
A. Shallue, J. Webster Res. Number Theory (2022) 8:84
https://doi.org/10.1007/s40993-022-00384-z

RESEARCH

Tabulating Carmichael numbers n = Pqr
with small P
Andrew Shallue1 and Jonathan Webster2*

*Correspondence:
jewebste@butler.edu
2Butler University, Indianapolis,
USA
Full list of author information is
available at the end of the article

Abstract

We revisit the problem of tabulating Carmichael numbers. Carmichael numbers have
been tabulated up to 1021 using an algorithm of Pinch (Math Comp 61(203):381–391,
1993). In finding all Carmichael numbers with d prime factors, the strategy is to first
construct pre-products P with d − 2 prime factors, then find primes q and r such that
Pqr satisfies the Korselt condition. We follow the same general strategy, but propose an
improvement that replaces an inner loop over all integers in a range with a loop over all
divisors of an intermediate quantity. This gives an asymptotic improvement in the case
where P is small and expands the number of cases that may be accounted as small. In
head-to-head timings this new strategy is faster over all pre-products in a range, but is
slower on prime pre-products. A hybrid approach is shown to improve even the case of
prime pre-products.
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1 Introduction
Fermat’s Little Theorem states that when p is prime that ap ≡ a (mod p) for any integer
a. The converse of this theorem is a computationally efficient way to detect if an integer is
composite. That is, for a given nwe pick an a < n and compute an (mod n). If the result is
not a, wemay conclude that the number is composite. Unfortunately, there are composite
numbers for which the computed congruence is a, e.g. n = 341 and a = 2. Even worse,
there are composite numbers for which the congruence is a for any a < n. The least
example is n = 561. These numbers are sometimes called absolute Fermat pseudoprimes
but are more often called Carmichael numbers due to Carmichael who published the first
examples [2].
For a background and survey onCarmichael numberswe refer to [13].Our chief concern

regards tabulation and the key source is Pinch’s The Carmichael numbers up to 1015 [8].
This paper also gives a background of prior tabulations of Carmichael numbers. In a
series of reports, he announced further tabulations using the same algorithm with the
most recent being up to 1021 [9–12].
The tabulation method that Pinch employs uses a bifurcated approach. For a given

number P, we search for primes q and r so that Pqr is a Carmichael number. Depending
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on properties of P there are two different strategies for finding q and r. Roughly speaking,
the strategies change when P goes from being “small” to “large.” We follow in Pinch’s
footsteps and offer four significant contributions. These are

• an asymptotic analysis of his algorithm for when P is “small”,
• a new asymptotically superior way of dealing with the “small” case,
• timing information supporting the theoretical claims, and
• a tabulation for all P < 3 · 106.

In the “small” case, Pinch’s method was only practical when P was a prime. In this case,
the computation time was nearly linear in P. If P was composite, the computation could
approach a time quadratic in P (see Theorem 4). Our improvement removes this depen-
dence on the number of prime factors ofP and remains nearly linear for allP (see Theorem
5). Due to the fact that the number of Carmichael numbers of the form Pqr with P fixed
is finite, we do a new style of tabulation on P values rather than on the absolute size of
Carmichael numbers. This tabulation includes Carmichael numbers not found in [12],
e.g. with P = 999983,

1344 14285 88839 69679 08345 46298 33201 = P · 1000709986897 · 1343212046747951.
The rest of the paper is organized as follows. Section 2 establishes notation, relevant

theorems, and the motivation for our tabulation. Section 3 analyzes the prior approaches
and shows an asymptotically and practically improved algorithm. Section 4 discusses the
implications in the context of a tabulation of all Carmichael numbers less than B. We
conclude with comments on the implementation and other questions in Sect. 5.

2 Notation
The tabulation methods rely on Korselt’s Criterion.

Theorem 1 (Korselt’s Criterion) A composite number n is a Carmichael number if and
only if n is squarefree and (p − 1) | (n − 1) for all prime divisors p of n.

