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In this work, we discuss the use of surrogate functions and a new optimization framework to create an efficient
and robust computational framework for process design. Our model process is the capture chromatography unit
operation for monoclonal antibody purification, an important step in biopharmaceutical manufacturing. Simu-
lating this unit operation involves solving a system of non-linear partial differential equations, which can have

high computational cost. We implemented surrogate functions to reduce the computational time and make the
framework more attractive for industrial applications. This strategy yielded accurate results with a 93% decrease
in processing time. Additionally, we developed a new optimization framework to reduce the number of simu-
lations needed to generate a solution to the optimization problem. We demonstrate the performance of our new
framework, which uses MATLAB built-in tools, by comparing its performance against individual optimization
algorithms for problems with integer, continuous, and mixed-integer variables.

1. Introduction

Capture (a.k.a. bind-and-elute) chromatography is an essential
operation in the purification process for monoclonal antibodies (mAb)
and other biologics (von Lieres and Andersson, 2010). mAbs have gained
importance for treating a number of cancers, Covid-19, heart conditions,
and immunological disorders (Hernandez et al., 2018; Taylor et al.,
2021). The selection of the most suitable manufacturing process based
on techno-economic performance is key to increasing patient access to
these therapeutics (Jones and Gerogiorgis, 2022). In chromatography
process design for mAb purification, it is common to compare alterna-
tives with fixed process parameters using process simulation software
(Bansode et al., 2022; Ding et al., 2022; Yang et al., 2020). However,
when parameters are treated as variables, the simulation and optimi-
zation require dynamic models and more complex computational
frameworks (Behere and Yoon, 2020; Shekhawat and Rathore, 2019).
For the evaluation of continuous process alternatives, the simulation
involves solving a system of partial differential equations using, e.g.,
MATLAB or FORTRAN ODE solvers (Baur et al., 2016; Shi et al., 2020).
This simulation strategy, in combination with tools like the genetic al-
gorithm, can be used to optimize process variables like flow rate
(Gomis-Fons et al., 2021). Moreover, artificial intelligence techniques

* Corresponding author.
E-mail address: shusson@clemson.edu (S.M. Husson).

https://doi.org/10.1016/j.compchemeng.2023.108225

like reinforcement learning can be used with the specialized software
CADET to optimize continuous process variables in chromatography
simulations (Nikita et al., 2021). Despite the successful results attained
through these methods, their implementation requires software devel-
opment, which poses an entry barrier to the utilization of these tools in
the industry. There is a need for an easy-to-implement framework that
can handle complex simulations and optimizations while using widely
available software and basic knowledge by the user.

Recently, we developed a computational framework to simulate and
optimize the capture chromatography process for mAb purification
(Romero et al., 2022). The framework combines commercial software
with complementary features to perform sensitivity analyses and opti-
mization on multiple performance indicators from mixed-integer pro-
cess variables. For the process optimization, we successfully employed
the multi-objective genetic algorithm (gamultiobj) from the MATLAB
optimization toolbox. Nevertheless, these genetic algorithms extend
computing time and do not guarantee an optimal solution. With this
framework, the optimization of a dual-objective problem, like mini-
mizing process time and cost of goods with chromatography media
volume as the variable, required up to two days to generate the set of
optimal solutions on a laptop computer (a machine with 8GB of memory
running 64-bit Windows 10 Education 21H2 on a Lenovo Ideapad
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330S-15IKB with a Intel(R) Core(TM) i5-8250 U CPU @ 1.60 GHz). The
long computing times resulting from the complexity of these simulations
detract from the ultimate goal for developing the framework, which is
for industrial scientists to use it to compare process alternatives
including continuous purification platforms. This limitation motivates
the development of new strategies to solve optimization problems
rapidly, without sacrificing accuracy and customizability, or increasing
system requirements.

In this study, we investigated two strategies to reduce the optimi-
zation computing time: decreasing the simulation calculation time and
reducing the number of simulations needed in the optimization algo-
rithm. To decrease the simulation computing time, we replaced part of
the simulation that involved complex calculations with a surrogate
function (Kim and Boukouvala, 2020). The surrogate function was
validated by comparing results against those of the original simulation.
To reduce the number of simulations in the optimization loop, we pro-
posed a new optimization framework that combines objective scalari-
zation, variable discretization and optimization algorithms available as
functions in MATLAB. We compared the newly developed framework
against the direct implementation of unmodified MATLAB optimization
algorithms for problems with integer, continuous, and mixed integer
variables. The performance of the methods was assessed by comparing
the number of function evaluations needed for the optimization. Finally,
we generalized the observations of function evaluation performance to
provide guidelines for the selection of the optimization algorithm based
on the characteristics of the problem to be solved.

