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Abstract

Land-use change is highly dynamic globally and there is great uncertainty about the effects
of land-use legacies on contemporary environmental performance. We used a chronosequence of
urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over
130 years prior to determine if land-use legacy influences components of soil biodiversity and
composition over time. We used historical aerial imagery to identify sites in Baltimore County,
MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these
sites as well as from existing well-studied agricultural and forest sites used as historical references
by the National Science Foundation Long-Term Ecological Research (NSF-LTER) Baltimore
Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were
similar to those in agricultural reference sites, which suggests that the ecological parameters on
lawns and reference agricultural systems are similar in how they influence soil microbial
community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil
bacterial composition upon recent conversion but reverted back in composition similar to forest
soils as the lawns aged over decades. Soil fungal communities shifted after forested land was
converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our
results show that components of bacterial biodiversity and composition are resistant to change in
previously forested lawns despite urbanization processes. Therefore land-use legacy, depending
on the prior use, is an important factor to consider when examining urban ecological

homogenization.

Keywords: Biodiversity, LTER, land-use legacy, lawn, soil microbiome, urban ecological

homogenization, urban grassland
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Introduction

Land-use change is a dominant component of global environmental change. While there
has been great effort to understand the ecological and environmental implications of different land-
use and land-cover types, less attention has been paid to effects of legacies of past land-use on
current conditions (Ziter et al. 2017). There is concern that these legacies are an important
unexplored driver of the dynamics and environmental performance in many areas (Biirgi et al.
2017).

A dominant component of global land-use change is urbanization and expansion of
landscape features that include urban grasslands, comprised of parcels of lawns (Robbins and
Birkenholtz 2003, Pouyat et al. 2009, Wang et al. 2017, Ignatieva and Hedblom 2018). Lawns are
an ecosystem of grasses that cover 2% of the terrestrial land in the U.S.—an area three times larger
than any irrigated crop (Milesi et al. 2005). Though managed as fragmented parcels by individual
landowners, urban grasslands are interconnected with limited physical barriers to the movement
of biota both above- and below-ground, and thus function as intact ecosystems (Groffman et al.
2009, Raciti et al. 2011a, Duran et al. 2013, Polsky et al. 2014, Thompson and Kao-Kniftin 2017,
Trammell et al. 2017). Lawns are often characterized by perennial cover and longer periods of
photosynthesis and water uptake than forests or agricultural ecosystems (Pickett et al. 2008), high
plant productivity (Falk 1980), and high soil microbial biomass and activity (Shi et al. 2012) which
affect nutrient cycling and soil organic matter (Qian et al. 2010, Qian and Follett 2012). Soil carbon
(C) content in urban soils has been shown to equal or surpass agricultural or native shortgrass
ecosystems by comparison in both arid and mesic climates (Kaye et al. 2005, Golubiewski 2006,
Raciti et al. 2011), and turfgrass landscapes can have similar C stocks across ecoregions including,

variations in climate, parent material, and topography (Pouyat et al. 2009). While urban grasslands
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have unique ecological features, they exist as a result of transformation and urbanization of a
previous landscape, which could be influenced by legacy effects of land-use and of human
management (Pickett et al. 2008, Pouyat et al. 2009).

Land-use change associated with urban development alters not only aboveground features,
including vegetation, built structures, and impervious surfaces, but also soil physiochemical
conditions such as pH, nutrient content, bulk density, and other factors, which affect biodiversity
and soil biology (Pouyat et al. 2010, Pickett et al. 2011, von der Lippe et al. 2020). In urban
grasslands, the use of fertilizers, supplemental irrigation, and disturbance by mowing generally
select for soil microbiomes with a greater abundance of copiotrophic microorganisms that prefer
higher resource environments (Thompson and Kao-Kniffin 2019, Sapkota et al. 2021). Studies
have shown increasing bacterial abundance over time in residential lawns, but lawn management
practice intensities and turfgrass species composition have not been linked to differences in
microbial abundance (Acosta-Martinez et al. 1999, Shi et al. 2006, Yao et al. 2006, Allan-Perkins
et al. 2019). Rather the cumulative effects of irrigation, fertilization, and pesticide use on soil
organic matter (SOM) and combined with soil texture (specifically silt) likely drive altered soil
microbiome structure (Sapkota et al. 2021). It is consistent with other research showing that lawn
management practices, including N fertilization and incorporation of leaf litter (Acosta-Martinez
et al. 1999), are secondary determinants of soil microbiomes (Shi et al. 2006, Yao et al. 2006,
Allan-Perkins et al. 2019, Sapkota et al. 2021). The well-studied nature of agricultural ecosystems
has resulted in a proposed hierarchy of factors that influence the soil microbiome: soil type > time
> specific farming operation > management system > spatial variation (Bossio et al. 1998). The
study of urban ecosystems is complicated by many factors, inhibiting the development of a similar

hierarchical framework for urban landscapes (Sapkota et al. 2021).
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While urban ecosystems are located across very disparate climatic regions, the landscape
features and management practices that typify an “urban” landscape may have resulted in the
spread of ecologically similar ecosystems. The structural and functional resemblance of
geographically distinct cities to one another, more so than to adjacent native ecosystems, refers to
urban ecological homogenization (Groffman et al. 2014). While urban soils are often highly
modified (IUSS Working Group WRB 2015), the soils in urban ecosystems often originate from
the site. It is unclear how the process of homogenization is affected by remnant soil conditions that
assert a legacy of previous use (Byrne et al. 2008, Pouyat et al. 2015, Ziter and Turner 2018).
There is particular interest in the homogenizing effects on the phylogenetic structure of bacteria
and fungi and their potential to perform ecosystem services, including nutrient cycling, pollution
mitigation, and carbon sequestration in soils (Jangid et al. 2011).

