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Abstract—A thermal simulation methodology derived from the proper orthogonal decomposition (POD) and the Galerkin projection
(GP), hereafter referred to as PODTherm-GP, is evaluated in terms of its efficiency and accuracy in a multi-core CPU. The GP projects
the heat transfer equation onto a mathematical space whose basis functions are generated from thermal data enabled by the POD
learning algorithm. The thermal solution data are collected from FEniCS using the finite element method (FEM) accounting for
appropriate parametric variations. The GP incorporates physical principles of heat transfer in the methodology to reach high accuracy
and efficiency. The dynamic power map for the CPU in FEM thermal simulation is generated from gem5 and McPACT, together with the
SPLASH-2 benchmarks as the simulation workload. It is shown that PODTherm-GP offers an accurate thermal prediction of the CPU
with a resolution as fine as the FEM. It is also demonstrated that PODTherm-GP is capable of predicting the dynamic thermal profile of
the chip with a good accuracy beyond the training conditions. Additionally, the approach offers a reduction in degrees of freedom by
more than 5 orders of magnitude and a speedup of 4 orders, compared to the FEM.

Index Terms—Thermal simulation, Proper orthogonal decomposition, Data driven learning method, Multi-core CPUs.

1 INTRODUCTION

HERMAL issues have been the bottleneck of perfor-

mance improvements for high-performance micropro-
cessors due to drastic minimization of the semiconductor
technology nodes and introduction of multi-core architec-
tures in the last several decades, which have resulted in
significant enhancement of the power density in the proces-
sors [1]. High temperature gradients and hot spots not only
impair performance of processors but also degrade their
reliability [2], [3]. Thermal management and thermal-aware
design exploration of the high-performance processors [4],
[5] have been the effective approaches to minimize these
thermal issues to improve the performance and reliability
of the processors. For instance, as found in [6], the average
performance is further improved by 8.9% for the hetero-
geneous multi-core processor through an adaptive thermal
management framework, compared to ARM’s DVFS (Dy-
namic Voltage Frequency Scaling)-based intelligent power
allocation. These effective thermal managements however
require an effective thermal simulation tool. For real time
applications, such as run-time thermal aware task schedul-
ing, a very efficient thermal simulation with a high accuracy
is desirable.

For thermal simulations of semiconductor chips, many
approaches have been developed for different applications.
Some of the approaches focus on the accuracy of the
thermal simulation to capture hot spots, for instance the
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direct numerical simulations (DNSs) based on the finite
difference, finite volume or finite element method (FDM,
FVM or FEM, respectively). These DNS methods are how-
ever computationally intensive and in general prohibitive
for thermal simulations at the architecture level. Several
other approaches therefore have been proposed in situations
where the efficiency plays an important role, including
the thermal circuit model, the Green’s function method,
machine learning based methods, etc. All these approaches
achieve higher efficiency than DNSs by sacrificing accuracy
and/or resolution with approximations that impose severe
limitations. For instance, efficient thermal circuits are re-
alized at the cost of very low resolution and inaccurate
solutions. When using the thermal circuit model or the
machine learning based method, if one intends to maintain
resolution as fine as DNSs, intensive computational efforts
become similar to DNSs. Additionally, it is difficult to apply
the Green’s function method to 3D dynamic thermal sim-
ulations. In recent years, the data-driven approach based
on proper orthogonal decomposition (POD), together with
the guidance of physical principles, has become increasingly
attractive for thermal simulation of semiconductor chips
due to its ability to achieve high accuracy, resolution and
efficiency simultaneously [7]-[9]. These thermal simulation
approaches are further discussed in Sec. 2.

In this work, an architecture-level thermal simulator has
been developed based on the POD-Galerkin (PODTherm-
GP) methodology for 3D dynamic thermal simulation of
a multi-core CPU. The early concept of this methodology
was briefly illustrated in [7]. This POD-Galerkin modeling
technique offers an accurate and efficient prediction of the
thermal profile in the multi-core processor without a priori
assumptions. The POD projects the thermal problem from
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a physical domain of the multi-core CPU onto a functional
space, whose basis functions (or POD modes) are trained
by thermal data generated by DNSs of the multi-core CPU.
In our study, the thermal data is collected from FEniCS,
an open-source computing platform for solving partial dif-
ferential equations (PDEs) using the FEM [10]. To provide
realistic heat sources in FEniCS-FEM thermal simulation,
the power trace in each unit is generated by gem5 [11]
and MCcPAT [12] with selected benchmarks. The validation
of PODTherm-GP was conducted using a different power
trace in each unit from that used for thermal data collection.

The key concepts and contributions of the POD-Galerkin
methodology are summarized as follows:

1) The POD process trains an optimal set of modes
to acquire essential information embedded in the
collected data. This ensures an accurate prediction
using the smallest number of modes (i.e., DoF) to
reach high accuracy if the data quality is sufficient.

2) The Galerkin projection enforces the physical prin-
ciples, guided by the heat transfer equation, in the
prediction and offers the extrapolation capability
with good accuracy.

3) PODTherm-GP thus offers accurate 3D dynamic
thermal simulations with high efficiency and accu-
racy, and the thermal resolution is as fine as the
training data collected via DNSs.

4) PODTherm-GP reduces numerical degrees of free-
dom (DoF) by more than 5 orders of magnitude
with a high accuracy, resulting in a 4-order speedup,
compared with FEniCS-FEM.

5) The quality of the POD modes significantly depends
on the accuracy of the thermal gradients in collected
training data.

