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Abstract

We investigate in this paper the vanishing at s = 1 of the twisted L-functions of elliptic
curves E defined over the rational function field Fq(t) (where Fq is a finite field of q
elements and characteristic ≥ 5) for twists by Dirichlet characters of prime order � ≥ 3,
from both a theoretical and numerical point of view. In the case of number fields, it is
predicted that such vanishing is a very rare event, and our numerical data seems to
indicate that this is also the case over function fields for non-constant curves. For
constant curves, we adapt the techniques of Li (J Number Theory 191:85–103, 2018)
and Donepudi and Li (Rocky Mountain J Math 51(5):1615–1628, 2021) who proved
vanishing at s = 1/2 for infinitely many Dirichlet L-functions over Fq(t) based on the
existence of one, and we can prove that if there is one χ0 such that L(E,χ0, 1) = 0, then
there are infinitely many. Finally, we provide some examples which show that twisted
L-functions of constant elliptic curves over Fq(t) behave differently than the general
ones.
Keywords: Non-vanishing of L-functions, Twisted L-functions of elliptic curves,
Function fields, Elliptic curve rank in extensions
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1 Introduction
Let E be an elliptic curve over Q with L-function L(E, s) = ∑

n ann−s, and χ be a Dirichlet
character. Let L(E,χ , s) = ∑

n anχ (n)n−s be the twisted L-function. By the Birch and
Swinnerton-Dyer conjecture, the vanishing of L(E,χ , s) at s = 1 should be related to the
growth of the rank of theMordell–Weil group ofE in the abelian extension ofQ associated
to χ . Heuristics based on the distribution of modular symbols and randommatrix theory
[11, Conjecture 1.2], [28] have led to conjectures predicting that the vanishing of the
twisted L-functions L(E,χ , s) at s = 1 is a very rare event as χ ranges over characters
of prime order � ≥ 3. For instance, it is predicted that there are only finitely many
characters χ of order � > 5 such that L(E,χ , 1) = 0. Mazur and Rubin rephrased this
in terms of “Diophantine Stability”, and conjectured that if E is an elliptic curve over Q

and K/Q is any real abelian extension such that K contains only finitely many subfields
of degree 2, 3, or 5 over Q, then the group of K -rational points E(K ) is finitely generated.
They also proved that for each � (under some hypotheses that can be shown to hold in
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certain contexts), there are infinitely many cyclic extensions K/Q of order � such that
E(K ) = E(Q) (and then, assuming the Birch and Swinnerton-Dyer conjecture, such that
the twisted L-functions L(E,χ , s) associated to the extensions K/Q do not vanish) [27].
We remark that the case of vanishing of quadratic twists is very different from the higher

order case � ≥ 3 considered in this work, as the L-function of E twisted by a quadratic
character of conductor D corresponds to the L-function of another elliptic curve ED, and
for half of the quadratic twists, L(E,χD, 1) = 0. Goldfeld has conjectured that half of the
twistsED/Q have rank 0, and half have rank 1 (asymptotically) [16]). Furthermore, Gouvea
andMazur [17] have shown that the analytic rank of ED is at least two for� X1/2−ε of the
quadratic discriminants |D| ≤ X . It is conjectured that the number of such discriminants
|D| ≤ X should be asymptotic to CEX3/4 logbE (X) [9], for some constants CE and bE
depending on the curve E. The case of nonabelian extensions K/Q of degree d with
Galois group Sd is also different from the abelian extensions of order � ≥ 3: in recent
work, LemkeOliver andThorne [22] showed that there are infinitelymany such extensions
where rank(E(K )) > rank(E(Q)), for each d ≥ 2, and Fornea [15] has shown that for some
curves E/Q, the analytic rank of E increases for a positive proportion of the quintic fields
with Galois group S5.
The vanishing (and non-vanishing) of twisted L-functions of elliptic curves is closely

related to the one-level density, which is the study of low-lying zeroes, or the average
analytic rank. This was studied over number fields and functions fields, for quadratic and
higher order twists. For quadratic twists, it is possible to prove results on the one-level den-
sity strong enough to deduce that a positive proportion of twists with even (respectively
odd) analytic rank do no vanish (respectively vanish of order 1) at the central critical point
[8,20]. The one-level density, or average rank, of higher order twists for elliptic curves
L-functions was studied by [7] over number fields and [8,29] over function fields.
Quadratic twists of elliptic curve over functions fields were also studied by [6] who
obtained results on the correlation of the analytic ranks of two twisted elliptic curves.
The behavior of the algebraic rank of elliptic curves in cyclic extensions of Q was investi-
gated by Beneish, Kundu, and Ray [3].
We investigate in this article the vanishing at s = 1 of the twisted L-functions of elliptic

curvesE defined over the rational function fieldFq(t),1 for twists byDirichlet characters of
prime order � ≥ 3, from both a theoretical and numerical point of view. It is natural to ask
if the recent results of Li [23] and Donepudi and Li [13], who have found infinitely many
instances of vanishing for L-functions of Dirichlet characters at s = 1/2, can be extended
to L-functions of elliptic curves twisted by Dirichlet characters. We find that this is the
case when E is a constant elliptic curve over Fq(t),2 and we can produce infinitely many
cases of vanishing at the central critical point for characters of order � provided we find
one (Theorem 1.2). Then, the conjectures of [11,28] do not hold in the special case of
constant elliptic curves, and we present specific numerical examples in Sect. 5.2.
We also study non-constant elliptic curves over Fq(t) where q is a power of a prime

p ≥ 5, say E : y2 = x3 + a(t)x + b(t), for some polynomials a(t), b(t) ∈ Fq[t]. The
L-function of E/Fq(t) is defined analogously as for E/Q, by an infinite Euler product over

1Throughout this article, we assume that Fq is a finite field of q elements and characteristic ≥ 5.
2Constant elliptic curves, i.e. elliptic curves over Fq considered as a curve over Fq(t), were studied by many authors
because of their special properties. In particular, Milne showed that the Birch and Swinnerton-Dyer conjecture is true
for constant elliptic curves [30].
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the primes ofFq(t) (see (2.6)), but in this case, it follows from thework ofWeil andDeligne
that, after setting u = q−s, L(E, s) = L(E, u), a polynomial in Z[u]. Similarly, the twisted
L-function L(E,χ , u) is a polynomial in Z[ζ�][u], where χ is a Dirichlet character of order
� over Fq(t). More details and all relevant definitions are given in Sect. 2.
We present in Sect. 5.3 computational results for the vanishing of numerous twists

of two base elliptic curves over Fq(t), the Legendre curve and a second curve, chosen
to have good reduction at infinity. The data seems to indicate that the conjectures of
[11,28] also hold for non-constant elliptic curves over function fields, while presenting
some unexpected features. To our knowledge, this is the first data about the vanishing of
L-functions of elliptic curves twisted by characters of order � ≥ 3, over function fields.
The case of quadratic twists of elliptic curves over function fields was considered by Baig
andHall [1] to test Goldfeld’s conjecture in that context, and our numerical computations
are similar.
The case of a constant curve E/Fq(t) is defined by taking an elliptic curve E0/Fq and

considering its base change to Fq(t), denoted by E = E0 ×Fq Fq(t). In this case, the roots
ofL(E,χ , u) can be described in terms of the roots of the L-functionsL(E0, u) andL(C, u),
where the L-functions are respectively associated to the elliptic curve E0/Fq and the
�-cyclic cover C over P

