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1 Introduction
Hecke characters are, from the modern point of view, continuous characters of idele
class groups, in other words automorphic forms for GL;. They were introduced by Hecke
[13] who proved the functional equation of their L-function, and are the starting point of
many developments that blossom in modern number theory: automorphic L-functions via
Tate’s thesis [35], £-adic Galois representations via Weil’s notion of algebraic characters
[43], Shimura varieties via CM theory [34], and the Langlands programme via class field
theory and the global Weil group [44]. Despite their fundamental role, Hecke characters
have not received a full algorithmic treatment, perhaps due to the fact that they are
considered well-understood compared to automorphic forms on higher rank groups. The
existing literature only describes how to compute with finite order characters, since they
are characters of ray class groups [8], and algebraic Hecke characters [42]. As part of
a collective effort to enumerate and compute L-functions, automorphic representations
and Galois representations, we believe that the GL; case also deserves close scrutiny, and
this is the goal of the present paper.

We describe algorithms to compute, given a number field F and a modulus m over F,
a basis of the group of Hecke quasi-characters of modulus m (Algorithm 18) and its sub-
group of algebraic characters (Algorithm 30), in a form suitable for evaluation at arbitrary
ideals and decomposition into local characters (Algorithm 17). In particular, we describe
a polynomial time algorithm to compute the maximal CM subfield of F (Algorithm 28).
It is sometimes believed that the adélic point of view is not suitable for computational
purposes; we claim the contrary, and adopt an adélic setting throughout the paper. Our
implementation [23] in Pari/GP [27] is available from version 2.15 of the software. We
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provide examples that illustrate the use of our algorithms and showcase some interest-
ing features of Hecke characters: a presentation of the software interface, small degree
examples, illustrations of automorphic induction from quadratic fields, examples of CM
abelian varieties with emphasis on the rigorous identification of the corresponding Hecke
character, illustration of the density of the gamma shifts of Hecke L-functions in the con-
jectured space of possible ones (Proposition 39), examples of provably partially algebraic
Hecke characters (Proposition 41) and of twists of L-functions by Hecke characters.

The only previous work on computation of infinite order Hecke characters is that of
Watkins [42], so we give a short comparison: in Watkins’s paper, only algebraic characters
were considered, and only over a CM field, whereas we treat arbitrary Hecke characters
over arbitrary number fields; the values of characters were represented exactly by alge-
braic numbers, whereas we represent values by approximations since this is forced in the
transcendental case; the emphasis was on individual Hecke characters, which the user had
to construct by hand, whereas our emphasis is on groups of Hecke characters, which we
construct for the user, simply from the modulus.

Our implementation makes it possible to tabulate Hecke characters and their L-
functions systematically by increasing analytic conductor; we think that this is a valuable
project but we leave it for future work.

The paper is organized as follows. In Sect. 2 we recall the definitions and basic properties
of Hecke characters and their L-functions. In Sect. 3 we describe our algorithms to com-
pute groups of Hecke characters and evaluate them. In Sect. 4 we present our algorithms
to compute the maximal CM subfield and groups of algebraic Hecke characters. Finally,
Sect. 5 contains a variety of examples.

2 Hecke characters
We recall the definition of Hecke characters in the adeélic setting. This material is standard
and can be found in [17, chap. XIV] or [30].

Let F be a number field of degree [F : Q] = nand discriminant Ar. When K /F is a finite
extension, we denote by N /r the norm from K to F; we also denote N = Nf/g when F
is clear from the context. For every prime ideal p of F, we consider the completion F, and
its ring of integers Z,. We choose a uniformizer 7, € Zy and denote by vy,: F;' — Z
the p-adic valuation. We will always use o to denote an archimedean place of F and the
corresponding real or complex embedding. For every place v, let n, = [F, : Q,],andlet|-|,
be the normalized absolute value, i.e. n, = 1 and | - |, = | - | for a real embedding o,
ny =2and|-|, = |- |? for a complex embedding o, and ITplp = N(p)~! for a prime
ideal p. We denote by A} = [ F) the group of ideles of F. We write Fg = F ®p R =
[, Es = R™ x C, where r; (resp. r3) is the number of real embeddings (resp. pairs of
non-real complex embeddings) of F.

Let U denote the group of complex numbers of absolute value 1. For G a topological
group, G° will denote the connected component of 1 in G.

2.1 Pontryagin duality
We recall some definitions and properties of locally compact abelian groups that will be
used later. See [24,25] for general reference.
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Let G be a locally compact abelian group. A quasi-character of G is a continuous
morphism

x:G— C*.
A character of G is a continuous morphism
x:G— U

The group of characters of G, which we denote by @, is the Pontryagin dual Homont (G, U)
of G, and is a locally compact abelian group. The canonical map

G —~ g
given by g — (x — x(g)) is an isomorphism. Let H C G be a subgroup. Let
HY={x eG| x(h) =1forallh € H}

be the Pontryagin orthogonal of H in G. Then H' is a closed subgroup of G,and (H1)*
is the closure of H, where the second orthogonal is taken in G. If H is a closed subgroup
of G, then we have canonical isomorphisms

G/H=H"and G/(H") = H.

The group G is compact if and only if G is discrete.

Pontryagin duality is an exact contravariant functor on the category of locally compact
abelian groups.

Let (x, ) — x - y denote a nondegenerate R-bilinear form on a finite dimensional R-
vector space V. The pairing V' x V — U defined by (x, y) > exp(2imx - y) induces an
isomorphism V' = V. We will use this isomorphism to identify characters on V with
elements of V.

Let A be a full rank lattice in V. The pairing above identifies the dual lattice AY =
Hom(A, Z) with the subgroup

Al:{er|x-yer0rallyeA},

which is canonically isomorphic to V/A by the above, and we have A = V/A+. In
particular for V = R and A = Z we consider the standard bilinear form and we have
R/Z =7+ =Zand Z = R/Z.

The dual V = @ of the group of rationals equipped with the discrete topology, is the
compact topological group l(l_rry} R/nZ, called the solenoid.

2.2 General Hecke characters
A Hecke quasi-character is a quasi-character of Cr = A} /F*, and a Hecke character is a
character of Cr.

The norm is the Hecke quasi-character

I-1l: Cp— C*
defined by
2 =) el =[]l

This is a well-defined Hecke quasi-character by the product formula.
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Every Hecke quasi-character x is of the form x = xol|-||* for a unique Hecke character xo
and a unique s € R. We refer to xo as the unitary component of x.In the algebraic setting,
the value w = —2s is the weight of x.

We also define C} = ker(]| - ||: CFr — R.g) to be the kernel of the norm, which is a

compact group. We have a canonical embedding
R>o0 — Cr,

by sending ¢ € Rog > ((t/")y,1,...) € AF where t (t/™"), denotes the diagonal
embedding R.o — [], F,, and a canonical decomposition

Cr = C} x R,

As a consequence, it suffices to compute the characters of C } to deduce the full groups
of Hecke characters and Hecke quasi-characters

Homeont(Cr, C*) = Cr|| - |® = C - IS 1)

Every quasi-character x of AS (and in particular every Hecke quasi-character) admits
a factorization x = [], xv, where x, is a quasi-character of F,*. We therefore describe

quasi-characters of local fields.