The rest of this work is organized as follows. Firstly, the
related work of the thermal simulation for semiconductor
chips and processors is presented in Sec. 2. The PODTherm-
GP methodology is introduced in Sec. 3 from the mathe-
matical perspective. Sec. 4 illustrates the evaluation of the
methodology. Next, PODTherm-GP is employed to perform
dynamic thermal simulations of the selected multi-core CPU
in Sec. 5, and the results are discussed in Sec. 6 in terms of
the accuracy and efficiency. Finally, the findings of this work
are concluded in Sec. 7.

2 RELATED WORK ON THERMAL SIMULATION OF
SEMICONDUCTOR CHIPS

Thermal simulation is an important component for ther-
mal [6], [13] and power [14], [15] managements which
are two major strategies to minimize the coupling effects
between chip temperature and power consumption and to
prevent semiconductor chips from overheating. Hot spots
in semiconductor chips can be predicted through accurate
thermal simulation, and they can then be suppressed via
the power management techniques, such as DVFS [6]. The
reduced temperature in turn improves the power efficiency
of semiconductor chip. In addition, the chip thermal profile
predicted by thermal simulation is needed in thermal man-
agement to improve chip performance and reduce power
consumption through exploring the cooling techniques [13],
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[15] or thermal-aware task scheduling [3]. The existing
thermal modeling approaches for semiconductor chips are
briefly discussed as follows.

2.1 Direct Numerical Simulations (DNSs)

To obtain detailed thermal profiles in semiconductor chips,
usually the FEM, FVM or FDM is applied. For example, 3D
thermal ADI based on the FDM was developed by Wang et
al. [16]. Xu [17] used ANSYS based on the FEM to perform
thermal simulation for a quad-core chip. COMSOL was
used by Vaddina et al. [18] to conduct thermal modeling
and analysis of 3D stacked structures. With rapid advance
in multi-core processors [19], localized power density has
been significantly enhanced and it is desirable to attain
high enough resolution in a thermal prediction to capture
small-size hot spots. Although, DNS offers high thermal
resolution and high accuracy, it is impractical to apply DNS
at the chip architecture level due to their computationally
intensive nature.

2.2 Thermal Circuit Model

Lumped element thermal circuits have been widely used
at the architecture level due to their simplicity and effi-
ciency [20]. For example, HotSpot [21] and 3D-ICE [13]
are some of the popular thermal-circuit architecture level
simulators. HotSpot has been applied by Glocker et al. [22]
to study the temperature distribution in a 16-core system
and by Florea et al. [23] to provide thermal analysis for
enhancing the Sniper multicore simulator. HotSpot and
3D-ICE have been integrated into the performance-power-
thermal simulation toolchains, such as HotSniper [24],
HotGauge [25] and CoMeT [26]. The efficiency of the
thermal circuit model is however accomplished by using
large lumped elements that are not able to adequately
account for distributed heat transfer and may lead to an
inaccurate prediction [27]. To improve the accuracy, the size
of the RC elements needs to be reduced substantially, as
done in the grid model of HotSpot [28] that is then similar
to the computationally intensive FDM.

2.3 Green’s Function Method

In the conventional Green’s function approach, the single
Green’s function is calculated in response to a unit point
heat source at the center of a large chip, assuming no
boundary influence. The Green’s function is a spatial im-
pulse response of the chip, and the thermal solution is
constructed by superposition of the impulse responses to
the point sources at different locations. It is thus inherently
difficult to include boundary conditions (BCs) in thermal
simulation of a finite domain [29], [30] or to use Green's
function in situations where the power source is close to
the edge of the chip [31]. It is also difficult to apply the
conventional approach to transient thermal simulation [29],
[32]. The method is however significantly more efficient
than the FEM, FVM or FDM because it only considers a
single layer where the power sources are generated. Various
efforts have been made to overcome the aforementioned
limitations by implementing different techniques with some
significant revisions, which inevitably reduce computing
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efficiency. For example, the Green’s function is applied to
correct the corner and edge effects based on the method of
image for the adiabatic BC [33]. This is however not valid
for different types of BCs. Using the power blurring method,
together with the spatiotemporal pulse, transient thermal
simulation becomes possible within the Green’s function
framework [33]. These however still offer 2D temperature
on the power dissipation layer. An effort has been made
to include 3D temperature profile with multilayer Green’s
functions [34]; it is however limited to steady state simula-
tion.

2.4 Machine Learning Techniques

Machine learning methods have recently been applied to
investigate various aspects in semiconductor chips, includ-
ing multi-core chips, [35]-[37]. Among different machine
learning techniques, the neural network methods have
been the most common approaches for thermal simulation
of semiconductor chips due to their simplicity and effi-
ciency [35], [36]. Using neural networks, thermal data are
needed to train each thermal cell (or neuron) in the domain
to respond to heat excitations (heat sources and BCs) and
neighboring neurons. Memory space and computational
time needed in thermal simulation are thus determined by
the selected number of neurons and the selected distance for
close connections of the individual neurons. Although these
approaches are considerably more efficient than the DNSs;
they are in general limited to the thermal solution over
a small number of nodes, instead of the detailed thermal
profile of the chip. In addition, the approaches are based
on data statistics without being guided by fundamental
physical principles and thus in general leads to erroneous
solution in case of extrapolation.

2.5 Physics-based Learning Method

A different learning algorithm derived from a projection-
based reduced order model has been investigated in the past
based on POD [38], [39]. A tutorial for POD is included in
[40] that offers an intuitive and easy-to-follow presentation
about the basic concepts and approach. The POD projects
the thermal problem from a physical domain to a functional
space to reduce the DoF. Instead of assuming its basis func-
tions as done in many other projection-based approaches,
such as the Fourier series, Legendre polynomial, Bessel
functions, etc., the basis functions (or POD modes) that con-
stitute the POD space are generated (or trained) via thermal
solution data for the problem of interest. The thermal data
are collected from accurate DNSs for the trained POD modes
to capture the essential thermal information induced by the
parametric variations, including heating power and BCs.
The POD offers an optimal set of basis functions that lead
to a smallest least square (LS) error limited by the quality
of the thermal data. To incorporate the physics principles of
heat transfer in POD simulation, the dynamic heat transfer
equation for the simulation domain is further projected onto
the POD space. This rigorous procedure guides the POD
thermal solution to comply with the dynamic heat transfer
equation. Cheng’s group has applied the POD simulation
methodology to develop efficient and accurate thermal sim-
ulation models for SOI and FinFET devices, FInFET circuits
at the gate level and interconnects [8].

