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A B S T R A C T   

In this work, we discuss the use of surrogate functions and a new optimization framework to create an efficient 
and robust computational framework for process design. Our model process is the capture chromatography unit 
operation for monoclonal antibody purification, an important step in biopharmaceutical manufacturing. Simu
lating this unit operation involves solving a system of non-linear partial differential equations, which can have 
high computational cost. We implemented surrogate functions to reduce the computational time and make the 
framework more attractive for industrial applications. This strategy yielded accurate results with a 93% decrease 
in processing time. Additionally, we developed a new optimization framework to reduce the number of simu
lations needed to generate a solution to the optimization problem. We demonstrate the performance of our new 
framework, which uses MATLAB built-in tools, by comparing its performance against individual optimization 
algorithms for problems with integer, continuous, and mixed-integer variables.   

1. Introduction 

Capture (a.k.a. bind-and-elute) chromatography is an essential 
operation in the purification process for monoclonal antibodies (mAb) 
and other biologics (von Lieres and Andersson, 2010). mAbs have gained 
importance for treating a number of cancers, Covid-19, heart conditions, 
and immunological disorders (Hernandez et al., 2018; Taylor et al., 
2021). The selection of the most suitable manufacturing process based 
on techno-economic performance is key to increasing patient access to 
these therapeutics (Jones and Gerogiorgis, 2022). In chromatography 
process design for mAb purification, it is common to compare alterna
tives with fixed process parameters using process simulation software 
(Bansode et al., 2022; Ding et al., 2022; Yang et al., 2020). However, 
when parameters are treated as variables, the simulation and optimi
zation require dynamic models and more complex computational 
frameworks (Behere and Yoon, 2020; Shekhawat and Rathore, 2019). 
For the evaluation of continuous process alternatives, the simulation 
involves solving a system of partial differential equations using, e.g., 
MATLAB or FORTRAN ODE solvers (Baur et al., 2016; Shi et al., 2020). 
This simulation strategy, in combination with tools like the genetic al
gorithm, can be used to optimize process variables like flow rate 
(Gomis-Fons et al., 2021). Moreover, artificial intelligence techniques 

like reinforcement learning can be used with the specialized software 
CADET to optimize continuous process variables in chromatography 
simulations (Nikita et al., 2021). Despite the successful results attained 
through these methods, their implementation requires software devel
opment, which poses an entry barrier to the utilization of these tools in 
the industry. There is a need for an easy-to-implement framework that 
can handle complex simulations and optimizations while using widely 
available software and basic knowledge by the user. 

Recently, we developed a computational framework to simulate and 
optimize the capture chromatography process for mAb purification 
(Romero et al., 2022). The framework combines commercial software 
with complementary features to perform sensitivity analyses and opti
mization on multiple performance indicators from mixed-integer pro
cess variables. For the process optimization, we successfully employed 
the multi-objective genetic algorithm (gamultiobj) from the MATLAB 
optimization toolbox. Nevertheless, these genetic algorithms extend 
computing time and do not guarantee an optimal solution. With this 
framework, the optimization of a dual-objective problem, like mini
mizing process time and cost of goods with chromatography media 
volume as the variable, required up to two days to generate the set of 
optimal solutions on a laptop computer (a machine with 8GB of memory 
running 64-bit Windows 10 Education 21H2 on a Lenovo Ideapad 
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330S-15IKB with a Intel(R) Core(TM) i5–8250 U CPU @ 1.60 GHz). The 
long computing times resulting from the complexity of these simulations 
detract from the ultimate goal for developing the framework, which is 
for industrial scientists to use it to compare process alternatives 
including continuous purification platforms. This limitation motivates 
the development of new strategies to solve optimization problems 
rapidly, without sacrificing accuracy and customizability, or increasing 
system requirements. 

In this study, we investigated two strategies to reduce the optimi
zation computing time: decreasing the simulation calculation time and 
reducing the number of simulations needed in the optimization algo
rithm. To decrease the simulation computing time, we replaced part of 
the simulation that involved complex calculations with a surrogate 
function (Kim and Boukouvala, 2020). The surrogate function was 
validated by comparing results against those of the original simulation. 
To reduce the number of simulations in the optimization loop, we pro
posed a new optimization framework that combines objective scalari
zation, variable discretization and optimization algorithms available as 
functions in MATLAB. We compared the newly developed framework 
against the direct implementation of unmodified MATLAB optimization 
algorithms for problems with integer, continuous, and mixed integer 
variables. The performance of the methods was assessed by comparing 
the number of function evaluations needed for the optimization. Finally, 
we generalized the observations of function evaluation performance to 
provide guidelines for the selection of the optimization algorithm based 
on the characteristics of the problem to be solved. 

