A. Cowan Res. Number Theory (2022) 8:96 . H
https://doi.org/10.1007/540993-022-00392-z 0 Resea rCh In N um ber Theo ry

RESEARCH

. . . ®
Computing newforms using supersingular @

isogeny graphs

Alex Cowan

“Correspondence:
cowan@math.harvard.edu
Harvard University, Cambridge,
MA, USA

Abstract

We describe an algorithm that we used to compute the g-expansions of all weight 2
cusp forms of prime level at most 2,000,000 and dimension at most 6. We also present
an algorithm that we used to verify that there was only one cusp form of dimension 7
or more per Atkin-Lehner eigenspace for prime levels between 10,000 and 1,000,000.
Our algorithm is based on Mestre’s Méthode des Graphes, and involves supersingular
isogeny graphs and Wiedemann'’s algorithm for finding the minimal polynomial of
sparse matrices over finite fields.

Contents
1 Introduction 2
2 Background e 3
2.1 Wiedemann'salgorithm L. 3
22 Newforms e 4
2.3 LaMéthodedes Graphes 5
3 Overviewofthealgorithm 5
4 Computing the actionof TponSa(p) . . .« o o v oo it it 6
4.1 Findingastartingvertex e 7
4.2 Exploringthegraph L 7
5 Computing the characteristic polynomialof Tomodv 7
5.1 Shiftingeigenvalues L o 7
52 Varyingparameters e 8
5.3 Getting the characteristic polynomial from the minimal polynomial 8
5.3.1 Comparing with known top coefficients 9
5.3.2 Checking eigenspace dimensions 9
54 Storingiterates e 10
6 Finding Z-eigenbases L L 10
6.1 Findingeigenvalues L e 11
6.2 Lifting 1-dimensional eigenspaces L. 11
6.3 Lifting higher dimensional eigenspaces 12
6.3.1 FindinganF,-eigenbasis, 12
6.3.2 Finding a Z-eigenbasis for the full p-eigenspace 13
6.3.3 Finding a Z-eigenbasis for each Galoisorbit 13
7 Computing g-expansions e 14
7.1 Z-eigenbasis version of Mestre’sidentity L L. 14

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-022-00392-z&domain=pdf
http://orcid.org/0000-0002-4309-7127

96 Page2of23 A. Cowan Res. Number Theory (2022) 8:96

7.2 Computingj(g)modp 15
7.3 Fast power series algorithms L Lo L L. 15
7.3.1 Atkin-Lehner eigenspace to Mestre’sformula 15

7.3.2 Evaluating Mestre’sformula. 15

8 Checking for high degree factors of the characteristic polynomial 16
8.1 Factoring the characteristic polynomial modulo many small primes 17
8.2 Sievingpossibledegrees L L L 17
8.3 Checkingthe Weilbound 19

9 Results e 19
References 21

1 Introduction

Let Sy(p) be the space of weight 2 cusp forms of prime level p. We say that the dimension
of a newform of Sy(p) is the degree of the number field its Hecke eigenvalues generate,
or, equivalently, the size of its Galois orbit. There have been many efforts from computa-
tional number theorists to create databases with information about the newforms of Sy (p);
we highlight the Antwerp tables [6], Cremona’s database of elliptic curves [16], and the
LMEDB [25]. The LMFDB builds on the previous two, and currently lists the g-expansions
of every newform of Sy (p) of dimension g at most 20 and level at most 10,000 [3].

In this paper, we describe an algorithm that we used to compute the g-expansions of all
newforms with g < 6 and p < 2,000,000 up to the Sturm Bound, and also used to verify
that there were no eigenforms with ¢ > 7 and 10,000 < p < 1,000,000 besides one factor
of high dimension per Atkin-Lehner eigenspace. For each level p, our algorithm runs in
time O(p>*¢) and space O(p'**).

In the field of arithmetic statistics there is a lot of interest in understanding how various
properties of these eigenforms are distributed. This is partly because modular forms are
interesting in their own right, but also partly because standard modularity conjectures [19]
predict that, for each genus g factor of the modular jacobian Jy(p), there is an associated
weight 2 newform of level p and dimension g. The genus 1 case of elliptic curves has been
studied extensively, and is one of the most important topics in modern number theory.
The association between elliptic curves and 1-dimensional modular forms is a theorem
[8,37,40], and the literature contains conjectures and theorems for how many related
invariants are distributed, notably ranks [4,30], Selmer groups [5], torsion subgroups
[22], and other numbers which appear in the Birch and Swinnerton-Dyer formula [31].
Generalizations of these theorems to genus 2 or more are far out of reach for the most
part, and in many situations it is poorly understood what the correct generalizations would
even be. In particular, merely predicting the number of genus g factors of Jo(p) has not
been done whenever g > 2, whereas there are well established conjectures for the number
of elliptic curves with bounded conductor [10,38]. In light of this gap in understanding,
databases of newforms of Sy(p) are very useful: they give a way to observe generalizations
of phenomena which occur in the genus 1 case, and they also allow one to formulate
conjectures about the statistics of these objects. In [27], for instance, Martin computes
the dimensions of the eigenforms of Sy(p) for p < 60000 and uses this data to formulate
conjectures related to counts of eigenforms of fixed dimension.

The main idea in our algorithm is from Mestre’s Méthode des Graphes [28]. In Mestre’s
work, he relates the g-expansion of weight 2 newforms of prime level to “supersingular
isogeny graphs”. The supersingular £-isogeny graph over Fp is the graph whose vertices

A. Cowan Res. Number Theory (2022) 8:96 Page30f23 96

are supersingular j-invariants over F,, and whose edges are ¢-isogenies. These graphs
have recently been of independent interest because of their applications to cryptography
[11,20,23]. The relationship Mestre highlights depends on a trace formula: the action of
the Hecke operator T, on the space Sy(p) can be represented as the adjacency matrix of
the supersingular £-isogeny graph. We find simultaneous eigenvectors of these matrices,
and then use a formula from Mestre’s work to compute the associated g-expansions.
Some of the building blocks of our algorithm come from more general-purpose techniques.
In particular, we use Wiedemann’s algorithm for finding the minimal polynomial of a
sparse matrix over a finite field [39], Brent and Kung’s algorithm for fast power series
composition [7], and a well known dynamic programming algorithm for solving the subset
sum problem [14].

We implemented most of the algorithm in Sage. We used cython to multiply vectors by
sparse matrices, and we used c++’s NTL package when doing power series manipulations.
We ran our code on the Oklahoma University Supercomputing Center for Education &
Research.

2 Background
2.1 Wiedemann’s algorithm
We use [39] as a reference for what we call “Wiedemann’s algorithm”. Given an n X n
nonsingular matrix M over a finite field F, Wiedemann gives a probabilistic algorithm
for finding the minimal polynomial x of M. Wiedemann’s algorithm is one of the major
building blocks of the algorithm presented in this paper. See Sect. 5 for details.
Let u be a vector in F”, and let i € [1, n] N Z be one of the indices of the coordinates of
u. The key idea in Wiedemann’s algorithm is that the sequence u;, (Mu);, (M>u);, . .. will
satisfy a recursion relation, and that recursion relation will, for most choices of # and i,
give the minimal polynomial p.

For a given choice of # and i, computing the sequence u;, (Mu);, (M?u);, . .., (M u);
takes time O(rw), where w is the number of nonzero entries in M. Wiedemann then uses
the following:

Proposition 2.1 If ju(t) = Y j_ unt" is the minimal polynomial of M, then, for any
vector u, we have

n
S Mtu = 0.
k=0

As a consequence of proposition 2.1, we know that the sequence u;, (Mu);, (M?u);, . . .,
(M"u); satisfies a recursion relation of length at most 7. To determine what the recursion
relation is, we'll need a number of terms at least double the recursion length. Thus, we
can take r = 2. In our application, M will have O(n) nonzero entries, so we'll compute
the sequence u;, (Mu);, (M?u);, . . ., (M*"u); in time O(n?).