1
Fq

corresponding to the Dirichlet character χ (see Sect. 3). This
allows us to use a generalized version of the results of Li [23] and Donepudi and Li [13]
about vanishing of theDirichletL-functionsL(χ , u) to obtain somevanishing forL(E,χ , u)
at u = q−1. The argument of [13,23] has two distinct parts, first finding one character χ0
such that L(χ0, u0) = 0 for some fixed u0, and then sieving to produce infinitely many
such characters. The order of q mod � is related to the presence/absence of �-th roots
of unity in Fq(t), which makes the study of the characters of order � delicate, and the
authors of [13,23] restrict to the Kummer case where q ≡ 1 mod �. As we need to treat
all the cases (in particular, we often work over the finite field Fp where p is prime), we
generalize their sieving beyond the Kummer case. We also need to consider vanishing at
any u0 where L(E0, u0) = 0, and not only u0 = q−1/2 as in their work.
We recall that an algebraic integer α is called a q-Weil integer if |α| = q1/2 under every

complex embedding.

Theorem 1.1 Let � be aprimeandq be aprimepower coprime to �. Let u0 be a q-Weil inte-
ger. Suppose there exists a Dirichlet character χ0 overFq(t) of order � andwith conductor of
degree d0 such that L(χ0, u−1

0 ) = 0. Then, there are at least � q2n/d0 Dirichlet characters
χ of order � over Fq(t) with conductor of degree bounded by n such that L(χ , u−1

0 ) = 0.

We prove the above theorem in Sect. 4. The next result is then a direct consequence of
Theorem 1.1, using the properties of constant elliptic curves discussed in Sect. 3.

Theorem 1.2 Let E0 be an elliptic curve over Fq, and let E = E0 ×Fq Fq(t). Suppose there
exists a Dirichlet character χ0 over Fq(t) of order � and with conductor of degree d0 such
that L(E,χ0, q−1) = 0. Then, there are at least � q2n/d0 Dirichlet characters χ of order �

over Fq(t) with conductor of degree bounded by n such that L(E,χ , q−1) = 0.

Then, to guarantee that a constant elliptic curve E/Fq(t) has infinitely many twists of
order � such that L(E,χ , u) vanishes at q−1, it suffices to find one. Using the results of
Sect. 3, this can be rephrased in terms of finding curves C/Fq which are �-cyclic covers of
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P
1
Fq

and such thatL(E0, u) dividesL(C, u), and we investigate this question numerically in
Sect. 5.2, where we find isogeny classes of elliptic curves E0 over different prime fields such
thatL(E,χ , q−1) = 0 for characters χ of prime order � = 3, 5, 7, 11. One observation from
the data is the existence of supersingular curves defined over primes fields Fp which admit
a degree � cyclic map to P

1 ramifying at 4 points where p ≡ −1 mod �. The existence of
such curves does not follow from previous results on the topic and onemay hope to prove
this statement following the strong evidence presented in Table 1.
It is natural to ask if the same dichotomy (no instances of vanishing or infinitely many

cases of vanishing) also holds for non-constant elliptic curves over Fq(t), but there is no
reason to believe it would be the case. The ideas leading to the proof of Theorem 1.2
for constant curves do not apply to the general case, as the change of variable trick used
to produce infinitely many extensions where E acquires points would send points on E
to points on a different elliptic curve when E is not constant. However, there are results
of that type for an elliptic curve E over Q due to Fearnley, Kisilevsky, and Kuwata [14],
where the authors prove that if there is one cyclic cubic field K such that E(K ) is infinite,
then there are infinitely many, and there are always infinitely many such K when E(Q)
contains at least 6 points. On the non-vanishing side, Brubaker et al. [4] use themethod of
multiple Dirichlet series to prove that if there exists a single non-vanishing order � twist
of an L–function associated to a cuspidal automorphic representation of GL(2,AK ), then
there are infinitely many.
The structure of this article is as follows: we define in Sect. 2 the L-functions attached

to Dirichlet characters and elliptic curves over Fq(t), and we recall their properties. We
discuss in Sect. 3 the case of L-functions of constant elliptic curves. We describe the �-
cyclic covers of P1

Fq
and their characters in Sect. 4, for all cases (not only the Kummer case

q ≡ 1 mod �) using the work of Bary-Soroker and Meisner [2], and we then generalize
the sieves of [13,23] to those general �-cyclic covers. We then use those results to prove
Theorems 1.1 and 1.2. Finally, we describe our computations in Sect. 5.1, and we present
our numerical data in Sections 5.2 and 5.3.

2 Dirichlet characters, elliptic curves and L-functions over Fq(t)
2.1 Dirichlet characters of order �

Let � be a prime not dividing q. We review here the theory of Dirichlet characters of order
� over Fq(t) and their L-functions. We refer the reader to [2,12] for more details.
Let nq be themultiplicative order of qmodulo �.We say that we are in the Kummer case

if nq = 1 and in the non-Kummer case otherwise. We also say that a monic irreducible
polynomial P ∈ Fq[t] is nq-divisible if nq | deg P.
We fix once and for all an isomorphism� from the �-th roots of unity in F

∗
qnq to μ�, the

�-th roots of unity in C
∗.

We first define the �-th order residue symbol

χP : Fq[t]/(P) → μ�,

for P an irreducible nq-divisible monic polynomial in Fq[t]. It is clear that the �-th
residue symbols χP can be defined only for the nq-divisible primes P, since we must have
� | qdeg P − 1: indeed, unless nq | deg(P), the order of the group of non-zero elements in
the residue field FP = Fq[t]/(P) is not divisible by �, and therefore it does not contain any
non-trivial �-th root of unity.
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For any a ∈ Fq[t], if P | a, then χP(a) = 0, and otherwise χP(a) = α, where α is the
unique �-th root of unity in C

∗ such that

a
qdeg(P)−1

� ≡ �−1(α) mod P. (2.1)

If F ∈ Fq[t] is any monic polynomial supported only on nq-divisible primes, writing
F = Pe1

1 . . .Pes
s with distinct primes Pi, we define

χF = χ
e1
P1 . . . χ

es
Ps .