2.3 Local characters

« Every quasi-character x of C* is of the form

k k
_ i s _ i 2s
xw—<m>mw—(w)m

for a unique pair (k;s) € Z x C. The quasi-character x is a character if and only
if Re(s) = 0, i.e. s = ip for some ¢ € R.
« Every quasi-character x of R* is of the form

x (%) = sgn(@)X|x®

for a unique pair (k,s) € {0,1} x C. We say that x is unramified if k = 0. The
quasi-character y is a character if and only if Re(s) = 0, i.e. s = ip for some ¢ € R.
+ Let p be a prime ideal of Zr. Every quasi-character x of F, is of the form

x@) = xolawmy " mod p™) x (p)»®
for a unique m > 0 and a unique primitive character xo of (Z;/p™)*, and where
we write x(p) = x(mp) € C*. Note that in general x(p) depends on the choice of
uniformizer my,, but x(p) is well defined up to the roots of unity of the same order
as xo. We call p” the conductor of x and m its conductor exponent. If m = 0 we call x
unramified; in this case, x (p) does not depend on the choice of uniformizer, and the
quasi-character y only depends on y (p). Regardless of m, the quasi-character y is a

character if and only if x (p) € U.

Whenever we write a global idele character x asa product oflocal characters x,, we write
its local parameters kg, ¢, and my, and we let f, = ]_[p p”e be the conductor of x. Note
that for a complex place, the pair (ks, ¢5) depends on the choice of a complex embedding
among the two conjugate ones, or equivalently on the choice of an isomorphism between
the completion of F and C: we have g5 = ¢, and ks = —k;.
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2.4 L-Function
Let x be a Hecke character such that ) 1,9, = 0, i.e. thatis trivial on the embedded R-.¢
in (1). Let Ny, = |Afp| - N(f). Let

Lix,s)=[]Q = x(®)Np) ™)™

pifx
and
y(oos) =[] TrGs+igo +k) - [] Tel+igs + lks|/2).
o real o complex

where T'r(s) = n_%F(%) and I'c(s) = 2(2m) 7SI (s). Then
A(x,8) = N3y (x, $)L(x, 5)

satisfies the functional equation
Al 1 —5) = WA 5)

for some complex number W () of absolute value 1.

2.5 Algebraic Hecke characters
Warning: an algebraic Hecke character is usually not a Hecke character, it is only a
quasi-character.

Let x be a Hecke quasi-character. It is called algebraic if for every archimedean place o
of F, there exists integers p,, g, € Z such that for all z € (F.*)° we have !

Xo(2) =277 (2)"%.
Note: if o is complex, then p, and g, are uniquely determined; if o is real then only
their sum is well-defined. We say that x is of type (ps, 45 )o -

Example 1 The norm || - || is an algebraic character, of type (ps, qs) = (=1, —1) if o is
complex. We have ||p|| = N(p)~! for every prime ideal p.

Definition 2 We call a Hecke character almost-algebraic if ¢, = 0 for all o. We denote
by (Ep)“‘ the subgroup of almost-algebraic characters.

Remark 3 Algebraic characters correspond to type Ap and almost-algebraic to type A
with trivial norm component in Weil’s terminology [43]. By a theorem of Waldschmidt
[41], these definitions coincide with the fact that a quasi-character has type A if and only
if its values are algebraic, and type Ap if and only if there exists a finite extension of Q
containing all of its values.

2.5.1 Parameters at infinity of algebraic Hecke characters

It is known that if F has a real embedding, then every algebraic Hecke character is an
integral power of the norm times a Hecke character of finite order (see [43]). So from now
on we assume that F is totally complex. We recall the following well-known lemma.

Lemma 4 Let xo be a Hecke character and let (k;, ¢,) denote its local parameters at
infinite places. The character xg is the unitary component of an algebraic Hecke character
if and only if xo is almost algebraic and all ky have the same parity.

! The choice of sign in the exponents is such that the values of x at integral ideals are algebraic integers if and only if
all p» and ¢, are nonnegative.



91 Page 6 of 26 P. Molin, A. Page Res. Number Theory(2022)8:91

More precisely, let x = xol - | 7"/?

algebraic of type (ps, q5 ), then

be a Hecke quasi-character with w € R. If x is

e We

¢ Po +qo = wforallo;
o ko = 4o — po forall o;
o 9o =0forallo.

Conversely, if xo is almost-algebraic and all k; have the same parity, let w € 7 have the

same parity as the ky; then x = xo|| - || ™"/? is algebraic.
Proof Let x = xoll - ||™*/? be a Hecke quasi-character with w € R, so that for all z € C*
we have

ko
z 00—
Xo@ = (=) 2%,
||

Let p,q € Z. For all z € C* we have

q-r
2 P(2) 1 = (I%I) 2| 77~4,

By uniqueness of parameters of quasi-characters of C*, the quasi-character y is algebraic
of type (ps, go) if and only if for all o we have ks = g6 — po, 9o = 0and w = ps + ¢5. In
this case, xo is almost-algebraic and for all o we have ks = g5 —ps = ps +9go = w mod 2,
so that all k, have the same parity. This also validates the construction of an algebraic x

from an almost-algebraic y¢ satisfying the parity condition. ]
Thus the group of unitary components xq of algebraic Hecke characters x = xo| - || />

is a finite index subgroup of the group of almost-algebraic Hecke characters.

2.5.2 L-Function of an algebraic Hecke character

Let x = xoll-|I~"/?bean algebraic Hecke character as above. Let f, = f,, be its conductor

and N, = N,,. Let

Lx,9) = [ [ = x(®)NE) ™)™ = Lixo s — w/2),
pHix
and

y(x5) = [ [ Tcls — min(ps, 40)) = ¥ (xo. 5 — w/2).

e

Then
A(x,8) = N3y (x, $)L(x, 5)
satisfies the functional equation
AGGw+1—35)=WOO)A(Ks)

for some complex number W () = W (xo) of absolute value 1.

3 Computing the group of Hecke characters
3.1 Filtration by modulus
We have a non-canonical isomorphism

CrET xQ 1l x7” xR,
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where T is an infinite torsion abelian group. Indeed, we have the classical decomposition
[44]

1— Cp — Cr — mo(Cr) — 1, where Cp = yritr-l o (R/Z)? x R,
where V = Q is the solenoid, and 7o(Cr) is profinite; by Pontryagin duality, we get

0— T—>E’p—>@”+’2_1 xZ? xR — 0,
and this exact sequence splits. Since we cannot give a finite description of the whole
group T, we will filter Cr according to moduli.

Let m = mymy be a modulus, meaning that my is an integral ideal and m is a set of
real embeddings of F. We write

(Ze/m)* = Ze/mp)* x [] (£1).

O EMo
A Hecke character y is said to have modulus m if x is trivial on the group U(m) of ideles
congruent to 1 mod m:

um = [Ja+p*™zy) =< [Tzy =< [T W= [ &=0x [] 4

plmy ptmy T &Moo o¢meo o complex
o real

Equivalently, the conductor of x divides my and x is unramified at all the real places not
dividing me.
The character group of modulus m is the dual of

w = AZ/(F* - Um)),
and we have

& =JCn
m

In the remainder of this section, we fix a modulus m.