Wiedemann then uses an algorithm of Berlekamp-Massey to find the coefficients of the
recursion relation of the sequence u;, (Mu);, (M?u);, . . ., (M*"u);. This takes time O(n?).
See [29] for a description of the Berlekamp-Massey algorithm in terms of continued
fractions. One step in this algorithm involves writing ﬁ as a power series. If M is not
invertible, then p(¢) will be divisible by ¢, making it impossible to do this. It’s possible
to circumvent this problem in a number of ways. We chose to modify our matrices so

96 Page4of23 A. Cowan Res. Number Theory (2022) 8:96

that they would be invertible (see Sect. 5.1), but Wiedemann gives a modification of his
algorithm for this case in [39], and it’s also possible to modify the Berlekamp-Massey
algorithm directly.

2.2 Newforms
We give [17] as a reference for this section. Define I'g(p) to be the group

To(p):= { <a Z) €SLy(Z) : c=0modp ;.
c

The group I'o(p) acts on the upper half-plane Hi={x + iy : x € R,y € R.(} via Mobius
transformations:

ab az+b
= .
cd cz+d

A weight 2 modular form on T'o(p) is a holomorphic function f : HL — C which satisfies

the relation

f((“ b) z) — (cz+) (2)
cd

b
for every z € H and every 4 d) € Io(p). Weight 2 modular forms on I'g(p) form a
c
finite-dimensional complex vector space.
11
Because (0 1) is in To(p), we have f(z + 1) = f(z). It follows that modular forms have

Fourier expansions, i.e. there exist complex numbers a,,(f) such that
o0
f(Z) — Zﬂn(f)eZHMZ'
n=0

The space Sy (p) of cusp forms is the subspace of these modular forms which have ay =
0. Throughout this paper we use the shorthand g:=e**, and we’ll call these Fourier
expansions g-expansions. We'll write a,, instead of a,,(f) when the modular form f is clear
from context.

The Hecke operators are linear operators T, indexed by positive integers # which act on
the space of modular forms as

am(Tf) =Y d-dpye(f)
d|gcd(m,n)

The Hecke operators commute with one another, and hence they are simultaneously diag-
onalizable. Thus, there exist modular forms f with a; = 1 which, for all # simultaneously,
satisfy the relations

T.f = ayf
Modular forms with these properties are called newforms. They form a basis for the space

S2(p).

In [35], Sturm proves the following:

Theorem 2.2 (Sturm bound) Iff and g are weight 2 newforms of level p and a,(f) = a,(g)
foralln < LI%IJ, thenf = g.

A. Cowan Res. Number Theory (2022) 8:96 Page50f23 96

There’s are analogous results for other weights and levels as well.

There is a linear operator w,, called the Atkin-Lehner involution which acts on S (p). This
operator commutes with all of the Hecke operators, so newforms are also eigenforms of
the Atkin-Lehner involution. As suggested by the name, the Atkin-Lehner involution is
an involution. Thus, if f is a newform, then w,f = £f, and S>(p) decomposes into two
Atkin-Lehner eigenspaces (of roughly equal size; see [26]).

2.3 La Méthode des Graphes

The supersingular j-invariants over F, are the j-invariants of the elliptic curves defined
over Fp which are supersingular (i.e. their endomorphism ring is an order in a quaternion
algebra). It’s known that there are | £ | + 0, 1, or 2 supersingular j-invariants over F,, and
that they're all defined over F,» [33]. The supersingular {-isogeny graph over F, is the
directed multigraph whose vertices are the supersingular j-invariants over IF,, and whose
edges correspond to £-isogenies over Fp between the associated elliptic curves. These
graphs have been and continue to be studied extensively [11,20,23,24,36], in part because
of their potential applications to post-quantum cryptography.

As described in [21, &2,5], [28], and [18], one description of the action of the Hecke
operator T; on Sa(p) is as the adjacency matrix of the supersingular £-isogeny graph over
Fp. This connection involves a trace formula and an equivalence of categories between
supersingular elliptic curves and orders in quaternion algebras.

As a consequence of the representation of Ty as the adjacency matrix of the supersingular
¢-isogeny graph over I, there is a bijection between newforms f of Sy(p) and vectors
v = (vj); with coordinates indexed by the supersingular j-invariants over Fp which are
simultaneous eigenvectors of all the Hecke operators T,;. Mestre [28] uses this bijection
to produce the identity of power series

Sovi|f q) Z,
j

where

mod p,
J(q) F

« j(g) is the modular j function,

+ p is any prime above p in the number field generated by the Hecke eigenvalues ay,
and

+ the sums are over the supersingular j-invariants over F,,.

The Weil bound for f states that |a,| < 2/7, so for n < p? this equality of power series
is enough to know the values of a;, exactly. Since the Sturm bound is O(p), this identity is
enough to distinguish newforms.

3 Overview of the algorithm
The algorithm is broken into five sections:

« Section 4: Computing the action of 75 on Sy(p).

+ Section 5: Computing the characteristic polynomial of 75 modulo some small auxil-
iary prime.

« Section 6: Determining the eigenvalues of degree 6 or less T5, and finding eigenbases
over Z whenever they’ll correspond to newforms of dimension 6 or less.

96 Page6of23 A. Cowan Res. Number Theory (2022) 8:96

« Section 7: Computing g-expansions using Mestre’s formula.
+ Section 8: Verifying that only one high genus factor per Atkin-Lehner eigenspace
exists.

In Sect. 4, we compute a representation of the action of T, on S2(p), or, more precisely, its
action on each Atkin-Lehner eigenspace, by constructing a supersingular isogeny graph.
We use “modular polynomials” to find edges, and explore the graph using a breath first
search.

In Sect. 5, we compute the characteristic polynomial y, of 7; modulo some small auxiliary
prime v. The main ingredient in this step is Wiedemann’s algorithm [39] for computing
minimal polynomials of sparse matrices defined over finite fields. This part of the algo-
rithm contributes to the leading term in the overall asymptotic time complexity.

In Sect.6, we use the characteristic polynomial x, to find the eigenvalues and the eigen-
vectors of T, which correspond to low degree factors of its characteristic polynomial xz
over Z. Our method for “lifting eigenspaces” in this way is based on the heuristic that each
low degree factor of xz has an associated eigenbasis made up of vectors whose coordinates
are small.

In Sect. 7, we use a formula from Mestre’s Méthode des Graphes to get the g-expansion of
the newforms in terms of a power series involving the previously computed eigenvectors.
In evaluating this formula, we used an algorithm from [7] for composing power series.
Finally, in Sect. 8, we find the degrees of the irreducible factors of xz. This allows us to
know how Jy(p) decomposes as a product of Abelian varieties. As we mentioned before, we
verified that, for 10* < p < 10°, there was only one factor per Atkin-Lehner eigenspace
which had dimension 7 or more. This part of the algorithm uses a modified version of a
well known dynamic programming algorithm for solving the subset-sum problem [14].
It is also a leading term in the asymptotic time complexity, and in practice is the most
computationally expensive part of our algorithm, but it is also optional: the g-expansions
of all newforms associated to factors of Jo(p) of dimension at most 6 can be computed
independently of this verification that only two other irreducible factors per level exist.

4 Computing the action of T; on S>(p)

For a given prime ¢, we generate two directed weighted multigraphs, G; and G, , whose
adjacency matrices are representations of the action of T; on the + and — Atkin-Lehner
eigenspaces of S (p) respectively.

The supersingular j-invariants over Fp are all defined over [, and it’s convenient to
pick a generator of F,» which has trace 0 because it simplifies the part of the algorithm
described in Sect. 7. Let o be the nontrivial element of Gal(F > /FFp). Pick some arbitrary
ordering < of the supersingular j-invariants over Fp. The vertices of GZ' are the pairs (j, j7)
with j < j7, and the vertices of G, are the pairs (j, j) withj < j°.

The graph Gj has a weight 1 edge from (j1, j{) to (jo, /) for each £-isogeny from j; to jo
and for each £-isogeny from j{ to jJ, and has a weight —1 edge from (j1, j7) to (j, 5) for
each (-isogeny from j1 to j§ and for each £-isogeny from j{ to .

The graph G, has a weight 1 edge from (jy, j{) to (jo, /) for each £-isogeny from ji to ja,
jito 5,77 to jo, and 7 to .