3

The major advantage of the POD simulation methodol-
ogy, guided by fundamental physics principle, is to reduce
a large-dimension problem to an extremely small dimen-
sion with only a handful of modes while maintaining the
accuracy comparable to and the resolution equivalent to
DNS. A post process is however needed to reconstruct the
dynamic temperature in the physical domain, which is the
major computational bottleneck. Unlike the DNS where the
entire simulation time and domain needs to be included
in the simulation, the post processing calculations in the
POD approach for realistic situations only need to be carried
out in small high-temperature areas of the chip at each
selected interval of time. This will significantly minimize
the computing time and memory space needed in the post
process.

3 POD THERMAL SIMULATION METHODOLOGY

As described above, the POD based simulator, PODTherm-
GP, is able to model a large-scale dynamic thermal problem
using a small number of POD modes [8], [9]. These modes
are trained by the thermal solution data of the physical do-
main obtained from DNSs subjected to a range of parametric
variations including the BCs and dynamic power map. The
POD modes are thus specifically tailored to the training
range of the BCs and power variations for the problem of
interest and able to substantially reduce the DoF for the
heat transfer problem. As will be demonstrated in Sec. 5,
PODTherm-GP is also able to offer an accurate prediction
even beyond the training range if more modes are included
because of the projection of the heat transfer equation onto
the POD space. The projection onto the POD modes clearly
incorporates the physical principle of heat transfer that
allows the POD approach to predict the dynamic thermal
evaluation in space adequately even in the extrapolation
situation.

3.1 Generation of POD Modes

The POD modes are optimized by maximizing the mean
square inner product of the thermal solution data with
the modes over the entire domain [38], [39], subjected to
dynamic or static parametric variations. In our study, the
thermal data in space is collected at each simulation time
step in the DNS. This maximization process leads to an
eigenvalue problem described by the Fredholm equation,

/Q R(7, 7)o (7)d = Ap(F), 1)

where ) is the eigenvalue corresponding to the POD mode
(i.e., eigenfunction ) and R(7, ") is a two-point correlation
tensor given as

R(7 7)) = (T(F,t) @ T(, 1)), )

with ® as the tensor operator and the angle brackets ()
indicate the average over a number of thermal data sets.
After solving the eigenvalue problem in (1), temperature
can then be represented by

M
T(7t) = ai(t)ei(F), &)
=1
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where a; are the weighting coefficients for ¢; and M is the
number of POD modes selected to reconstruct the tempera-
ture solution. If the eigenvalue of the data decreases rapidly
for the higher modes, only a small DoF (or M) is needed to
reach an accurate thermal prediction.

3.2 Projection of Heat Transfer Equation onto POD
Space

In order to predict the dynamic thermal distribution given
in (3) in a domain structure, the coefficients a;(t) need to
be determined. To achieve this, the heat transfer equation is
projected onto the POD space using the Galerkin projection,

opCT
i

+ Vs - EVT)AQ = / o1 (F) Pal, 1)€Y
Q

- [ kv T s,

’ @)
where k, p and C are the thermal conductivity, density
and specific heat, respectively, P;(7,t) is the interior power
density, S is the boundary surface and 7 is the outward
normal vector on the boundary surface. With the selected
POD modes, (4) can be rewritten as an M-dimensional
ordinary differential equations (ODEs) for a;(t),

M da; (t) M
Do i Y gigailt) =pj, i =10 M, ()
i=1 i=1

where ¢; ; are the elements of the thermal capacitance matrix
in the POD space and they are defined as

Ci,j = /sz pCoip;dd. (6)

gi; and p; are the elements of the thermal conductance
matrix and power vector in the POD space, respectively. In
(5), gi,; and p; may also vary with BCs. In this work, two
kinds of BCs, adiabatic and convective BCs, are applied to
the boundary surfaces of the chip. For the adiabatic surface,
the heat flux is zero, and g; ; and p; can be written as

iy = /Q KV Vi p = | giPuFade. ()

For the convective boundary, the heat flux on the surface is
described by
—kVT -1 = —ka—T =h(T — Tomp), (8)
on
where h is the heat transfer coefficient and T,,,,; is ambient
temperature. Using (8) in (4), g; ; for the convective BC are
given by

9i5 = /QkVQDz . VCdeQ + /s hQDZ . QOde, 9)

and p; becomes

pj = o QOde(F, t)dQ +/Sh<pjTamde. (10)

Once the dynamic power consumption is obtained from
gemb and McPAT (described in Sec. 4), the interior power
source strength in POD space given in (7) and (10) can be
pre-evaluated. The BC of the substrate bottom is modeled
by convective heat transfer given in (8) with a heat transfer
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Fig. 1. Workflow of the thermal simulation via PODTherm-GP for multi-
core CPUs at the architecture level.