3.2 Explicit description
The character group Cu is isomorphic to Ty, x Z"~1 x R where Ty, is finite. Our goal in
the next paragraphs is to prove the following

Proposition 5 There exist an integer £ > 0, a lattice A of rank £ + n — 1, and two
isomorphisms

L: Con—>(Z' x R™)/A
L£*: Con—> AL 7"

where A is the Pontryagin orthogonal of A in R, and such that for all x Cu and
x € Aj we have

X (x) = exp(im L*(x) - L(x)). (2)

The lattice A and the isomorphisms £ and £* will be made explicit in the next subsections.

3.3 Idéle class groups
Definition 6 Letx € A;. We define the ideal attached to x to be

Hpr (xp),
p
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Let S be a finite set of primes of F. Define the group of S-idéles to be

Us = HFPX X HZ; x Fyg,
pes pes
and the group of S-units Zy ¢ = F* N Us.
Lemma?7 Letx € Aj. Then x € Us if and only if the ideal attached to x belongs to the
group (S) generated by S. If S generates the class group of F, then A} = Us - F*.

Proof The first property follows from rewriting the definition of Us as Us = {x € A} |
vp(x) = Oforallp ¢ S}. Letx € Af and a the ideal attached to x. Assuming S generates
the class group, let « be such that a(a™!) € (S). Then xa~! € Us. O

Definition 8 Let S be a set of primes generating the class group of F. Let
Ds: Us — Z° x (Zp/m)* x (Fy)°
be defined by

DS(x) = (Vp (xp)peS: (Lt mod mf): (Sgn(xa))aemoc: (|xa Do real (*¥o)or Complex):

p (e ), where we recall that 7, € Z;, is a chosen

where u € [], Z; is defined by uy = x, Ty
uniformiser.

Let
D: AJJF* > [ZS x (Zp/m)* x (Fﬂgf]/ps(zgs)

be defined by D(x - F*) = Ds(xa~!) where o € F* such thatxa~! € Us.

Lemma 9 Let S be a finite set of primes generating the class group. Then D is well-defined
and induces an isomorphism

Cm = [ZS x (Zp /m)* x (Fﬁ)"]/ Ds(Z): ®

Proof The existence of the element « from the definition of D exists by Lemma 7. If xa—!
and xB~! belong to Us with o, 8 € F*, then f/a € F* N Us = Z;S, so D is well-
defined. By the decompositions F,, = JTPZ x Zy and Fp = {£1}" x (Fg)° and the
Chinese remainder theorem, the map Dy is onto, and ker Dg = U(m) C Us. Moreover
by definition D(F*) = 1. This proves that ker D = F* - U(m) and therefore D induces an
isomorphism from Cy, = A /(F* - U(m)) to its codomain. m|

3.4 Logarithm maps
In this section we fix a finite set S of primes that generates the class group of F and a
modulus m.

Definition 10 Consider the usual archimedean logarithm log, : (Fz)° — R1*72 x
(R/Z)* =R"/Z"

7. arg(zy)
1 = -~ l o P2 ’ 4
o8 @ (27[ % ! )a ( 2 )a complex ()
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and choose an integer (m) > 0, a full sublattice Ay, C Z’™ and an isomorphism
log,, : (Zp/m)*—Z"™ /A . (5)

Let £ = #S + r(m), and let
Zt x R”

Ls: U R ———
S S_>Am+Zr2

be the composition of Dg with

Idys x log,,, xlog,, .

We identify A, and Z" with their embedding in Z¢ x R”.

Let
A =Ls(Zfg) + Am + 27, (6)
and let
LiAX /Y - 7t x R"

be defined by L(x - F*) = Ls(xa~1) where « € F* is such that xa ™! € Us.

Definition 11 We define the dual logarithm £*: 6m — (R/Z)* x R" by

log=L(¢: r(m)
L*(x) = (arg X(p)) ’ (w) 3 (05)as (ko) complex (7)
pes

2 2 )
i=1

where (gi);(:n;) is the image in Z" (M) / A of the standard basis of Z" (M) and @o, ks are the
parameters at infinity of .

Recall that we defined x (p) = x (7p), so that L* depends on the choices of 7, for p € S.
We now prove Proposition 5 in the following precise form.

Proposition 12 Let A be the Pontryagin orthogonal of A in R**". The homomorphisms L
and L* induce isomorphisms

7t x R” ~
L:Cy — %andﬁ*: Cm — AL/ZE

Let x € Cr be a character of modulus m and let x € A}, then
x (x) = exp(2im L*(x) - L(x)), (8)
where (w, v) — w - v denotes the standard inner product on R,

Proof The fact that £ is well-defined and induces an isomorphism follows immediately
from Lemma 9. Applying Pontryagin duality to the sequence

0> Cnm — RY"/A - (R/Z)" > 0

gives Cm = ALzt
Letx € Aj and write x = « -xa~ ! with @ € F* and xa~! € Us by Lemma 7, and let u
be as in Definition 8. We have

-1
x=a l_[ n;p(xpa ' 1_[(9600(05)71)»
o

pes
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and therefore

1) = x@- [T o™ ) x @) [T oo o)),

peS

where x (o) = 1 and x(u) = lemf Xp(up mod p”»). By definition the product of local
character evaluations is exp(2iw L*(x) - L(x)). This also proves that the image of £* lies
in A1 and that £* induces an isomorphism as claimed. O

Remark 13 Thelattice A is not cocompact in R“*", so that the Pontryagin orthogonal A+
is not discrete. In the next section we factor out the norm, so that the resulting lattice is
cocompact and its Pontryagin orthogonal can be expressed as a dual lattice as in Sect. 2.1.

3.5 Characters modulo the norm
Let C,ln = C}- N Cm = ker(Cypy, — R.0) be the kernel of the norm, which is compact. We
have a canonical splitting inherited from (1)

Cm = Cph x Ry,

and the corresponding decomposition
Con=Cpox |- I

where 6%1 is a discrete finitely generated abelian group.

Proposition 14 Let vo € R be the vector having coordinate ny, at the components
corresponding to g and 0 elsewhere, and po : R“" — (Rv)* the orthogonal projection.
Then pg o L induces an isomorphism

CL = po(r)Y/Z.
Proof Let H = (Rvp)t = {x | > Hoxe = 0}, we have an exact sequence
0— Cy, — H/po(A) - (R/Z)" — 0,

where po(A) has full rank in H, so that we identify po(A)t = po(A)Y in the dual sequence.
O

Remark 15 By an appropriate choice of basis of the lattice A, we naturally obtain a struc-
tured basis of Cy, according to the filtration

Clm) c CL c Cp.
It is even possible to obtain a basis exhibiting the filtration
Clr  Cl(m) C (Ch)kzo € Cy C Cons

but our implementation makes a different choice of basis, using an SNF basis for the
torsion subgroup and exhibiting the subgroup of almost-algebraic characters, as explained
in Sect. 4.