The tabulation methods construct n in factored form. Our goal will be to construct
square-free odd numbers n which we will then test with Korselt’s criterion. Let d be
the number of factors in n and then d > 2. Let Pk = ∏k

i=1 pi and Qd−k = ∏d
i=k+1 pi

where pi < pj iff i < j. The primary tabulation methods concern Pd−2 and constructing
or searching for pd−1 and pd . Since these quantities are used so often, we will suppress
subscripts and write these quantities as P, q, and r respectively.

Theorem 2 (Proposition 1 of [8]) Let n be a Carmichael number less than B.

(2.1) Let k < d. Then pk+1 < (B/Pk )1/(d−k) and pk+1 − 1 is relatively prime to pi for all
i ≤ k.

(2.2) Let L = lcm{p1 − 1, . . . , pd−1 − 1}. Then Pd−1r ≡ 1 (mod L) and r − 1 divides
Pd−1 − 1.

(2.3) Each pi satisfies pi <
√
n <

√
B.

Theorem 2.1 places significant restrictions on valid P. For example P = 21 is inadmis-
sible because 3 | (7− 1). In a tabulation of all Carmichael numbers less than B, bounds in
2.1 and 2.3 are important. The computational way to understand Theorem 2.2 is that we
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may search for r in the residue class (Pd−1)−1 (mod L). This is a matter of sieving in the
interval (q, Pd−1 − 1) with the residue class of (Pd−1)−1 with step size of L.
Beeger proved that if P is prime, then there are only a finite number of Carmichael

numbers of the form Pqr for a given P [1]. In [4], Duparc generalized this result to
composite P. While there is an implied algorithm in [4], Pinch restates the theorem and
makes the algorithm explicit. We state his version of the theorem and follow his notation.

Theorem 3 (Proposition 2 of [8]) There are integers 2 ≤ D < P < C such that, putting
� = CD − P2, we have

q = (P − 1)(P + D)
�

+ 1, (1)

r = (P − 1)(P + C)
�

+ 1, (2)

P2 < CD < P2
(
pd−2 + 3
pd−2 + 1

)

. (3)

Corollary 1 There are only finitely many Carmichael numbers of the form Pqr for a given
P.

This motivates the present work. Since the number of Carmichael numbers with fixed P
is finite, once the computation has been done, such a P never needs to be revisited (except
possibly for independent verification). Thus, we want to tabulate all Carmichael numbers
of the form Pqr for P < X .
The prior tabulations focused on finding all Carmichael numbers n < B. Pinch used

Theorem 3 when P was “small” and used Theorem 2.2 when P was “large”. Invoking
Theorem 2.2 involves two things. First, one has to find q given P which may be done by
standard prime sieving. Second, given q and P, one has to use Theorem 2.2 to find r. This
means that if the first step (prime sieving for q) is more costly than invoking Theorem 3,
then we may account P as “small.”
Many of our results depend on τ (n) = ∑

d|n 1, the function that counts the number of
divisors of n. Dirichlet established

∑

n≤x
τ (n) = x ln x + (2γ − 1)x + O(

√
x).

We now give a thorough explanation of the “small” case and show how it may be
significantly improved which comprises the bulk of our new results.

3 The case for “small” P
In the reports [10–12], Pinch writes of Theorem 3 “in practice [the theorem] was useful
only when d = 3.” On a cursory reading of the theorem and resulting algorithm, it might
not be clear why this is. We explain his result more thoroughly and provide justification
for why using Theorem 3 when d > 3 becomes computationally expensive. Ideally, one
would not want this dependence on d. If you have two different P but of comparable size
then the timing results depend strongly on the number of prime factors of P. Indeed, we
show that the cost per P can range from being nearly linear in P to being approaching
quadratic in P. Ideally, an algorithm would only depend on the size of P. Intuitively, these
two numbers have the same input size and we would want an algorithm that is dependent
on the input size alone. We offer this improvement and remove the reliance on d. At
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first, it might appear that the new approach offers no asymptotic improvement to the case
d = 3. However, we show that we can use a hybrid method to improve even this case.
In the context of a tabulation of all Carmichael numbers n < B, this makes the ability

to switch between “small” and “large” more intuitive because we do not have to deal with
the added input of d.