Constructing these graphs is done in two steps: finding a starting vertex (Sect. 4.1), and
exploring the graph (Sect. 4.2).

A. Cowan Res. Number Theory (2022) 8:96 Page70f23 96

4.1 Finding a starting vertex

Letj € Z be the j-invariant of an elliptic curve over Q with complex multiplication, and
let D be the discriminant of the associated imaginary quadratic field. The reduction j mod
p is a supersingular j-invariant if D is not a square mod p [9]. Thus, over 99% of the time,
the reduction of one of the 13 supersingular j-invariants over Q will be a supersingular
j-invariant over Fp. We use this as our starting vertex in these cases.

If p is such that every D is a square mod p, then we use code from Arpin, Camacho-Navarro,
Lauter, Lim, Nelson, Scholl, and Sotédkova to get the starting vertex [1].

4.2 Exploring the graph

For each prime ¢ there is a modular polynomial ¢(x,y) € Z[x, y] with the property that
¢¢(j, y) has a zero at y = j’ of order equal to the number of ¢-isogenies from j to j [36]. To
generate the graphs Gzr and G, , we do a breadth first search, finding the roots of ¢;(j, y)
at the vertex (j, j%) at each step. Because ¢, has coefficients in Z, the roots of ¢,(j°, y) are
the Galois conjugates of the roots of ¢;(j, y). We also make use of the fact that, beyond
the first vertex, we know at least one of the roots of ¢,(j, y), reducing the degree of the
polynomial we have to solve by 1. Thus generating Gzt requires finding the roots in > of
one polynomial of degree £ + 1 and O(p) polynomials of degree £.

In our implementation we take £ = 2, but later in the algorithm it is sometimes necessary
to compute the action of T¢ for £ > 3. We do this without making use of any information
gained while computing the action of T3, because in practice this ran the fastest. We
tested a different algorithm which made use of the fact that if there’s an £; -isogeny from
j to j1, and an ¢3-isogeny from j to jo, then there necessarily exists a j/ which is both
£1-isogenous to j, and £2-isogenous to j1, but our implementation took longer to evaluate
the corresponding modular polynomials at all the neighbours of j; and j, than to find the
roots of the modular polynomials directly.

5 Computing the characteristic polynomial of T, mod v

The next step of our algorithm for computing g-expansions is computing the characteristic
polynomials of the adjacency matrices of the graphs szt (which we’ll denote Ty in a slight
abuse of notation). Computing the characteristic polynomial over Z directly appears to
be infeasible. Instead we compute modulo some small arbitrary auxiliary prime v, and use
an algorithm from Wiedemann [39] with some small modifications and additions. The
changes to Wiedemann’s algorithm that we make serve two purposes: some of them result
in speedups for our problem specifically, and others are needed to guarantee that we find
all g-expansions. In this section we’ll outline these changes.

5.1 Shifting eigenvalues

To compute the characteristic polynomial of T, we first compute the characteristic poly-
nomial of T3 + kI for some integer k, and then make a change of variables. We do this for
two reasons: to try and avoid singular matrices, and to give another parameter to modify
in the random algorithm.

Wiedemann’s algorithm as described in [39] is significantly more involved for singular
matrices. In our case, if there’s a newform in Sy (p) with a; = 0, then the matrix represen-
tation of T3 will be singular over Z. To avoid these we instead work with the matrix T + kI

96 Page8of23 A. Cowan Res. Number Theory (2022) 8:96

for k > 3. The matrix T over Z has one eigenvalue of 3, and the others are guaranteed to
be real and at most 2+/2 in absolute value. Thus T + kI is guaranteed to be nonsingular
over Z whenever k > 3. The reduction of T3 + kI modulo v might end up being singular
anyway. We discuss this in Sect. 5.2.

5.2 Varying parameters

Wiedemann’s algorithm is a random algorithm, and, for any given random input, fails a
non-negligible amount of the time. Our purposes give us the freedom to vary two param-
eters which would be fixed in other situations: the shift k (see Sect. 5.1) and the modulus
v. We got significant speedups by tweaking our algorithm to vary these parameters while
also varying the random inputs.

Overall, our implementation of Wiedemann’s algorithm takes 4 inputs:

+ arandom starting vector u,
« arandom coordinate i,

«» ashift k, and

+ amodulus v.

To choose a random starting vector, we take the zero vector and set 50 random entries to
1. We found that setting only one entry to 1 causes the algorithm to fail more often.

The random coordinate i which we use for the Berlekamp-Massey part of the algorithm
is chosen uniformly at random.

Even though the matrix Ty + kI is guaranteed to be nonsingular over Z whenever k > 3,
the reduction mod v might happen to be singular, essentially “by chance”. In this case,
the Berlekamp-Massey part of the algorithm will be given a power series which is not
invertible. When this happens, we increment the shift k in addition to choosing new
values of v and i.

The cases which are the most computationally intensive, by a wide margin, are cases where
the characteristic polynomial of T, has repeated factors. The runtime of our implementa-
tion of Wiedemann’s algorithm is proportional to the multiplicity of the most frequently
occurring factor (see Sect. 5.3), and, if the repeated factors are ones which might be reduc-
tions of factors of the characteristic polynomial over Z, then we’ll have to run the very
expensive part of the algorithm which attempts to lift eigenspaces of dimension larger
than 1 (see Sect. 6). Genuine repeated factors of the characteristic polynomial Z are quite
rare. Thus, we've found that the fastest approach is to run Wiedemann’s algorithm for
at most 2 random s, and, if the algorithm fails for both choices, to change our small
prime v in case the failure was caused by a spurious repeated factor. After changing v, we
increase the maximum number of choices of u, so that the algorithm does eventually find
genuine high dimensional eigenspaces. Every time we change v, we have to recompute
all of our iterates, so this results in a significant slowdown for levels which do have high
dimensional eigenspaces, but there are very few of these.

5.3 Getting the characteristic polynomial from the minimal polynomial

For our purposes, it’s important to find not just the minimal polynomial of T5 (which
is what Wiedemann’s algorithm as described in [39] yields), but the full characteristic
polynomial. We need to do this for two reasons.

A. Cowan Res. Number Theory (2022) 8:96 Page90f23 96

First, we know the degree of the characteristic polynomial (because we know the dimen-
sion of S2(p)), but not the degree of the minimal polynomial. Wiedemann’s algorithm has
some chance to fail to find the minimal polynomial, and when it does so, it outputs a
polynomial which properly divides the minimal polynomial, and does not detect that it
has failed to find the full minimal polynomial. We want to provably find all Galois orbits of
Sa(p), so it’s necessary for us to be able to detect when the algorithm fails. By instead com-
puting the characteristic polynomial, we can guarantee that the algorithm has succeeded
by checking the degree.

Second, a repeated factor of the characteristic polynomial of T> over Z indicates the
presence of multiple Galois orbits of newforms with the same ay. If we were to only
compute the minimal polynomial of T3, then there is some chance we would compute the
g-expansion of only some of these newforms. In practice, this would be unlikely but not
impossible; we elaborate on this in more detail in Sect. 6.

Given the minimal polynomial of T3, we use two techniques to produce the characteris-
tic polynomial: comparing with known top coefficients (5.3.1), and checking eigenspace
dimensions (5.3.2).

5.3.1 Comparing with known top coefficients

The coefficient of the second-highest degree term of the characteristic polynomial of a
matrix M is equal to —tr(M). Similarly, the coefficient of the third-highest degree term of
the characteristic polynomial is given by the expression [34]

> MaMy — MyM;;. 1)
1<i<j<dim(M)

Computing the trace of any matrix M takes a time of only O(dim(M)!**), and evalu-
ating the expression (1) can be done in time O(dim(M)>**¢). Furthermore, because the
matrix T5 is sparse and nearly symmetric, these quantities can be computed more quickly.
Expressions similar to the trace and (1) exist for other coefficients as well, and, while these
would take too long to compute for general matrices, may be efficiently computable for
sparse symmetric matrices like T5. We haven’t investigated this, but it would likely lead
to a small improvement in the running time of our algorithm.