3.6 Algorithms
Since a precise discussion of the complexity is not the main point of the paper, we delegate
the difficult operations to oracles.



P. Molin, A. Page Res. Number Theory (2022)8:91 Page 11 0f26 917

Definition 16 Let F be a number field and Ir the set of fractional ideals of Zr. We say
that F is strongly computable if it is equipped with

« algorithms to compute field operations in F, factorizations into prime ideals and
valuations in Ir;

« afinite set S of prime ideals generating the class group;

« generators of the S-units Z; s

« a principalization oracle ps: I[r — F* x Z° such that for every ideal a € Ir the
output ps(a) = (o, (ap)pes) satisfies a = () ]_[pes pe;

« for each modulus m, a lattice Ay, of rank r(m) and a logarithm oracle log,,: Zr —
Zr(m) inducing an isomorphism (Zp/m)* = Z" ™ /A,

Note that these oracles are available in Pari/GP, using the algorithms described in [4,7],
[8, Section 4.2] and [15].
Using the notations introduced in Definition 10 and Proposition 14, our algorithms are

the following.

Algorithm 17  « Input: a strongly computable number field F, a modulus m and an
ideal a € Ir.
« Output: a vector z in R“*" such that £(a) = z mod A.

1. Let (o, (ap)p) = ps(a).
2. Letu € Z such that omp_v*” @ — 4 mod p"» (™) for all p | my.
3. Return z = ((ap)pes, — log,, (u), —log  (a)).

Algorithm 18  « Input: a strongly computable number field F and a modulus m.
+ Output: a matrix B whose rows generate ’C\rln in R+,

Let A be a matrix whose columns form a basis of Ls(Z ) + Am +Z"2 +Zvg in Rt
Let B = A~!: the rows of B form the basis dual to the columns of A.

Delete from B the row corresponding to the linear form dual to vy.

Replace the rows of B by their orthogonal projections onto (Rvp)=.

Return the (£ + n — 1) x (¢ 4+ 1) matrix B.

AR

Remark 19 These algorithms output numerical approximations in R¢*": their validity to
any prescribed accuracy can be certified as follows. In both cases, the numerical approxi-
mations come from log embeddings of number field elements, which can be obtained to
arbitrary accuracy in polynomial time. All subsequent numerical operations come from
linear algebra and can be implemented using certified numerical algorithms [14] with
automatic precision increase until a target precision is reached. Our package implements
this strategy except that we rely on Pari/GP’s arithmetic which is not certified.

Theorem 20 Algorithm 18 and Algorithm 17 are correct. They are polynomial time,
meaning a polynomial number of calls to the oracles with polynomial size input and a

polynomial number of other operations.

Proof Algorithm 18 is correct by Proposition 14.

We verify that the value z computed in Algorithm 17 equals £(a) mod A:letx = (JT; P (a))

be an idele defining a, we have £(a) = L(x) = Ls(xa~!) by definition of £. Now we have
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~1 = 4! mod m by definition of u. At

vp(xa~1) = a, for p € S by definition of ps, and xa
infinite places (xa 1), = a; 1. Hence Ls(xa™!) = z mod A, and Algorithm 17 is correct.

All operations not provided by the oracles can clearly be performed in polynomial time. O

4 The subgroup of algebraic characters

Among Hecke quasi-characters, we would like to exhibit the subgroup of algebraic Hecke
characters. By Lemma 4, it is equivalent to compute the subgroup of almost-algebraic
characters inside the group of Hecke characters. More precisely, let Hd‘ C R be the
subgroup of characters defined by Hi- = {¢, = 0 for all o'}, then

(6m)a,a‘ — ’ém m (’CF)a,a.
=~ AL NHE/Z¢ = [A e AL | A(h) =1forallhi e Ho} /3

However, we do not want to solve the equation ¢, = 0 since the components ¢, on A+
are only known approximately. We are therefore going to use the known structure of
algebraic characters.

Recall that a number field K is CM if it is a totally complex quadratic extension of
a totally real field, denoted K. In this case, the automorphism corresponding to this
quadratic extension induces complex conjugation on every complex embedding of K, and
we therefore denote it by x — .

A classical theorem of Weil and Artin states the following [28,43]:

« If F does not admit a CM subfield, then every algebraic Hecke character is a finite
order character times an integral power of the norm.

o If F admits a CM subfield, then it admits a maximal CM subfield K. The type of
every algebraic Hecke character of F is the lift of the type of an algebraic character
of K. Equivalently, every almost-algebraic Hecke character of F, up to a finite order
character, factors through the norm Np/x to K.

4.1 Determining the subgroup of algebraic characters from the maximal CM subfield
In this section, we assume that F contains a CM subfield. In particular, F is totally complex.
Let G = R be equipped with its standard inner product and Ag = A + Zvy =
Ls(Z}g) + Am + 27 + Zvo, so that C}, x || - |2 = Ag/Z¢, with AF = Ay in G.
Our strategy is to capture the algebraic characters in a smaller subspace H- C G by
using the additional known constraints on almost-algebraic characters, in order to apply
the following lemma.

Lemma 21 Let G be a finite dimensional R-vector space, let H C G be an R-vector
subspace and let Ao C G be a lattice such that H N Ao has full rank in H. Then

AL NHE = {A e AL - h=0forallh eHon}.
Proof We use the fact that H is an R-subspace generated by H N Ag to write
Ay NH = {x € Ag,x-heZforalh GH}
= {x € Aé‘,x~h = 0 forall / eH}

=[x e Af,x - h=0forallh e HN Ao},

proving the claim. ]
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Remark 22 The point of Lemma 21 is that since the inner products between elements
of Ag and Aé‘ are in Z, the given expression for Aé‘ N H* can be computed exactly as a
subgroup of Aé by linear algebra over Z.

Example 23 When Hd‘ = {p, =0} as above, we have Hy = R™. Then Hy N Ay
is ﬁS(ZIX(+) + Zvy, which has rank r1(KT) = r5(K). This has full rank in Hy if and only
ifK =F.

This example shows that using H is sufficient when F itself is CM. In the general case,
we proceed as follows.

Proposition 24 Let K be the maximal CM subfield of F, let
H+ = {¢s = 0 forall o, and (ky)s factors through K}
and Ag = /.ZS(ZES) 4+ A + 7 + Zvy. Then
(Co)™™ = (Ag NHY)/Z"

where Ao N H has full rank in H. More precisely, the group U C Ao generated by vy,
the kernel ker(Np/i: 7 — 72K and Ls(u) for all u € ker(Zy — (Zp/m)*) such
that Ng/x(u) € K +, is contained in H and has full rank.

Proof Almost-algebraic characters are contained in H= since their infinity types factor
through Nr/x, and we have H = R x ker(Nf g : R™> — R72(K)). The group U described
in the Proposition is clearly contained in HNAg. The map Ng/x : Z> — Z" 2(K) s surjective
since every complex place of K extends to a complex place of F, so that its kernel has
rank r — r(K). Finally, the units described form a finite index subgroup of Zz, so the
group U has full rank in H. O

4.2 The maximal CM subfield

In this section we reformulate the problem of determining the maximal CM subfield in a
way that is suitable for an efficient algorithm. Indeed enumerating all subfields, regardless
of the algorithm used, could not lead to a polynomial time algorithm since the number of
subfields is not polynomially bounded, as the example of multi-quadratic fields shows. One
may consider a pure Galois-theoretic approach, but it is currently not known whether one
can compute in polynomial time, given a number field F, the Galois group of the Galois
closure of F (see [1,12,16]). Our method relies on the following Lemma.