3.1 Generating CD pairs in timeO(P2−
1

d−2 ln P)

To use Theorem 3 in a computational way, Pinch suggests looping over 2 ≤ D < P, then
looping over all C as permitted by the inequality in Theorem 3.3. With C,D, we create �.
Then the inner loop uses C,D,� to check that q and r are rational primes and that Pqr is
a Carmichael numbers using Korselt’s criterion. We ignore the asymptotic cost of these
checks and only concern ourselves with the asymptotic count of the times the inner loop
is entered.

Theorem 4 Fix a pre-product P. Then all valid CD pairs may be created in time
O(LP ln P) = O(P2− 1

d−2 ln P).

Proof The double nested loop used to create C and D is akin to using a sieve of Eratos-
thenes to find composite numbers on the interval [P2, P2

(
pd−2+3
pd−2+1

)
]. The asymptotic count

of entering the inner loop is determined by the length of the interval.
Define LP so that P2

(
pd−2+3
pd−2+1

)
= P2 + LP . When P is prime, we have

P2 P + 3
P + 1

= P2 + 2P − 2 + 2
P + 1

.

On the other hand, let P = Pd−3pd−2 with d > 3. If pd−2 is minimal then Pd−3 may be
nearly as large as P1− 1

d−2 . So,

P2
(
pd−2 + 3
pd−2 + 1

)

= (Pd−3pd−2)2
(
pd−2 + 3
pd−2 + 1

)

= P2 + 2P2
d−3(pd−2 − 1) + 2P2

d−3
pd−2 + 1

.

Then 2P − 2 < LP < 2PPd−3 < 2P2− 1
d−2 . In summary, LP is nearly linear in P when Pd−3

is small but LP can approach quadratic in P as Pd−3 becomes large with respect to P. In
particular, LP is linear in P when d = 3.
The cost of sieving an interval of length LP by step size D isO(LP/D). Summing over D,

gives
P−1∑

D=2
O(LP/D) = O(LP ln P) = O(P2− 1

d−2 ln P)

as claimed. ��
So, when d = 3, O(LP ln P) = O(P ln P) and this helps explain why Pinch found the

CD method only useful for the case d = 3. In the subsection below we will show how to
restore linearity in P and remove the dependence on d.

3.2 Generating D� pairs in average timeO(P(ln P)2)

Our approach is to change the order in which the various quantities are generated. In the
above, CD pairs were created and then the integrality of q is checked. We follow Pinch
looping over 2 ≤ D < P. For a given D, loop over divisors δ of (P − 1)(P + D). Then
(P − 1)(P + D)/δ will be an integer. If C = (P2 + δ)/D is integral, then we have a CD
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pair that would have been found from the prior subsection and δ would be as � above.
We trade the guarantee of an integral C in favor of the guarantee of an integral q. We
have to account for two things. First, that the number of times the inner loop is entered
is asymptotically fewer. This is pretty simple to do as τ ((P − 1)(P + D)) is expected to be
smaller than LP/D. Second, that the cost of obtaining the list of divisors is not expensive.
This is also achieved by some variant of the sieve of Eratosthenes.
Through the use of a sieve of Eratosthenes, we can create factorizations of all numbers

in the interval [P+2, 2P−1] in timeO(P ln ln P). This represents a lower order cost in the
computation for a given P. Depending on the nature of the implementation the storage
space can beO(P1/3+ε) using [7],O(P1/2+ε) using standard segmenting or an incremental
sieve [14], or a naive implementation requiring O(P1+ε) storage. Given factorizations of
(P−1) and (P+D), it is easy to construct all possible divisors of (P−1)(P+D).We should
also note that having access to this information is not anunreasonable change fromPinch’s
own version. Generating primes is, after all, usually done with a sieve of Eratosthenes. Our
implementation uses the incremental sieve described in [14], which costs O(P1/2+ε) to
initialize and has average cost O(ln ln P) to update. The initialization cost is cheaper than
the cost of finding C when D = 2, and the updating cost is asymptotically smaller than
the checks required by the inner loop, so it worth paying in order to minimize entry into
the inner loop.
The new approach is to loop over all 2 ≤ D < P. The inner loop is now over divisors of