Then, χF is a character of order dividing � with conductor P1 . . .Ps. Conversely, the
primitive characters of order � and conductor P1 . . .Ps, where the Pi are nq-divisible
primes, are given by taking all choices 1 ≤ ei ≤ � − 1. Then, the conductors of the
primitive characters are the square-free monic polynomials F ∈ Fq[t] supported on
nq-divisible primes, and for each such conductor, there are (� − 1)ω(F ) such characters,
where ω(F ) is the number of primes dividing F .
We can also write each primitive character of order � with conductor F as

χF = χF1χ
2
F2 . . . χ�−1

F�−1
(2.2)

corresponding to a decomposition F = F1 . . . F� where the Fi ’s are square-free and
coprime.
For any Dirichlet character χ , we say that χ is even if its restriction to Fq is trivial;

otherwise, we say that χ is odd.
Dirichlet characters are also defined at the prime at infinityP∞. The following statement

clarifies how to compute χ (P∞).

Lemma 2.1 Let F be a monic squarefree polynomial in Fq[t], and χ be a Dirichlet char-
acter on Fq[t] of order � with conductor F .
If q 
≡ 1 mod �, then χ does not ramify at infinity, χ (P∞) = 1, and χ is even.
If q ≡ 1 mod �, let χ = χF1χ

2
F2 . . . χ�−1

F�−1
as in (2.2). Then, χ ramifies at P∞ ⇐⇒

� � deg(F1F2
2 . . . F�−1

�−1 ) ⇐⇒ χ is odd, and

χ (P∞) =
⎧
⎨

⎩

1 � | deg(F1F2
2 . . . F�−1

�−1 ),

0 � � deg(F1F2
2 . . . F�−1

�−1 ).

Proof We first discuss under which conditions the characters are odd or even. Let P be
an nq-divisible prime. We remark that for a ∈ F

∗
q ,

χP(a) = �

(

a
qdeg(P)−1

�

)

= �

(

a
deg(P)(qnq−1)

nq�

)

. (2.3)

Indeed, writing deg(P) = nqk , we have

qdeg(P) − 1
�

= qnqk − 1
�

= qnq − 1
�

(1 + qnq + · · · + qnq(k−1))

and we use the fact that 1 + qnq + · · · + qnq(k−1) ≡ k mod �.
Then by applying multiplicativity to Eq. (2.3), we find

χF (a) = �

(

a
deg(F1F22 ...F�−1

�−1 )(q
nq−1)

nq�

)

,
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If nq = 1, then χ is trivial on Fq iff � | deg(F1F2
2 . . . F�−1

�−1 ).
Now suppose that nq > 1. Then, � � (q − 1), and in fact, (�, q − 1) = 1 since � is prime.

Now we have that both � | (qnq − 1) and (q − 1) | (qnq − 1). It follows that (q − 1) | qnq−1
�

.
Since a ∈ F

∗
q , we have

χF (a) = �

(

a
deg(F1F22 ...F�−1

�−1 )(q
nq−1)

nq�

)

= 1,

and therefore χF is an even character.
The statement that P∞ does not ramify in the non-Kummer case follows from the

fact that the cyclic field extension associated to χF can only ramify at primes of degree
divisible by nq > 1 and P∞ is a prime of degree 1. In the Kummer case, the character χF
is associated with the cyclic cover y� = F1F2

2 . . . F�−1
� , and there is ramification at P∞ iff

� � deg(F1F2
2 . . . F�−1

�−1 ), and χF (P∞) = 0 in this case. If χF does not ramify at P∞, then
χF (P∞) = 1 since we are only considering the case in which F1F2

2 . . . F�−1
�−1 is monic.

2.2 L-functions of Dirichlet characters

Let χ be a Dirichlet character, and let L(χ , u) be the Dirichlet L-function defined by

L(χ , u) =
∏

P
(1 − χ (P)udeg P)−1,

where the product includes the prime at infinity.
We define δχ by

δχ :=
⎧
⎨

⎩

0 when χ is even,

1 when χ is odd,
(2.4)

and we remark from Lemma 2.1 that χ (P∞) = 1 − δχ .
For a primitive character χ of conductor F , it follows from the work of Weil [38] that

L(χ , u) is a polynomial of degree deg(F ) − 2 + δχ and satisfies the functional equation

L(χ , u) = ωχ (√qu)deg(F )−2+δχ L(χ , 1/(qu)). (2.5)

The sign of the functional equation is

ωχ =
⎧
⎨

⎩

G(χ )
|G(χ )| when χ is even,√q
τ (χ )

G(χ )
|G(χ )| when χ is odd,

where if χ odd,

τ (χ ) =
∑

a∈F∗
q

χ (a)e2π itrFq/Fp (a)/p,

and for any χ , G(χ ) is the Gauss sum

G(χ ) =
∑

a mod F
χ (a)eq

( a
F

)
.

Here eq is the exponential defined by Hayes [19] for any b ∈ Fq((1/T )):

eq(b) = e
2π itrFq/Fp (b1)

p ,

where b1 is the coefficient of 1/T in the Laurent expansion of b. We refer the reader to
[12] for a proof of those results.
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2.3 L-functions of elliptic curves over Fq(t)

Let E be an elliptic curve over Fq(t). Let P be a prime of Fq(t), i.e P = P(t) ∈ Fq[t] is a
monic irreducible polynomial or P = P∞, the prime at infinity. If P is a prime of good
reduction, then the reduction of E (which we also denote by E) is an elliptic curve over
the finite field FP = Fq[t]/(P) ∼= Fqdeg P (where F∞ ∼= Fq since the prime at infinity has
degree 1), and

#E(FP) = qdeg P + 1 − aP, aP = αP + αP, |αP | =
√

qdeg P.