If the characteristic polynomial is of degree at most 2 more than than the degree of the
minimal polynomial, and if the coefficients of the 3 leading terms of both polynomials are
known, then the ratio of these two polynomials can be found from an elementary calcula-
tion. We do this to find the characteristic polynomial whenever possible. Moreover, note
that this trick still works even if the missing factors don’t divide the minimal polynomial,
so it also helps in some cases where Wiedemann’s algorithm fails to find the minimal
polynomial.

5.3.2 Checking eigenspace dimensions

This section of the overall algorithm is used only after Wiedemann’s algorithm has been
tried for 3 or more initial random starting vectors u, which we’ll label 3, . . ., u,,. We stored
the values of Tf ui for 0 < k < dim(7>) and 1 < i < u (or, more precisely, the first 1000
entries of these vectors; see Sect. 5.4). Let u(t) denote the highest degree polynomial that’s
been returned by Wiedemann’s algorithm thus far (so u is a candidate for the minimal
polynomial of T5). Finding all the roots of 1 takes time O(p!™¢) using the Fast Fourier

96 Page 100f23 A. Cowan Res. Number Theory (2022) 8:96

Transform (henceforth “FFT”) [13]. Then, given a root A of u, the vector
b MT2)

T, =
is an eigenvector of Ty with eigenvalue A. Given the iterates of u;, computing the first

Ui

1000 entries of v;; takes time O(p'*?). The dimension of the span of the vectors v;; is
at most the dimension of the A-eigenspace (and it’s very likely that these dimensions will
be equal, provided the number of iterates # is at least the dimension of the eigenspace).
This allows us to give lower bounds for the multiplicity with which linear factors of the
minimal polynomial occur in the characteristic polynomial. In practice, the additional
linear factors found with this trick, in combination with the trick from Sect. 5.3.1, are
usually enough to determine the characteristic polynomial of T5.

5.4 Storing iterates
To implement our version of Wiedemann’s algorithm, we needed information about the
iterates Té‘ u of the random starting vector u for three different purposes.

1. Wecomputed these iteratesas Tf u= Tg(T§ ~14), 50 every coordinate of the previous
iterate is stored temporarily.

2. To run the Berlekamp-Massey part of Wiedemann’s algorithm, we used the i coor-
dinate of Tzku for all k < 2dim(7%)+ 10, for an arbitrary i (which we chose uniformly
at random).

3. To implement the trick from Sect. 5.3.2, we used the first 1000 coordinates of Té‘ u
for k < dim(7?). Here the choice of 1000 is largely arbitrary; we just need to take
enough coordinates to avoid spurious linear dependencies.

The runtime of the entire algorithm depended heavily on computing these iterates quickly.
Asymptotically, computing characteristic polynomials is the dominant term of the overall
time complexity, and computing the iterates Tf u was the step in our implementation of
Wiedemann’s algorithm that took the longest. Thus, we wanted to compute and store as
few of the iterates as possible. Moreover, we structured our code so that python and Sage
governed the algorithm at the top level, while computationally intensive sections were
run in faster languages; these iterates were computed using cython directly. Because our
code interfaced different programming languages, we needed to use the cython data to
generate corresponding python data. If we store too much data, then this translation can
take a significant amount of time. In the extreme case of storing the entire iterates TXu,
the translation took much longer than the actual computation of the data in cython.

The other important reason to be judicious in how much of the iterates are stored is
concern for the space complexity of the algorithm. We wanted our algorithm never use
more than O(p1*¢) memory, and to accomplish this we were only able to store a constant
number of coordinates per iterate.

6 Finding Z-eigenbases

Let xz be the characteristic polynomial of Ty over Z, and y, its reduction modulo v. At
this point, the algorithm has computed x, for one choice of v. The objective of this section
is to determine all irreducible factors of degree 6 or less of xz, and, for each factor, an
eigenbasis defined over Z and a simultaneous eigenvector (defined over a number field)
for all Hecke operators. Here we use the term “eigenspace” and related terms to mean

A. Cowan Res. Number Theory (2022) 8:96 Page 11 0f23 96

ker(p(T>)) for some irreducible factor p of xz. We'll need Z-bases of these spaces to use
a formula from Mestre’s Méthode des Graphes, which we’ll discuss in section 7.

If an irreducible factor p of xz divides xz exactly once, then p corresponds to a single
Galois orbit of a newform of Sg(p)i, where + denotes the Atkin-Lehner eigenvalue. If
an irreducible factor p divides xz twice or more then the situation is more complicated.
Multiple Galois orbits of newforms with the same a5 lead to repeated factors of xz, as
do newforms whose Hecke field is of strictly larger degree than the degree of a5. In these
cases, Galois orbits of newforms will correspond to the minimal nontrivial subspaces of
ker(p(T2)) which are invariant under the action of every T, simultaneously.

The key idea behind the lifting algorithm described in this section is taking advantage of
the heuristic that the coordinates in the vectors making up the Z-eigenbasis are very likely
to be small in absolute value. We pick some number of “candidate lifts” of an IF,, -eigenbasis
in which the most common entries are small integers, and then check directly whether
or not our candidate lifts are eigenvectors of Ty over Z. In a large majority of cases, if p
does indeed divide xz, then checking only a handful of candidate lifts is enough to find a
Z-eigenbasis.

6.1 Finding eigenvalues

Let {p;} denote the set of polynomials which occur as the minimal polynomial of a; of a
simple Abelian variety over Fp of dimension 6 or less. There are 96795 such polynomials,
and they can be found in the LMFDB. Every irreducible factor of xz of degree 6 or less is
necessarily one of these.

To find the irreducible factors of xz, we first determine which p;’s divide x,. We do this
by iterating over the set {p;} and checking for divisibility one by one, but one could use
FFT [13] to do this more quickly if necessary.

It is possible for p; to divide x,, but not xz. When we find a p; which divides y,,, we attempt
to produce an eigenbasis defined over Z for this factor using a method which we describe
in the rest of this section. If we succeed, this proves that p; does divide xz. Our method
for producing a Z-eigenspace is not guaranteed to work, though it almost always does in
practice. In the cases where it doesn’t, we compute y, for some other small prime v’ # v,
and see if p; divides x,/. If p; 1 x,, then we've proven that p; t xz, and, conversely, if
0i 1 xz, then there is guaranteed to be some prime v’ for which p; { x,» (and usually only
one additional prime v’ needs to be checked).

It would be difficult to determine the Galois orbits of size 7 or greater using this approach,
because the number of simple Abelian varieties over Fy of given dimension grows very
quickly. In Sect. 8, we describe the algorithm we used to determine the size of every
Galois orbit, including the ones of size 7 or more. For every prime level between 10,000
and 1,000,000 and each Atkin-Lehner eigenspace, the characteristic polynomial xz had
only one irreducible factor of degree 7 or more. For prime levels between 1,000,000 and
2,000,000 we computed the g-expansions of the newforms of degree 6 or less but did not
investigate the decomposition of the rest of the space.

6.2 Lifting 1-dimensional eigenspaces
When an eigenspace is 1-dimensional (which is the case exactly when p(¢) = ¢ — A is
linear and divides y, exactly once), our algorithm is fairly straightforward. First, we find

96 Page120f23 A. Cowan Res. Number Theory (2022) 8:96

an eigenvector v of Ty by computing
w(Ts)
vi= u
Ty — A
for some random starting vector i, where u is the minimal polynomial of 75 on the given

Atkin-Lehner eigenspace. Computing v takes time O(p**¢), so, for the levels for which
require that we attempt to lift eigenspaces, this is a leading term of the over asymptotic
time complexity of our algorithm, and these levels presumably make up a small but strictly
positive proportion of all levels. The computation of v in this way involves successively
computing the iterates Tzku = T2(Té(_1u). This computation was done previously in
the section of our algorithm which used Wiedemann’s algorithm, but it was impossible to
store these iterates while meeting our goal of having a space complexity of O(p'+¢). Imple-
mentations of our algorithm which can afford to store the iterates from the Wiedemann
section can use those iterates here, saving some time.

With our eigenvector v defined over F,,, we generate our list of “candidate lifts” of v to
an eigenvector ¥ defined over Z by guessing that the most likely scenario is that the most
common nonzero entry of ¥ is 1, the second most likely scenario is that the most common
entry is 2, and so on. Note that it suffices to check for strictly positive most common
entries, since both and —1 span the Z-eigenbasis.