2. Methods 

2.1. Application problem 

In capture chromatography, fluid containing the mAb product passes 
through a chromatography column packed with media; the product 
adsorbs to the media while impurities pass through. Then, the product is 
desorbed from the media with an elution buffer. The adsorption process 
is represented with a breakthrough curve, which plots the concentration 
of mAb in the effluent from the chromatography column over time. This 
breakthrough curve is used to calculate the yield of the operation (i.e., 
the quotient of the total mass of mAb recovered as product and the total 
mass of mAb loaded on the column). 

This breakthrough curve can be simulated by solving the mass- 
transport governing equation used to model the system (a non-linear 
partial differential equation). The selection of the model, the fitting 
parameters, and the model validation are discussed in Romero et al. 
(2022). A numerical approximate solution was generated by discretizing 
the governing equations in space using streamline-upwinded Galerkin 
finite elements and backward Euler discretization in time (Wilson et al., 
2020). The resulting system was solved using FreeFEM finite element 
software (Hecht, 2012). Once yield was obtained in this dynamic 
simulation, a steady state simulation of the whole process implemented 
in SuperPro Designer (Intelligen Inc., 2020) was used to calculate the 
performance indicators that ultimately constitute the objective func
tions. The dynamic simulation in FreeFEM is the most computationally 
demanding calculation of the simulation yet only provides one param
eter value (yield) for the evaluation of the objective functions. A general 
representation of the framework structure is presented in Fig. S1. 

2.2. Surrogate function 

The simulated breakthrough curve is affected by multiple parameters 
including the type of media, its volume, residence time (RT, i.e., the 
quotient of column volume and volumetric flow rate), void volume of 
the system, feed concentration, and load volume. Depending on the 
optimization problem, some of these parameters are fixed or can be 
combined. In our case study, we wanted to simulate large-scale pro
duction where it is common to use a single media type, with a fixed RT 

and feed concentration (Grilo et al., 2017; Hummel et al., 2019; Pollock 
et al., 2017). In this configuration, we obtain the same breakthrough 
curve for systems with the same load volume per unit of membrane 
volume, making the simulation outcome (yield) a function only of the 
relative load (quotient of load volume and membrane volume). 

We take advantage of this behavior to construct a surrogate function 
to estimate the process yield as a function of the relative load. For this 
purpose, we built a library of yield values by evaluating different load 
volumes for a 1 L membrane chromatography module in the dynamic 
simulation. Then, we used MATLAB’s implementation of shape- 
preserving cubic spline interpolation (The MathWorks Inc., 2022a) to 
obtain yield as a function of load volume and membrane volume. The 
surrogate function simulation strategy was validated by comparing its 
results against the finite element method simulation for a set of random 
points. The problem used for the validation employs a fixed load volume 
of 200 L and varies membrane volume. We took a set of 20 membrane 
volumes from a uniform distribution and calculated the 
root-mean-square error (RMSE) for yield as an indicator of the accuracy 
of the surrogate function. The magnitude of the error between the 
FreeFEM simulation and the surrogate function can be controlled 
through the point density of the library. To meet the desired RMSE of 
less than 10−3, the point density was set to one point every 1 L load/L 
membrane, resulting in a library of 50 points for the selected load vol
ume interval. 