Let

LP(E, u) := 1 − aPu + qdeg Pu2 = (1 − αPu)(1 − αPu)

be the L-function of E/FP .
If P is a prime of bad reduction, we define

LP(E, u) = (1 − aPu),

where aP = 0, 1,−1 depending on the type of bad reduction (additive, split multiplicative,
and non-split multiplicative respectively).
Let NE be the conductor of E, which is the product of the primes of bad reduction with

the appropriate powers.3 Let ME (respectively AE) be the product of the multiplicative
(respectively additive) primes of E. Then NE = MEA2

E .
The L-function of E is defined by

L(E, u) :=
∏

P�NE

LP(E, udeg P)−1
∏

P|NE

LP(E, udeg P)−1. (2.6)

It is proven by Weil [1,21] that L(E, u) is a polynomial of degree4 degNE − 4 for any
non-constant elliptic curve defined over the rational function field Fq(t) and it satisfies
the functional equation

L(E, u) = ωE (qu)deg(NE )−4L(E, 1/(q2u)), (2.7)

whereωE = ±1 is the sign of the functional equation.We refer the reader to [5, Appendix]
and [1] for more details.
Letχ be aDirichlet character of order � and conductorF , and suppose that (F,NE) = 1. If

χ is odd, we also assume that E has good reduction at P∞ (since the prime at infinity is not
included in the conductor of the Dirichlet character, we need this additional condition to
ensure that the places where χ ramifies and the places of bad reduction for E are disjoint).
The L-function of E twisted by χ is defined by

L(E,χ , u) :=
∏

P�NE

(1 − χ (P)αPudeg(P))−1(1 − χ (P)αPudeg(P))−1

×
∏

P|NE

(1 − χ (P)aPudeg(P))−1. (2.8)

3We emphasize that we include the prime at infinity in the conductor of the elliptic curve (if the curve has bad reduction
at infinity of course). Our conductor is an effective divisor, written multiplicatively.
4The formula for the degree of L(E, u) implies in particular that there are no non-constant elliptic curves over Fq(t)
with conductor of degree smaller than 4, which can be thought of as the analogue to the fact that there are no elliptic
curves over Q with conductor smaller than 11.
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Let K be the cyclic field extension of degree � of Fq(t) corresponding to χ . Then,

L(E/K, u) = L(E, u)
�−1∏

i=1
L(E,χ i, u). (2.9)

It follows from the Riemann Hypothesis that

L(E/K, u) =
B∏

j=1

(
1 − qeiθj u

)
.

Since (Fχ , NE) = 1 and E has good reduction at P∞ when χ is odd, (2.9) and Theorem 2.2
(stated and proven below) imply that B = �(degNE − 4) + 2(� − 1)(deg F + δχ ).
It is well-known that L(E,χ , u) satisfies a functional equation from the work of Weil

[38]. The explicit formula for the sign of the functional equation is contained in [38] in a
very general context, but we need a precise formula for the numerical computations, so
we deduce it below from the work of Tan and Rockmore [35,36].

Theorem 2.2 Let � be a prime, χ a primitive Dirichlet character of conductor F and order
�, and let E be a non-constant elliptic curve with conductor NE such that (NE, F ) = 1. If
P∞ | NE, we also assume that χ is even. The L-functionL(E,χ , u) is a polynomial of degree

n := degNE + 2 deg F − 4 + 2δχ ,

where δχ is given by (2.4). Each L(E,χ , u) satisfies the functional equation
L(E,χ , u) = ωE⊗χ (qu)n L(E,χ , 1/(q2u)), (2.10)

where ωE⊗χ is the sign of the functional equation for L(E,χ , u), given by

ωE⊗χ = ω2
χ ωE χ (NE).

Proof The sign of the functional equation (and the functional equation itself) can be
deduced from the modularity of elliptic curves over function fields. We follow [35,36]
who use modular symbols over function fields. They consider different normalizations,
so we explain here how to adjust their work to get the result that we need. Let K = Fq(t).
For any place v, let Ov be the associated ring of integers. If N = ∑

v Nvv is an effective
divisor over K , let


0(N ) =
{(

a b
c d

)

=
((

av bv
cv dv

))

v
∈

∏

v
GL2(Ov) : c ≡ 0 mod N

}

.

Let AK be the ring of adeles over K . Then A
∗
K embeds in GL2(AK ) as diagonal matrices.

Also GL2(K ) embeds in GL2(AK ) by the diagonal map.
AC-valued function onGL2(AK ) is called amodular function of levelN if it satisfies that

f (γ τκ) = f (τ ) for all τ ∈ GL2(AK ), γ ∈ GL2(K ), and κ ∈ A
∗
K · 
0(N ). It is a fundamental

result that if E is a non-constant elliptic curve over K , then there is a normalized cuspidal
modular function f of level NE such that the L-function of E is the L-function of f . This
also holds for the twisted L-functions. To make that statement precise, and use it to get
the functional equation, we will follow the notation of [35,36], where the L-functions
are normalized differently (and we will go back to our L-function at the end). Let f be
the normalized cuspidal modular function corresponding to E, χ a Dirichlet character of
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conductor coprime to NE and we define as [35, (1.10)]

Lf (χ , s) =
∑

M

cf (M)χ (M)
|M|s−1 ,

whereM runs through all effective divisors, χ is naturally extended over effective divisors,
and the cf (M) are the normalized coefficients obtained from the Fourier expansion of f .
This is also true when χ is a quasi-character, which for our purposes is the product of a
Dirichlet character and a map χs given by χs(M) = |M|−s.
We now use the modular symbols �f,D to get the functional equation. The modular

symbols �f,D are elements of the group ring R[WD], whereWD = K ∗\A
∗
K /UD is theWeil

group of a divisor D of K , and R is a ring containing all the Fourier coefficients of f . We
refer to [35] for all the relevant definitions. The modular symbols are used to interpolate
special values of the twisted L-functions, and we have [35, Proposition 2],

Lf (χ , 1) = τ−1
χ χ (�f,D), (2.11)

where τχ is a Gauss sum. Using quasi-characters, we also have

Lf (χ , s) = Lf (χχs−1, 1) = τ−1
χχs−1 (χχs−1)(�f,D). (2.12)

Using the Atkin–Lehner involutionwNE , we have when (D,NE) = 1 (including at P∞) [35,
Proposition 3]

�f,D = �t
wNE (f ),D

NE, (2.13)

where t is the involution on R[WD] sending
∑

w∈WD
aww to

∑
w∈WD

aww−1.
Applying a quasi-character χ to � = ∑

w∈WD
aww results in χ (�) = ∑

w∈WD
awχ (w),

while applying χ together with the involution t results in χ (�t ) = ∑
w∈WD

awχ−1(w) =
χ−1(�).
We apply χχs−1 to (2.13), and we combine it with (2.12) to get

Lf (χ , s) = τ−1
χχs−1 (χχs−1)(�f,D)

= τ−1
χχs−1 (χχs−1)(�t

wNE (f ),D
) χ (NE)|NE |−(s−1)

= τχ−1χ1−s

τχχs−1
LwNE (f )(χ

−1χ1−s, 1)χ (NE)|NE |−(s−1)

= τχ−1χ1−s

τχχs−1
LwNE (f )(χ

−1, 2 − s)χ (NE)|NE |−(s−1).