TABLE 1
Gemb Configuration Parameters for Intel XEON E5-2699v3

Parameter Value
Clock Speed 2.3 GHz
Number of Cores 18
L1; Size 32 kB
L14 Size 32 kB
L2 Size 256 kB
L3 Size 45 MB
Cache Line Size 64
Memory Size 16 GB
Memory Type DDR3 1600 8x8
Issue Width 8
ROB Capacity 192
Number of Integer Units 4
Number of Floating Point Units 2
Integer Multiply Latency 3
Integer Division Latency 18
Floating Point Multiply Latency 5
Floating Point Division Latency 6
DRAM bandwidth 68 GiB/s
DRAM Request to Response Latency 30ns

coefficient determined by structure dimensions and material
properties of heat spreader and heat sink with T,,,,;, = 45 °C.
All other boundaries are adiabatic. The coefficients in (5) are
all pre-evaluated once the modes are determined. With a;(t)
solved from (5) in POD simulation, the temperature solution
can be predicted from (3).

4 EVALUATION METHODOLOGY

The complete workflow of the thermal simulation via
PODTherm-GP at the architecture level for multi-core CPUs
is illustrated in Fig. 1. An Intel Xeon E5- 2699v3 CPU with
18 cores, whose floorplan is shown in Fig. 2 [41], is selected
in this work to demonstrate the effectiveness of PODTherm-
GP. Using the benchmarks described below, the power trace
in each unit of the CPU is generated from two open-source
simulators, gem5 and McPAT, for FEniCS-FEM to perform
thermal simulations. Gem5 was selected to perform cycle-
level simulation of the CPU and to generate performance
statistics of the CPU [11]. The configuration parameters
used for gem5 to simulate the Intel Xeon E5-2699v3 CPU
are shown in Table 1. These parameters are based on the
specifications provided by Intel for the CPU and those used
by Jongerius et al.,, in their work, where a similar Intel
Xeon processor was modelled in gem5 [42]. Any unknown
parameters are left as the default values configured by
gemb.

The SPLASH-2 benchmark suite was chosen as the simu-
lated workload for gem5 [43]. SPLASH-2 is an open-source

Authorized licensed use limited to: CLARKSON UNIVERSITY LIBRARY. Downloaded on May 30,2023 at 02:24:11 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3278535

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO.

TABLE 2
Selected SPLASH-2 Benchmarks

Benchmark Description Assigned Core
Index
Conti Simulates flow of large-scale
ontiguous . -
O oceanic currents using 2,8,14
cean . L
contiguous partitions
Non- Simulates flow of large-scale
Contiguous oceanic currents using 3,9,15
Ocean non-contiguous partitions
Computes the distribution of
.. light in a scene using the
Radiosity hierarchical diffuse radiosity L,7,13
method
Simulates the flow of water in a
Water Spatial | space using a 3D spatial data 511,17
structure
W, Simulates the flow of water in a
ater . .
N-Sauared space using a different 4,10, 16
4 algorithm than water-spatial
Uses the Barnes-Hut method to
Barnes simulate the interaction of a 0,6,12
system of celestial bodies

benchmark suites in C/C++, and it is widely used in the
research field of computer architecture [44]. A subset of
available benchmarks in SPLASH-2, described in Table 2,
was selected in this work. The assignment of these bench-
marks for the generation of realistic dynamic power map
is list in Table 2 using the index of the cores labeled in
the Fig. 2 in order to mimic real-world scenarios. With
these four benchmarks, two have variants: Ocean and Water.
The variants of Ocean are contiguous and non-contiguous
partitions. These variations change the way the algorithm
partitions the simulated space. The variants of Water are
spatial and N-squared. These variants change the algorithm
used for the simulation. Any benchmark that was required
to load data from an input file was modified so that the
data provided with the benchmark was included in the
source code. While this increased the size of the source code,
the modification avoids requiring gem5 to read files from
the disk. The CPU event traces output by gem5 include
performance counters for different hardware components of
the CPU, such as the usage of each functional unit, cache
accesses, and many others. The simulator captures and
stores as much information as possible about the CPU usage
during each simulation time step. In this work, simulations
are performed with a sampling interval of 4.35 ps and
the durations of 4.35 ms and 6.09 ms for the training and
demonstration of PODTherm-GP, respectively.

The statistics traces output by gem5 for the selected
benchmarks are parsed to create inputs for McPAT to simu-
late the power used by the CPU during operation. These
input files are in the form of XML files that contain the
required information for McPAT to operate. McPAT also
requires architectural information, such as the number of
functional units, the size of caches, and others. With the
architectural information and performance statistics, McPAT
estimates the area of each component, and calculates the
dynamic and static power used by each component during
each time step [12]. The power values output by McPAT are
then parsed to create dynamic power map files.

With the generated dynamic power map, FEniCS-FEM

Core 13

A

Core 11 Core 7 Core 2

Core 10 Core 6 Core 1

Core 0 x

Fig. 2. Floorplan of the Intel Xeon E5-2699v3 CPU [41] with an area
of 31.0 mm x 21.5 mm. A and B indicate the plotting paths for the
demonstration.

is used to perform thermal simulation for data collection to
generate POD modes, as shown in Fig. 1. The process for
POD mode generation and POD model construction is fur-
ther detailed in the next section. To validate the POD model,
a separate FEniCS-FEM thermal simulation for the selected
multi-core CPU is performed using a different dynamic
power map. The POD results are then compared against
the FEniCS-FEM simulation with the consistent numerical
settings and dynamic power map.