Lemma 25 Let F be a number field. For ¢ € {£}, let
Ff ={x e F|o(x)=e6(x)forallc € Hom(F, C)}.
The following are equivalent:

(i) F admits a CM subfield;
(i) F~ #0;
(iii) dimg FT = dimg F~.
If those conditions are satisfied, then the largest CM subfield of F is F™ + F~; it also

equals Q(a) for every a € F~ having minimal polynomial of degree 2 dimg F~, and such
an element exists.
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Proof First note that FT is the largest totally real subfield of F. It is clear that (i) implies (ii).
Since dimg F* > 1, (iii) implies (ii). Let 4, b € F~ be nonzero; then a/b € F* and
therefore F~ is a one-dimensional vector space over F T, so (ii) implies (iii). Let a € F~ be
nonzero; then a? € F7 is totally negative, so F*(a) = F* + F~ is a CM subfield of F, so
that (ii) implies (i). If the conditions are satisfied, then the maximal CM subfield K of F is a
quadratic extension of its totally real subfield F™ containing F* + F~, so there is equality
as claimed. Let 2 € F~ C K have minimal polynomial of degree 2dimg F~ = [K : QJ;
then it generates K over Q. For every subfield L C K, if F~ C L then F* C L by taking
ratios, so K C L and therefore L = K. The set of elements of F~ lying in a proper subfield
of K is therefore a finite union of proper subspaces, and is therefore nonempty. O

It is therefore enough to compute F~. Proposition 26 below gives a general algorithm
to solve this type of problem.

Proposition 26 Let F be a number field. Let Q be a field of characteristic 0, let R C
Hom(F, Q)2 be a subset and let (A,),cr € QR be a family of rational numbers. Define

Fry = {x € F | 01(x) = Ar0oa(x) for all r = (01, 02) € R}.

Write F @ F = ]_[f;l L; where each L; is a field. Let p;: F ®g F — L; be the projection
onto L;.
Foreachr € R leti(r) € {1,...,k} be the index such that r corresponds to an element
of Hom(L;, 2) under the natural bijection
k
Hom(F, )? = Hom(F ®q F, Q) = |_| Hom(L;, Q),

i=1

where the last union is disjoint. Let f : F — @, Li(y) be the Q-linear map defined by
f@)r =piry(x®1—21(1®%)) forallr € R

Then Fp; = ker f.

Proof Letie{l,...,k}and ¢ € Hom(L;, ) correspond to (01, o2) € Hom(F, Q)%. Then,
for all x € F, we have o1(x) = ¢(pi(x ® 1)) and o2(x) = ¢(pi(1 ® x)). Noting that ¢ is
injective since L; is a field, we obtain for every A € QQ the equivalence

01(x) = Aoa(x) © ¢ (Pi(*®1 - A1 ®%)) =04 pi(x®1— A1 Q%)) =0.
This proves the claim. O

The advantage of rewriting the equations this way is that instead of having conditions
in © (which might be a field in which we cannot compute exactly suchas Q@ = Cor Q@ =
@p), the conditions take place in the number fields L; and f is a linear map between

finite-dimensional Q-vector spaces.

Remarks 27« There are obvious generalizations to conditions expressed with more
than two embeddings, but they become more and more expensive as the number of
embeddings increases; eventually one may have to compute the full Galois closure
of F.

+ The application to the maximal CM subfield can be generalized to other natural
conditions, such as the maximal real subfield, the maximal subfield fixed by some
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ramification group, or the maximal subfield in which the residue degree of a certain
prime divides a given integer.

o When A, = 1 for all r € R, Proposition 26 expresses the subfields of interest as
intersections of principal subfields in the terminology of van Hoeij, Kliiners and
Novocin [39].

4.3 Algorithms
Section 4.2 leads to the following algorithm to compute the maximal CM subfield.

Algorithm 28  « Input:anirreducible monic P € Q[X] representing F = Q[X]/(P(X)).
« Output: an element a € F such that Q(a) is the maximal CM subfield of F, or L if F
does not contain a CM subfield.

1. Let P(Y) = []; Qi(X, Y) mod P(X) be the irreducible factorization of P over F.

2. Let J be the set of indices i such that there exists a complex root @ of P such
that Q;(a, &) = 0.

3. Let V C F be the Q-subspace of a(X) mod P(X) such that foralli € J,a(X)+a(Y) =
0 mod (P(X), Qi(X; Y)).

4. If V =0, return L.

5. Leta € V be such that the minimal polynomial of  has degree 2 dimg V. Return a.

Theorem 29 Algorithm 28 is a deterministic polynomial-time algorithm that, given a
number field F, computes the maximal CM subfield of F.

Proof Algorithm 28 is correct by Lemma 25 and Proposition 26 since F ®qg F =
Q[X, Y]/(P(X), P(Y)). It runs in polynomial time because factorization of polynomials
over number fields can be performed in polynomial time [19]. ]

We obtain the following algorithm to compute the group of almost-algebraic characters.

Algorithm 30  + Input: a strongly computable number field F and a modulus m.
» Output: the group of almost-algebraic characters of modulus m.

Let K be the maximal CM subfield of F, as computed by Algorithm 28.
If K = 1, return the group of finite order characters.

Let A, B be the matrices computed by Algorithm 18 with input (F, m).
Let U be the subgroup described in Proposition 24.

AN

Let C be the subgroup of the row span of B, consisting of elements ¢ such that u-c = 0
forallu € U.
6. Output C.

Theorem 31 Algorithm 30 is correct. It is polynomial time, meaning a polynomial num-
ber of calls to the oracles with polynomial size input and a polynomial number of other

operations.

Proof If F does not contain a CM subfield, then almost-algebraic characters are exactly
finite order characters by the Artin—Weil theorem. The group U can be computed by
linear algebra using the oracles. The group C can be computed by linear algebra over Q
since all the inner products that occur are in Z. The group C is the correct output by the
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Artin—Weil theorem and Lemma 21 in combination with Proposition 24. All operations
not provided by the oracles or Theorem 29 can clearly be performed in polynomial time.
O

5 Examples
We illustrate the interface of our Pari/GP package [23] with a list of examples of mathe-
matical interest.

5.1 Pari/GP interface
The gcharinit (F,m) function initializes a group structure gc for a number field F and
a modulus m. The character group structure Cm = ]_[f=1 Z)ciZ x 7""1 x R is obtained
via the vector gc.cyc = [cy, ..., 0,...,0,0.].

As an example,

> gc = gcharinit(x"2+23,3);
> gc.cyc
[6, 0, 0.E-57]

expresses the group of Hecke quasi-characters of modulus m = (3) over F = Q(+/—23)
(see also Equation (1))

7./6Z
Homeont(Cs, C*) = X3/ X X%M x| -

I,
where y3 is a character of the ray class group Clg(3) and xca is an infinite order almost-
algebraic character.