Let @ € F, denote the most common nonzero entry of v. Then, our candidate lifts are
év, %v, ..., where each), coordinate of these vectors is lifted to the integer of smallest
absolute value in that residue class. As these candidate lifts are generated, we multiply
them by T; to check directly whether or not they’re eigenvectors, and return the first
candidate lift that is an eigenvector. This lift is guaranteed to have entries with a gcd of 1,
so it spans the Z-eigenspace (a condition which is necessary for the part of the algorithm
described in Sect. 7 to succeed). It is also guaranteed to be a simultaneous eigenvector of
all the Hecke operators.

Our implementation of this algorithm generates 50 candidate lifts, and then, if no lift
to Z has been found, gives up and declares it has failed to lift the I, eigenvector. This
prompts the algorithm to try a different small prime v # v, as discussed in Sect. 6.1. We
encountered no cases in which a lift existed but was not found.

6.3 Lifting higher dimensional eigenspaces
6.3.1 Finding an F,-eigenbasis
We begin like we did in the 1-dimensional case, by computing
wu(T)
vi= u
p(T2)
for some random starting vector &, where p is the minimal polynomial of T, on the given

Atkin-Lehner eigenspace. The vector v is in the [F),-kernel of p(T3), and is what we’re
calling an eigenvector (because it’s an eigenvector up to Galois conjugacy for the field
generated by p). The same discussion as that in Sect. 6.2 applies here: computing this
eigenvector is a small but nonzero part of the leading term in asymptotic time complexity,
and the iterates from the Wiedemann component of our algorithm can’t be used to save
time in the computation in our implementation because of space limitations.

Let r denote the multiplicity with which p divides yx,. If » = 1, then we compute the
dimension of the span of the vectors

-1
v, Tov, T3, ..., TSEg(’O) v.

A. Cowan Res. Number Theory (2022) 8:96 Page 130f23 96

If the dimension of this span is equal to deg(p), then these vectors form an [F, -eigenbasis
of the eigenspace. If this dimension is strictly less than deg(p), or if r > 1, then, starting
from ¢ = 3, we compute matrix which corresponds to the action of T; on the given Atkin-
Lehner eigenspace by exploring the supersingular £-isogeny graph in the way described
in Sect. 4, and compute the dimension of the span of the vectors

rdeg(p)—1
v, Tyv, TZZV, oo T, g7,

stopping our iteration over £ when this dimension is equal to » deg(p). We also periodically
recompute v with a new random choice of u, because it’s possible (but unlikely) that v
happens to be a simultaneous eigenvector of all Hecke operators, which would cause our
iteration over £ to never terminate (in principle one could add a clause in our algorithm
to take advantage of this whenever it happened, but in practice this never happened). In
doing this, we find an ¢ such that all newforms of Sy(p)* have distinct a;’s. We need these
ag’s to be distinct later, essentially so that we can separate the Z-eigenbases. Let M denote

the dim(S>(p)*) x rdeg(p) matrix whose columns are v, Tyv, ngv, e Tzdeg(p)_lv.

6.3.2 Finding a Z-eigenbasis for the full p-eigenspace

We now make use of our key heuristic that our Z-eigenbases are very likely to be made
up of vectors which have small entries. To do this, we start by making two lists (which we
generate as needed, as opposed to storing in memory):

» M: alist of the most common rows of M with the condition that any rows we add to
this list are not in the span of the rows we’ve added previously, and

+ C:alist of “candidate columns”, which are rdeg(p)-tuples with small integer entries,
ordered in such a way such that, generally speaking, tuples with smaller entries are
listed first.

Our implementation requires us to pick an ordering of the set M"4¢8(P) x C so that we
may iterate over it. We do this more or less arbitrarily. Experimentally, we found that
assigning a “size” to elements of C which was proportional to the sum of squares of the
entries, assigning a “size” to elements of M”"4¢8(?) which was proportional to the sum of
the squares of the inverse appearance frequencies, and then ordering M"4¢8(°) x C by
the product of these sizes lead to having to check fewer candidate lifts than lexicographic
orderings.

We iterate over M"4€8(0) x C. For each element (1, ¢), let L be the linear combination
of columns of M which yields ¢ when restricted to the rows in m. We then produce a
“candidate lift” 7, which is the vector with integer entries produced by taking the combi-
nation L of the columns of M, and then lifting each coordinate of the resulting F,, vector
to the integer in the appropriate residue class with smallest absolute value. We then check
directly whether or not ¥ is in ker(p(72)). We continue this process until we’ve found
rdeg(p) linearly independent candidate lifts. This set of candidate lifts forms a Z-basis of
ker(p(T?>)), but our algorithm requires a Z-basis for each Galois orbit, so it remains to
decompose our Z-basis in this way. We do this next.

6.3.3 Finding a Z-eigenbasis for each Galois orbit
The method we describe in this section for finding a Z-eigenbasis for each Galois orbit
is built around the observation that the action of T} fixes ker(o(T3)). This means that

96 Page 140f23 A. Cowan Res. Number Theory (2022) 8:96

each column of Ty M can be expressed as a linear combination of the columns of M. Let
S denote the rdeg(p) x rdeg(p) integer matrix whose entries are the coefficients of these
linear combinations (which are all small, since T} is given by a matrix with at most 2(¢ + 1)
nonzero entries per row, each of which is +1).

Let xs denote the characteristic polynomial of S, and let /1, /5, ... denote the minimal
polynomials of the a;’s of the newforms we’re considering. As discussed in Sect. 6.3.1, we
chose ¢ in a way that guarantees that each of these minimal polynomials is distinct. By
construction, we have

xXs = l_[hi'

We can then obtain, with some elementary linear algebra, a Z-basis for ker(/;(S)) and
a set of eigenvectors of S (which will be defined over number fields). Taking the linear
combinations of the columns of M whose coefficients are given by the elements of these
Z-bases and eigenvectors then yields the Z-eigenbases and simultaneous eigenvectors we
need. Our implementation requires only one simultaneous eigenvector per Galois orbit,
which we pick in an arbitrary way.

7 Computing g-expansions

Let v be a simultaneous eigenvector of all the Hecke operators whose coordinates are
indexed by the supersingular j-invariants over F,,. In [28], Mestre gives the g-expansion of
the associated newform f modulo any prime p above p in K:=Q(ay, a3, . . .) via an equality
of power series involving the g-expansion of the modular j-function j(g):

. dq d4j(q)
]Z vi | fla) = ; V= medP 2)
The Weil bound then allows one to determine a; for all £ < p?. Our algorithm uses this
formula to compute a,, for # up to the Sturm bound.

Section 7.1 gives a version of equation (2) that does computations over I, using the Z-
eigenbases computed earlier. Sections 7.2 and 7.3 detail how we evaluate the right hand
side of (2) efficiently.

7.1 Z-eigenbasis version of Mestre's identity

We use the simultaneous eigenvector v to compute the values a¢,, ae,, . . ., @¢g,c (Which
might require computing new Hecke matrices using supersingular isogeny graphs). With
each vector u; in the Z-eigenbasis, we evaluate the right hand side of (2), and let ¥ (g)
denote the resulting power series. As we'll discuss in Sect. 7.3, the power series Y (g) is
guaranteed to be defined over F,,. We write [€] to refer to the coefficient of ¢* in ¥ (q).
Pick a basis {r;} of the ring of integers Ox. Write each a, in terms of this basis:

ar=: Z o;[€]r;.

Then, from (2), it follows that there exist coefficients 8;x € F, such that, for every ¢, we
have the a linear combination

ac ="y Buvx[llri modp,
ik

A. Cowan Res. Number Theory (2022) 8:96 Page 150f23 96

SO

ar[li] en[la] ... Bii Biz ...\ (valb] y¥alea] ...
albi] o] ... | = | Bor oz .. | | Vella] ¥2lla] ... | modp. (3)

We solve the matrix equation (3) for the coefficients B; x (aslongas all the matrices involved
are invertible; compute a, for more ¢’s if there happens to be a linear dependence). We
can then find the g-expansion of our newform as

dq

far = > (Z Bk m) riq".
i k

We lift the coefficient Y ; ;¥ [€] to Z by ensuring that the Hecke eigenvalues satisfy

the Weil bound. Usually the coefficient lifts to the integer in the residue class of smallest

absolute value if one chooses {r;} to be a reduced basis of Ok.