5 POD MODEL
VALIDATION

5.1 Training of POD Modes

The simulation domain of the selected multi-core CPU,
whose floorplan is shown in Fig. 2 [41], includes a top
heating layer with a thickness of 55.8 um and a substrate
with a thickness of 241.8 um. The heating layer covers
the top thickness where power is dissipated (such as the
layers of devices and interconnects). Convective heat trans-
fer described by a heat transfer coefficient given in (8) is
applied to the bottom of the substrate. The heat transfer
coefficient is modeled by thermal resistances of the heat
spreader, thermal interface material and heat sink calculated
from the chip dimensions and material properties, similar to
other studies [21], [28]. The remaining boundary surfaces are
assumed adiabatic. The dynamic power in each functional
unit generated from gem5 and McPAT is averaged over 10k
CPU cycles at 2.3 GHz. To investigate the effect of the train-
ing data quality on robustness of the POD model, two sets
of thermal data are collected from FEniCS-FEM with meshes
of 256 x 256 x 14 and 1104 x 620 x 14, or spatial resolutions of
0.121x0.083 x 0.023 mm? and 0.028 x 0.035 x 0.023 mm? in
z, y and z, respectively, using the same dynamic power map.
The POD models built upon these 2 data sets with coarser
and finer resolutions are referred to as POD Model-A and
Model-B, respectively. It is noted that the coarser mesh used
in this study is finer than those used in most of studies
for chip-level thermal simulations, unless an extremely fine
resolution is needed [31], [33].

The POD modes and eigenvalues are determined
from (1) via the method of snapshots [8], [45] using the train-
ing data collected from FEniCS-FEM simulations. The POD
modes are thus tailored to essential information embedded
in the training data to account for variations of BCs and the

IMPLEMENTATION AND
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Fig. 3. Eigenvalue spectrums of the thermal data for POD Model-A and
POD Model-B. A close-up inset shows the first 15 eigenvalues.

dynamic power map. Each eigenvalue represents the mean
squared temperature variations captured by its mode and
therefore reveals the importance of the mode. The number
of POD modes needed in (3) for an accurate prediction can
then be estimated from

Ns
Zi:M+1 Ai

; (11)
ZZJ'V:'H Ai

Errrpeo =

where Errype, is the theoretical LS error and N, is the
number of snapshots or sampled data sets. (11) offers an
ideal LS error but the LS error resulting from PODTherm-
GP is usually larger than Errrpe, due to the limitations of
numerical accuracy and computer precision.

Fig. 3 describes the eigenvalues of the collected data
for Model-A and Model-B in descending order. Since the
resolution of the collected data sets are fine enough, the
eigenvalues for these 2 POD models are nearly identical. The
eigenvalue decreases significantly in the first several modes
and shows a slower decreasing rate in the higher modes.
It eventually becomes nearly flattened beyond 170 modes
after a reduction by 16 orders of magnitude due to the limit
of computer precision. The zoom-in spectrum in the inset
shows that the eigenvalue drops more than two orders of
magnitude from the first to the second mode and nearly
four orders to the third mode. Based on (11), it is expected
that either Model-A or Model-B is able to offer an accurate
thermal prediction with 3 or more modes if the quality of
the training data collected by the FEniCS-FEM is adequate.

To construct a POD model, its model parameters in the
projected ODEs in (5) need to be pre-calculated using its
POD modes ¢;(7) of the training data, as defined in (6)-
(10). PODTherm-GP thus solves the ODEs for d(t) with a
selected number of modes M, and a post process via (3) is
then needed to calculate the dynamic thermal distribution
in the CPU. Using the POD modes with two different res-
olutions, the following demonstrations focus on validating
the accuracy and efficiency of the POD simulation technique
and examining how the resolution impacts the quality of the
training data and the generated modes and thus the model
accuracy. A validation is also performed beyond the training
range to examine the robustness of PODTherm-GP in the
case of extrapolation.
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Fig. 4. Least square errors for thermal simulations of the multi-core CPU
in (a) the entire chip and (b) the heating layer.

5.2 Demonstrations of the POD Simulation Methodol-
ogy

In the demonstrations, each of Model-A and Model-B is
applied to thermal simulation of the selected multi-core
CPU, compared to the FEniCS-FEM simulation with the
spatial resolution identical to that of its POD modes. The
training is carried out over a simulation time of 4.35 ms
for both Model-A and Model-B, and the POD models are
validated against FEniCS-FEM for 4.35 ms and 6.09 ms. In
any comparison between simulations of a POD model and
FEniCS-FEM, BCs and dynamic power map are identical.
However, the dynamic power map used for the demonstra-
tion is different from that used for the collection of training
data, as discussed in Sec. 4.

Fig. 4 illustrates the LS errors of both POD Model-A and
Model-B for the thermal simulations of the selected multi-
core CPU, with respect to FEniCS-FEM simulations. The
numerical LS error of the POD model is estimated over the
entire simulation time from

Y Jo €2(7)dQ
Zﬁvztl fQ(Tl(F) - Tamb)QdQ

where T;(7) and e;(7) are temperature given by FEniCS-
FEM and the temperature difference between the FEniCS-
FEM and the POD model at i-th time step, respectively, and
N, is the total number of time steps.

As can be seen, the theoretical LS errors for Model-A and
Model-B basically overlap due to the nearly identical eigen-
value spectrum shown in Fig. 3. The theoretical LS error
decreases rapidly from 5.1% for one mode to 0.71% with 3
modes. When using 3 modes, the numerical LS error shown
in Fig. 4(a) in the entire chip however reach 2.9% for Model-
A (coarser resolution) and 2.1% Model-B (finer resolution)
for the 4.35 ms simulation. Beyond 3 modes, the error from
the coarser mesh model remains nearly unchanged but from
the finer mesh model continues decreasing slowly to 1.93%.
For the heating layer in Fig. 4(b), the LS error for the 4.35
ms simulation with 3 modes using Model-A or Model-B
becomes 1.1% or 0.76%, respectively. The error from Model-
A continues decreasing to 0.91% with 8 modes while the
error from Model-B decreases to 0.49% with 8 modes and
stays near 0.51% beyond 8 modes. The errors in the entire
chip and the heating layer are clearly improved when the
POD modes are generated from the finer mesh training data.