2. Methods
2.1. Application problem

In capture chromatography, fluid containing the mAb product passes
through a chromatography column packed with media; the product
adsorbs to the media while impurities pass through. Then, the product is
desorbed from the media with an elution buffer. The adsorption process
is represented with a breakthrough curve, which plots the concentration
of mADb in the effluent from the chromatography column over time. This
breakthrough curve is used to calculate the yield of the operation (i.e.,
the quotient of the total mass of mAb recovered as product and the total
mass of mAb loaded on the column).

This breakthrough curve can be simulated by solving the mass-
transport governing equation used to model the system (a non-linear
partial differential equation). The selection of the model, the fitting
parameters, and the model validation are discussed in Romero et al.
(2022). A numerical approximate solution was generated by discretizing
the governing equations in space using streamline-upwinded Galerkin
finite elements and backward Euler discretization in time (Wilson et al.,
2020). The resulting system was solved using FreeFEM finite element
software (Hecht, 2012). Once yield was obtained in this dynamic
simulation, a steady state simulation of the whole process implemented
in SuperPro Designer (Intelligen Inc., 2020) was used to calculate the
performance indicators that ultimately constitute the objective func-
tions. The dynamic simulation in FreeFEM is the most computationally
demanding calculation of the simulation yet only provides one param-
eter value (yield) for the evaluation of the objective functions. A general
representation of the framework structure is presented in Fig. S1.

2.2. Surrogate function

The simulated breakthrough curve is affected by multiple parameters
including the type of media, its volume, residence time (RT, i.e., the
quotient of column volume and volumetric flow rate), void volume of
the system, feed concentration, and load volume. Depending on the
optimization problem, some of these parameters are fixed or can be
combined. In our case study, we wanted to simulate large-scale pro-
duction where it is common to use a single media type, with a fixed RT
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and feed concentration (Grilo et al., 2017; Hummel et al., 2019; Pollock
et al., 2017). In this configuration, we obtain the same breakthrough
curve for systems with the same load volume per unit of membrane
volume, making the simulation outcome (yield) a function only of the
relative load (quotient of load volume and membrane volume).

We take advantage of this behavior to construct a surrogate function
to estimate the process yield as a function of the relative load. For this
purpose, we built a library of yield values by evaluating different load
volumes for a 1 L. membrane chromatography module in the dynamic
simulation. Then, we used MATLAB’s implementation of shape-
preserving cubic spline interpolation (The MathWorks Inc., 2022a) to
obtain yield as a function of load volume and membrane volume. The
surrogate function simulation strategy was validated by comparing its
results against the finite element method simulation for a set of random
points. The problem used for the validation employs a fixed load volume
of 200 L and varies membrane volume. We took a set of 20 membrane
volumes from a wuniform distribution and calculated the
root-mean-square error (RMSE) for yield as an indicator of the accuracy
of the surrogate function. The magnitude of the error between the
FreeFEM simulation and the surrogate function can be controlled
through the point density of the library. To meet the desired RMSE of
less than 1073, the point density was set to one point every 1 L load/L
membrane, resulting in a library of 50 points for the selected load vol-
ume interval.

2.3. Problem formulation

The performance indicators obtained in the process simulation
represent different benefits to the user. Depending on the user prefer-
ences the indicators are set as objective functions. To expand our al-
ternatives in MATLAB beyond the gamultiobj algorithm, we decided to
create a single objective as the sum of weighted objectives. The chosen
objectives, cost of goods (COG [USD/g]) and process time (Pt [h]), were
normalized by their minimum values (minCOG and minPt) and used to
create the optimization objective function shown in Egs. (1)-(3). The
parameter Wcog represents the weight given to COG, which ranges from
0 to 1. Since we have two objectives, the weight for Pt is 1-Wcog. This
parameter can be selected by the user or set as an array of values to
evaluate tradeoffs between objectives.

