivity analyses for different KPI varying media volume for two values of residence time and three stationary phases. Fig. S1 (Supporting
Information) provides detail on this tendency and shows the minimum COG values and corresponding media volume for each process alternative. Fig. S2 shows the maximum

values for productivity and the corresponding media volumes.

translates into a reduction in total buffer consumption for dispos-
able platforms compared with the single cycle process. These ten-
dencies can be better observed when looking at the Pareto fronts
presented in the next section. We see that disposable platforms
have significantly higher process times than single cycle platforms.
In contrast, disposable platforms require lower buffer consumption

and have a slightly lower COG.

4.3. KPI tradeoff and optimization

Pareto fronts were generated using the multi-objective genetic
algorithm (GA) in MATLAB [42]. When a single objective (i.e., COG)
was needed, other derivative-free algorithms could be used. For
each of the six platforms, the optimization results for the GA were
obtained using five generations each with 25 members. The GA
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Fig. 6. Disposable media process sensitivity analyses for different KPI varying media volume for the different stationary phases. The minimum COG and maximum produc-

tivity are presented in Figs. S3 and S4 with their corresponding media volumes.

was set to optimize media volume for membrane-based platforms,
and media volume and RT for resin-based platforms. Based on the
sensitivity analysis, the search space was defined to be [40,200] L
of media for the single cycle processes and [0.6-2.5] L for the dis-
posable platforms. For the case of resin, a RT search space of [3-
9] min was selected based on the range in which the model was
fitted.

In the case of the Pareto fronts for buffer consumption and cy-
cle time (Fig. 7), the optimal process configurations contain mem-
brane volumes from the entire search space. This occurs because
any improvement in cycle time is detrimental to buffer consump-
tion, and vice-versa. This behavior can be observed in the sensi-
tivity analisis (Figs. 5 and 6) where the buffer consumption in-
creases steadly with increases in media volume. Meanwhile, pro-
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Fig. 8. Pareto fronts for process time and COG optimization for the different sta-
tionary phases in reusable single cycle and disposable configurations.

cess time decreases monotonically. Because of the much longer
residence times in resin-based processes we observe a large dif-
ference in process time compared with membrane platforms.

In Fig. 8, the COG and process time points along the Pareto
front represent membrane volume configurations spanning from a
minimum value in COG (corresponding to around 180 L for sin-
gle cycle platforms and 2.4 L for disposable platforms) to the top
end of the search space. This behavior is consistent with the ten-
dency of cycle time to decrease when media volume increases. De-
spite having RT as an additional variable, resins follow the same
tendency with respect to volume, which is the main contributor
to these KPI. We observe how resins can achieve lower COG than
membranes due to the higher DBC, at the cost of high RT.

For the COG and buffer Pareto fronts (Fig. 9), the membrane
volume spans from the value corresponding to the minimum COG
towards the lower end of the search space (40L of media for the
single cycle processes and 0.6L for the disposable platforms). This
is consistent with the tendency of this indicator to decrease at
low media volumes. As discussed in the sensitivity analysis, the
buffer utilization constantly increases with media volume while
COG reaches a minimum. Initially, as media volume increases, the
accompanying yield decreases COG even as buffer consumption in-
creases.

The final selection of the best process configuration will depend
on the user’s priorities and resources. However, it is possible to
explore the process alternatives for our case study from the opti-
mal operating conditions contained in the Pareto fronts. Comparing
the membrane alternatives, the Purexa™.-A offers a slightly shorter
process time than the Fibro PrismA membrane. In contrast the Fi-
bro PrismA membrane offers lower COG values due to its higher

10

Journal of Chromatography A 1689 (2023) 463755

7,000
O Fibro Prism-A memb. 5s RT Disposable
6,000 Purexa-A memb. 5s RT Disposable
Fibro Prism-A memb. 5s RT Reusable

__ 5,000 A Purexa-A memb. 5s RT Reusable
s < Prism-A resin Reusable
8 4,000 - ¥ Prism-A resin Disposable
~ Q
= Q
& 3,000 A =
5 p .
@ ¢ (0] e

2,000 + b= y

; O o
1,000 -
0 T T T T T T |
4 8 12 16 20 24 28 32
COG [USD/g]

Fig. 9. Pareto fronts for buffer utilization and COG optimization for the different
stationary phases in reusable single cycle and disposable configurations.

yield. At the moment, none of the membrane manufacturers offer
modules suitable for large scale production processes, so the ac-
tual performance will depend on the void volume and the price of
a real module.