In this study, we examined the biotic diversity of the soil ecosystem under land-use change
from forest and agriculture to urbanized ecosystems in residential parcels of different age
(spanning decades) and land-use history (forest versus agriculture), as well as reference sites of
forests and agricultural lands. We aimed to examine if land-use history alters soil microbiome
structure and soil physiochemical properties after recent conversion and through a span of several
decades to determine if ecological homogenization occurs regardless of previous land-use. We
hypothesized that conversion of forests and agricultural lands to residential lawns will lead to a
disruptive shift in soil microbial composition that will remain distinctly different from the previous
land-use but will be similar to other lawns regardless of previous land-use. We tested this
hypothesis by focusing on specific taxonomic groups that are highly sensitive to the time-since-
conversion into lawns. The underlying concept is that lawn soil microbiomes, regardless of

previous land-use history, will become more similar over time, which is consistent with ideas about
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ecological homogenization of urban ecosystems. Lawn management activities including
establishing turfgrass species, mowing, fertility and water management, and recreational traffic
are expected to result in the reduction of soil legacy effects and the homogenization of soil

microbiomes towards a common community.

Methods

Site selection and soil sampling

We determined land-use legacy impacts on the soil ecosystem by sampling from residential
sites that were either previously forested or agricultural and compared them with present-day forest
and agriculture reference sites. A total of 24 residential sites in Baltimore County, MD USA were
selected based on land-use history (agriculture or forest) and age (old: > 70 years; middle: 40-70
years; young: 10-25 years). There were four replicate lawns for each land-use and age combination.
Four agricultural reference soils were derived from cropped land at the McDonogh School
(Owings Mills, MD, USA) and four forest reference soils originated from Oregon Ridge Park
(Baltimore County, MD, USA) (Appendix S1: Figure S1). Both sites are utilized as references for
other studies by the Baltimore Ecosystem Study (BES), as part of the National Science
Foundation’s Long-term Ecological Research program (LTER) (Groffman et al. 2009). To identify
the 24 residential properties used in this study, multiple data sources were compiled, and cross
referenced to locate candidate sites prior to homeowner interviews and on-site assessments to
determine the suitability of candidate properties for this research. Nine hundred residential lawns
were identified from a 2011 telephone survey about lawn maintenance practices conducted by
researchers affiliated with the BES LTER (Vemuri et al. 2011, Polsky et al. 2014). Combining

land-use/land cover classification data from the Maryland Department of Planning (State of
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Maryland 2015b), along with additional land-use/land cover records (Wehling 2001) and ArcGIS
(ESRI, Redlands, CA, USA) to assess individual parcel land-use history and real property records,
maintained by the Maryland Department of Assessment and Taxation (State of Maryland 2015a)
to determine the year of construction of the primary residential structure on each property, we
created three age categories of candidate residential lawns: old, medium, and young for homes
built in 1950 or prior, in the 1970s, and from 1990 to 2004, respectively. Homeowners were
contacted via postal mail and in person via door-to-door canvassing. Before research sites were
finalized, an on-site suitability assessment for lawn condition, tree shade, topography and drainage,
and an interview with homeowners were conducted (data not reported). We attempted to
standardize the selection of each property to be similar for these characteristics and to disperse
sites geographically across the study region. This research builds on decades of work in the BES
LTER that have characterized landscapes along an urban-to-rural gradient and studied residential
property management practices by the homeowners in the region. Several extensive studies of
randomly sampled properties in the Baltimore region, found that most lawn soil profiles show no
evidence of extensive use of fill material or soil profile disruption (Raciti et al. 2011a, Martinez et
al. 2014). Additional research associated with the BES LTER has found that fertilizer and pesticide
use in lawns is quite variable in time and space, but that the vast majority of lawns have received
some fertilizer and pesticide over the past 25 years (Raciti et al. 2011b, Polsky et al. 2014, Locke
et al. 2019). This study relies on prior data and findings from BES LTER research and
methodologies used nationally by the LTER network to inform this study design, sampling
scheme, and site selection.

At each residential site, two soil cores (3.2 cm dia x 100 cm depth) at least 4 m apart were

collected using a slide hammer soil corer after removing grass and thatch layers (AMS, Inc.,
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American Falls, ID, USA). Cores were divided into 0-30cm and 30-100cm increments, subsequent
analyses reported here focus on the 0-30cm depth increment. Further separation of the 0-30cm
core was not performed due to processing limitations of subsequent analyses. At the reference
sites, two cores were taken from four plots at least 10 m apart at Oregon Ridge and McDonogh
School. All cores were encased in individual plastic sleeves, capped and kept on ice in coolers and
returned to Cornell University (Ithaca, NY, USA) for subsequent analysis. Soil cores were
removed from plastic sleeves, photographed, and examined for evidence of soil profile disruption
or abrupt transitions that would indicate soil fill over native site soils (Raciti et al 2011). The two
replicate field cores from each site were combined in the lab and passed through a 2 mm sieve.
Subsamples were frozen (-20 °C until analysis) for microbiome biomarker sequencing and the
remaining soil was divided for physiochemical analyses. Soil samples were frozen to stabilize the
microbial community under a common set of conditions across all samples (Thompson and Kao-

Kniffin 2016, Chou et al. 2018, Howard et al. 2020).

Soil bacterial and fungal communities

DNA was extracted from 0.25-0.3 g of soil using the MoBio PowerSoil DNA Isolation Kit
(MoBio Laboratories Inc. Carlsbad, CA, USA) per the manufacturer’s directions. Amplification
of the 16S rRNA gene (bacteria) and internal transcribed spacer (ITS) region (fungal) using
universal primers and adapters for two-step Nextera library preparation for Illumina MiSeq
sequencing (Howard et al. 2017). Amplification was performed using a Bio-Rad C1000 Thermo
Cycler (Bio-Rad, Hercules, CA, USA). For the 16S rRNA gene, we used the primers 341F (5'-
CCTACGGGNGGCWGCAG-3") and 805R (5'-GACTACHVGGGTATCTAATCC-3")