The third line above follows from using (2.11) with f replaced by wNE (f ) and χχs−1
replaced by (χχs−1)−1, together with the observation that the involution t has the effect
of inverting the character. Using the fact that f is an eigenvector for the self-dual Atkin–
Lehner operator, we have wNE (f ) = ωEf , where ωE = ±1 is the sign of the functional
equation (2.7), and then LwNE (f )(χ

−1, 2 − s) = ωELf (χ−1, 2 − s).
To compute the Gauss sums associated with the quasi-characters, we use [36, (2.2.3)]

τχχs = qs(degD−2)τχ ,

where τχ is the Gauss sum of the Dirichlet character χ of conductor D. Replacing above,
this gives

τχLf (χ , s) = ωEτχ−1χ (NE)q(1−s)(deg(NE )+2 deg(D)−4)Lf (χ−1, 2 − s), (2.14)
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where [35, (3.4)] is a particular case (for s = 1). The twisted L-function of the elliptic curve
is given by

L(E,χ , s) =
∑

M

cf (M)|M|χ (M)
|M|s = L(E,χ , u)

for u = q−s. The functional equation can be obtained by noticing that Lf (χ , s) = L(E,χ , s),
and replacing in (2.14). This leads to

τχL(E,χ , s) = ωEτχ−1χ (NE)q(1−s)(deg(NE )+2 deg(D)−4)L(E,χ−1, 2 − s).

Using u = q−s, we finally get

L(E,χ , u) = ωE⊗χ (qu)(deg(NE )+2 deg(D)−4)L(E,χ−1, 1/(q2u)), (2.15)

where

ωE⊗χ =
(

τχ

|D|1/2
)2

ωEχ (NE).

In order to get exactly the statement of the theorem, we need to take into account the
difference of notation between [35] and this paper.Whenχ is odd and there is ramification
at P∞, the conductor D of (2.15) is P∞D′, where D′ ∈ Fq[t], and so D′ is the definition
of the conductor in this paper. Adjusting the formula to make it compatible with our
notation, we get for all cases

L(E,χ , u) = ωE⊗χ (qu)(deg(NE )+2 deg(D)−4+2δχ )L(E,χ−1, q2u−1),

which is the functional equation (2.10). Finally, we remark that τχ

|D|1/2 is by definition the
sign of the functional equation of L(χ , u), since it is the product of the same local Gauss
sums because (D,NE) = 1, and we have ωE⊗χ = ω2

χωEχ (NE).

Remark 2.3 WhenE is a constant elliptic curve,weprove in thenext section thatL(E,χ , u)
satisfies the same functional equation with n = 2 deg F −4+2δχ and ωE⊗χ = ω2

χ . This is
consistent with the fact that such E has good reduction at all primes of K , and therefore
NE = 0.

3 L-functions of constant elliptic curves over Fq(t)
By class field theory, Dirichlet characters of order � over Fq(t) correspond to cyclic exten-
sions K/Fq(t) of order �, where K = Fq(C) is the function field of a projective smooth
curve C defined over Fq . We call such a curve a �-cyclic cover of P

1
Fq
, or simply a �-cyclic

cover.
Let C be a �-cyclic cover of P

1
Fq

of genus g , and let K = Fq(C) be the corresponding
extension of Fq(t). The zeta function of C can be expressed as

Z(C, u) = Z(u)L(C, u) =

2g∏

j=1
(1 − βju)

(1 − u)(1 − qu)
, (3.1)

where |βj| = q1/2 for 1 ≤ j ≤ 2g , and

Z(u) = 1
(1 − u)(1 − qu)

.
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We also have

L(C, u) =
�−1∏

i=1
L(χ i, u),

where the χ i are the characters of order � associated to the extension K/Fq(t).
Let E0 be an elliptic curve over Fq with L-function

L(E0, u) = (1 − α1u)(1 − α2u).

Theorem 3.1 Let E = E0 ×Fq Fq(t), and let C, K and α1,α2, and the βj ’s be as above.
Then,

L(E/K, u) = Z(C,α1u)Z(C,α2u) =
∏

1≤i≤2
1≤j≤2g

(1 − αiβju)
∏

1≤i≤2(1 − αiu)(1 − αiqu)
. (3.2)

Moreover, L(E,χ , u) = L(χ ,α1u)L(χ ,α2u), and writing

L(χ , u) =
∏

1≤j≤2g/(�−1)
(1 − γju),

then

L(E,χ , u) =
∏

1≤i≤2
1≤j≤2g/(�−1)

(1 − αiγju).

Proof We refer the reader to [30, Sect. 3] and to [31, Sect. 3.2] for the general proof. To
illustrate the ideas, we prove (3.2) when K = Fq(t). Since #E0(Fqn ) = qn + 1 − αn

1 − αn
2 ,

if P is a prime, then

#E(FP) = #E0(FP) = qdeg(P) + 1 − α
deg(P)
1 − α

deg(P)
2 .

Since all the primes are of good reduction, we have

L(E/Fq(t), u) = L(E, u) =
∏

P

(
1 − (αdeg(P)

1 + α
deg(P)
2 )udeg(P) + qdeg(P)u2 deg(P)

)−1

=
∏

P

(
1 − α

deg(P)
1 udeg(P)

)−1(1 − α
deg(P)
2 udeg(P)

)−1

= 1
(1 − α1u)(1 − qα1u)(1 − α2u)(1 − qα2u)

= Z(α1u)Z(α2u).

Remark 3.2 From the above result, it is easy to get the functional equation for L(E,χ , u)
when E is a constant curve, using the functional equation of L(χ , u) given by (2.5). Let
m = degu L(χ , u) = 2g/(� − 1). In the notation of Sect. 2, we have m = 2g/(� − 1) =
deg F − 2 + δχ , and

L(E,χ , u) = L(χ ,α1u)L(χ ,α2u) = ωχ (√qα1u)m L(χ , 1/qα1u)

ωχ (
√qα2u)m L(χ , 1/qα2u)

= ω2
χ (q2u2)mL(χ ,α2/(q2u))L(χ ,α1/(q2u))

= ω2
χ (qu)2m L(E,χ , 1/(q2u)) = ω2

χ (qu)2 deg F−4+2δχ L(E,χ , 1/(q2u))
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Corollary 3.3 Let E = E0 ×Fq Fq(t), and let χ be a Dirichlet character over Fq(t) with
associated curve C and function field K = Fq(C) respectively. Then, L(E/K, q−1) = 0 if
and only if L(C,α−1

1 ) = L(C,α−1
2 ) = 0,

Proof From Eq. (3.2) in Theorem 3.1, L(E/K, q−1) = 0 if and only if there is one βj =
q/α1 = α2 or βj = q/α2 = α1, where the βj ’s are given by (3.1), and both α−1

1 and α−1
2 are

roots of L(C, u), because of the functional equation of L(C, u).