Comparing the alternatives for single cycle operation, the resin-
based process offers an advantage over membranes in terms of
COG, as it reaches a minimum value that is 28-30% lower than the
lowest values for the Fibro PrismA and Purexa™-A membranes.
This comes with a high cost in terms of process time, which is 107
and 122 times longer than the Fibro PrismA and Purexa™-A. De-
spite the significantly longer process time, this value ranges from
2.1 to 3.1 h for all points in the Pareto front for the reusable resin
platform, which is within a standard 8 h work shift. In the case of
disposable processes, the membrane platforms are the only options
able to attain process times suitable for one shift operation. While
the process time for these platforms is in the range of 1.0-4.5 h,
the resin based disposable process has a process time of 113-188
h. Finally, we can see how an increase in COG is the difference
between a resin-based reusable platform and a membrane-based
disposable platform, the latter of which is more efficient in terms
of buffer consumption for the same range of process time. Finally,
to compare all process alternatives we present the minimum KPI
values observed in this study in Table 4. In this table, the optimal
KPI values are normalized using the reusable resin platform as the
base case.

4.4. Framework advantages and limitations

With a case study featuring both resin and membrane media,
we demonstrated the ability of the framework to handle different
types of media. However, the framework offers the option to eval-
uate addition media alternatives such as monoliths. If the media
can be described using the previously presented models, then a
change in parameters is the only requirement to adapt the frame-
work. Otherwise, additional modifications may be needed, e.g., us-
ing a different isotherm equation to describe adsorption equilib-
rium. With these considerations, the framework could be used to
simulate other affinity and non-affinity media used for capture or
polishing operations.

The modular structure of the framework (see Fig. 1) offers the
advantage of adjusting the level of detail of the simulation accord-
ing to the user needs and knowledge of the operation. For exam-
ple, if the parameters affecting breakthrough curves are kept fixed,
the yield would be fixed as well, thus the dynamic simulation
module could be eliminated. Moreover, other process simulation
software with different features could be used instead of SuperPro
Designer depending on the user’s preference and resources—given
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Table 4

Platform performance summary. Reusable Prism-A resin was selected as the base case.
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Operating Normalized minimum

Media condition RT Media Vol.
COG Process t Buffer Cons.

Prism-A resin Reusable [3-9] min [40,200] L 1 1 1
Prism-A resin Disposable [3-9] min [0.6-2.5] L 0.9 53.9 0.58
Fibro Prism-A Reusable 5s [40,200] L 1.4 0.01 1.00
memb.
Fibro Prism-A Disposable 5s [0.6-2.5] L 1.2 0.58 0.58
memb.
Purexa-A Reusable 5s [40,200] L 1.4 0.01 1.00
memb.
Purexa-A Disposable 5s [0.6-2.5] L 1.2 0.50 0.58
memb.

the software supports OLE technology). This structure allows the
framework to simulate operations other than capture chromatog-
raphy.

In the case study, we assess the capacity of the framework to
yield optimized process conditions for different combinations of
three KPI. Nevertheless, it is possible to select one or several of the
eight KPI that the simulation provides as objective functions for
the optimization problem. It also is possible to select different pro-
cess parameters as variables. For example, instead of having media
volume as a variable to find an optimal process time we could set
media volume as a parameter and set flowrate as the variable to
optimize productivity. This way, the new framework offers the ad-
vantage of customizing the optimization according to the problem
characteristics.

Currently the framework has some limitations in optimization
capacity and computational efficiency. It is capable of simulating
only batch processes with continuous variables. In ongoing efforts,
we are expanding its capacities to simulate multi-column contin-
uous and semi-continuous platforms. The optimization algorithm
for those platforms must handle mixed-integer values for variables
like number of columns or cycles. The additional variables and
more complex simulations are expected to have a considerable im-
pact on the computational requirements for the optimization. Con-
sequently, new strategies need to be implemented to improve the
computational efficiency of the framework. Given that one of the
objectives of this framework is the ease of implementation, the ca-
pacity to run on a general-purpose computer is essential.