(Herlemann et al. 2011), including index attachment overhangs (Bell et al. 2016, Howard et al.
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2017). PCR reactions occurred in 20 pL volumes with 8 uL of 5 PRIME HotMasterMix (5 PRIME
Inc., Gaithersburg, MD, USA), 1 uL of 10 uM concentrations of each primer, and 1 pL DNA
template. Reactions were first performed with no dilution of the DNA template, then diluted to 1:5
and 1:10 with filter and steam sterilized, nuclease-free water until amplification was achieved. The
16S PCR was run as follows: 94° C for 2 min; 25 cycles of 94° C for 20 s, 55° C for 20 s, and 72°
C for 30 s with a final elongation at 72° C for 5 min. For ITS amplification, we used the primers
ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3") and 58A2R (5-CTGCGTTCTTCATCGAT-
3") (Gardes and Bruns 1993, Martin and Rygiewicz 2005) with index adapters as described above.
ITS reactions occurred in 20 pL. volumes with 8 uL of 5 Prime HotMasterMix, 1 uL of each primer
in 10 uM concentrations, and 0.5 pL of DMSO. PCR conditions for ITS were 94° C for 3 min; 35
cycles of 94° C for 20 s, 45° C for 30 s, and 72° C for 45 s with a final elongation at 72° C for 5
min. Multiple attempts at ITS PCR, including dilutions of 1:1, 1:5, and 1:10, and pooled triplicate
extractions of the PowerSoil kit were unsuccessful in amplifying one replicate of the young lawns
with agricultural history, and so this sample was omitted from further cleaning and submission for
sequencing.

PCR amplicons were cleaned using a MagBio HighPrep PCR magnetic bead kit (MagBio
Genomics, Gathersburg, MD, USA) in a clear 96 well plate per the manufacturer’s directions.
Using a 96-well plate, two unique barcode indices were added to the overhangs of each sample by
combining 5 pL of amplicon, 2.5 uL of each forward and reverse primer containing the index
barcode, 2.5 puL of polymerase free H>O, and 12.2 puL of Q5 High Fidelity 2X Master Mix (New
England Biolabs, Inc., Ipswich, MA, USA). PCR cycling conditions were: 98° C for 1 min; 8
cycles of 98° C for 15 s, 55° C for 30 s, and 72° C for 20 s; with a final elongation at 72° C for 3

min. The SequalPrep Normalization Kit (Thermo Fisher Scientific, Waltham, MA, USA) was used
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following the manufacturer’s instructions to normalize the DNA retained from each barcoded
sample. We combined 5 pL of each normalized sample to separate 16S and ITS amplicon pools,
which were concentrated and run on a 1.2% agarose gel for 5 min at 100 V and then 45 min at 60
V. Bands of the expected sizes were excised and the gel was removed from the sample using the
PureLink Quick Gel Extraction Kit to give a final pooled volume of 50 pL for both 16S and ITS
samples.

Pooled samples were run at the Cornell Genomics Facility (Ithaca, NY, USA) on the Illumina
MiSeq platform with a 500-cycle MiSeq Reagent Kit v.2 for the ITS pool, and a 600-cycle MiSeq
Reagent Kit v.3 for the 16S rRNA pool. A total of 505,301 16S rRNA gene and 648,940 ITS reads,
representing 12,550 bacterial and 3,125 fungal OTUs, respectively, were obtained following a
paired-end merging, primer trimming, and singleton removal and sequence processing (Howard et
al. 2017). MiSeq data have been deposited in the NCBI Sequence Read Archive and are available

under the BioProject number SRP149939.

Soil physiochemical properties

Approximately 20 g of fresh soil per soil core was dried at 100° C for 72 hours and reweighed
to determine soil moisture content for subsequent calculations, including soil bulk density. Soil
pH was measured using 10 g in a 1:2 solution with DI H,O which was shaken, then let stand for
30 min, and then read with a calibrated pH probe (Robertson et al. 1999). Due to the need to sample
fresh soil for microbial analyses [community sequencing and potentially mineralizable nitrogen
(PMN); PMN data not reported in this paper], the cores were sieved and homogenized and removed
subsamples soil fresh weights were recorded. Materials passing and not passing the sieve were

weighted fresh, dried, and reweighted. The dry weight of the microbial analyses fresh soil samples
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were calculated by the soil moisture content of the remaining materials. All subsamples of each
core actual and calculated dry weights were divided by the core volume to determine soil bulk
density. Sub samples were oven-dried at 72° C for 24 h and ground into a fine powder using a
mortar and pestle with liquid nitrogen (Cook et al. 2017) and analyzed at the Cornell Stable Isotope
Laboratory (Ithaca, NY, USA) for total carbon and nitrogen analysis via a NC2500 elemental
analyzer (Carlo Erba, Italy). Soil C and N stocks were calculated using total C and N, soil bulk
density, core volumes, and the fraction of material greater than 2mm (Raciti et al. 2011). Soil
texture was determined by the standard hydrometer sodium hexametaphosphate dispersal method
described by Robertson et al. (1999) including no-soil calibration tests to account for solution

density.

Statistical analyses

Statistical analyses were performed in R (v. 3.6.2) (R Core Team 2017). Microbiome data were
analyzed using the phyloseq (McMurdie and Holmes 2013) package after first being rarefied to
yield an equal number of sequences in all samples. One replicate agricultural history, young lawn
was removed from bacterial microbiome community analysis due to an inadequate number of
[llumina sequences (<1,000 reads for the sample vs. 505,301 16S rRNA gene reads for the entire
run). This is the same replicate that we were unable to successfully extract and amplify fungal
DNA for ITS sequencing. This replicate was therefore removed from both bacterial and fungal
community analysis and soil physiochemical properties for this sample were not used for
microbiome community analysis. Microbiome sequences were analyzed separately for 16S rRNA
gene (bacteria) and ITS (fungi) using Analysis of Variance (ANOVA). Age of the lawn (young,

medium, old, and reference) and land-use (previously agricultural or forested) were used for

11



256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

comparisons of means. Bray-Curtis dissimilarity matrices using the vegan package (Oksanen et al.
2018) were calculated for the bacterial and fungal sequences and permutational multivariate
analysis of variance (PERMANOVA) using the adonis function in the vegan package were used
to test the effect of land use (forest or agricultural history) and age (young, medium, old, reference)
on bacterial and fungal community composition for all samples. Then, PERMANOVA was used
to analyze the effect of age within sites of agricultural history and forest history separately. Non-
metric multidimensional scaling (NMDS) on Bray-Curtis matrices was performed using the
function metaMDS in the vegan package to visualize the differences in the microbial communities
(stress values < 0.1). Soil physiochemical property effects on the microbial communities were
calculated using the function envfit in the vegan package and visualized using vectors plotting the
correlations to the NMDS ordinations. Significance values for the vectors were generated with 999
permutations.