7.2 Computing j(q) mod p
To evaluate the right hand side of (2) up to the Sturm bound, we first need to compute
O(p) coefficients of j(g) modulo p. We compute these coefficients using the identity
, Ei»(q) 82104
jlq) = -

8
(n(q)S) 691
where Ej5(qg) is the weight 12 classical Eisenstein series (normalized to have constant term

+ 744, (4)

1) and n(g) is the Dedekind n-function. We chose equation (4) because the function 7(g)>
has a “sparse” g-expansion:

o0
n@® =Y (~DFk+ 1" 7.
k=0
Computing the first p terms of the quotient of two power series takes time O(p'*¢) using
FFT, and empirically dividing 8 times by 7(g)® was faster than alternatives, such as dividing
by A(g) or 24 times by n(g).
In Sect. 7.3 we'll also need the power series j'(¢). Differentiating j(g) takes time O(p'*¢).

7.3 Fast power series algorithms

7.3.1 Atkin-Lehner eigenspace to Mestre’s formula

The eigenvectors {u;} we computed are indexed by pairs (j, /) with j < j° (in the +
space) or j < j° (in the — space), where < is the arbitrary but fixed ordering from
Sect. 4. To use Mestre’s formula (2), we need to construct eigenvectors {v;} that are
indexed by supersingular j-invariants. Recall that in section 4 we chose a generator & of
FF,» which satisfied §” = —§&. This allows us to construct each vy easily: if j ¢ F), we set
vi()) = uie((, /7)) and vie(j7) = Fur((;j7)), and if j € Fp we set vie(j) = (L F)i ()
Then v is defined over Z (because uy is), and the sum in (2) is either Galois-invariant or
Galois anti-invariant. In the latter case we then divide by &.

7.3.2 Evaluating Mestre’s formula

Evaluating the sum of rational functions of g-expansions in (2) by evaluating each term
separately and then then adding would take time > p®. However, it is possible to evaluate
this sum in time (’)(p%“) by doing a “binary tree decomposition” and using a power series
composition algorithm from Brent and Kung [7].

96 Page 160f23 A. Cowan Res. Number Theory (2022) 8:96

Given constants y, . .., yu and j1, . . ., jar, let P and Q be polynomials such that

Px) < v
Q) Z

X —]z

Define

S y):= Z i’]

We compute P and Q recursively as

._5(1 M)

N
=S(L %) +S(¥ +1,M)
=[S) +S(F +1 9]+ [S(5 +1.3) + (35 + L.M)]

I
{0g
&

We start from the bottom expression and work upwards. At the k™ step we compute
@ (g—;{) sums of two terms. Each term at the k™ step is a rational function whose numerator
and denominator have degree O(2%). Multiplying two polynomials of degree d takes time
O(d'*¢) using FFT. Thus, each step takes time O<(2k)1+£3—1> = O(M'*?). There are
O(log M) steps in this procedure. Thus, computing P and Q takes time O(M! "¢ log M) =
(’)(M1+8)'

In the context of our problem, this means that we can, in time O(p!#), compute polyno-
mials P, Q of degree O(p) such that

) P(/(CI)) .
Z ’J(q) = Qi) V%

Writing m as a power series in j(g) with O(p) terms of precision takes time O(p!),
and computing the product R(j(g)):=P(j(g)) m as a power series in j(g) with O(p) terms
of precision also takes time O(p'*?).

Using [7], we compute the composition R(j(q)) to O(p) terms of precision in time (9(p%+5).
Finally, multiplying by j'(q)dq takes time O(p'*¢).

8 Checking for high degree factors of the characteristic polynomial

As mentioned in Sect. 6.1, our algorithm doesn’t find newforms whose a3 has minimal
polynomial of degree 7 or more. It’s of value to at least determine the dimensions of all of
the newforms of Sy (p), even if we can’t compute all of their g-expansions. This part of the
algorithm is by far the most expensive time and space wise, and is the most technically
involved. This part of the algorithm isn’t required for computing g-expansions and can
be omitted.

Our algorithm is designed to try and efficiently determine that there is exactly one irre-
ducible factor of xz of degree 7 or more, since this was the case for every prime level
between 10,000 and 1,000,000. The approach we take is based on the straightforward

A. Cowan Res. Number Theory (2022) 8:96 Page 170f23 96

observation that if, for some small prime v, the characteristic polynomial x, has no factor
of degree d, then xz cannot have a factor of degree d either. Thus, for each possible degree
d between 7 and %degxz we aim to find some small prime v such that y, has no factor of
degree d.

8.1 Factoring the characteristic polynomial modulo many small primes

The first part of the algorithm will require finding and factoring characteristic polynomials
Xvi» Xvys - - - Of To on a given Atkin-Lehner eigenspace modulo many small primes, which
we'll do as needed in what follows. Our algorithm is slightly more efficient if we replace
Xv; with x,, divided by all of the irreducible factors of degree 6 or less which we know
divide x7z. Factoring polynomials over finite fields has high time complexity in theory, but
experimentally we found that factoring x,, appeared to take time O(p>*¢) in our specific
case. This is still the most significant chunk of the runtime, but it’s not problematically
expensive.

The reason factoring is feasible can be explained heuristically. There exists an algorithm
based on FFT which factors polynomials over finite fields in three steps [12]:

1. Eliminating square factors of y,,
2. Factoring x,, into products of irreducible polynomials of equal degree
3. Factoring each of these products of irreducibles of equal degree

The first step is not problematic because we obtain the squarefree part of x,, (which is
the minimal polynomial) directly through Wiedemann’s algorithm. Even ignoring this,
eliminating the square factors of x,, can be done efficiently by computing ged(xy; xy,)-
The second step can be done in time O(p>**) using FFT.

The third step is the one which is theoretically challenging, but, in practice, it’s very rare
that y,, has multiple factors of the same degree if that degree is large. Thus, we can use
Rabin’s irreducibility test [32], which runs in time O(p>**), to determine which of the
products from the second step require factoring. The products that do require factoring
end up being products of a handful of small degree factors which can be factored quickly.
There is also never a requirement to use any specific v, so at worst one could abandon
computations with v’s that were stuck on this step.

With knowledge of this factorization we can use the algorithm described in Sect. 8.2.
We've found that, in our implementation, our algorithm ran more quickly if we only
continued using this factorization if it didn’t have “too many” irreducible factors, with a
threshold determined experimentally and in a fairly arbitrary way.

8.2 Sieving possible degrees
Let E; denote the set subset of [7, ldeg(xz)] N Z which we have yet to show cannot be
degrees of factors of xz after running this part of the algorithm for v;. For each i, we

determine

1. which elements of E; occur as the degrees of (not necessarily irreducible) factors of
Xv;» and,

2. for each d in E,, if there are only “a few” factors of x,, with this degree, we record
them to later use in the part of the algorithm described in Sect. 8.3. We specify what
we mean by “a few” later in this section.

96 Page 180f23 A. Cowan Res. Number Theory (2022) 8:96

Define
D;:={d € E; : there exists a factor of x,, with degree d}.

Given a factorization of y,, into irreducibles, computing the set D; is a manifestation of
the well-studied subset sum problem. Direct enumeration of all possible combinations of
irreducible factors of y,, takes time and space exponential in the number of irreducible
factors and was infeasible in practice. There’s a dynamic programming algorithm [14]
which computes D; in time O(p?) and space O(p), but says nothing about what the
corresponding factors are. We’'ll modify this dynamic programming algorithm so that it
records which products of irreducible factors have degree d whenever there are only “a
few” such products. Doing this allows us to use the the method described in Sect. 8.3, which
leads to having to compute fewer characteristic polynomials x,, and their factorizations.
If one chooses, one can only compute D; and never anything about the factors themselves,
and then use the dynamic programming algorithm directly. We've found that omitting
the method from 8.3 usually takes longer but requires less space for our implementation.
To compute D;, we create a variable A; which will ultimately be the function with domain
D; for which A;(d) is either a set of combinations of irreducible factors whose product has
degree d, or “null” if this set would have more than “a few” elements in it. We initialize A;
as the function with A;(0) = @ and no other elements in its domain.