5. Conclusions

A computational framework was developed for evaluating the
performance of antibody capture processes. The proposed frame-
work is robust and adaptable to specific products and platforms.
The simulation elements of the framework are based on funda-
mental knowledge of the process, and its parameters can be ob-
tained from experimental data. Results from the sensitivity analy-
ses show how changes in process parameters impact the KPI in a
consistent manner. This framework is flexible and capable of yield-
ing customized information according to the user’s needs. The KPI
can be changed or modified according to the characteristics of a
particular scenario and used to define objective functions for mul-
tiple or single objective optimization. The proposed approach of
integrating different software proved to be effective in developing
detailed simulations without requiring customized software devel-
opment.

The applicability of the framework was demonstrated with a
case study that aimed to assess the technoeconomic feasibility of a
membrane-based processes in the context of large-scale produc-
tion. In this study, six process alternatives were optimized and
compared based on selected KPI (process time, COG, and buffer

1

consumption). In the cases considered in this work, membrane
platforms are attractive due to the short process time, though they
present slightly higher COG than the resin platform in disposable
and reusable configurations. This characteristic is essential in dis-
posable platforms in which process times are considerably longer
due to the multicycle operation. The disposable alternatives offer
other benefits that are not investigated in this work. These benefits
include the elimination of sanitization and cleaning steps, reduc-
tion of storage space utilization, reduced capital investment, amor-
tization of the media cost, and reduction of the requirements for
the production clean rooms. Based on the data of the case study,
we believe membrane chromatography may be preferred in scenar-
ios where disposable platforms are wanted and process time is a
concern.

Declaration of Competing Interest

Scott Husson has an ongoing financial interest in Purilogics and
provides consulting services to the Company.

CRediT authorship contribution statement

Juan J. Romero: Conceptualization, Formal analysis, Investiga-
tion, Methodology, Writing - original draft, Writing - review &
editing. Eleanor W. Jenkins: Conceptualization, Formal analysis,
Funding acquisition, Methodology, Resources, Supervision, Writing
- review & editing. Joshua Osuofa: Investigation, Writing - original
draft. Scott M. Husson: Conceptualization, Formal analysis, Fund-
ing acquisition, Methodology, Project administration, Supervision,
Resources, Writing - review & editing.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Institute of Gen-
eral Medical Sciences of the National Institutes of Health under
award number R15 GM131341 and the National Science Founda-
tion under award DMS-2011902. S.M.H. acknowledges support from
the William B. “Bill” Sturgis, ‘57 and Martha Elizabeth “Martha
Beth” Blackmon Sturgis Distinguished Professorship in Chemical
and Biomolecular Engineering. We thank Dr. Dong-Qiang Lin’s re-
search group from Zhejiang University for kindly providing the
breakthrough data for the Prism-A resin. Also, we thank James
Angelo (Biologics Process Development, Bristol-Myers Squibb, Inc.,
Devens, MA) for helpful discussions concerning industrial capture
processes.


https://doi.org/10.13039/100000057
https://doi.org/10.13039/100000002
https://doi.org/10.13039/100000001

J.J. Romero, EW. Jenkins, J. Osuofa et al.
Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.chroma.2022.463755.

References

[1] S. Misra, C.T. Maravelias, in: Overview of Scheduling Methods for Phar-
maceutical Production, Springer, Cham, 2022, pp. 355-371, doi:10.1007/
978-3-030-90924-6_13.

[2] FDAGuidance for Industry PAT - A Framework for Innovative Pharmaceuti-

cal Development, manufacturing, and Quality Assurance, 2004 http://www.fda.

gov/cvm/guidance/published.html accessed August 4, 2020.

I. Hernandez, S.W. Bott, A.S. Patel, C.G. Wolf, A.R. Hospodar, S. Sampathkumar,

W.H. Shrank, Pricing of monoclonal antibody therapies: higher if used for can-

cer? Am. ]. Manag. Care. 24 (2018) 109-112 www.ajmc.com. accessed April 5,

2021.

P.C. Taylor, A.C. Adams, M.M. Hufford, I. de la Torre, K. Winthrop, R.L. Gottlieb,

Neutralizing monoclonal antibodies for treatment of COVID-19, Nat. Rev. Im-

munol. (2021) 1-12, doi:10.1038/s41577-021-00542-x.

[5] J. Xu, X. Xu, C. Huang, J. Angelo, C.L. Oliveira, M. Xu, X. Xu, D. Temel, ]. Ding,

S. Ghose, M.C. Borys, Z]. Li, Biomanufacturing evolution from conventional

to intensified processes for productivity improvement: a case study, MAbs 12

(2020) 1770669, doi:10.1080/19420862.2020.1770669.