Shannon diversity indices using the diversity function and relative abundance using the
phyloseq function for bacterial and fungal communities were calculated in vegan package and
differences were assessed using linear models tested with ANOVA followed by Tukey’s HSD
post-hoc to assess the effects of land-use history (forest or agricultural) and age (young, medium,
old, and reference) together, or the effect of age within separate agricultural history and forest
history analyses. The Shannon index was used because the value increases as the number of species
increases, and the evenness of species distribution among samples becomes more even, which has
been shown to be more reliable than the Simpson index for microbiome research (Pylro et al.
2014).

The Ismeans package was used to fit linear models in order to test the effects of land-use (lawn,

forest and agriculture) on soil physiochemical properties (pH, bulk density, soil texture, C and N

12
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stocks and C:N). Where needed, data were transformed to meet normality assumptions. Model
significance was tested by analysis of variance (ANOVA). Post hoc pairwise comparisons were
then made using Tukey’s HSD test using the c/d function in Ismeans. Data with P < 0.05 were

considered significant.

Results

Bacterial 16S rRNA gene sequences

Bacterial composition:

Bacterial microbiomes were compared across all sites, which showed that while land-use
history and age factors were significant, separation of the dataset by land-use history improved
analysis of the age factor (PERMANOVA: land-use history: F; 29 = 6.24, R> = 0.16, p = 0.001;
age: F320,=2.31,R°=0.18, p=0.001) (Figure 1A). The dataset was then divided to evaluate shifts
in microbial community composition with age within each land-use history. For lawn soils that
were previously agriculture, soil pH influenced the clustering of bacterial communities from sites
that served as agricultural references in this study (pH vector: p = 0.001; NMDS: stress value =
0.089, non-metric R> = 0.99), while residential age or the time since conversion to lawns from
prior agricultural sites was not a significant predictor of bacterial composition (PERMANOVA:
Fs11=0.99, R* = 0.21, p = 0.44) (Figure 1B). However, distinct shifts in bacterial communities
across lawn age were visible for previously forested lawn soils (PERMANOVA: F3 1, = 5.45, R?
= 0.58, p = 0.001). There was a shift in bacterial composition from reference forests to young
lawns along NMDS1 (x-axis; NMDS: stress value = 0.055, non-metric R*> = 0.99) (Figure 1C).
Bacterial community shifts are shown as clusters by age of residences—young lawns are distinctly

separated from reference forests, while older lawns are more similar to reference forests. Both pH
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and bulk density were correlated with the ordination of the bacterial community (pH: p = 0.017;

BD: p = 0.004).

Bacterial diversity: Shannon diversity of the soil bacterial communities differed across land-uses
and lawn age (2-factor ANOVA: F723=8.89, p =2.69 x 107) (Table 1). Shannon diversity was
not significantly different across the lawns of various ages and the reference site within the
agricultural land-use history group of sites (1-factor ANOVA: F3;; = 0.22, p = 0.88). However,
within the forest land-use history sites, Shannon diversity of the forest reference site was
significantly lower (mean: 5.60, sd: 0.10) compared to all other samples (1-factor ANOVA: F3 >

=23.45,p=2.63 X 109).

Bacterial relative abundances: Reference forest soils were distinguished by a higher relative
abundance of taxa in the phylum Acidobacteria (mean: 39.81, sd: 2.19; ANOVA: F73=28.06, p =
5.73 x 107) and a lower relative abundance of taxa in the phylum Gemmatimonadetes (mean: 0.77,
sd: 0.19; F723=13.08, p = 1.1 x 10°%) (Figure 2). Furthermore, previously forested young lawns
had a higher relative abundance of the taxa in the phylum Firmicutes (mean: 12.18, sd: 4.05;
ANOVA: Fr23 = 1820, p = 5.48 x 10®). The Actinobacteria (F123 = 1.64, p = 0.174),
Alphaproteobacteria (F723=0.85, p = 0.56), Beta/Gammaproteobacteria (F73=2.26, p = 0.066)

and Deltaproteobacteria (F7,23=2.09, p = 0.087) did not vary across land-uses and lawn age.

When regressed against soil pH, the Acidobacteria increased in relative abundance

(Appendix S1: Figure S1) with greater soil acidity in both previously agricultural (F; ;3 = 8.73, p

=0.011) and forest soils (F7,74=7.30, p = 0.017), while the Alphaproteobacteria increased in only
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the previously forested sites (£7,74 =4.74, p = 0.047) (Supplemental Table S1). In contrast, as soil
pH increased, there was a corresponding rise in relative abundances of Deltaproteobacteria in both
land-use histories (previously agricultural: F; ;3 = 16.93, p = 0.0012; previously forested: F; 4=
11.09, p = 0.005) and only in previously forested sites for Beta/Gammabacteria (F1,14=5.61, p =

0.033), Bacteroidetes (F1,14= 6.75, p = 0.021), and Gemmatimonadetes (F1,14=9.77, p = 0.0075).

Fungal ITS region

Fungal composition:

Soil fungal composition, assessed via ITS region sequencing, followed many similar patterns
to trends of the soil bacterial communities. With the combined land-use analysis, soil fungal
community composition was significantly different among land-uses (residential lawns, reference
forest sites and reference agriculture sites; PERMANOVA: Faos = 2.53, R* = 0.15, p = 0.001).
Fungal communities of the reference forests were distinct from all other land-uses, and young
lawns that were previously forested clustered together and diverged from reference sites along
NMDS] of the ordination (NMDS: stress value = 0.12, non-metric R* = 0.99) (Figure 3A). Soil
physiochemical properties that were significantly correlated to the fungal community ordination
included pH (p =0.001) and C:N (p = 0.031).