(P − 1)(P + D). In the inner loop, we check the integrality of C , the integrality of r, that
Korselt’s criteria holds, the primality of r, and finally the primality of q. When all checks
pass, we output Pqr as a Carmichael number.While the ordering of these checks does not
matter from an asymptotic point of view, we recommend this ordering. The checks done
with a single division are easier to do and more likely to fail which allow us to avoid the
more costly primality checks.
The average number of divisors of (P − 1)(P + D) will frequently be significantly less

than LP/D. The former has a count on average ofO((ln P)2) while the latter can be nearly
quadratic in P whenD is small. If we want to tabulate all Carmichael numbers of the form
Pqr with P < X then we may analyze the following sum

∑
P<X

∑P−1
D=2 τ ((P − 1)(P + D))

<

(
∑

P<X
τ (P − 1)

) (
∑

D<X
τ (P + D)

)

<

(
∑

P<X
τ (P)

) (
∑

D<2X
τ (D)

)

= 2X2(lnX)2 + O(X2 lnX).

The above gives the following theorem.

Theorem 5 The number of D� pairs used to tabulate all Carmichael number of the form
Pqr for P < X is O(X2(lnX)2).

The average number ofD� pairs per P is then on the order ofO(P(ln P)2). This removes
the strong dependence on the number of divisors of P. In the case of d = 3, this seems
to offer no improvement but we will show in the next subsection that this case can be
improved by this method.
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The full set of divisors of (P − 1)(P +D) need not be considered. One can discard large
divisors because

pd−2 < q = (P − 1)(P + D)
�

+ 1 ⇒ � <
(P − 1)(P + D)

pd−2 − 1
.

In the case of d = 3 this inequality is � < P + D.

Example 1 Let P = 5 · 19 · 23 · 29 = 63365, then there are four Carmichael numbers of
the form Pqr. They are

(1) P · 683 · 2545783 = 110177147679985
(2) P · 2297 · 36037 = 5245163907985
(3) P · 37 · 137 = 321197185
(4) P · 70168253 · 254447257 = 1131326282391998510665.

The third number is the smallest Carmichael number with exactly six prime factors.
Generating these four numbers requires checking about 9 million D� pairs or about 2.8
billion CD pairs.

3.3 An improvement to the d = 3 case

Given the prime factorization of (P−1) and (P+D), it is easy to compute howmany total
divisors we would have to consider prior to actually constructing the divisors. Supposing
we have

(P − 1)(P + D) =
∏

k
peii then τ ((P − 1)(P + D)) =

∏

k
(ei + 1).

Since we can easily compute both τ ((P−1)(P+D)) and LP/D, wemay choose to enter the
corresponding innerloop based on which quantity is smaller: LP/D or τ ((P − 1)(P + D)).
Once LP/D starts being smaller, one can entirely abandon the incremental sieve and
assume LP/D will continue to stay smaller.
This implies that the d = 3 case may be done asymptotically faster by this dynamic

choice. In Sect. 3.1 and in the d = 3 case, LP/D ranges from P to 2 as D ranges from 2 to
P − 1. That is, there are many CD pairs when D is small and this changes to having very
few CD pairs as D approaches P − 1. However, in the approach in Sect. 3.2, the number
of divisors of τ ((P − 1)(P + D)) remains relatively constant throughout the computation
where the variance is determined by the number of divisors of (P + D). The asymptotic
cost for a given P is now

P−1∑

D=2
min{2P/D, τ ((P − 1)(P + D))}

Conjecture 1 When P is a prime, all Carmichael numbers of the form Pqr may be found
by considering O(P ln ln P)many D� or CD pairs.