2.3. Problem formulation 

The performance indicators obtained in the process simulation 
represent different benefits to the user. Depending on the user prefer
ences the indicators are set as objective functions. To expand our al
ternatives in MATLAB beyond the gamultiobj algorithm, we decided to 
create a single objective as the sum of weighted objectives. The chosen 
objectives, cost of goods (COG [USD/g]) and process time (Pt [h]), were 
normalized by their minimum values (minCOG and minPt) and used to 
create the optimization objective function shown in Eqs. (1)–(3). The 
parameter Wcog represents the weight given to COG, which ranges from 
0 to 1. Since we have two objectives, the weight for Pt is 1-Wcog. This 
parameter can be selected by the user or set as an array of values to 
evaluate tradeoffs between objectives. 

min
x

f (x) = Wcog ×
COG(x) − minCog

minCOG
+ (1 − Wcog) ×

Pt(x) − minPt
minPt

(1)  

St. LL ≤ x ≤ UL (2)  

x = (Vmedia, Vload) (3) 

In this problem, the variables are bounded by a lower and upper limit 
(LL and UL) defined by the feasible range of operation (in our case 
[4.8–32] L and [50–200] L for Vmedia and Vload). Both variables can be 
treated as integer or continuous depending on the process specifications 
set by the user. If the chromatography module is custom-made, its vol
ume (Vmedia) can be any value. However, it is more likely to come in a 
standard size with a discrete volume (multiples of 1.6 L in our case). 
Similarly, load volume (Vload) can be a continuous variable if there is a 
continuous supply of feed material. Conversely, if there is a fixed batch 
volume that needs to be processed, Vload would be a discrete value (in
crements of 50 L in our case). In this case study, we explored three types 
of problems: both variables are integer, both are continuous, and a 
mixed-integer problem where Vmedia is an integer variable and Vload is 
continuous. 

2.4. Optimization algorithms 

We want to select the optimization algorithm that yields the Pareto 
optimal front for a problem in the least amount of time. To this end, we 
solve our optimization problems with the suitable alternatives and 
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compare their performance in terms of number of function evaluations. 
The multi-objective genetic algorithms directly provide a Pareto front, 
while the methods using the weighted single objective need to be run 
several times with different weights. In those cases, we build a Pareto 
front by optimizing the function f(x) for 11 evenly spaced values of Wcog 
from 0 to 1. The weighted sum method is suitable for our application, 
which is known to be a convex problem based on the previous results 
and the results from the genetic algorithms. 

In the integer-variable problem, the search space is finite, so we have 
the alternative of evaluating each point and finding the global minimum 
instead of using an optimization algorithm. This search space evaluation 
(SSE) strategy is the base case against which all optimization algorithms 
are compared. The SSE also is used to set the minimal values for COG 
and Pt (minCOG and minPt) used to normalize the objective function 
(Eq. (1)). 

The use of a single objective function gives us access to a more 
extensive selection of optimization algorithms to solve our problem in 
MATLAB, including the single objective genetic algorithm (ga) and the 
constrained nonlinear optimization function fmincon that uses an 
interior-point algorithm. These methods offer different advantages and 
drawbacks. fmincon usually requires fewer function evaluations than ga 
but it is limited to problems with continuous variables and is susceptible 
to terminations once a local minimum has been found (The MathWorks 
Inc., 2022b). Moreover, fmincon requires the selection of a starting 
point, which we set as the midpoint between the bounds of the search 
space. 

The ga requires a high number of function evaluations but allows 
mixed-integer variables. This method is an evolutionary algorithm that 
works based on principles of natural selection. It selects random points 
in the search space to form an initial population. It evaluates these points 
and selects the ones displaying the lowest values for the objective 
function to be the parents of the next generation. The algorithms also 
introduce mutations to evaluate more conditions in the search space. 
After several generations the population evolves, and the Pareto optimal 
solutions can be found (The MathWorks Inc., 2022c). Increasing the size 
of the population and the number of generations makes it more likely for 
the algorithm to find optimal solutions. Nevertheless, these values must 
be limited because each member of the population from every genera
tion represents a function evaluation. Therefore, the function ga requires 
specification of two parameters: maximum number of generations 
(MaxGen) and population size (PopSize). 

To find the ga parameters that yield the optimal solution with the 
lowest number of function evaluations, we performed a sensitivity 
analysis by varying MaxGen and PopSize for a fixed Wcog of 0.5. We 
repeated this analysis ten times and compared the average minimum 
value of the objective function against the global minimum found with 
the SSE. The same procedure was applied to find the ga parameters for 
the continuous-variable and mixed-integer problem. This time fmincon 
was used to find the global minimum. For gamultiobj, the different 
combinations of MaxGen and PopSize were compared against the results 
of fmincon (Fig. S3), and the 10 × 100 (MaxGen = 10 x PopSize = 100) 
configuration was selected. 