For k = 1,2,..., let I denote the irreducible factors of x,,. We sort these factors in
descending order according to their degrees (breaking ties arbitrarily), and compute the
partial sums Pg:=) ", - K. For each &, let Ry denote the set of elements of E; which are
not yetin A;. We itera_te over either the domain of A;, or the set

{d €Z :min(Ry) — P <d < max(Rk)},

whichever is smaller. For each d, ifd € dom(A;), then we check whether or not d +deg(/)
isin dom(A;). If it isn’t, then we set

Ai(d + deg(hy)) = {H U {li} : H € Ai(d), hy & H}.
If it is, then, if A;(d + deg(hy)) # “null”, we compute the set
H/:ZAi(d + deg(hk)) U{HU{h} : He Ai(d), by ¢ H}.

If H' is larger than some fixed parameter 5 given as input to the algorithm, we then
replace H' with “null”. We took n = 5 in our implementation. Then we update A; by
setting A;(d + deg(hg)) = H'.

Previously, when we said we wouldn’t find which products of irreducible factors multiplied
together to give factors of the given degree if there were more than “a few” such products,
this process of replacing values of A; by “null” whenever the values would have cardinality
more than 7 is the condition we were referring to: at no intermediate step were there more
than n ways of obtaining that intermediate degree. It was necessary to have some bound of
this sort, since otherwise we are directly enumerating all possible products of irreducible
factors, which is infeasible. We chose n = 5 because empirically it was the best balance
we found between yielding non-null values of A; and not using excessive memory.

A. Cowan Res. Number Theory (2022) 8:96 Page 190f23 96

After the iteration over k finishes, we set E;y; = E; N dom(A;). Moreover, for each
d € E;11, we store the values of A;(d) whenever they’re not “null”, and then run the part
of our algorithm described in section 8.3 before continuing our iteration over i.

8.3 Checking the Weil bound
o) =t4+61t% 1 +...+6,isa polynomial which divides xz, then the coefficients of
0 satisfy the Weil bound:

6] < (f)(zﬁy'.

This bound gives us a way to rule out the existence of a lift of a polynomial 8(¢) € (Z/m)[¢]
to a factor of xz: if 6 has a coefficient which has no integer lifts that satisfy the Weil bound,
then we know that 6 cannot lift to a factor of xz. For our range of levels and our choice of
small primes v, this Weil bound condition ends up being trivial for j > 3, but forj = 1,2
we use this bound to avoid computing and factoring more y,,’s than we would have to
otherwise.

For each degree d € E;, if there are primes v;;, vj,, . . . for which

1. all ways to obtain a factor of degree d from a product of irreducible factors of Xv,
are known, and
2. [1j v is large enough for the Weil bound strategy outlined above to not be trivial,

then we use the Chinese Remainder Theorem on all possible combinations of products of
irreducible factors to produce a list of “candidate factors” modulo m = []; v;,. We then
use the Weil bound as outlined above on these candidate factors one at a time to try and
rule them out. Even if not all candidate factors can be ruled out, usually some can, and we
remove these candidates so that this method is more likely to succeed as we continue to
iterate over i.

9 Results

We used the algorithm described in this paper to compute the g-expansions of all weight 2
eigenforms of dimension g < 6 and prime level between 10% and 2- 10°. The g-expansions
of forms with level less than 10* were computed by Best, Bober, Booker, Costa, Cremona,
Derickx, Lowry-Duda, Lee, Roe, Sutherland, and Voight [3]. Forms with ¢ = 1 correspond
to elliptic curves, and Weierstrass equations for all elliptic curves of prime conductor less
than 2 - 10° were computed by Bennett, Gherga, and Rechnitzer [2]. Both of these datasets
are in the LMFDB [25].

Below, we tabulate the number of forms of prime level in the ranges [1, 10*], [10%, 10°],
and [10% 2 - 10°], grouped by the discriminant A of their Hecke fields and omitting
discriminants which don’t appear in our dataset.

A. Cowan Res. Number Theory (2022) 8:96

96 Page 200f23

CILILT I €1
19198 I pIT

LLLIT 6TL‘C6T I C 1090Z

69101 I 89/8

£09€9 ‘2508T ‘TOET ‘6S€ ‘261 4 € LLLT

665581 ‘68.8C ‘C65T ‘€98 ‘€TT ‘LY 4 i LS61

60T9TLT ‘TITH6L ‘6T6F9T LLE6GE ‘6SLFT TRIET ‘TT06 ~~ LET 1 S 91 STl
€1898 ‘250 ‘€TT I 4 e

T08L0L ‘L6E6TY 68V6TE LITEET ‘6€01E ‘6261 ‘THET " * T 9 (41 8h1
6960TTT ‘LS9T8S ‘6VCEIY ‘LL8SGST ‘LSOVTT 6806€ €TLIT LTS * " 1L I 9 6 LST
T0T9S8T ‘6€CTTCL * " 60TCTY ‘€V6TT 6959 ‘1871 € 9 4 691

TGS9€EE ‘€6LLLT " T6GSE ‘€SLOT ‘€TS8 ‘T8S€E “LTT €1 € 8

1S9TL6T 6S9%19 * €9SHT L6TTIT L669 ~~ " 11T I 0c 8 62T

€THTLOT ‘EV66T6T * TCIET ‘695CT L586 " L6 0€ 06 ¥E 6%

€59GL I LT

€950£9T ‘L08LLS ‘TL96TE ‘68CTTT ‘€8CT 1 ¢ 1 1

€POV68T THPEGYT ~** T18%CT ‘6T6ST ‘€80ST ‘€9LET ‘€11 € P1 1 41
LVEE98T TIEELLT * " €LFET €6TST 'L966 ~ " €L 9 o €1 €1

6871661 ‘CH0986T *** LESET 6T9CT ‘€196 ~ "~ 6T 00T e L€ 8

L986661 ‘€LLL66T * " L9TOT ‘€0TOT ‘€L66 "~ €T 986 0061 8T S

£566661 """ 11 90%9 £h88 6¢¢ I

S[PA9T (40T - T40T] (40T ;0T] (0T T] v

“ut JoAd] awtad y3im IaquinN

A. Cowan Res. Number Theory (2022) 8:96 Page 21 0f23 96

Acknowledgements

I'm extremely grateful to Noam Elkies for both suggesting | work on this problem, and for telling me about many of the
ideas and techniques used in this paper. | thank Kimball Martin for many helpful discussions regarding ways to use the
data, and for running and managing the computations. The computing for this project was performed at the OU
Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma (OU). | thank Drew Sutherland
for help in adding the data to the LMFDB. | thank David Roe for helping me write some of the code. This work was done
under Simons Collaboration grant number 550031.

Data Availability Statement The g-expansions of all weight 2 cusp forms of prime level
between 10% and 2 - 10° and dimension at most 6, as well as the code used to compute them, are
available on the author’s personal webpage. The data supporting the results presented in the table
above is available on the author’s GitHub [15].