COG(x) — minCog
minCOG

Pt(x) — minPt
minPt

minf (x) = Wcog x + (1 —Weog) x 1)

St. LL < x < UL 2

X = (Vinedias Vioad) 3

In this problem, the variables are bounded by a lower and upper limit
(LL and UL) defined by the feasible range of operation (in our case
[4.8-32] L and [50-200] L for Vedia and Vipad). Both variables can be
treated as integer or continuous depending on the process specifications
set by the user. If the chromatography module is custom-made, its vol-
ume (Vedia) can be any value. However, it is more likely to come in a
standard size with a discrete volume (multiples of 1.6 L in our case).
Similarly, load volume (Vjoaq) can be a continuous variable if there is a
continuous supply of feed material. Conversely, if there is a fixed batch
volume that needs to be processed, Vjy,q would be a discrete value (in-
crements of 50 L in our case). In this case study, we explored three types
of problems: both variables are integer, both are continuous, and a
mixed-integer problem where Vyedia is an integer variable and Vjoaq is
continuous.

2.4. Optimization algorithms
We want to select the optimization algorithm that yields the Pareto

optimal front for a problem in the least amount of time. To this end, we
solve our optimization problems with the suitable alternatives and
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compare their performance in terms of number of function evaluations.
The multi-objective genetic algorithms directly provide a Pareto front,
while the methods using the weighted single objective need to be run
several times with different weights. In those cases, we build a Pareto
front by optimizing the function f(x) for 11 evenly spaced values of Wcog
from O to 1. The weighted sum method is suitable for our application,
which is known to be a convex problem based on the previous results
and the results from the genetic algorithms.

In the integer-variable problem, the search space is finite, so we have
the alternative of evaluating each point and finding the global minimum
instead of using an optimization algorithm. This search space evaluation
(SSE) strategy is the base case against which all optimization algorithms
are compared. The SSE also is used to set the minimal values for COG
and Pt (minCOG and minPt) used to normalize the objective function
(Eq. (1.

The use of a single objective function gives us access to a more
extensive selection of optimization algorithms to solve our problem in
MATLAB, including the single objective genetic algorithm (ga) and the
constrained nonlinear optimization function fmincon that uses an
interior-point algorithm. These methods offer different advantages and
drawbacks. fmincon usually requires fewer function evaluations than ga
but it is limited to problems with continuous variables and is susceptible
to terminations once a local minimum has been found (The MathWorks
Inc., 2022b). Moreover, fmincon requires the selection of a starting
point, which we set as the midpoint between the bounds of the search
space.

The ga requires a high number of function evaluations but allows
mixed-integer variables. This method is an evolutionary algorithm that
works based on principles of natural selection. It selects random points
in the search space to form an initial population. It evaluates these points
and selects the ones displaying the lowest values for the objective
function to be the parents of the next generation. The algorithms also
introduce mutations to evaluate more conditions in the search space.
After several generations the population evolves, and the Pareto optimal
solutions can be found (The MathWorks Inc., 2022c). Increasing the size
of the population and the number of generations makes it more likely for
the algorithm to find optimal solutions. Nevertheless, these values must
be limited because each member of the population from every genera-
tion represents a function evaluation. Therefore, the function ga requires
specification of two parameters: maximum number of generations
(MaxGen) and population size (PopSize).

To find the ga parameters that yield the optimal solution with the
lowest number of function evaluations, we performed a sensitivity
analysis by varying MaxGen and PopSize for a fixed Wcog of 0.5. We
repeated this analysis ten times and compared the average minimum
value of the objective function against the global minimum found with
the SSE. The same procedure was applied to find the ga parameters for
the continuous-variable and mixed-integer problem. This time fmincon
was used to find the global minimum. For gamultiobj, the different
combinations of MaxGen and PopSize were compared against the results
of fmincon (Fig. S3), and the 10 x 100 (MaxGen = 10 x PopSize = 100)
configuration was selected.

In addition to these off-the-shelf optimization tools, we developed a
new optimization framework that formulates and solves two problems,
first using integer variables, and then using continuous variables. The
method starts by discretizing the continuous variables given a step size
defined by the user. Once all variables are converted to integers, we
perform a SSE; i.e., we evaluate every combination of discrete points and
select the conditions that yield the minimum value for the objective
function. Then, the results are used to formulate a new problem where
the integer variables are kept fixed and the results corresponding to the
continuous variables are used as the starting point for the optimization
algorithm. The new problem featuring solely continuous variables is
solved using fmincon. This new optimization framework can be used for
mixed-integer or continuous-variable problems. This method requires
the selection of the discretized values for the continuous variables,
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which for simplicity were set to be the values in the integer-variable
problem. A representation of the information flow and method steps
are provided in Fig. S2.