In addition to these off-the-shelf optimization tools, we developed a 
new optimization framework that formulates and solves two problems, 
first using integer variables, and then using continuous variables. The 
method starts by discretizing the continuous variables given a step size 
defined by the user. Once all variables are converted to integers, we 
perform a SSE; i.e., we evaluate every combination of discrete points and 
select the conditions that yield the minimum value for the objective 
function. Then, the results are used to formulate a new problem where 
the integer variables are kept fixed and the results corresponding to the 
continuous variables are used as the starting point for the optimization 
algorithm. The new problem featuring solely continuous variables is 
solved using fmincon. This new optimization framework can be used for 
mixed-integer or continuous-variable problems. This method requires 
the selection of the discretized values for the continuous variables, 

which for simplicity were set to be the values in the integer-variable 
problem. A representation of the information flow and method steps 
are provided in Fig. S2. 

3. Results and discussion 

3.1. Surrogate function 

Fig. 1 shows the dynamic simulation results for the finite element 
method and the surrogate function. In the figure we see an overlap be
tween the values obtained with the two simulation strategies. The error 
of the surrogate function was quantified through the yield RMSE (8.7 ×
10−4). This value met the desired level of accuracy for our case: an error 
lower than 10−3

, which is the uncertainty of the original data. In addition 
to the calculation of the residuals, the validation points were used to 
measure the computing time. The use of the surrogate function reduced 
the average computing time from 177 s to 13 s per function evaluation. 
In the context of an optimization using a genetic algorithm with a 10 ×
100 (10 generations with population of 100) configuration, it translates 
to a reduction in computing time from 49.2 h to 3.6 h. 

In our application, we used breakthrough data obtained through 
simulations to build the library used by the surrogate functions. How
ever, the library values can be obtained directly from experimental 
breakthrough curves. This way, this framework can be implemented 
without requiring a complex dynamic simulation. Moreover, the user 
can employ experimental data specific to their system, bypassing the 
task of finding a suitable model and model parameters. 

3.2. Parameters selection for the optimization methods 

Table 1 presents the percent deviation from the minimum value of f 
(x) for different combinations of ga parameters. As a result of this 
analysis, we selected the 3 × 25 configuration, as it yields the lowest 
number of function evaluations from all alternatives with our acceptable 
level of convergence (≤1% of deviation from the minimum value of the 
objective function). 

3.3. Optimization algorithms performance 

Once the optimization parameters were set, the Pareto fronts were 
calculated for all three types of problems (Figs. 2–4). In Fig. 2 for the 
integer-variable problem, we see how the ga captures the shape of the 
Pareto front but yields suboptimal results when Wcog approaches 1 (i.e., 
when COG reaches its minimum value). In contrast, for the continuous- 
variable problem (Fig. 3), we see how the ga does not provide optimal 
points as Wcog approaches 0 (i.e., when Pt reaches its minimum value). 
This behavior shows that the 3 × 25 configuration may not be suitable 
for all weights. The other three methods yielded optimal points, with 

Fig. 1. Dynamic simulation results obtained with FreeFEM and surrogate 
function for a set of 20 random points. 
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fmincon and the new optimization framework yielding the same results 
for almost all weights. This result is consistent with the fact that both 
methods utilize fmincon but with different initial values. 

In Fig. 4 for the mixed-integer problem, all methods formed over
lapping Pareto fronts. This finding shows that the strategy used with 
fmincon of solving the problem as if all variables were continuous and 
then rounding the results can yield accurate results for our study. We 
caution that this strategy may not be suitable for other cases where the 
rounding of multiple variables can yield suboptimal results. In addition, 
although the ga yields suboptimal points, deviations from optimality are 
minor compared with the continuous-variable problem. 

Table 2 summarizes the performance in terms of number of function 
evaluations for all problems and methods. Using this information with 
the Pareto fronts, we can select the best optimization method for each 
problem in our study. For integer variables, we get the best accuracy and 
efficiency with the SSE. The lower number of function evaluations for 
SSE over the genetic algorithms is due to the relatively small search 
space of our problem, which makes the evaluation of every condition 
computationally efficient. With continuous variables, the best option is 
gamultiobj since it yields all optimal points in the Pareto front and dis
plays the lowest number of function evaluations among the four algo
rithms. For the same reasons, the new framework is the best option for 
the mixed integer-variable problem. In this case, there is a large 
reduction in number of function evaluations because the optimization 
step using fmincon is only applied to the continuous variable (Vload). 