4 Cyclic extensions of degree � over Fq(t)
We prove in this section the following result which extends the result of [13] to general q
and � (removing the restrictions q ≡ 1 mod � and y� = F (t) with � | deg F ).

Proposition 4.1 Let � be an odd prime. Fix an �-cyclic cover C0 over P
1
Fq

with conductor
of degree d0. Then there are at least � q2n/d0 �-cyclic covers C over P

1
Fq

with conductor of
degree bounded by n admitting a non-constant map from C to C0.

The proof of this result is fairly long and will require several intermediate steps.

4.1 General �-cyclic covers over P
1
Fq

The affine equations of �-cyclic covers over P
1
Fq

are well-known in the Kummer case
q ≡ 1 mod �, which is the case treated in [13]. In this case, such a cover C over P

1
Fq

has
an affine equation y� = F1F2

2 . . . F�−1
�−1 , where Fi ∈ Fq[t] are square-free and pairwise co-

prime of degree di. The conductor of the �-cyclic cover is F1 . . . F�−1 and by the Riemann–
Hurwitz formula, the genus ofC is �−1

2 (d1+· · ·+d�−1−2) if � | (d1+2d2+· · ·+(�−1)d�−1)
and �−1

2 (d1 + · · · + d�−1 − 1) otherwise. In this later case, there is ramification at infinity
since � � (d1 + 2d2 + · · · + (� − 1)d�−1) by Lemma 2.1.
To treat the general case and prove Proposition 4.1, we use the work of Bary-Soroker

and Meisner [2], who explicitly give the affine equations of general �-cyclic covers over
P
1
Fq
. We summarize their results in this section.

As before, let nq be the multiplicative order of q modulo �. As seen in Sect. 2, the
conductors of the �-cyclic covers of P

1
Fq

(or of Dirichlet characters of order �) are monic
square-free polynomials in Fq[t] supported on nq-divisible primes. In order to count all
the �-cyclic covers, or characters of order �, with such conductors, let

Fq,� := {F ∈ Fq[t] : F = Pe1
1 . . .Pes

s , nq | deg Pi, 1 ≤ ei ≤ � − 1},

where the Pi are monic irreducible nq-divisible polynomials in Fq[t].
Let φq be the Frobenius automorphism of Fq . Then, φq acts on f (t) ∈ Fqnq [t] by acting

on the coefficients, and we define

Nnq (f ) := f φq(f )φ2
q(f ) . . . φ

nq−1
q (f ) ∈ Fq[t].

Notice that Nnq (f ) has degree nq deg(f ), which is always divisible by nq .
By hypothesis, each prime Pi in the factorization of F ∈ Fq,� splits as a product of nq

primes in Fqnq [t], and we can write any F ∈ Fq,� as

F = F1 . . .Fnq , Fi ∈ Fqnq [t], φq(Fi) = Fi+1 1 ≤ i ≤ nq − 1, φq(Fnq ) = F1. (4.1)
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In other words, for F ∈ Fq,�, F = Nnq (Fi) for any i. Since F1 determines Fi for all i, it
suffices to work with F1. Let

F (1)
q,� = {F1 ∈ Fqnq [t] : Nnq (F1) ∈ Fq,�}.

Thus, F1 ∈ F (1)
q,� when F ∈ Fq,�. We also have

F1 = f1f 22 . . . f �−1
�−1 , (4.2)

where the fi ∈ Fqnq [t] are pairwise co-prime and square-free.
For any vector v = (v1, . . . , vnq ) ∈ V = {0, 1, 2, . . . , � − 1}nq , and any F ∈ Fq,� written as

in (4.1), let Fv = F
v1
1 . . .F

vnq
nq . For 0 ≤ k ≤ nq − 1, let vk = ([qk ]�, [qk−1]�, . . . , [qk+1−nq ]�),

where [α]� ≡ α (mod �) and 0 ≤ [α]� ≤ �−1, in otherwords, [α]� indicates the reduction
modulo � of α. Thus, we have vk ∈ V . Let ζ� ∈ Fqnq be a fixed primitive �th root of unity.
For any F ∈ Fq,�, let CF be the curve over Fq with affine model

CF :
�−1∏

j=0

⎛

⎝y −
nq−1∑

k=0
ζ
jqk
�

�
√
Fvk

⎞

⎠ = 0. (4.3)

Notice that there is no canonical choice for �
√
Fvk , but the above equation is still well

defined, since the factors include all the Galois conjugates.
In the Kummer case nq = 1, Fv0 = F1 = F , and CF has affine model y� = F (t). In the

case � = 3 and q ≡ 2 mod 3, F = F1F2 and by (4.3), CF has equation

CF :
(

y − 3
√
F1F2

2 − 3
√
F2
1F2

) (

y − ζ3
3
√
F1F2

2 − ζ 2
3

3
√
F2
1F2

)

×
(

y − ζ 2
3

3
√
F1F2

2 − ζ3
3
√
F2
1F2

)

= 0

⇐⇒ y3 − 3F1F2y − F1F2(F1 + F2) = 0,

which is defined over Fq . In general, CF is birationally equivalent to y� = Fv0 over Fq .
More explicit versions of (4.3) are given in Sect. 4.3, including a precise formula for the
case nq = 2.

Proposition 4.2 [2, Proposition 2.14] Let B = {b ∈ F
∗
qnq /(F

∗
qnq )

�}. There is a (�−1)-to-1
correspondence between Fq,� × B and the �-cyclic covers of Fq(t), and then a 1-to-1 corre-
spondence between Fq,� × B and the characters of order � over Fq(t).

We restrict in this paper to characters with monic conductors, and it then suffices to
work with the set Fq,�.

Lemma 4.3 With notation as above, assume nq > 1. Then for each 0 ≤ k ≤ nq − 1, we
have � | deg(Fvk ).
Proof By construction,

deg(Fvk ) =
nq∑

j=1
vk,j deg(Fj) =

nq∑

j=1
vk,j deg

(
φj−1

(
f1f 22 . . . f �−1

�−1

))

≡
nq∑

j=1
qk+1−j

�−1∑

h=1
h deg(φj−1(fh)) ≡

�−1∑

h=1
h deg(fh)

nq∑

j=1
qk+1−j mod �.
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Since nq > 1,

nq∑

j=1
qk+1−j = qk+1−nq (qnq − 1)

q − 1
≡ 0 mod �.