3. Results and discussion
3.1. Surrogate function

Fig. 1 shows the dynamic simulation results for the finite element
method and the surrogate function. In the figure we see an overlap be-
tween the values obtained with the two simulation strategies. The error
of the surrogate function was quantified through the yield RMSE (8.7 x
10~*). This value met the desired level of accuracy for our case: an error
lower than 10,’3 which is the uncertainty of the original data. In addition
to the calculation of the residuals, the validation points were used to
measure the computing time. The use of the surrogate function reduced
the average computing time from 177 s to 13 s per function evaluation.
In the context of an optimization using a genetic algorithm with a 10 x
100 (10 generations with population of 100) configuration, it translates
to a reduction in computing time from 49.2 h to 3.6 h.

In our application, we used breakthrough data obtained through
simulations to build the library used by the surrogate functions. How-
ever, the library values can be obtained directly from experimental
breakthrough curves. This way, this framework can be implemented
without requiring a complex dynamic simulation. Moreover, the user
can employ experimental data specific to their system, bypassing the
task of finding a suitable model and model parameters.

3.2. Parameters selection for the optimization methods

Table 1 presents the percent deviation from the minimum value of f
(x) for different combinations of ga parameters. As a result of this
analysis, we selected the 3 x 25 configuration, as it yields the lowest
number of function evaluations from all alternatives with our acceptable
level of convergence (<1% of deviation from the minimum value of the
objective function).

3.3. Optimization algorithms performance

Once the optimization parameters were set, the Pareto fronts were
calculated for all three types of problems (Figs. 2-4). In Fig. 2 for the
integer-variable problem, we see how the ga captures the shape of the
Pareto front but yields suboptimal results when Wcog approaches 1 (i.e.,
when COG reaches its minimum value). In contrast, for the continuous-
variable problem (Fig. 3), we see how the ga does not provide optimal
points as Wcog approaches 0 (i.e., when Pt reaches its minimum value).
This behavior shows that the 3 x 25 configuration may not be suitable
for all weights. The other three methods yielded optimal points, with

100% O
o}

80% .
3 60% .
= g

@i
40%
0 1 FEM simulation B
Interpolation aproximation
20%
0 10 20 30 40 50

Load [L/L membrane]

Fig. 1. Dynamic simulation results obtained with FreeFEM and surrogate
function for a set of 20 random points.
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Table 1
Deviation from the minimum value of the objective function for different ga parameter configurations.
Integer MaxGen Continuous MaxGen Mixed-Integer MaxGen
PopSize 1 2 3 5 PopSize 1 2 3 5 PopSize 1 2 3 5
5 30% | 20% | 5.3% | 9.4% 5 26% | 9.9% | 17% | 9.8% 5 14% | 10% | 5.7% | 7.9%
10 8.1% | 5.5% | 3.6% | 4.6% 10 8.4% | 6.7% | 4.3% | 6.7% 10 5.6% | 2.4% | 1.7% | 3.0%
25 1.9% | 1.6% | 0.0% | 0.0% 25 4.7% | 3.6% | 1.4% | 1.2% 25 1.6% | 1.1% | 0.3% | 0.2%
50 1.4% | 0.0% | 0.0% | 0.0% 50 2.3% | 2.0% | 1.3% | 0.9% 50 1.0% | 0.7% | 0.1% | 0.0%
fmincon and the new optimization framework yielding the same results
140 for almost all weights. This result is consistent with the fact that both
120 methods utilize fmincon but with different initial values.
In Fig. 4 for the mixed-integer problem, all methods formed over-
TDlOO ga lapping Pareto fronts. This finding shows that the strategy used with
é 20 SSE fmincon of solving the problem as if all variables were continuous and
=} gamultiobj then rounding the results can yield accurate results for our study. We
3 60 caution that this strategy may not be suitable for other cases where the
“ 40 rounding of multiple variables can yield suboptimal results. In addition,
although the ga yields suboptimal points, deviations from optimality are
20 minor compared with the continuous-variable problem.
0 Table 2 summarizes the performance in terms of number of function

COG [USD/g]

COG [USD/g]
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Fig. 2. Pareto fronts for integer-variable problem.
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Fig. 3. Pareto fronts for continuous-variable problem.

ga

< fmincon (rounded)
New framework
gamultiobj

0.015 0.02 0.025 0.03 0.035 0.04 0.045

Process time [h]