3.4. General selection criteria 

Since the performance of the algorithms depends on the character
istics of the optimization problem, we developed a flowchart (Fig. 5) to 
aid the selection of the best optimization method for any given case. The 
flowchart includes mathematical relationships to determine the method 
that yields the lowest number of function evaluations. It can be applied 
to integer, continuous, or mixed integer problems with n variables 
having li levels each and m objectives with Wj weightings. It uses a 
representative number of function evaluations (FE) for each optimiza
tion algorithm (FEGA for ga, FEMOGA for gamultiobj, FEFmin for fmin
con, FENF for the new framework), which is estimated by solving the 
problem with sample weights. 

The selection algorithm was applied to the continuous-variable 
problem of our case study as proof of concept. In our problem, the sig
nificant reduction in the number of function evaluations using the new 
framework favors this method over fmincon in decision point 4. Then, 
the lower number of function evaluations favors the ga over the new 

Table 1 
Deviation from the minimum value of the objective function for different ga parameter configurations. 

Fig. 2. Pareto fronts for integer-variable problem.  

Fig. 3. Pareto fronts for continuous-variable problem.  

Fig. 4. Pareto fronts for mixed-integer problem.  

Table 2 
Number of function evaluations for each algorithm and problem.  

Algorithm Integer Continuous Mixed-integer 

SSE 72 N/A N/A 
ga 1111 1100 1100 
fmincon N/A 1283 1283* 
gamultiobj 716 1000 1000 
New framework N/A 1122 264  

* Rounding the results for the integer variable. 

J.J. Romero et al.                                                                                                                                                                                                                               



Computers and Chemical Engineering 173 (2023) 108225

5

framework in decision point 6. Finally, in decision point 8, the relatively 
large number of weightings favors gamultiobj over algorithms that use 
the sum of weighted objectives for single objective optimization. In 
those cases, the algorithms solve the optimization problem for every 
weight configuration, which increases the number of function 
evaluations. 

In our case, the guidelines lead to the same algorithms that yielded 
the lowest number of function evaluations as in Table 2. However, the 
selection of the best method depends on the ability to obtain a repre
sentative number of function evaluation values for every optimization 
algorithm, which requires the solution of the problem at different con
ditions of weighting factors and algorithm parameters. Such a process 
can be challenging and time-consuming depending on the susceptibility 
of the algorithm to changes in those conditions. Once representative 
function evaluations are estimated, the guidelines can be used to select 
the algorithm that yields the lowest number of function evaluations for 
the problem. 

4. Conclusions 

This work introduces a new, efficient computational framework to 
evaluate process design alternatives. Surrogate representations and 
readily available software tools are used to make the framework robust, 
easy to implement, and computationally inexpensive. 

In our simulation scenario, the surrogate function yielded results 
with the required level of accuracy for the application. The imple
mentation of this function reduced computing time by 93%. We 
formulated a bi-objective optimization problem with different types of 
variables. In the integer variable problem, we observed that SSE out
performs genetic algorithms due to the relatively small size of the search 
space. For continuous-variable problems, the gamultiobj is recommended 
for Pareto front calculations. Alternately, if the decision maker has 
preferred values for the objective weight factors, the new optimization 
framework may be more efficient. Finally, we observed high efficiency 
with the new framework in mixed-integer problems. 

The developed tools can be applied broadly to other chromatography 
problems. Since the surrogate function can use experimental or simu
lated data, the framework is suitable for situations where the available 

models cannot represent the system, experimental data can be easily 
obtained, or there are no resources for the simulation of dynamic sys
tems. The new optimization framework also can be adapted to other 
process design problems. Nevertheless, the selection of this method over 
other optimization algorithms will depend on the characteristics of the 
problem. The proposed guidelines for comparing optimization methods 
can be used for this task. Despite the need to solve the optimization 
problem to obtain representative values for number of function evalu
ations, the guidelines are useful to explore the impact of different 
problem characteristics on the optimization performance. Overall, the 
implemented strategies proved to be effective in reducing computing 
time for our problem and can be extended to other process design ap
plications requiring an efficient and easy to implement framework for 
simulation and optimization. 
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