4.2 From one to infinitely many �-cyclic covers

Given an �-cyclic cover C0, we can build �-cyclic covers C with a non-constant map to C0
by a change of variables, as done in [13, Lemma 3.2] for the Kummer case when � | deg F .
We can detect the curves CF with F ∈ Fq,� using the following lemma.

Lemma 4.4 Let f ∈ Fqnq [t]. Then, Nnq (f ) is square-free iff f = p1 . . . ps where the pi are
such that Nnq (pi) are distinct nq-divisible primes of Fq[t].

Proof If f = p1 . . . ps, where the pi are such that Nnq (pi) are distinct nq-divisible primes
of Fq[t], then it is clear that Nnq (f ) = Nnq (p1) . . .Nnq (ps) is square-free.
Now assume that Nnq (f ) = Nnq (p1) . . .Nnq (ps) is square-free. Then it is clear that the

Nnq (pi) are distinct primes in Fq[t]. Finally, they are nq-divisible, since they are the result
of taking the Nnq -norm.

Definition 4.5 For a one-variable polynomial f (t) ∈ Fq[t], let f ∗(u, v) := vdeg(f )f (u/v)
denote the homogeneous polynomial in variables u, v resulting from the change of vari-
ables t = u/v.

Lemma 4.6 Let F ∈ Fq,�, with F1 ∈ F (1)
q,� given by (4.1) and CF given by (4.3). As in (4.2),

we write F1 = f1f 22 . . . f �−1
�−1 , where fi ∈ Fqnq [t] are pairwise co-prime and square-free.

• Let h(t) be a non-constant polynomial in Fq[t] such that

Nnq (f1(h(t))f2(h(t)) . . . f�−1(h(t)))

is square-free. Then, (F ◦h)(t) = Nnq (F1(h(t))) ∈ Fq,�. Let CF◦h be given by (4.3). Then,

CF◦h −→ CF

(t, y) �→ (h(t), y)

is a non-constant map from CF◦h to CF .
• Assume that nq > 1. Let u(t), v(t) be non-constant polynomials in Fq[t] such that

Nnq
(
f ∗
1 (u, v) . . . f

∗
�−1(u, v)

)

is square-free. Then G(t) = Nnq
(
F∗
1(u(t), v(t))

) ∈ Fq,�. Let CG be given by (4.3). Then

CG −→ CF

(t, y) �→
(
u(t)/v(t), yv(t)− deg(Fv0)/�

)

is a non-constant map from CG to CF .
• Assume that nq = 1 and write deg F = A� − δ, where 0 ≤ δ ≤ � − 1. Let u(t), v(t)

be non-constant polynomials in Fq[t] such that f ∗
1 (u, v)f

∗
2 (u, v) . . . f

∗
�−1(u, v) is square-

free. Let g∗
i = f ∗

i for i 
= δ and g∗
δ = vf ∗

δ . Then, g
∗
1 (u, v)g

∗
2 (u, v) . . . g

∗
�−1(u, v) is also

square-free and G(t) = g∗
1 (u, v)g

∗
2 (u, v)2 . . . g∗

�−1(u, v)
�−1 ∈ Fq,�. Let CG : y� = G(t).
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Then

CG −→ CF

(t, y) �→
(
u(t)/v(t), yv(t)−A

)

is a non-constant map from CG to CF .

Proof We prove the second and third point in the statement, as the first point is a con-
sequence of them. First consider the case where nq > 1. We replace t by u(t)/v(t) in Eq.
(4.3) and we get

�−1∏

j=0

⎛

⎝y −
nq−1∑

k=0
ζ
jqk
�

�

√
F∗
vk (u, v)

vdeg(Fvk )

⎞

⎠ = 0.

Recall from Lemma 4.3 that for the non-Kummer case, � | deg(Fvk ). Notice also that the
vk are all permutations of each other. In fact, vk+1 can be constructed from vk by shifting
each element one place to the right cyclically and using the fact that qnq ≡ 1 mod �.
Writing A = deg(Fvk )

�
, and making the change of variables Y = vAy, we finally have

�−1∏

j=0

⎛

⎝Y −
nq−1∑

k=0
ζ
jqk
�

�

√
F∗
vk (u, v)

⎞

⎠ = 0,

which is CG for G(t) = Nnq
(
F∗
1(u(t), v(t))

)
.

We now consider the Kummer case. We replace t by u(t)/v(t) in y� = F (t) to get

vA�y� = vδF∗(u, v) = g∗
1 (u, v)g

∗
2 (u, v)

2 . . . g∗
�−1(u, v)

�−1,

and with the change of variables Y = vAy, we get

Y � = g∗
1 (u, v)g

∗
2 (u, v)

2 . . . g∗
�−1(u, v)

�−1,

which is CG for G(t) = g∗
1 (u, v)g

∗
2 (u, v)2 . . . g∗

�−1(u, v)
�−1.

Then Lemma 4.6 translates the conditions for finding curves CG with a map to CF
to detecting when Nnq

(
f ∗
1 (u, v) . . . f

∗
�−1(u, v)

)
is square-free. We can now proceed to the

proof of Proposition 4.1.

Proof of Proposition 4.1 Our proof follows the argument of [13], but without restricting
to the particular case where nq = 1 and � | deg F . We concentrate on the parts of their
argument where using the general setting explained above introduces some changes, and
we just refer to their article for the parts of their argument that can be directly used.
Let F = F0 be as in Lemma 4.6 and let C0 = CF0 be the curve (4.3). Let d0 be the

degree of the conductor. We now give a lower bound for the number of �-cyclic covers
with conductor of degree smaller than n that can be obtained by the process of Lemma
4.6 applied to F0, by using the square-free sieve over Fq[t].
Let

P(n) = {(D1, . . . , D�−1) ∈ (Fqnq [t])�−1 : D1, . . . , D�−1 pairwise co-prime, monic, square-free,

F1 = D1 . . .D�−1
�−1 ∈ F (1)

q,� , deg (D1 . . .D�−1) ≤ n}
= {(D1, . . . , D�−1) ∈ (Fqnq [t])�−1 : D1, . . . , D�−1 monic, Nnq (D1 . . .D�−1) square-free,

deg (D1 . . .D�−1) ≤ n},
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where the second line follows from Lemma 4.4.
By the above discussion, each tuple (D1, . . . , D�−1) ∈ P(n) gives rise to the �-cyclic cover