This conjecture is quite believable because if we replace τ ((P−1)(P+D)) with its average
value, then the conjecture is justified by the following. We may choose to compute Pqr
with theD�methodwhenD is small and switch to theCDmethodwhenD is large. Letting
this cross-over occur atD = P

(ln P)2 and using the average value of τ ((P−1)(P+D)) which
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is (ln P)2 we get:
P

(ln P)2∑

D=2
(ln P)2 +

P−1∑

D= P
(ln P)2

2P/D = O(P) + O(2P ln ln P) = O(P ln ln P).

Example 2 Let P = 65003 a prime, then there are ten Carmichael numbers of the form
Pqr. They are

(1) P · 384226823 · 1387549787527 = 34655299431568422859575163
(2) P · 260009 · 149569603 = 2527930457246474281
(3) P · 4485139 · 1443304409 = 420791778351741348553
(4) P · 4255030921 · 605229266867 = 167400226720595416380338521
(5) P · 2145067 · 123503801 = 17220850085262054001
(6) P · 11960369 · 628504339 = 488636899246608538273
(7) P · 845027 · 27300841 = 1499615814744258121
(8) P · 3073667 · 36326833 = 7258013177193134833
(9) P · 260009 · 845027 = 14282109784670729

(10) P · 845027 · 1950061 = 107115466344644941

The average value of τ ((P − 1)(P +D)/2) is around 45 and �LP/D	 = 45 whenD = 2827.
After some point, sayD = 6000, the computation of τ ((P−1)(P+D)/2) can cease entirely
and the computation is finished using only generation of CD pairs as in Sect. 3.1.

In reality, the trade-off between the twomethods is also determined by timing informa-
tion. There are at least two timing issues that were ignored in the above analysis. First, the
method of primality testing differs from the D� to the CD method (see Sect. 5.2). Sec-
ond, the cost of constructing the CD pairs has almost no overhead cost compared to the
overhead cost associated with theD� method. Once the CDmethod becomes dominant,
we can cease the overhead with theD� method entirely and just safely assume that LP/D
will remain smaller. This means that the computation will likely go through three phases:

(1) D “small” - pay cost for factors - D� method used,
(2) D “moderate” - pay cost for factors - dynamic switching between CD and D�,
(3) D “large” - stop paying cost for factors and default to CD method.

3.4 Back to the source

Pinch [8] gave an explicit version of an implied algorithm in Duparc [4]. There is a slightly
different algorithm that is also implied which we explain here. Recall that the CDmethod
creates � values. The values of the product CD lie in [P2 + 1, P2 + LP] and this implies
that � ∈ [1, LP]. Duparc suggests only creating such � values on the interval [1, 2P − 4].
On this interval, we will construct q > P. We note that this interval is linear in P and
such Carmichael numbers may be found in time O(P ln P). Having accounted for q > P
in this manner, we can now search for pd−3 < q < P which can also be done for in time
O(P ln P) by the use of a Sieve of Eratosthenes. The problem now is the cost of finding r
given P and q. This is the exact same problem as P being large. We use Theorem 2 and
we know that (Pq)r ≡ 1 (mod L) and (r − 1) divides Pq − 1. The former can be used to
sieve in a residue class and the latter can be used by factoring Pq − 1. In fact, the size of



84 Page 8 of 11 A. Shallue, J. Webster Res. Number Theory (2022) 8:84

the factors imply a bound on how far we have to sieve. One can now balance sieving with
respect to Lwith the cost of finding factors of Pq−1. However, we know of no way to give
an asymptotic estimate of this cost of finding q and r due to the nature of L. The quantity
L can be as small as pd−3 − 1 or nearly as large as P itself.

4 Tabulating all Carmichael numbers n < Bwhen P is “large”
Since both q and r may be found in time that is essentially linear in P, we want P to be
large enough with respect to B so that the cost of the sieving/factoring approach is better.
Since we will have to sieve for q regardless, this implies that P > B1/3 and we sieve for
q on [pd−3, P]. If q > P and P > B1/3, then Pqr > B and the corresponding Carmichael
number would exceed the desired bound. As with Pinch’s report, the case of d = 3 is
entirely accounted as “small.”