For lawn soils in previously agricultural lands, residential site age was not a significant
predictor of fungal composition (PERMANOVA: F3 11 = 1.09, R> = 0.23, p = 0.17) (Figure 3B).
Soil pH influenced the direction of fungal composition in the ordination (pH vector: p = 0.025;
NMDS: stress value = 0.17, non-metric R> = 0.98). Fungi in forested sites and previously forested
lawns varied by age (PERMANOVA: F35 = 2.81, R = 0.41, p = 0.001) with a gradient along

NMDSI, where previously forested young and medium lawns differed from forested reference
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sites and the older lawns were less distinct from forested reference sites (NMDS: stress value =
0.046, non-metric R*> = 0.99) (Figure 3C). Both pH and bulk density were significantly correlated

with the fungal community ordination (pH: p = 0.022; BD: p = 0.020).

Fungal diversity: Shannon diversity of the soil fungi differed across land-uses and lawn age
(ANOVA: F723=5.95, p = 0.00049) (Table 1). Within the agriculture land-use history group of
sites, Shannon diversity differed among the lawn ages and the agricultural reference site (1-factor
ANOVA: Fj31 = 3.87, p = 0.041). Within the forest land-use history group, Shannon diversity
differed to a stronger degree among the lawn ages and the reference forest than among the
agricultural history sites (1-factor ANOVA: F3>=13.85, p = 0.00033). The youngest residential
sites showed different levels of fungal diversity, with greater diversity in the previously forested
lawns (mean: 4.01, sd: 0.25) and the lowest in the previously agriculture lawns (mean: 2.83, sd:
0.34). Soil fungal composition became more diverse with increasing age in former agricultural

lands.

Fungal relative abundances: There were variations in the relative abundances of the phylum
Basidiomycota and classes of the phylum Ascomycota, including Sordariomycetes,
Eurotiomycetes, Dothideomycetes and unclassified Ascomycota (“Ascomycota, other”) across
land-use and lawn age (ANOVA, Basidio: F723=7.64, p = 8.55 x 107, Sordar: F723=3.27,p =
0.015, Euro: F723=3.29, p = 0.014, Doth: F723=3.37, p = 0.013, other Asco: F723=4.19, p =
0.0041) (Figure 4). The reference forest sites had a higher relative abundance in Basiodiomycota
(mean: 60.14, sd: 18.40) and lower relative abundance of other 4scomycota (mean: 22.11, sd: 9.22)

compared to previously forested lawns, but did not differ from agriculture reference sites and
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previously agriculture lawns. Previously forested young and old lawns had higher relative
abundance of Sordariomycetes (previously forested young lawns: mean: 41.81, sd: 6.69 and
previous forest old lawns: mean: 42.11, sd: 20.36) compared to the forest reference site (mean:
5.21, sd: 2.84). The younger lawns that were previously forested had higher relative abundance of
Eurotiomycetes (mean: 11.24, sd: 9.01) compared to all the agricultural-history lawns and
agriculture reference sites and the previously forested old lawns. The forest reference sites had
lower relative abundance of Dothideomycetes (mean: 8.18, sd: 6.60) compared to the former
agriculture old lawns (mean: 23.04, sd: 17.82) and medium aged formerly forested lawns (mean:
23.87, sd: 13.04). Leotiomycetes (F723=1.63, p = 0.18), Pezizomycetes (F723=1.17, p = 0.36),
Chytridiomycota (F723=1.43, p=0.24), Glomeromycota (F723=2.04 p =0.093), and Zygomycota
(F723=1.02, p = 0.45), did not vary with land-use and lawn age.

When regressed against soil pH, the relative abundances of unclassified Ascomycota,
increased in association with greater soil acidity (Appendix S1: Figure S3 in previously
agricultural sites (F,;3=10.17, p = 0.0071) and Basidiomycota in previously forested sites (£7,14
=9.88, p =0.0072) (Appendix S1: Table S2). Conversely, there was a strong positive association
between Sordariomycetes and less acidic soils in previously forested sites (F7,4 = 28.68, p =

0.00010).

Soil properties: pH. bulk density. texture, carbon & nitrogen stocks

Soil pH, bulk density (BD), texture (% sand, % silt and % clay), C and N stocks, and C:N were
compared across reference sites (agriculture and forest) and residential lawns (Appendix S1: Table
S3). Soil pH was significantly lower in the forest reference sites compared to all other sites (mean:

4.44, sd: 0.11; F328 = 6.789, p = 0.001). Soil percent sand (F328 = 2.116, p = 0.120), silt (F328 =
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1.154, p = 0.345) and clay (F328 = 1.612, p = 0.209), were not significantly different among land
uses. Soil bulk density ranged from 1.00 to 1.45 g cm™ and was not significantly different between
land uses (F328 = 1.364, p = 0.274). There were no significant differences in soil C stock (F328 =
1.873, p = 0.157), N stock (F328 = 1.402, p = 0.263), or C:N (F326 = 0.429, p = 0.733) among

different land uses.

Discussion

We examined if land-use legacy influences the trajectory of biotic homogenization in soil
ecosystems upon conversion from forest or agriculture to urban grasslands. In this study, temporal
trends in microbiome community dynamics were uncovered only when assessing previous land-
use. In previously forested sites, bacterial and fungal communities were patterned across time since
conversion to residential lawns. For example, with increasing age of the residences, the bacterial
communities of previously forested lawns were reverting to a forest soil composition over decades
of time but the soil fungi did not follow a similar pattern to bacteria. Additionally, the agricultural
lands converted to lawns showed no shifts in the soil microbial community over time.