Received: 14 September 2022 Accepted: 29 September 2022 Published online: 25 October 2022

References

1. Arpin, S, Camacho-Navarro, C, Lauter, K, Lim, J., Nelson, K, Scholl, T,, Sotdkovd, J.: Adventures in Supersingularland.
(2019) arXiv e-prints, page arXiv:1909.07779

2. Bennett, Michael A, Gherga, Adela, Rechnitzer, Andrew: Computing elliptic curves over Q. Math. Comp. 88(317),
1341-1390 (2019)

3. Best, AJ, Bober, J, Booker, AR, Costa, E, Cremona, J.,, Derickx, M., Lowry-Duda, D., Lee, M., Roe, D, Sutherland, AV.,
Voight, J.: Computing classical modular forms. (2020) arXiv e-prints, pp. arXiv:2002.04717

4. Bhargava, Manjul, Kane, Daniel M., Lenstra, Jr., Hendrik W., Poonen, Bjorn, Rains, Eric: Modeling the distribution of
ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves. Camb. J. Math. 3(3), 275-321 (2015)

5. Bhargava, Manjul, Shankar, Arul: Binary quartic forms having bounded invariants, and the boundedness of the average
rank of elliptic curves. Ann. Math. (2) 181(1), 191-242 (2015)

6. Birch, BJ, Kuyk, W. (eds.): Modular Functions of One Variable IV. Lecture Notes in Mathematics, vol. 476. Springer,
Berlin (1975)

7. Brent, RP, Kung, H.T.: Fast algorithms for manipulating formal power series. J. Assoc. Comput. Mach. 25(4), 581-595
(1978)

8. Breuil, Christophe, Conrad, Brian, Diamond, Fred, Taylor, Richard: On the modularity of elliptic curves over Q: wild
3-adic exercises. J. Am. Math. Soc. 14(4), 843-939 (2001)

9. Broker, Reinier: Constructing supersingular elliptic curves. J. Comb. Number Theory 1(3), 269-273 (2009)

10. Brumer, Armand, McGuinness, Oisin: The behavior of the Mordell-Weil group of elliptic curves. Bull. Am. Math. Soc.
(N.S) 23(2), 375-382 (1990)

11. Charles, Denis X, Lauter, Kristin E., Goren, Eyal Z.: Cryptographic hash functions from expander graphs. J. Cryptol.
22(1),93-113 (2009)

12. Cohen, Henri: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138.Springer,
Berlin (1993)

13. Cooley, James W., Tukey, John W.: An algorithm for the machine calculation of complex Fourier series. Math. Comp.
19,297-301 (1965)

14. Cormen, TH, Leiserson, C.E, Rivest, RL, Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge, MA
(2009)

15. Cowan, A:: Newform data. https://github.com/thealexcowan/newformdata. September (2022)

16. Cremona, J.: ecdata: 2016-10-17, October (2016)

17. Darmon, H.: Rational points on modular elliptic curves. Volume 101 of CBMS Regional Conference Series in Mathematics.
Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, Rl (2004)

18. Déchene, |- Quaternion algebras and the graph method for elliptic curves. Thesis (MSc.)-McGill University (Canada)
(1998) https://www.math.mcgill.ca/darmon/theses/dechene-master/thesis.pdf

19. Diamond, Fred, Shurman, Jerry: A First Course in Modular Forms. Graduate Texts in Mathematics, vol. 228. Springer,
New York (2005)

20. Eisentrager, K, Hallgren, S., Lauter, K, Morrison, T., Petit, C.: Supersingular isogeny graphs and endomorphism rings:
reductions and solutions. In Advances in cryptology—EUROCRYPT 2018. Part lll, volume 10822 of Lecture Notes in
Comput. Sci., pp. 329-368. Springer, Cham (2018)

21. Gross, BH.: Heights and the special values of L-series. In: Number theory (Montreal, Que., 1985), Vol. 7 of CMS Conf.
Proc., pp. 115-187. Amer. Math. Soc.,, Providence, Rl (1987)

22. Harron, Robert, Snowden, Andrew: Counting elliptic curves with prescribed torsion. J. Reine Angew. Math. 729,
151-170 (2017)

23. Jao, D, De Feo, L. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Post-
quantum Cryptography, Vol. 7071 of Lecture Notes in Comput. Sci., pp. 19-34. Springer, Heidelberg (2011)

24. Kohel, David R.: Endomorphism rings of elliptic curves over finite fields. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)—
University of California, Berkeley (1996)

25. The LMFDB Collaboration. The L-functions and modular forms database. http://www.Imfdb.org. [Online; Accessed 20
Sept 2020] (2020)

http://arxiv.org/abs/1909.07779
http://arxiv.org/abs/2002.04717
https://github.com/thealexcowan/newformdata
https://www.math.mcgill.ca/darmon/theses/dechene-master/thesis.pdf
http://www.lmfdb.org

96 Page22o0f23 A. Cowan Res. Number Theory (2022) 8:96

26. Martin, Kimball: Refined dimensions of cusp forms, and equidistribution and bias of signs. J. Number Theory 188,
1-17(2018)

27. Martin, K: An on-average maeda-type conjecture in the level aspect. In: Proceedings of the American Mathematical
Society, p. 1 (2020)

28. Mestre, J-F.: La méthode des graphes. Exemples et applications. In Proceedings of the international conference on class
numbers and fundamental units of algebraic number fields (Katata, 1986), pp. 217-242. Nagoya Univ., Nagoya (1986)

29. Mills, W.H.: Continued fractions and linear recurrences. Math. Comp. 29, 173-180 (1975)

30. Park, Jennifer, Poonen, Bjorn, Voight, John, Wood, Melanie Matchett: A heuristic for boundedness of ranks of elliptic
curves. J. Eur. Math. Soc. 21(9), 2859-2903 (2019)

31. Poonen, B. Heuristics for the arithmetic of elliptic curves. In: Proceedings of the International Congress of
Mathematicians—Rio de Janeiro 2018. Vol. II. Invited Lectures, pp. 399-414. World Sci. Publ., Hackensack, NJ (2018)

32. Rabin, Michael O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273-280 (1980)

33. Silverman, J.H.: The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics, 2nd edn. Springer,
Dordrecht (2009)

34. Math Stackexchange. Formulas for the (top) coefficients of the characteristic polynomial of a matrix. https://math.
stackexchange.com/questions/23899/. [Online; Accessed 20 Sept 2020]

35. Sturm, J.: On the congruence of modular forms. In: Number Theory (New York, 1984-1985), Volume 1240 of Lecture
Notes in Mathematics, pp. 275-280. Springer, Berlin (1987)

36. Sutherland, A\V. Isogeny volcanoes. In: ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium,
Volume 1 of Open Book Ser., pp. 507-530. Math. Sci. Publ., Berkeley, CA (2013)

37. Taylor, Richard, Wiles, Andrew: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553-572
(1995)

38. Watkins, Mark: Some heuristics about elliptic curves. Exp. Math. 17(1), 105-125 (2008)

https://math.stackexchange.com/questions/23899/
https://math.stackexchange.com/questions/23899/

A. Cowan Res. Number Theory (2022) 8:96 Page 23 of 23

39. Wiedemann, Douglas H.: Solving sparse linear equations over finite fields. IEEE Trans. Inform. Theory 32(1), 54-62
(1986)
40. Wiles, Andrew: Modular elliptic curves and Fermat's last theorem. Ann. Math. (2) 141(3), 443-551 (1995)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

96

	Computing newforms using supersingular isogeny graphs
	Abstract
	1 Introduction
	2 Background
	2.1 Wiedemann's algorithm
	2.2 Newforms
	2.3 La Méthode des Graphes

	3 Overview of the algorithm
	4 Computing the action of Tell on S2(p)
	4.1 Finding a starting vertex
	4.2 Exploring the graph

	5 Computing the characteristic polynomial of T2 mod ν
	5.1 Shifting eigenvalues
	5.2 Varying parameters
	5.3 Getting the characteristic polynomial from the minimal polynomial
	5.3.1 Comparing with known top coefficients
	5.3.2 Checking eigenspace dimensions

	5.4 Storing iterates

	6 Finding mathbbZ-eigenbases
	6.1 Finding eigenvalues
	6.2 Lifting 1-dimensional eigenspaces
	6.3 Lifting higher dimensional eigenspaces
	6.3.1 Finding an mathbbFν-eigenbasis
	6.3.2 Finding a mathbbZ-eigenbasis for the full ρ-eigenspace
	6.3.3 Finding a mathbbZ-eigenbasis for each Galois orbit

	7 Computing q-expansions
	7.1 mathbbZ-eigenbasis version of Mestre's identity
	7.2 Computing j(q) mod p
	7.3 Fast power series algorithms
	7.3.1 Atkin-Lehner eigenspace to Mestre's formula
	7.3.2 Evaluating Mestre's formula

	8 Checking for high degree factors of the characteristic polynomial
	8.1 Factoring the characteristic polynomial modulo many small primes
	8.2 Sieving possible degrees
	8.3 Checking the Weil bound

	9 Results
	References