ETTNum = ) (12)
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For the 6.09 ms case with simulation time beyond the
training range, as expected, the LS error of the POD model
increases. However, Figs. 4(a) and (b) clearly show that,
when more modes are included in this extrapolation case,
the LS error of the 6.09 ms simulation declining toward the
error of the 4.35 ms case. For example, when using 3-11
modes, the LS error of Model-B for the entire chip remains
near 1.93%-2.1% for the 4.35 ms case, and its error for the
6.09 ms case is equal to 2.5% with 3 modes and reduces
to 2.2% and 2.09% with 7 and 11 modes, respectively. It
is observed as well for Model-A in Fig. 4(a) that the 6.09
ms curve declines with more modes and these 2 LS-error
curves nearly merge with 10 or more modes. The similar
phenomenon is also shown in Fig. 4(b) for the heating layer,
when comparing the LS errors induced by these two POD
models using more modes.

As demonstrated in the 4.35 ms case, for Model-A with
3 modes compare to FEniCS-FEM, a reduction in the DoF
over 5 orders of magnitude (256 x 256 x 14 vs. 3) with a LS
error of 2.9% for the entire chip or 1.1% in the heating layer
can be achieved. For Model-B with 3 modes, a reduction of
DoF more than 6 orders of magnitude (1104 x 620 x 14 vs.
3) with an LS error of 2.1% or 0.76% for the entire chip or
the heating layer, respective, can be reached. In this 4.35 ms
case, if 7 modes are used, an LS error as small as 1.95% or
0.52% can be accomplished over the entire chip or in the
heating layer, respectively, and the reduction in the DoF is
still as large as 6 orders.

To understand the insight into the LS errors presented in
Fig. 4, how the dynamic thermal profile influenced by the
accuracy of the POD modes resulting from the quality of the
training data is examined below in detail.

The temperature evolution at the intersection of Paths
A and B predicted by POD Model-A and Model-B is com-
pared against the FEniCS-FEM result in Figs. 5(a) and (b),
respectively, over a simulation time of 6.09 ms. At this
particular location, both POD-Galerkin models with 3 or
more modes offer a very good agreement with FEniCS-
FEM even beyond the training time (4.35 ms). When using
7 modes, the absolute percent errors for ¢t > 2.2 ms become
nearly flattened and stay near or below 1.62% from Model-A
and 0.85% from Model-B, where the finer-resolution model
leads to a higher accuracy. Because 15, is used as the initial
chip temperature, the percentage error w.r.t. Tg,,, looks
evidently large for ¢ < 0.55 ms even though the absolute
error is less than 0.1°C at ¢t ~ 0.55 ms and much less than
0.01°C near t = 0" ms.

The temperature profiles along Paths A and B are shown
in Fig. 6 for Model-A and in Fig. 7 for Model B. Based
on the CPU floorplan in Fig. 2, Figs. 6 and 7 show that
temperatures in Cores 12, 16 and 17 appear to be higher
than other functional units of the multi-core CPU resulting
from the core assignment based on the selected benchmarks
and their computational intensities. In general, POD Model-
A with 3 modes offers an accurate thermal prediction along
Paths A and B in the chip, as presented in Fig. 6. However,
in the high temperature regions, Cores 16 and 17, there is a
2%-3% deviation from the FEniCS-FEM result. When a finer
mesh is used in FEniCS-FEM to collect the training data to
generate the POD modes, Model-B with 3 or more modes
offers an excellent thermal prediction along both Paths A
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Fig. 5. Comparison of temperature evolution at (2.3 mm, 11.8 mm), the
intersection of Paths A and B shown in Fig. 2, between FEniCS-FEM
and (a) Model-A and (b) Model-B. The absolute percentage error for
each POD model using 7 modes is also included.

and B, as shown in Fig. 7. As also illustrated, the error
derived from Model-B (a finer mesh in Fig. 7) is 50% less
than that from Model-A (a coarser mesh in Fig. 6) in nearly
all locations along Paths A and B.

To understand how the mesh size impacts the POD
model accuracy, the profiles of POD modes and gradients of
the modes for Model-A and Model-B are examined in Fig. 8.
The difference of the mode gradients between Model-A and
Model-B along Paths A and B are also included. Because the
eigenvalue spectrums for these 2 POD models are nearly
identical, as given in Fig. 3, their modes are very close. How-
ever, a close look at the slopes of the modes in each direction
reveals the hidden problem of the model built upon the
coarser mesh. As shown in Fig. 8, the gradient differences
of the POD modes between Model-A and Model-B at some
locations with larger thermal gradients is relatively large.
For example, as shown in Figs. 8(a)-8(c), a slope difference
of the POD modes in = around 25%, 75% or 45% is observed
in Modes 1, 2 or 3, respectively, near z = 4.9 mm where the
highest thermal gradient in x is observed in Figs. 6(a) and
7(a). Evident slope differences of the modes in x are also
observed in other large slope locations near x = 12.4 mm
and 16.15 mm. Along Path B, the slope difference in y
shown in Figs. 8(d)-8(f) is smaller but still evident for the
first 2 or 3 modes at y = 10.4 mm and 17.9 mm but the
difference at 13.4 mm is observed only in the third mode.

Accuracy of the POD model in (5) is dictated by the
quality of the coefficients evaluated in (6)-(10). The thermal
conductance elements g; ; in the POD space results from the
projection of the heat flux (—kVT') onto the POD modes and
thus strongly depends on gradients of the modes, as defined
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Fig. 6. Temperature distribution derived from POD Model-A along (a)
Path A and (b) Path B at 4.35 ms, compared to FEniCS-FEM. The
absolute error using 7 modes is also included.

in (7) and (9). The accuracy of the POD model is thus
significantly influenced by the gradients of the generated
POD modes that are directly impacted by the quality of
the training data. This explains why Model-B built upon
the thermal data collected from the FEniCS-FEM simulation
with a finer mesh gives rise to a considerably smaller LS
error than Model-A, as discussed above in Fig. 4.