V.K. Norbert Gottschlich, Purification of monoclonal antibodies by simulated

moving-bed chromatography, J. Chromatogr. A. 765 (1997) 201-206, doi:10.

1002/9780470444894.ch6.

K. Behere, S. Yoon, Chromatography bioseparation technologies and in-silico

modelings for continuous production of biotherapeutics, J. Chromatogr. A. 1627

(2020) 461376, doi:10.1016/j.chroma.2020.461376.

LK. Shekhawat, A.S. Rathore, Preparative biochemistry and biotechnology an

overview of mechanistic modeling of liquid chromatography, Prep. Biochem.

Biotechnol. 40 (2019) 623-638, doi:10.1080/10826068.2019.1615504.

N.G. Pinto, E.E. Graham, Application of the shrinking-core model for predicting

protein adsorption, React. Polym. lon Exch. Sorbents. 5 (1987) 49-53, doi:10.

1016/0167-6989(87)90164-4.

S.Y. Suen, M.R. Etzel, A mathematical analysis of affinity membrane biosep-

arations, Chem. Eng. Sci. 47 (1992) 1355-1364, doi:10.1016/0009-2509(92)

80281-G.

D. Baur, J.M. Angelo, S. Chollangi, X. Xu, T. Miiller-Spath, N. Zhang, S. Ghose,

ZJ. Li, M. Morbidelli, Model assisted comparison of Protein A resins and multi-

column chromatography for capture processes, J. Biotechnol. 285 (2018) 64-73,

doi:10.1016/j.jbiotec.2018.08.014.

D. Baur, M. Angarita, T. Miiller-Spdth, F. Steinebach, M. Morbidelli, Comparison

of batch and continuous multi-column protein A capture processes by optimal

design, Biotechnol. J. 11 (2016) 920-931, doi:10.1002/biot.201500481.

[13] J. Pollock, G. Bolton, J. Coffman, S.V. Ho, D.G. Bracewell, S.S. Farid, Optimis-

ing the design and operation of semi-continuous affinity chromatography for

clinical and commercial manufacture, J. Chromatogr. A. 1284 (2013) 17-27,

doi:10.1016/j.chroma.2013.01.082.

Y.N. Sun, C. Shi, Q.L. Zhang, S.J. Yao, N.K.H. Slater, D.Q. Lin, Model-based pro-

cess development and evaluation of twin-column continuous capture pro-

cesses with Protein A affinity resin, J. Chromatogr. A. 1625 (2020) 461300,

doi:10.1016/j.chroma.2020.461300.

0. Yang, M. Qadan, M. lerapetritou, Economic analysis of batch and continuous

biopharmaceutical antibody production: a review, ]J. Pharm. Innov. 15 (2020)

182-200, doi:10.1007/s12247-018-09370-4.

[16] J. Pollock, J. Coffman, S.V. Ho, S.S. Farid, Integrated continuous bioprocessing:

economic, operational, and environmental feasibility for clinical and commer-

cial antibody manufacture, Biotechnol. Prog. 33 (2017) 854-866, doi:10.1002/
btpr.2492.

AL Grilo, M. Mateus, M.R. Aires-Barros, A.M. Azevedo, Monoclonal antibod-

ies production platforms: an opportunity study of a non-protein-A chromato-

graphic platform based on process economics, Biotechnol. J. 12 (2017) 1-10,

doi:10.1002/biot.201700260.

[18] J. Hummel, M. Pagkaliwangan, X. Gjoka, T. Davidovits, R. Stock, T. Ransohoff,

R. Gantier, M. Schofield, Modeling the downstream processing of monoclonal

antibodies reveals cost advantages for continuous methods for a broad range

of manufacturing scales, Biotechnol. ]. 14 (2019), doi:10.1002/biot.201700665.

B.K. Nfor, T. Ahamed, G.W.K. van Dedem, P.D.E.M. Verhaert, LA.M. van der

Wielen, M.H.M. Eppink, EJ.AX. van de Sandt, M. Ottens, Model-based ratio-

nal methodology for protein purification process synthesis, Chem. Eng. Sci. 89

(2013) 185-195, doi:10.1016/j.ces.2012.11.034.

i3

[4

6]

[7]

[8

9

(10]

(1]

[12]

[14]

[15]

[17]

[19]

12

Journal of Chromatography A 1689 (2023) 463755

[20] S. Nadar, G. Shooter, B. Somasundaram, E. Shave, K. Baker, L.H.L. Lua, Intensi-
fied downstream processing of monoclonal antibodies using membrane tech-
nology, Biotechnol. J. 16 (2021) 2000309, doi:10.1002/biot.202000309.