The convergence of microbiomes across lawns and agricultural sites, with the exception of the
bacteria found in the old previously forested lawns, suggests that the homogenizing effects of
urbanization (Groffman et al. 2014) are similar to the effects of other human managed ecosystems
(e.g. agriculture) in altering soil microbiomes and edaphic conditions (Ziter and Turner 2018). The
homogenizing effect across human managed ecosystems may be due to the similarities in
landscape features and management practices (e.g., presence of non-woody vegetation,
fertilization, and disturbance) in residential lawns and agricultural sites. A global analysis of

microbiomes across urban green spaces revealed more homogeneous microbial communities
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across cities than those found across in reference, adjacent natural ecosystems (Delgado-Baquerizo
et al. 2021). The study supports the concept that biotic homogenization is captured in the microbial
sequence record, but the factors leading to homogenization at the global scale are unclear. In our
study of the Baltimore ecosystem watershed, we found that the previously agricultural sites
undergo a significant transformation into residential lawns, but the disturbance is not detectable
via soil bacterial and fungal sequence data or in the outcome of many soil physiochemical
properties. Knowing previous land-use history can partly explain the variability in responses, but
without more extensive data on management interventions, discerning predictable outcomes will
remain difficult (Ziter and Turner 2018). The intersection of land-use legacy and ecological
resilience to disturbance is evident in the microbiome fingerprint of the contrasting ecosystems.
The Acidobacteria, in particular, may be at the core in resisting the ecological homogenization of
lawns by reestablishing populations over time (Fig. 2). The Acidobacteria are comprised of
metabolically diverse taxa, with specific subdivisions associated with acidic or low pH soils
(Kielak et al. 2016). The bacteria are common in forests soils and are found in the rhizospheres of
grass species (Pan et al. 2014). While the overall microbial community may appear similar across
sites, slight variations in microbial taxa could have impacts on specific ecosystem functions.

The unique microbiome of the forest reference sites was likely influenced by the acidic soil
conditions, evidenced by the lower bacterial and fungal diversity levels and changes in relative
abundances of Acidobacteria, Proteobacteria and Bacteroidetes in the bacterial communities and
Basidiomycota and Sordariomycetes in the fungal communities. It is well known that soil pH is
one of the primary drivers of microbial community composition, and diversity across ecosystems
and within urban ecosystems (Fierer and Jackson 2006, Lauber et al. 2009, Rousk et al. 2010,

McGuire et al. 2013, Ramirez et al. 2014, Schmidt et al. 2017). Soil pH can influence bacterial
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communities through direct effects on nutrient availability or ion toxicity and indirect effects of
maintaining cellular activity and metabolism in acidic environments (Zhalnina et al. 2015). The
Acidobacteria, Actinobacteria, Bacteroidetes, and Firmicutes have been shown to be responsive
to soil pH (Lauber et al. 2009, Wessén et al. 2010). Although in this study, pH was not correlated
with Actinobacteria or Firmicutes, suggesting that there are likely other factors affecting their
population dynamics in our sites (Appendix S1: Figure S2 and Table S1).

The Proteobacteria and Bacteroidetes were also less abundant in the reference forest plots.
These bacterial phyla include many copiotrophic species that grow in environments with abundant
nutrients and resources. The taxonomic composition of the forest soil microbiomes indicates an
environment favoring more oligotrophic (Hartman and McCarthy 2008, Cederlund et al. 2014,
Zhang et al. 2017) microbiota than the other sites examined in this study. Deeper analysis of the
nutrient profiles in soil, including forms of soil organic matter and plant residues, may elucidate
the differences in microbial communities across land-uses (Cederlund et al. 2014). Nonetheless,
our results highlight those forests within an urban-suburban area are in fact distinct from other
land-uses at the microbiome level. The unknown factor is why the soil bacterial community in
urban residences becomes more similar to those found in forests, while soil fungi do not exhibit
the same trend over time in these residential sites.

A massive disturbance, like deforestation and replacement of vegetation from trees to grass,
could alter soil fungi structure permanently, even if remnant trees remain or if new ones are
established in older urban landscapes. In our analysis, Basidiomycota, as expected, dominated
reference forest fungal communities. Members of this phylum perform important functions that
include the breakdown of lignin (Taylor and Sinsabaugh 2015, Anthony et al. 2017), which is a

significant component of organic matter in the forested sites. The Sordariomycetes and
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Dothdideomycetes, classes of fungal phylum Ascomycota, are associated with the decomposition
of leaf litter (Snajdr et al. 2011, Taylor and Sinsabaugh 2015), thus their greater abundance in
previously forested lawns compared to previously agricultural lawns could result from litter inputs
or relative tree cover in the surroundings. This concept is also consistent with the increasing
abundance of these classes of fungi on more mature lawns of formerly agricultural sites, which
may have more woody landscape plantings established following conversion to residential
development which likely increases leaf-litter inputs with time as those trees mature. Leaf litter
inputs for sites of both land-use histories would be expected to increase with time as residential
landscape trees mature, though sites with a prior forest history may receive additional leaf litter
input from adjacent landscapes. However, unlike forest ecosystems where coarse woody debris
would remain in place, supporting the decomposer food web and microbiome, woody debris is
removed from most residential landscapes and lawns, so the differential outcomes for microbial
wood-decomposers and leaf-decomposers is consistent with our findings across time and former
land-use history.

Bulk density was particularly important for microbial communities in the forested sites, as
indicated by its significant correlation with NMDS microbial community ordinations. The
difference in bulk density in the forest sites (1.14 g * cm™) and formerly forested lawns (1.23 g *
cm’') indicate that even a small increase in bulk density, as a result of land-use change, can affect
bacterial community composition. Bulk density is a direct measure of particle packing and
accounts for air/water exchange, pore spaces and void spaces influencing microbial and root
establishment and persistence (Li 2002, Canbolat et al. 2006). Our results indicate that the soil
microbiome may be sensitive to bulk density in residential lawns. While many studies have

highlighted that ecosystem edaphic properties such as pH and bulk density are predictive of
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continental scale patterns of soil microbiomes (Fierer and Jackson 2006, Lauber et al. 2009),
functional changes in soil microbiomes that may occur as a result of changes in vegetation, litter
and soil organic matter at the smaller scale may not be captured by these commonly reported
metrics. As soil microbiome studies across urban and other ecosystems continue to provide more
information on the links between microbial communities and soil physiochemical properties, land-
use history and age since conversion could explain some of the inconsistencies in relating these
two variable types.