To further examine the robustness of PODTherm-GP
in the extrapolation case, the thermal profiles at 6.09 ms
predicted by Model-A and Model-B are illustrated in Figs. 9
and 10, respectively, compared to FEniCS-FEM results. For
the case with a coarser mesh in Fig. 9, the thermal profiles
along Paths A and B from POD Model-A with 3 or 5 modes
agree reasonably well with those from FEniCS-FEM, except
for the location near x < 3 mm,19 mm < z < 23 mm,
and = > 27 mm in Fig. 9(a) and 5 mm < y < 10 mm in
Fig. 9(b). Fig. 4(b) illustrates that, with 7 or more modes,
Model-A starts improving its LS error for the simulation
beyond the training period and a better agreement with
FEniCS-FEM is observed in Figs. 9(a) and (b). Because of
considerably higher power applied to Cores 3 and 8 and
a longer simulation time than the training conditions, it
requires 19 modes to significantly improve the prediction
from Model-A. The absolute error included in Fig. 9 also
reveals a significant improvement when using 19 modes,
compared to 7 modes although an error as small as 1.5%-
2% still remains near 13 mm < x < 15 mm in Core 17
(similar to Fig. 6 (b)). For the finer mesh case in Fig. 10, a
similar improvement is obtained for the Model-B simulation
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Fig. 7. Temperature distribution derived from POD Model-B along (a)
Path A and (b) Path B at 4.35 ms, compared to FEniCS-FEM. The
absolute error using 7 modes is also included.

beyond the training period when more modes are used, and
a considerably better prediction is observed for x < 3 mm
and 13 mm < y < 15 mm, where an excellent agreement
with FEniCS-FEM is observed.

Results shown in Figs. 4, 9 and 10 demonstrate that,
even with core power and simulation time beyond the
training conditions, PODTherm-GP offers a prediction with
a reasonably good accuracy with just 7 modes and more
modes are needed to reach a very accurate prediction. Such
an extrapolation capability stems from the Galerkin pro-
jection of the heat transfer equation. Unlike most machine
learning methods that usually lead to an unpredictable
solution when simulation settings are outside the bounds of
the training conditions, the Galerkin projection enforces the
prediction to comply with the physical principles embedded
in (5). These results also confirm the significant influence of
data quality (resulting from the mesh size in this case) on the
prediction accuracy of PODTherm-GP in the extrapolation
case.

6 DISCUSSION

Many interesting and encouraging findings are observed
in simulations of POD Model-A and Model-B, compared
against FEniCS-FEM simulations within and beyond the
training time. The LS errors in the entire chip and the
heating layer are clearly improved when the POD modes
are generated from the finer-mesh training data. Within
the training time using just 3 modes, as shown in Fig. 4
Model-A and Model-B reach the LS error near 2.9% and
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Fig. 9. Temperature distribution derived from POD Model-A along (a)
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absolute errors using 7 and 19 modes are also included.

2.1%, respectively, for the entire chip. The finer mesh model
(Model-B) can achieve an error near 1.95% with 7 modes. If
the temperature in the heating layer is the only concern,
Model-A and Model-B with 3 modes offer an LS error
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Fig. 10. Temperature distribution derived from POD Model-B along (a)
Path A and (b) Path B at 6.09 ms, compared to FEniCS-FEM. The
absolute errors using 7 and 19 modes are also included.

of 1.1% and 0.76%, and Model-B reaches an error as low
as 0.52% with 7 modes. In the case of extrapolation with
6.09 ms simulation time, Fig. 4 shows that the LS error
of the POD models increases, as expected; however, by
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incorporating more modes in the simulation, the LS error
can be brough down closer to that for the interpolation case.
This is observed in Figs. 4, 9 and 10, as well as in Table 3.
The LS error in Table 3 is estimated with respect to the result
from the finer-mesh FEniCS simulation.

It is shown that the coarser mesh in the FEniCS-FEM
simulation for POD Model-A is fine enough to produce rea-
sonably good-quality data that thus leads to nearly identical
eigenvalues and POD mode profiles of the first 3 modes to
those for Model-B, as shown in Figs. 3 and 8. However, the
coarser-mesh FEM simulation is not able to capture accurate
gradients in some interfaces between functional units with
a large temperature difference, and the training data lead
to inadequate quality of the POD modes. Apparently, as
presented in Fig. 8, this is the key issue that leads a larger
LS error from Model-A than from Model-B. This is also
the reason for an evident deviation observed between the
coarser-mesh and finer-mesh FEM thermal simulations of
the CPU, as shown in Table 3. An LS error of the coarser-
mesh FEM, compared to the finer-mesh FEM, as high as
0.8% and 1.63% is observed for the heating layer and entire
chip, respectively.

The error of the Model-B within and beyond the training
period is also included in Table 3. As more modes are
included, the LS error for Model-B in both 4.35 ms and
6.09 ms cases declines, and also the error for the 6.09 ms
case moves closer to that for the 4.35 ms case. In the entire
chip, Model-B leads to an LS error slightly greater than
the coarser-mesh FEM simulation. However, in the heating
layer, Model-B with just 3 modes leads to a smaller error
than FEniCS-FEM with a coarser mesh, and it reaches an
error as low as 0.51% with 13 modes, compared to 0.8% error
induced by the coarser mesh FEM. For the 6.09 ms case,
use of 13 modes in Model-B reduces the LS error to 0.61%
that is smaller than 0.72% for the coarser FEM simulation.
As mentioned previously, the coarser mesh size used in
our study is actually finer than those generally used in
architecture-level thermal simulations [31], [33]. Even in the
extrapolation case beyond the training time, if more modes
are used, Model-B is actually more accurate than the FEM
simulations with mesh sizes finer than what are usually
used in most studies on the chip-level thermal simulations.