Cytiva LifeSciencesHiTrap Fibro PrismA units HiScreen Fibro PrismA, 2021

https://cdn.cytivalifesciences.com/dmm3bwsv3/AssetStream.aspx?media

formatid=10061&destinationid=10016&assetid=33339 accessed May 26, 2021.

PurilogicsPurexa™ A - Protein A Membrane Chromatography for Fast Anti-

body Purification, 2021 https://www.purilogics.com/research-scale-affinity-

membrane-adsorbers/purexa-a-protein-a-affinity-membrane-adsorber ac-

cessed September 21, 2021.

Sartorius Stedim North America Inc.Sartobind® Cassettes, 4 and 8 mm Bed

Height Product Datasheet, 2020.

H. Varadaraju, S. Schneiderman, L. Zhang, H. Fong, T.J. Menkhaus, Process and

economic evaluation for monoclonal antibody purification using a membrane-

only process, Biotechnol. Prog. 27 (2011) 1297-1305, doi:10.1002/btpr.639.

[25] S. Dimartino, C. Boi, G.C. Sarti, A validated model for the simulation of protein
purification through affinity membrane chromatography, J. Chromatogr. A. 1218
(2011) 1677-1690, doi:10.1016/j.chroma.2010.11.056.

[26] F. Steinebach, M. Angarita, D.J. Karst, T. Miiller-Spdath, M. Morbidelli, Model
based adaptive control of a continuous capture process for monoclonal anti-
bodies production, J. Chromatogr. A. 1444 (2016) 50-56, doi:10.1016/j.chroma.
2016.03.014.

[27] E. von Lieres, ]J. Andersson, A fast and accurate solver for the general rate
model of column liquid chromatography, Comput. Chem. Eng. 34 (2010) 1180-
1191, doi:10.1016/j.compchemeng.2010.03.008.

[28] B.V. Bhut, S.M. Husson, Dramatic performance improvement of weak anion-
exchange membranes for chromatographic bioseparations, J. Memb. Sci. 337
(2009) 215-223, doi:10.1016/j.memsci.2009.03.046.

[29] H. Trnovec, T. Doles, G. Hribar, N. Furlan, A. Podgornik, Characterization of
membrane adsorbers used for impurity removal during the continuous purifi-
cation of monoclonal antibodies, J. Chromatogr. A. 1609 (2020), doi:10.1016/].
chroma.2019.460518.

[30] P. van Beijeren, P. Kreis, T. Zeiner, Development of a generic process model
for membrane adsorption, Comput. Chem. Eng. 53 (2013) 86-101, doi:10.1016/
j.compchemeng.2013.03.005.

[31] B.K. Nfor, M. Noverraz, S. Chilamkurthi, P.D.E.M. Verhaert, LA.M. van der Wie-

len, M. Ottens, High-throughput isotherm determination and thermodynamic

modeling of protein adsorption on mixed mode adsorbents, ]. Chromatogr. A.

1217 (2010) 6829-6850, doi:10.1016/j.chroma.2010.07.069.

D. Baur, J. Angelo, S. Chollangi, T. Miiller-Spath, X. Xu, S. Ghose, Z]. Li, M. Mor-

bidelli, Model-assisted process characterization and validation for a continuous

two-column protein A capture process, Biotechnol. Bioeng. 116 (2019) 87-98,

doi:10.1002/bit.26849.

C. Shi, Z.Y. Gao, Q.L. Zhang, S.J. Yao, N.K.H. Slater, D.Q. Lin, Model-based process

development of continuous chromatography for antibody capture: a case study

with twin-column system, ]. Chromatogr. A. 1619 (2020) 460936, doi:10.1016/
j.chroma.2020.460936.

A.B. Wilson, E.W. Jenkins, ]. Wang, S.M. Husson, Numerical simulation of chem-

ical separations using multimodal adsorption isotherms, Results Appl. Math. 7

(2020) 100122, doi:10.1016/j.rinam.2020.100122.

[35] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012) 251-266,
doi:10.1515/JNUM-2012-0013.

[36] MathworksFind minimum of unconstrained multivariable function using
derivative-free method - MATLAB fminsearch, 2022 https://www.mathworks.
com/help/matlab/ref/fminsearch.html accessed January 11, 2022.