Fig. 4. Pareto fronts for mixed-integer problem.

evaluations for all problems and methods. Using this information with
the Pareto fronts, we can select the best optimization method for each
problem in our study. For integer variables, we get the best accuracy and
efficiency with the SSE. The lower number of function evaluations for
SSE over the genetic algorithms is due to the relatively small search
space of our problem, which makes the evaluation of every condition
computationally efficient. With continuous variables, the best option is
gamultiobj since it yields all optimal points in the Pareto front and dis-
plays the lowest number of function evaluations among the four algo-
rithms. For the same reasons, the new framework is the best option for
the mixed integer-variable problem. In this case, there is a large
reduction in number of function evaluations because the optimization
step using fmincon is only applied to the continuous variable (Vipaq)-

3.4. General selection criteria

Since the performance of the algorithms depends on the character-
istics of the optimization problem, we developed a flowchart (Fig. 5) to
aid the selection of the best optimization method for any given case. The
flowchart includes mathematical relationships to determine the method
that yields the lowest number of function evaluations. It can be applied
to integer, continuous, or mixed integer problems with n variables
having ; levels each and m objectives with W; weightings. It uses a
representative number of function evaluations (FE) for each optimiza-
tion algorithm (FEGA for ga, FEMOGA for gamultiobj, FEFmin for fmin-
con, FENF for the new framework), which is estimated by solving the
problem with sample weights.

The selection algorithm was applied to the continuous-variable
problem of our case study as proof of concept. In our problem, the sig-
nificant reduction in the number of function evaluations using the new
framework favors this method over fmincon in decision point 4. Then,
the lower number of function evaluations favors the ga over the new

Table 2

Number of function evaluations for each algorithm and problem.
Algorithm Integer Continuous Mixed-integer
SSE 72 N/A N/A
ga 1111 1100 1100
fmincon N/A 1283 1283+
gamultiobj 716 1000 1000
New framework N/A 1122 264

“ Rounding the results for the integer variable.
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Fig. 5. Guideline for the selection of an optimization method.

framework in decision point 6. Finally, in decision point 8, the relatively
large number of weightings favors gamultiobj over algorithms that use
the sum of weighted objectives for single objective optimization. In
those cases, the algorithms solve the optimization problem for every
weight configuration, which increases the number of function
evaluations.

In our case, the guidelines lead to the same algorithms that yielded
the lowest number of function evaluations as in Table 2. However, the
selection of the best method depends on the ability to obtain a repre-
sentative number of function evaluation values for every optimization
algorithm, which requires the solution of the problem at different con-
ditions of weighting factors and algorithm parameters. Such a process
can be challenging and time-consuming depending on the susceptibility
of the algorithm to changes in those conditions. Once representative
function evaluations are estimated, the guidelines can be used to select
the algorithm that yields the lowest number of function evaluations for
the problem.

4. Conclusions

This work introduces a new, efficient computational framework to
evaluate process design alternatives. Surrogate representations and
readily available software tools are used to make the framework robust,
easy to implement, and computationally inexpensive.

In our simulation scenario, the surrogate function yielded results
with the required level of accuracy for the application. The imple-
mentation of this function reduced computing time by 93%. We
formulated a bi-objective optimization problem with different types of
variables. In the integer variable problem, we observed that SSE out-
performs genetic algorithms due to the relatively small size of the search
space. For continuous-variable problems, the gamultiobj is recommended
for Pareto front calculations. Alternately, if the decision maker has
preferred values for the objective weight factors, the new optimization
framework may be more efficient. Finally, we observed high efficiency
with the new framework in mixed-integer problems.

The developed tools can be applied broadly to other chromatography
problems. Since the surrogate function can use experimental or simu-
lated data, the framework is suitable for situations where the available

models cannot represent the system, experimental data can be easily
obtained, or there are no resources for the simulation of dynamic sys-
tems. The new optimization framework also can be adapted to other
process design problems. Nevertheless, the selection of this method over
other optimization algorithms will depend on the characteristics of the
problem. The proposed guidelines for comparing optimization methods
can be used for this task. Despite the need to solve the optimization
problem to obtain representative values for number of function evalu-
ations, the guidelines are useful to explore the impact of different
problem characteristics on the optimization performance. Overall, the
implemented strategies proved to be effective in reducing computing
time for our problem and can be extended to other process design ap-
plications requiring an efficient and easy to implement framework for
simulation and optimization.
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