As estimated in Sec. 5, the reduction in the DoF could
be 5 to 6 orders of magnitude. To estimate the compu-
tational efficiency, the computational time for the thermal
simulation of the selected multi-core CPU is listed in Table 4
for each approach. All experiments were conducted on the
Dell Precision Tower T7910, with two Intel Xeon E5-2697A
v4 CPUs, 512G memory, and Ubuntu 20.04 as its OS. As
to PODTherm-GP, the computational time consists of the
times for solving a;(t) in (5) (denoted as ODEs in Table 4)
and the post process to recover temperature in physical
space using (3). It turns out the post process to restore the
dynamic temperature in physical space for every time step
requires considerably more effort than that solving a;(¢)
from the ODEs because of the high spatial resolution in
the POD modes. However, the post processing calculation
is very flexible. As previously mentioned, realistically, only
temperature in some units, where computational workload
is heavy, is needed. This will significantly reduce the com-
puting time and memory space needed in the post process.

10

Postl and Post2 denote the post processes for restoring the
dynamic thermal profiles in the heating layer and the entire
CPU, respectively. Model-A with 3 modes leads a compu-
tational speedup of more than 19,000 and 5,500 times (i.e.,
2,2880/(0.082+1.098) and 2,2880/(0.082+4.034)) in the heat-
ing layer and entire chip, respective, compared to FEniCS-
FEM with the same resolution as Model-A. When using 5
modes, the speed improvement over the FEniCS-FEM is still
as high as 12,900 and 3,200 times, respectively. For the POD
Model-B simulation compared to the finer mesh FEniCS-
FEM simulation, the saving in computational time is 3.5 - 4
times higher than what Model-A offers.

When comparing Model-B (the finer mesh) to FEniCS-
FEM with the coarser mesh, the saving in computing time
in the entire chip is more than 2,100 and 1,200 times (i.e.,
2,2880/(10.604+0.081) and 2,2880/(18.0+0.101)) using 3 and
5 modes, respectively. When considering only the heating
layer, Model-B offers a speedup over 7,700 and 5,000 times
using 3 and 5 modes, respectively, compared to the FEniCS-
FEM with the coarser mesh, and yet Model-B in the heating
layer is more accurate with just 3 modes (see Table 3).

It is worthwhile to mention that in realistic dynamic ther-
mal management, it is not necessary to have the information
on the temperature profile at every instant in time. Thus, the
computational time needed for PODTherm-GP to restore the
temperature in (3) for every tens of time steps would be on
the same order as that needed to solve the ODEs in (5).
Unlike the DNS where temperature in the entire temporal
and spatial domains needs to be included in the simulation,
the computational speedup for PODTherm-GP will be at
least one more order faster than what was discussed above
if only temperature at a few instants over a certain period is
needed in higher temperature areas.

This finding of this investigation strongly suggests that a
POD model could offer a more accurate thermal prediction
than the DNS with a fine mesh if the POD model is built
upon a finer mesh DNS. Although the training time will be
longer, the POD model will then outperform the DNS in
terms of the accuracy with a computational speedup by at
least 3 orders of magnitude. The saving in computational
time for the POD model is at least 4 orders of magnitude in
the realistic applications of dynamic thermal management
since only temperature in a small fraction of the simulation
time span and spatial domain is needed.

Similar to other learning methods for complex problems,
when applying PODTherm-GP to thermal simulation of
a CPU or GPU with a large number of cores, the POD-
Galerkin methodology would suffer from intensive com-
putational effort to collect data for POD mode training. To
resolve the training issue for a processor with hundreds or
thousands of cores, domain decomposition can be applied
to partition the processor into many smaller subdomains
and each subdomain is trained separately with much less
effort. Such an approach, together with different training
strategies, will be investigated in the near future.

7 CONCLUSION

PODTherm-GP, an architecture-level thermal simulation
methodology, has been investigated for an 18-core CPU,
Intel Xeon E5-2699v3, in terms of its accuracy, efficiency
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TABLE 3
Least Square Error w.r.t. Finer-mesh FEniCS-FEM Simulation
Case 4.35 ms 6.09 ms
Simulator FEniCS POD Model-B (No. modes) FEniCS POD Model-B (No. modes)
Coarse 3 5 7 11 13 Coarse 3 5 7 11 13
Heating layer (%) 0.80 076 | 059 | 0.52 | 0.51 | 0.51 0.72 1.14 | 1.05 | 0.83 | 0.75 | 0.61
Entire chip (%) 1.63 210 | 198 | 195 | 193 | 193 1.51 255 | 246 | 222 | 2.09 | 1.86
TABLE 4
Computational Time for Thermal Simulations of the CPU
Mesh Computational Time (s)
No. of POD modes
1 3 5
256 x 256 x 14 | TODModel-A 55 b o T Post2 | ODEs [ Postl | Pos2 | ODEs [ Postl | Posi2
0.075 0.572 1.795 0.082 1.098 4.034 0.089 1.677 7.011
FEniCS-FEM 2.288 x 10%
No. of POD modes
1 3 5
1104 x 620 x 14 | TOPModelB -5ppe b0 T Post2 | ODEs | Postl | Post2 | ODEs [ Postl | Posi2
0.079 1.474 | 4.688 0.081 2.885 | 10.604 | 0.101 4.406 | 18.400
FEniCS-FEM 2.247 x 10°
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