Characters are described as columns of coordinates in this basis.

> gchareval (gc, [1,0,0]7,idealprimedec(gc.nf,3) [1])
-0.5000 - 0.8660*I \\ the prime above 3 is not principal
> gcharconductor (gc, [2,0,0]7)

[1, []1]1 \\ a class group character

The maps £ and L* are accessible as gcharlog and gcharduallog, except that
these functions have an extra component corresponding to the norm. For example the
character xcar has the following parameters in ((R/Z)3 x R x Z) x C, where:

o thesetSis {(2, @71)};

+ the map log..: (Zr/m)* — 7%/27% is characterized by log,(2) = (1,1)
and log . (v/—23) = (1, 0).

> gcharduallog(gc, [0,1,017)
[0.11298866677205092301511538301498585720, 0, 1/2, 0, 1, 0]

For closer scrutiny we retrieve the local quasi-characters of x = xcam| - ||. In particular
for a prime p3 dividing the conductor m = 3 we obtain a character of the idealstar
structure (Zg/p3)™ in addition to a value 6 € C such that x (p3) = exp(27i6).
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> gcharlocal(gc, [0,1,117,1) \\ complex place

[1, -T] \\ k =1, phi = -I

> gcharlocal (gc, [0,1,1]7,idealprimedec (gc.nf,3) [2], &grp)

[1, 0.1042940216...+ 0.1748495762...*I] \\ [grp char, theta]
> grp.cyc

[2] \\structure of (ZF/p3)"*

The interface gives a basis of the subgroup of algebraic characters. We can work with
these characters via their type.

> Vec (gcharalgebraic(gc))

(rr, o, oj~, [0, 1, -1/21~, [0, 0O, -1171]

> gcharisalgebraic(gc, [2,-3,5/2]17,&t); t

[[-1, -41] \\ type (-1,-4)

> gcharalgebraic(gc, [[-1,2]11)

[[0,3,-1/2]17]1 \\ an algebraic character of type (-1,2)

The L-function machinery is readily accessible.

> lfunzeros(l[gc, [1,3,0]17],5)

[2.34520501265099..., 3.90705697239550...]

> lfunan([gc, [0,3,-3/2171,8)
[1,4.795...*I,2+4.795...*%1,-15,0,-23+9.591...*I,0,-33.570...*I]
> [ algdep(an,2) | an <- % ] \\ check algebraicity

[x-1, x"2+423, x72-4*x+27, x+15, x, x"2+46*x+621, x, x"2+1127]

5.2 Modular forms

By automorphic induction, Hecke characters of an extension F /K are expected to induce
automorphic representations of GLr.x] over K. This is known in a number of cases. Here
we provide some explicit examples for quadratic fields, where converse theorems prove
the existence of a global automorphic form.

5.2.1 Classical forms over GL,

Let F = Q(+/—D) be an imaginary quadratic field of discriminant —D < 0 and k > 0. To
an algebraic character x of type (k, 0) and conductor m we associate the g-series
f@= Y x@q"@, q=e*Im(z) > 0
(a,m)=1

where the sum runs over integral ideals a coprime to m.

Theorem 32 (Hecke [13], Weil [45], Shimura [31,33]) Let x be an algebraic character of
type (k, 0) and conductor m over F = Q(+/—D), then

S € Skt1(To(N, YEry )

is a newform of weight k 41, level N = D N q(m) and character Yy, where yr = (13)

is the quadratic character of F and v, (a) = a ¥ x((a)) is the Dirichlet character of modulus
Nr,q(m) attached to x.

91
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Table 1 Some modular forms with CM by Q(+/—19)

(i k) Quasi-character Modular form First zero

(1,0 [1,0,0] 171.1.ca.37.1 2.55662379...
(2,0 [2,0,0] Dirichlet 57.56 240313422 ..
(3,0 [3,0,0] 171.1.ca37.1 2.55662379...
o1 [0,-1,-1/2] 171.2d.a.170.3 1.19761556. ..
(1,1 [1,-1,-1/2] 171.2d.a.170.1 3.03101717...
20 [2,-1,-1/2] 171.2d.a.170.2 2.19220898. ..
30 [3,-1,-1/2] 171.2d.a.1704 0.57935987 ...
0,2) [0,-2,-1] 171.3.cd372 1.76815328.. ..
(1,2) [1,-2,-1] 171.3.ca.37.1 1.84559250. ..
(2,2) [2,-2,-11 1713.c.d37.1 1.54865425 ...
(3,2 [3,-2,-1] 19.3.b.a.18.1 3.78194741 ...
0,3) [0,-3,-3/2] 1714.d.a.1704 1.59003776. ..
(1,3) [1,-3,-3/2] 1714.d.a.170.3 1.36085197 ...
(2,3) [2,-3,-3/2] 1714.d.a.170.1 0.08123213...
(3,3) [3,-3,-3/2] 1714.d.a.170.2 0.70404412 ...

In the other direction, Ribet proved that all CM newforms come from algebraic Hecke
characters [29, Theorem 4.5].

Example 33 Consider F = Q(+/—19) and m = 3. Our implementation show that up to
integral powers of the norm, the algebraic characters are of the form Xé Xé‘o where x3 has
order 4 and generates CT(R), and xo has type (1, 0). In Table 1 we list the first algebraic
characters and the corresponding CM modular forms referenced in [36].

5.2.2 Maass waveforms

Let F = Q(+/D) be a real quadratic field of discriminant D and fundamental unit n; > 1,
and y,, a Hecke character of conductor m = (001002)¢ for € € {0, 1} whose restriction to
Fg is

irm m

"= 2log(n)’

21

5 1

Xm(z) = sgn(z122)¢

where € = m mod 2.
It corresponds to a CM Maass form [6, section 15.3.10].

Proposition 34 Let cos¥ (x) = cos(x) and cos'™V(x) = sin(x), and K;» denote the modi-
fied Bessel function of the second kind of parameter ir. The function

fa+) =7 xm(@Ki,, (27 N(a)y) cos™ (2 N(a)x) 9)

is a cusp form of weight 0 and character W on I'o(D) with Laplace eigenvalue A, = % +72,
where Y = (2) is the quadratic character of F.

Example 35 Let F = Q(+/5), this field has trivial class group and fundamental unit n =
#. The character x,,, above is an actual Hecke character of modulus m = (00;007)¢.
Using the L-function facilities in Pari/GP we compute the first zero 0 < y; such that
L(xms % + iy1) = 0. Results are shown in Table 2.
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Table2 First zero of Maass form L-functions of real quadratic field Q(+/5)

Page 190f26 917

m Im = ﬁ”ﬁm) First zero

1 3.2642513026... 74947673145 ...
2 6.5285026053 . .. 1.9926333454 .. ..
3 9.7927539079. .. 1.3437292832. ..
4 13.0570052105.... 1.3684744255 . ..
5 16.3212565132... 0.9723034858. ..
6 19.5855078158. ... 1.2974789657 . ..
7 22.8497591185.... 0.7849215584 ...
8 26.1140104211 ... 1.1328362023 ...
9 29.3782617237 ... 0.8591419101...
10 326425130264 . .. 0.8952928125...
M 35.9067643290. .. 0.7861064128. ..
12 39.1710156316... 1.1315449163...
13 424352669343 . .. 0.5067080421 ...
14 45.6995182369. .. 0.9758042566. . .
15 48.9637695395.... 0.8620736129...