[37] ]J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of
the Nelder-Mead simplex method in low dimensions, SIAM ]. Optim. 9 (1998)
112-147, doi:10.1137/S1052623496303470.

[38] LF. Shampine, M.W. Reichelt, The MATLAB ode suite, 1997, doi:10.1137/
$1064827594276424.

[39] L IntelligenSuperPro Designer Product Features, 2020 https://www.intelligen.
com/products/superpro-product-features/(accessed January 11, 2022.

[40] Global Life Sciences IP Holdco LLCSelection guide Packing HiScale, XK, and Tri-
corn chromatography columns with Capto and MabSelect resins 2, 2020.

[41] M. Nachman, Kinetic aspects of membrane-based chromatography im-
munoaffinity, ]. Chromatogr. 597 (1992) 167-172.

[42] MathworksFind Pareto front of multiple fitness functions using genetic al-
gorithm - MATLAB gamultiobj, 2021 https://www.mathworks.com/help/gads/
gamultiobj.html accessed August 21, 2021.

[21]

[22]

(23]

[24]

(32]

[33]

(34]


https://doi.org/10.1016/j.chroma.2022.463755
https://doi.org/10.1007/978-3-030-90924-6_13
http://www.fda.gov/cvm/guidance/published.html
http://www.ajmc.com
https://doi.org/10.1038/s41577-021-00542-x
https://doi.org/10.1080/19420862.2020.1770669
https://doi.org/10.1002/9780470444894.ch6
https://doi.org/10.1016/j.chroma.2020.461376
https://doi.org/10.1080/10826068.2019.1615504
https://doi.org/10.1016/0167-6989(87)90164-4
https://doi.org/10.1016/0009-2509(92)80281-G
https://doi.org/10.1016/j.jbiotec.2018.08.014
https://doi.org/10.1002/biot.201500481
https://doi.org/10.1016/j.chroma.2013.01.082
https://doi.org/10.1016/j.chroma.2020.461300
https://doi.org/10.1007/s12247-018-09370-4
https://doi.org/10.1002/btpr.2492
https://doi.org/10.1002/biot.201700260
https://doi.org/10.1002/biot.201700665
https://doi.org/10.1016/j.ces.2012.11.034
https://doi.org/10.1002/biot.202000309
https://cdn.cytivalifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=33339
https://www.purilogics.com/research-scale-affinity-membrane-adsorbers/purexa-a-protein-a-affinity-membrane-adsorber
http://refhub.elsevier.com/S0021-9673(22)00946-3/sbref0023
https://doi.org/10.1002/btpr.639
https://doi.org/10.1016/j.chroma.2010.11.056
https://doi.org/10.1016/j.chroma.2016.03.014
https://doi.org/10.1016/j.compchemeng.2010.03.008
https://doi.org/10.1016/j.memsci.2009.03.046
https://doi.org/10.1016/j.chroma.2019.460518
https://doi.org/10.1016/j.compchemeng.2013.03.005
https://doi.org/10.1016/j.chroma.2010.07.069
https://doi.org/10.1002/bit.26849
https://doi.org/10.1016/j.chroma.2020.460936
https://doi.org/10.1016/j.rinam.2020.100122
https://doi.org/10.1515/JNUM-2012-0013
https://www.mathworks.com/help/matlab/ref/fminsearch.html
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1064827594276424
https://www.intelligen.com/products/superpro-product-features/(accessed
http://refhub.elsevier.com/S0021-9673(22)00946-3/sbref0040
http://refhub.elsevier.com/S0021-9673(22)00946-3/sbref0041
https://www.mathworks.com/help/gads/gamultiobj.html

	Computational framework for the techno-economic analysis of monoclonal antibody capture chromatography platforms
	1 Introduction
	2 Theory
	2.1 Dynamic modeling of the chromatography column
	2.2 Resin chromatography model
	2.3 Membrane chromatography model
	2.4 Wash step model
	2.5 Key performance indicators

	3 Materials and methods
	3.1 Experimental breakthrough data
	3.2 Dynamic model fitting and validation
	3.3 Framework structure
	3.4 Case study
	3.5 Process simulation

	4 Results and discussion
	4.1 Breakthrough curves, validation, fitting parameters
	4.2 Sensitivity analysis
	4.3 KPI tradeoff and optimization
	4.4 Framework advantages and limitations

	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary materials
	References