Theorem 6 All Carmichael numbers less than B with exactly three prime factors may be
tabulated by considering O(B2/3) CD or D� pairs .

Proof For each prime p < B1/3, we use the results in Sect. 3.3 to consider O(p ln p)
candidates for q, r. Since there are O(B1/3/ lnB) primes to consider, we consider the sum

∑

p<B1/3
O(p ln p) = O(B2/3).

��
In [5], the authors conjecture that the number of Carmichael numbers less thanB having

exactly three prime factors is asymptotically equivalent to

c
B1/3

(lnB)3

and in [6] it was proved that this set is asymptotically bounded above by B7/20+ε . All of
that is to say that an ideal tabulation algorithm would run in time linear in the output size
and we are far from that.
Lowerboundson�mayalsobeused to further reduce thenumberof divisors considered

to avoid generating Carmichael numbers that exceed the desired bound. Consider

Pq2 < P
(
(P − 1)(P + D)

�

)2
< B ⇒ P1/2(P − 1)(P + D)

B1/2 < �.

This means that when P gets to be of size B1/5 that divisors would be discarded due to
being too small.
This means that the “large” case is as follows. We require P > B1/3 and composite. This

will have q satisfy pd−3 < q <
√
B/P. From here, we use Theorem 2 as described above

to find r.

5 Implementation and conclusions
We conclude with three points. First, we mention some practical improvements to the
D� method. Second, we address some issues regarding the primality testing and the
approach we used. Here, we mention how we think primality testing ought to be done
and what choices wemade in order to compare theD�method to theCDmethod. Third,
we present some timing information in order to show that our improved algorithms are
practical. The timing information shows that it is reasonable to use theD�method on all
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P < X regardless of the number of prime factors in P. We also show that the D� method
used in conjunction with the CD method (see Sect. 3.3) is faster than either method
individually. This means that our novel approach gives an unconditional improvement
for a tabulation of Carmichael numbers.

5.1 Improvements to D�method

For expositional purposes, we described a simple version of the D� method that worked
for asymptotic purposes. The desired goal is to minimize the number of divisors that are
created for entering the inner loop. There are two ways to accomplish this. First, is to use
q is a prime and not merely the fact that it is an integer. The second is to use the fact
that C is integral. We do not believe that either of the improvements we describe would
change the asymptotic analysis of the algorithm.
Consider divisors of (P − 1)(P + D)/2 instead of (P − 1)(P + D). Both guarantee q is

integral but the former guarantees q is odd. It is possible to employ a similar trick to
force q ≡ 1, 2 (mod 3). This means that the divisor has to be multiple of three or the
divisor has to be 1 (mod 3). In the latter case, this means prime divisors of (P − 1)(P +D)
that are 2 (mod 3) have to appear with parity. Both of these can be incorporated into
an odometer-style divisor generator to avoid generating unwanted divisors. While it is
theoretically possible to scale this for other primes, the overhead seems like it would be
worse than just doing the divisibility check. At that point, the “reduction” is equivalent to
trial division.
We can further reduce the set of divisors we generate by examining the integrality

condition on C . When D ≡ 0 (mod 2), for (P2 + �)/D to be integral, � has to be odd.
So, for all D even, we require v2(�) = 0. This generalizes as follows:

Proposition 1 Let p be a prime with p | D, then
(1) if vp(P) = 0 then vp(�) = 0,
(2) if vp(P) = 1 then vp(�) ≥ 1.

Proof We require (P2 + �)/D to be an integer. So, for any prime p dividing D, we need
P2 ≡ −� (mod p). The valuations follow. ��
At the time of writing, our implementation only considers D (mod 2).
This also explains why most Carmichael numbers occur with D being relatively small.

If we view P2 + � as a random residue modulo D, then we expect it to take the value 0
about 1/D times. The count of divisors determines how many “chances” we get of this
happening.