There was a high proportion of the bacterial phylum Firmicutes in the lawn soils that were
most recently converted from forest, which comprised approximately 12% of the relative
abundance of the entire soil bacterial community. In contrast, Firmicutes was only 1.7-2.9% of the
total soil bacterial relative abundances in all other land-uses and ages. The properties with high
Firmicutes abundance were widely distributed across the study region [Fig. 1, young (Y) & forest
land use history], therefore we do not suspect that a proximity effect is driving this finding. Other
studies report Firmicutes relative abundance at 2-5% (Lauber et al. 2009) across many ecosystem
types. In a recent census of bacterial taxa in urban grasslands along the eastern mid-Atlantic region
of the United States, including Beltsville, MD (Crouch et al. 2017), Firmicutes abundances ranged
from 1.9-4.8%. Evidence from >40 year old continually grazed rye-grass pastures (Lauber et al.
2008) and the long-running Rothamstead Park Grass experiment (PGE) (Zhalnina et al. 2015),
report Firmicutes relative abundances in the range of 13-15%. Generally Firmicutes are reported
as copiotrophic (Zhalnina et al. 2015) although they have been shown to be positively associated
with ammonium sulfate fertilizer, though this is not universal for all genera within the phylum
(Zhalnina et al. 2015). Firmicutes tend to be negatively correlated with pH (Lauber et al. 2008,

Wessén et al. 2010), which aligns with the reported stimulatory effect of ammonium sulfate
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fertilizer on Firmicutes relative abundance, since ammonium sulfate acidifies soils. We found no
significant correlation between Firmicutes relative abundance and soil pH, %C, %N, or C:N
(Appendix S1: Figure S2, Table S1, and Table S4). Prior to the PGE, the site was a permanent
grazed pasture until 1875 and it was suggested by researchers that the abundance of gut-associated
microbiota (Firmicutes) may be a centuries old land-legacy effect at the PGE. Although the authors
suggested modern era small mammals, birds, and soil fauna may also be sources of animal-
associated microbiota (Zhalnina et al. 2015). Given the high Firmicutes abundance occurring in
younger lawns with a forest history, animal inputs cannot be ruled out or accounted for if the soil
were external to the sites and brought to the residences during construction. The presence of
animal-associated microbiota in grass-dominated landscapes requires further research, particularly
if there may be human health implications.

While bacterial diversity did not differ across the agriculture-history lawns and agriculture
reference sites, fungal diversity was lowest in the young lawns with agricultural history. While
fungal sequencing has many known limitations and biases against phylogenetic groups (e.g.
Glomeromycota (Stockinger et al. 2010), this lower diversity in younger lawns indicates a
disturbance effect as a result of the transformation from an agricultural site. Fungi are in fact
sensitive to belowground disturbances (Treseder et al. 2004, Jansa et al. 2006, van der Heyde et
al. 2017). Therefore, during the transformation from agriculture to a grass lawn, it is important to
consider the ecosystem services provided by fungi, such as nutrient cycling and soil aggregation
that may be impacted during the younger transition phase.

Though residential lawncare practices in the Baltimore, MD (USA) region are variable in space
and time (Raciti et al. 2011a, Polsky et al. 2014, Locke et al. 2019), the effects of irrigation,

fertilization, mowing, turfgrass species composition, and soil disturbance can affect soil
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biogeochemistry and soil microbiome composition and function (Thompson and Kao-Kniffin
2019). While lawn management practices can affect the soil microbiome, such effects are
secondary to soil properties and time (Acosta-Martinez et al. 1999, Allan-Perkins et al. 2019,
Sapkota et al. 2021), where soil properties set the bounds for which management can influence the
microbiome unless management practices are directly attempting alter soil properties. Compared
to unmanaged ecosystems, lawn landscapes — even those that received minimal management inputs
(i.e., municipal lawns and right of ways) - are at least periodically mown, and many residential
lawns receive periodic irrigation or fertilization (Locke et al. 2019, Thompson and Kao-Kniffin
2019). The increased availability of resources in residential lawn ecosystems from fertilization and
irrigation tends to broadly select for copiotrophic microorganisms (Leff et al. 2015, Zhalnina et al.
2015, Thompson and Kao-Kniffin 2019). Soil disturbance after lawn establishment has been
shown to have minimal effects on soil microbiomes adapted to typical edaphic and lawn
management conditions (Yao et al. 2006, Bartlett et al. 2007, Crouch et al. 2017). Moreover, soil
and soil microbiome import associated with sod installation at the U.S. National Mall lawn
renovation have been shown not to appreciably disturb existent soil microbiomes and that long-
term management practices are what selects for the observed soil microbiome (Crouch et al. 2017).

The conversion of land to urban use implies not only significant disturbance during the
development and construction process of urbanization, but also in the continued management of
human-dominated landscapes (Groffman et al. 2017, Locke et al. 2019, Thompson and Kao-
Kniffin 2019). We acknowledge, as have others (Ziter and Turner 2018, Sapkota et al. 2021), that
conducting urban ecology research is difficult in part because of the lack of detailed site history
and human management activities that may influence many factors — including the soil microbiome

that we considered in our study. However, the strength of our experimental design was that we
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used historic aerial imagery to create a clear contrast between sites with agricultural versus forest
land use history. The fact that there are observable legacy effects of this contrast, despite variation
in soil and plant management in lawns, is perhaps our most significant result. This study is
associated with and builds on decades of work within the Baltimore Ecosystem Study Long-Term
Ecological Research (BES LTER) project. Findings from extensive prior BES LTER research help
to address some of the unknowns and possible assumptions about the comparability of randomly
selected residential lawn sites used in this study, specifically that the majority of prior lawn soil
profile research shows little evidence of fill or soil profile disruption (Raciti et al. 2011b, Martinez
et al. 2014) and while variable in time and space the vast majority of lawns have received some
fertilizer and pesticide over the past 25 years (Raciti et al. 2011a, Polsky et al. 2014, Locke et al.
2019). Prior research has characterized an extensive ecological homogenization of lawn
ecosystems across the U.S. (Groffman et al. 2017) and the fact that in our study we can still find
the legacy effects of past land use is quite striking and important for understanding multiple

functions of these ecosystems (e.g., carbon storage, greenhouse gas fluxes, water quality).