Note that we obtain arbitrary large imaginary spectral parameters: this raises computa-
tional issues on the L-function side which are currently not addressed in Pari/GP. See [2]
for the case of degree 2 Maass forms.

5.3 CM abelian varieties

In this section we give examples of CM abelian varieties and the corresponding algebraic
Hecke characters. We insist on proving equalities of L-functions rather than observing a
numerical coincidence, as this is possible thanks to CM theory. For the general terminol-
ogy of CM theory, we refer to [18,21]. The following is a special case of [18, Chapter 4
Theorem 6.2].

Theorem 36 (Shimura [32], Milne [22]) Let A/Q be a simple abelian variety of dimen-
sion g. Let K be a CM field of degree 2g and 1: K — End®(A) an embedding, and let ®
be the corresponding CM type on K. Let F be the field of definition of «(K), and let ®* be
the dual type on F. Then F/Q is Galois; let G = Gal(F/Q). Let m be the injective mor-
phism w: G — Aut(K) such that (L)° = L()L”("))for all » € K and o € G. Then there
exists an algebraic Hecke character x over F of type ®* and valued in K such that

L(A,s) = [T &%

teHom(K,C) /7 (G)

Example 37 Let A be the Jacobian of the genus 2 curve 28561 .a.371293 .1 from the
LMFDB [37]

¥ +x3y =—2* -2 4 2P 4 3x -2

Let K = Q[x]/(x* — 4 + 2x% 4 4x + 3) = Q(«) be the unique degree 4 subfield of Q(¢13).
The surface A is simple, has CM by K, and all endomorphisms of A are defined over K, as
recorded in the LMFDB and proved by the algorithms of [9,20]. We therefore have F = K
in the notation of Theorem 36.
Since K/Q is Galois, 7 (G) acts transitively on Hom(K, C). All CM types of K are in the
same Galois orbit; let ®* = {o > —0.65... 4+ 052...,a — 115...+ 172...i}. By
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Table3 Values of the algebraic character x attached to an abelian surface

Prime t x)yeC x() ek

3.1 —1.65138... — 052241 ... —loP—Za-2

3.2 0.15138...— 172542 ..i —t ol = 3a—1
3.3 —165138... 4052241 ... a—1

3.4 0.15138... + 172542 .. 20 —o + Sa 41
13.1 £3.60555.... V13 =%’ — o +3)
16.1 —4 —4

29.1 —345416... —4.13143...i -3 +30? — fo =5
29.2 1.95416...4501809...7 2% — 2a% + 50 +5
29.3 —345416...+ 413143 ... Jo? =30 + Qo -1
29.4 1.95416... — 5.01809...i —a? + 207 — 6o — 2

Theorem 36, there exists an algebraic Hecke character x of K of type ®* such that
L(A,s) = L(x, s).

The conductor of A is 28561 = 13%, and the discriminant of K is 2197 = 133. Moreover,
K has a unique prime p above 13, so the conductor of x must be p.

Using our implementation we compute the group of characters of modulus p. The sub-
group of finite order characters has order 3, and there exists an algebraic character, unique
up to multiplication by a finite order character, of type ®*. Among the three algebraic
characters of this type, two have a non-real L-function coefficient a3, and therefore can-
not be x. So x is the remaining one, which is uniquely characterized by its type and the

approximate value
x(q) = —1.65138... —0.52241...i

where q = (3, «) (label 3. 1 as defined in [10]). The restriction of x to (Zx /p)* has order 2.
The values of x at some prime ideals are given in Table 3.

Example 38 Let A be the Jacobian of the genus 3 curve 3.9-1.0.3-9-9.6 from the
LMFDB [38]

C :y3 =x(x> — 1).

Let K = Q(g9). The curve C has an automorphism of order 9, defined over K and given
by (%, y) (g“g’x, 9y). In particular, the threefold A has CM by K defined over K.
By point counting, the Euler polynomial of A atp = 7 is

1+pT2 +p°TS,
which is irreducible over Q, proving that A is simple.

Since K /Q1is Galois, 7 (G) acts transitively on Hom(K, C) in the notations of Theorem 36.
There are two Galois orbits of CM types on K: one lifted from the CM subfield Q(¢3) C K,
and a primitive one. Let ®* = {{9 > exp(2in%), Lo > exp(2iné), L9 > exp(2in%)},
which is primitive. By Theorem 36, there exists an algebraic Hecke character x of K of
type ®* with values in K such that

L(A,s) = L(x, s).
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Table4 Values of the algebraic character x attached to an abelian threefold

prime t x@® eC x() ek

3.1 (exp(Z))1.73205...i (—=8o)V/=3 = {(=o)(1 + 2¢3)
19.1 434002 ...4040522...i 208 208 4288 + 68— 280+ 2
19.2 —4.11721...+143128...] =L 288 +208 — 205 +4c0+2
19.3 4.34002...—040522...i 405 + 88 — 203 4+ 288 — o

19.4 —411721...—-143128...i =265 + ¢4 — 285 — 4¢3 + 289
19.5 2.77718... 433594 .. .i =03 — AL 203+ ¢5 — 200+ 2
19.6 277718...—3.35964 ...} =208 — 288 — 203 4+ 288 — o
37.1 4.34002...—42619%...] 405 + 488 — 263 4 508 + 240
37.2 277718... = 541176...i =50 — 288 — 203 — ¢§ — 4Lo
37.3 —4.11721... — 447756 .. =405 + 588 +203 — 288 + 459+ 2
37.4 434002...44.26194...i 203 —Lg + 288 — 268 — 500+ 2
37.5 277718...4+541176...i 203 — AL+ 203 +4¢5 + Lo +2
37.6 —411721... + 447756 .. §5 — 285 — 285 — 4¢3 + 289
64.1 -8 _8

Let p be the unique prime of K above 3. By computing resultants we see that A has
good reduction away from 3. In particular the conductor of x is a power of p, say p”. The
restriction of x to (Zg /p™)* has finite order and takes values in K, and therefore has order
dividing 18. By studying the 3-adic convergence of (1-+x)'/1® we see that 1 +p1® (K8
and in particular we have m < 16. Alternatively, we could bound m by using the reduction
theory of Picard curves [3], but the above method works in cases where no reduction theory
is available.

Using our implementation we compute the group of characters of modulus p'. The
subgroup of finite order characters is isomorphic to Cg. There exists an algebraic character
of type ®*, unique up to multiplication by a finite order character. Out of these 9* = 6561
candidate characters, checking that the value of a9 is sufficiently close to the value for A,
namely aj9(A) = 6, eliminates all but 2 candidates. Checking that the value of ajq9 is
sufficiently close to ajg9(A) = —21 leaves only one remaining candidate, which must
therefore be . The conductor of x is p* and x is in fact the unique algebraic character of
type ®* and conductor p*, and the restriction of x to (Zx /p*)* has order 18. The values
of x at some prime ideals  are given in Table 4.