5.2 Primality testing

The slowest operation in the inner loop will be the primality tests of q and r. In [8], Pinch
writes “we note that testing candidates for pi for primality is required at every state of
the calculation. We found precomputing a list of prime numbers up to a suitable limit
produced a considerable saving in time.” He did not further address how primality was
proved for his output.We address that from both a theoretical and practical point of view.
As with any primality proving algorithm, the strategy is generally to use some form

of “fast” pseudoprimality test followed by a primality proof. On the former, one usually
considers trial division up to some small bound followed by a base-2 strong Fermat pseu-
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doprime test. On the latter, we note that in theD� method that q− 1 is always generated
in factored form. Further, r − 1 is often generated in a partially factored form. These are
ideal candidates for the Pocklington-style primality tests. In fact, q can always be tested
with this method. If the factored part of r − 1 exceeds r3/10 then the Pocklington-style
tests may be used (see Sect. 4.1 of [3] for an explanation).
If not enough of the partial factorization of r − 1 is given or if q and r were generated

with the CD method, we could use ECPP to establish primality of the output.
In Sect. 3, we compared the number of times the inner loop was entered for the CD

method to the D� method. For timing purposes, we wanted the inner-loops to be com-
parable. That is, we did not want an entirely different primality testing algorithm in the
inner loop of one method to compare to a different method. So, the data in the section
below corresponds to a run that only does the “pseudoprimality” testing of trial division
by small primes. This way, each method pays a comparable cost for entering the inner
loop.

5.3 Timing data

Code for both the CD method and the D� method were implemented in C++ and run
on a small cluster at Illinois Wesleyan University. The cluster has 4 nodes, each with a
12-core, 24-thread, 3.8 GHz processor (with boosting capability up to 4.6 GHz). The code
that we used can be found on github.1

The following two sets of timings illustrate the improvements discussed in this paper.
First, theD� and CDmethods were applied to all pre-products up to a variety of bounds.
The tuples (P, q, r) constructed may include non-Carmichael numbers due to a lack of
primality proving, but the timings reflect a fair comparison since the same primality tests
are applied in both cases. All timings are given in seconds. The timings found under the
“Hybrid” label were obtained by running the D� algorithm unless Pd−3 < 20 and then
the algorithm from Sect. 3.3 was used.

Pre-product bound CD D� Hybrid
1 · 104 81 21 10
2 · 104 553 92 50
3 · 104 1730 231 124
4 · 104 3778 430 233
5 · 104 7017 697 395
6 · 104 11455 983 568
7 · 104 17281 1425 795
8 · 104 23806 1898 1072
9 · 104 33288 2425 1386

Tabulations were also performed on exclusively prime pre-products. This is the best
case for the CD method, and as one can see it outperforms the D� method under this
restriction. A simple hybridmethod was also implemented, where the tabulation switches
from D� to CD when D > P/(lnP)2. As one can see, this combination of techniques
provides an improvement over either individually.

1https://github.com/ashallue/tabulate_car.

https://github.com/ashallue/tabulate_car
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Prime pre-product bound D� CD Hybrid
1 · 104 9 1 1
2 · 104 36 6 3
3 · 104 83 15 8
4 · 104 151 26 14
5 · 104 237 41 22
6 · 104 348 60 31
7 · 104 470 80 41
8 · 104 619 103 53
9 · 104 738 125 64
10 · 104 939 159 81
11 · 104 1170 193 97
12 · 104 1328 221 110

5.4 Future work

We intend to revisit the work here and expand on it in two ways. As with Pinch, we
find that the case of d = 3 may be entirely accounted as small. For a tabulation of all
Carmichael numbers less than B, we now would only have to consider composite P with
P > 3 ·106.We plan on letting the tabulation algorithm run longer and doing a tabulation
of all Carmichael numbers n < 1024. We would also like to revisit the implied algorithm
of Duparc found in Sect. 3.4 and see if it gives improvements.

Data Sharing Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.
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