Conclusion

Lawns are dominant features of urban and suburban landscapes; however, they are more recent
features resulting from the transformation of a different land-use type. The lawn soil microbiome
is understudied, yet this underlies the environmental performance of urban grasslands. Our results
show that soil microbiomes are influenced by the previous land-use. Characteristics related to
historic land-use, such as vegetation type and management interventions, affect the structure and
diversity of present soil bacterial and fungal communities and potentially their ecological

performance. Our study also supports the urban ecological homogenization hypothesis in that lawn
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establishment and management practices result in largely identical soil microbiomes regardless of
previous land-use. We hypothesize this change likely occurs at the time of construction or within
a few years after, though our results, based on our study design, shows homogenization with a
decade or two after conversion. However, the decades of time since conversion showed contrasting
developments in microbiome structure in once forested landscapes. With increasing age of the
residences, soil bacterial communities became more similar to reference forests. While bulk soil
did not become more acidic over time in these previously forested residences, soil pH influenced

the relative abundances of specific key taxa.

Overall, the results indicate that the legacy effects of the previous land-use may be residual in
soil over decades of time to impact long-term trajectories of biodiversity and urban ecological
homogenization. Our findings show evidence of shifting soil microbiomes that differ based on
time and land-use history in response to contemporary lawn management. This finding may not
have direct implications for homeowners presently, but it does suggest that changes in the soil
microbiome linked to landscape management may result in shifts in the function of these
landscapes. There is great interest in the ecosystem services and disservices related to air and water
quality associated with residential land use. The processes that influence these services are
mediated by microorganisms and there is a great need to understand how land-use history,

management, and other factors influence microbial communities and processes.
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Table 1: Shannon diversity of bacteria and fungi. Values are mean+SD of untransformed values.

The 2-factor ANOVA included all measurements across both land use histories (agriculture and

forest) and 1-factor ANOVA analyses were done separately for lawns with agriculture history and

lawns with forest history with their respective reference sites. Measurements not connected by the

same letter and the same case indicate means were significantly different according to a post-hoc

Tukey’s HSD test (lowercase letters for the 2-factor ANOVA, uppercase letters for the 1-factor

ANOVA and within uppercase letters, asterisks for forest land use).

Land-use Lawn Shannon diversity bacteria Shannon diversity fungi
age Land-use x Age | Age within land-use Land-use x Age | Age within land-use
(2-factor (1-factor ANOVA) (2-factor (1-factor ANOVA)
ANOVA) ANOVA)
Young 6.43 6.43 2.83 2.83
Lawn +0.16 +0.16 +0.34 +0.34
a A c A
Medium 6.56 6.56 3.68 3.68
Lawn +0.27 +0.27 +0.51 +0.51
Agriculture a A ab A
Old 6.53 6.53 3.66 3.66
Lawn +0.20 +0.20 +0.32 +0.32
a A ab A
Referenc 6.45 6.45 3.31 3.31
e +0.33 +0.33 +0.24 +0.24
a A abc A
Young 6.41 6.41 4.01 4.01
Lawn +0.18 +0.18 +0.25 +0.25
a A* a A*
Medium 6.71 6.71 3.60 3.60
Forest Lawn +0.14 +0.14 +0.21 +0.21
a A* abc AB*
Old 6.54 6.54 3.56 3.56
Lawn +0.31 +0.31 +0.12 +0.12
a A* abc B*
Referenc 5.60 5.60 3.00 3.00
e +0.10 +0.10 +0.27 +0.27
b B* bc C*

 One replicate young lawn with agricultural history did not amplify for sequencing, thus this

replicate was omitted from both bacterial and fungal diversity analysis.
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Figure Legends

Figure 1: Soil bacterial composition in lawns that were previously agricultural or forested. Non-
metric multidimensional scaling (NMDS) was used to show variation in bacterial composition
using 16S rRNA gene sequences for soils spanning young, medium, and old residential sites. The
contrasting land-uses are combined in the top ordination (A) and are shown separately in (B) as
lawns converted from agriculture and (C) lawns converted from forests. The ordination includes
soils from reference sites that are presently agricultural or forested. Vectors represent soil
physiochemical properties, pH and bulk density (BD) that were significantly correlated with the
ordinations. PERMANOVA at p < 0.05 was used to determine distinct microbial communities

across residential age and reference sites.

Figure 2: Relative abundances of dominant bacterial taxonomic groups (phylum and class) based
on 16S rRNA gene sequences. The stacked bars on the left indicate soils from lawns that were
previously agricultural and the bars on the right are derived from lawns previously forested.
Reference sites that are presently agricultural or forested are included for comparison with

residential soils.

Figure 3: Soil fungal composition in lawns that were previously agricultural or forested. Non-
metric multidimensional scaling (NMDS) was used to show variation in fungal composition using
ITS gene sequences for soils spanning young, medium, and old residential sites The contrasting
land-uses are combined in the top ordination (A) and are shown separately in (B) as lawns

converted from agriculture and (C) lawns converted from forests. The ordination includes soils
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from reference sites that are presently agricultural or forested. Vectors represent soil
physiochemical properties, pH and bulk density (BD) that were significantly correlated with the
ordinations. PERMANOVA at p < 0.05 was used to determine distinct microbial communities

across residential age and reference sites.

Figure 4: Relative abundances of dominant fungal taxonomic groups (phylum and class) based on
ITS gene sequences. The stacked bars on the left indicate soils from lawns that were previously
agricultural and the bars on the right are derived from lawns previously forested. Reference sites

that are presently agricultural or forested are included for comparison with residential soils.
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