5.4 Density of gamma shifts
The spectral parameters of an L-function are the gamma shifts (; appearing in the gamma

factor
ri r1+ry
y)=[]Trs+m) [] Tcls+w).
j=1 j=r1+1

of its normalized functional equation L(s)y (s) = A(s) = € A(1 — s). In this setting, the real
parts Re(u)j<r, and Re(2.;);-r, are expected to be integers, whereas the imaginary parts

can be arbitrary transcendentals subject to ;1:1 Wi + Z;:;lril 2u; € R.

2Labels are as in [10] but with respect to the cyclotomic polynomial ®g, which is not the polredabs polynomial.



91

Page 22 of 26 P. Molin, A. Page Res. Number Theory(2022)8:91

As a matter of fact, Hecke characters allow us to attain a dense subspace of these
possible gamma shifts. The following statement must be well-known but we could not
find a reference for it.

Proposition 39 Let r1,ry > 0 and (,u;k) € ({0,1} + iR)" x (%Zzo + iR)"? a family of
spectral parameters such that y_;_,, m+2 2jon u €R.

Then for every number field F of signature (r1, ry) and every € > 0, there exists a Hecke
character x of F whose L-function gamma shifts j1;(x) satisfy

lj(x) — il < e

Proof Let F be a number field of signature (r1, r2). For every modulus m, let G C 1;]15
be the image of the map Cm — Fg , that is, the group of infinity-types of characters of
modulus m. The group Gy, is the group of elements x € Fg such that x(x) = 1 for
all u € Zp (m) = ker(Z; — (Zp/m)*).

Let M > 0 be an integer. By the congruence subgroup property for unit groups of
number fields [5, Théoréme 1], there exists a modulus m such that Z7 (m) C (Z; ™. In
particular, we get that

{X eFﬁIXMeGl}CGm.

Since the image of Gy in R"1""2 x Z' has full rank, this proves that |, Gm is dense in Fy,

which implies the claim. O

This makes Hecke characters good test cases for L-functions software, since their coef-
ficients are relatively easy to compute compared to other transcendental automorphic

forms.

Example 40 We exhibit a character of conductor 22 over the real cubic field F =
Qlx]/(x® — 3x + 1) whose parameters ¢; and @ approximate the constants 7 and e
to 5 digits.

> g=gcharinit (x"3-3*x+1,2720); chi = [0,-2033118, 694865]17;
> gcharlocal (g,chi, 1)

[0, 3.14159223855113838337757588855449151791

> gcharlocal (g,chi, 2)

[0, 2.7182831477529933175766620889117919084]

5.5 Partially algebraic Hecke characters

In view of the special role played by algebraic Hecke characters, it is natural to ask whether
there exists partially algebraic Hecke characters, that is, characters such that ¢, = 0 for
some o but not all 3. We provide a construction of such characters.

Proposition 41  Assume F is a quadratic extension of another number field Fy. Let R be
the set of real places of F that become complex in F, and let ng be the degree of Fy. Then for
every modulus m of F, there exists a subgroup H of Cun of rank ng in which every character
satisfies 9o = 0 for everyo € R.

3See https://mathoverflow.net/questions/310706
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Proof 1t suffices to prove the statement for the modulus m = 1. Let g be the nontrivial
element of Gal(F /Fy), which acts on a Let H be the subgrouB_gf X € a such that there
exists a finite order & € a with x& = £x~1. We have rk(Cll(F)) =n-—-1=2n—1
and rl((Cl/(-l?o)) = np — 1 (as is well-known but also easily seen from Proposition 14), so
the rank of H is exactly no. Moreover, for every infinite place o of F, every element of H
satisfies 9504 = —@o. In particular for o € R this means that ¢, = 0. O

Corollary 42 Under the same hypotheses as Proposition 41, let r = 0 if F does not contain
a CM subfield and r be the degree of the maximal real subfield of F otherwise. Then for every
modulus wm of F, there exists a subgroup H of Cm of rank ng — r in which every character
satisfies oo = 0 for every o € R and such that H contains no nonzero almost-algebraic
character. In particular, if F is not CM then there exists a partially algebraic character
over F.

Proof The integer r is the rank of the group of almost-algebraic characters. O

Example 43 Consider Fy = Q(+/5) C F = Q(5!/%).

> gc=gcharinit(x"4-5,1);

> chi = [1,0,0]17;

> gcharlocal (gc,chi, 1)

[0, -0.72908519629282042564585827345932876864]
> gcharlocal (gc,chi, 2)

[0, 0.72908519629282042564585827345932876864]
> gcharlocal (gc,chi, 3)

[2, 0]

The character y satisfies

ix0.729... ix0.729...

— 2
Koyt % > | s Xopt % > |x] , and x5t z = (2/12])%

and is therefore an example of a partially algebraic character. Since g = 2 there is another
independent partially algebraic character (namely [0,1,0]7).

In a general number field F, if one fixes a set of infinite places X, a natural question
is to determine the group of X -algebraic characters, i.e. characters such that ¢, = 0 for
everyo € X. The field F contains a maximal subfield Ky that is real at places below X, and
may contain a quadratic extension K of Ky in which all places below X are complex. When
this is the case, one obtains a corresponding group of X -algebraic characters. Does this
construction account for all the possible infinity types? Unlike the algebraic case where
Galois theory is sufficient to obtain a complete characterisation, the general case seems
to involve transcendence problems.

By automorphic induction to GL,, partially algebraic characters yield automorphic rep-
resentations that are non-algebraic principal series at some infinite places and discrete
series at other ones. Analogously to [26], one may ask to explicitly construct such “par-
tial Maass forms” that do not come from Hecke characters. A possible way of doing this
would be to compute Maass forms on a well-chosen quaternion algebra and to use the
Jacquet—Langlands correspondence.
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5.6 Twists and special values
Another interesting use of Hecke characters is to twist other L-functions to obtain new
ones. Our implementation makes it easy to follow the experiments of [40] on twists of
elliptic curve L-functions.

Let E/F be an elliptic curve of conductor Ng,r over an imaginary quadratic field F, and
x be an algebraic Hecke character of type (a, b) and conductor f over F.

Assume gcd(f, Ng/r) = 1, then the twist

LE®xs) = Y. anE)x(m)Nm™
(n,f):l

conjecturally satisfies the functional equation
ANEQx,s)=WAEQRQ1+a+b—ys)

where
A(E® X, 5) = (N(f)*Ng/£) 2T (s — min(a, b)Tc(s — min(a, b) — 142)L(E ® x, 5)

with special values predicted by Deligne’s period conjecture [11].

Example 44 Let F = Q(v/—43), E/F the curve 43.1.a. 1 of equation y> +y = x3 + &2,
and x the algebraic character of conductor 1 and type (-2, 2).
We check numerically that the special value is a period related to F.

L(E® x, 1) &~ 2.996120826544463 . ..

2
N — Q?;, where Qf =

V43
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