CF where F1 = D1D2
2 . . .D�−1

�−1 and F = Nnq (F1). The conductor is Nnq (D1 . . .D�−1) of
degree ≤ nqn, and then the genus is such that g ≤ �−1

2 (nqn − 2).
We write F0

1 = f1f 22 . . . f �−1
�−1 where fi ∈ Fqnq [t] and Nnq (F0

1) = F0. Notice that d0 =
deg(Nnq (f1 . . . f�−1)) = nq(deg(f1) + · · · + deg(f�−1)). We count the number of distinct
(D1, . . . , D�−1) ∈ P(n) such that there exists (u, v) ∈ Fq[t]2 with

D1(t) = f ∗
1 (u(t), v(t)), . . . , D�−1(t) = f ∗

�−1(u(t), v(t)). (4.4)

We then need to detect when Nnq (D1 . . .D�−1) is square-free. Let G(u, v) denote the
homogeneous polynomial such that

Nnq (f ∗
1 (u, v) . . . f

∗
�−1(u, v)) = G(u, v).

We now apply a result of Poonen [32] which counts the number of square-free values
of G(u, v) as u, v runs over polynomials in Fq[t], as given in [13] in a form suitable for our
application.

Proposition 4.7 [32, Theorem 8.1], [13, Proposition 3.4] Let P be a finite set of
primes in Fq[t], B be the localization of Fq[t] by inverting the primes in P, K = Fq(t),
f ∈ B[x1, . . . , xm] be a polynomial that is square-free as an element of K [x1, . . . , xm] and
for a choice of x ∈ Fq[t]m, we say that f (x) is square-free in B if the ideal (f (x)) is a product
of distinct primes in B. For b ∈ B, define |b| = |B/(b)| and for b = (b1, . . . , bn) ∈ Bn, define
|b| = max |bi|. Let

Sf := {x ∈ Fq[t]m : f (x) is square-free in B},

μSf := lim
N→∞

|{b ∈ Sf : |b| < N }|
Nm .

For each nonzero prime π of B, let cπ be the number of x ∈ (A/π2)m that satisfy f (x) = 0
in A/π2. The limit μSf exists and is equal to

∏
π (1 − cπ/|π |2m).

We then apply Proposition 4.7 to G(u, v). Following [13, Remark 3.5], let B be the
localization of Fq[t] by the set of primes π with |π | ≤ deg(Nnq (f1 . . . f�−1)) = d0. This
guarantees that

μSG = lim
N→∞

|{b ∈ Fq[t]2, |b| ≤ N : G(b) is square-free in B}|
N 2 > 0.

The curve CF associated to F = Nnq (D1D2
2 . . .D�−1

�−1) = F∗
0 (u(t), v(t)) as in (4.4) has

genus bounded by �−1
2 (d0 deg(u(t)/v(t)) − 2), and therefore, if we want to guarantee that

the genus of CF is less or equal than g , we can prescribe that

deg(u(t)/v(t)) := max{deg u(t), deg v(t)} ≤ g + � − 1
g0 + � − 1

, (4.5)

where g0 is the genus of CF0 .
Now we want to give an upper bound for the b = (u, v) ∈ Fq[t]2 satisfying condition

(4.5) such that Eq. (4.4) is satisfied. Now take N = qn, with n = 2g
�−1 + 2, and we impose

the condition max{deg u, deg v} ≤ n/d0. Notice that
n
d0

= 2g + 2(� − 1)
d0(� − 1)

= 2g + 2(� − 1)
(d0 − 2)(� − 1) + 2(� − 1)

= g + � − 1
g0 + � − 1

,
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and therefore condition (4.5) is satisfied. Applying Proposition 4.7, we get a positive
proportion of � μN 2/d0 = μq2n/d0 such that Nnq (D1 . . .D�−1) is square-free.
To conclude, for a fixed tuple (D1, . . . , D�−1) we need to find an upper bound on the

number of pairs (u(t), v(t)) such that (4.4) is satisfied in order to correct a double counting.
Following a similar reasoning to [13], we bound this number by qn2qεn.
In total, for n sufficiently large, we have

� μqn(2/d0−ε)

elements in P(n) corresponding to �-cyclic covers of P
1
Fq

with conductor of degree
bounded by n that admit a non-constant map to C0.
We then need a geometric condition for the vanishing ofL(C, u) at some point u = u−1

0 ,
whereC is a curve overFq . This is given by the following theoremof Li [23, Sect. 2] relating
the existence of a rational map between curves to the divisibility of the L-functions. The
proof uses Honda–Tate theory, which states that every q-Weil number is an eigenvalue
of the geometric Frobenius acting on the �-adic Tate module of a simple abelian variety
over Fq , which is unique up to isogeny. We refer the reader to [23, Sect. 2] for the details,
and the proof of the following theorem.

Theorem 4.8 Let u0 be a q-Weil number and let A0 be (the isogeny class of) the unique
simple Abelian variety over Fq having u0 as a Frobenius eigenvalue, as guaranteed by the
theorem of Honda–Tate. Let C be a curve over Fq. Then, L(C, u−1

0 ) = 0 if and only if there
exists a non-trivial map C → A0 if and only if L(A0, u) divides L(C, u).

Proof of Theorems 1.1 and 1.2 The proof of Theorem 1.1 follows directly from Proposi-
tion 4.1 and Theorem 4.8: letC0 be the �-cyclic cover associated to χ0, i.e.L(C0, u−1

0 ) = 0.
By Proposition 4.1 and Theorem 4.8, there are at least q2n/d0 �-cyclic covers with conduc-
tor of degree ≤ n such that L(C0, u) | L(C, u) = ∏�−1

i=1 L(χ i, u), and then at least q2n/d0

characters of order � and conductor of degree ≤ n such that L(χ , u−1
0 ) = 0.

The proof of Theorem 1.2 follows directly from Corollary 3.3 and the above. Indeed, if
E = E0 ×Fq Fq(t) and there exists χ0 such that L(E,χ0, q−1) = 0, then by Corollary 3.3,
L(Cχ0 ,α

−1
1 ) = 0, and we reason as above.

4.3 Explicit equation for �-cyclic covers

We now give more information about Eq. (4.3), including a precise formula for nq = 2,
using the work of Gupta and Zagier [18]. We used these general formulas for nq = 2 to
obtain the equations for the curves C1, C2 and C3 in Sect. 5.2.
Let � be an odd prime number coprime to q, let ω� denote a complex �-root of unity,

and letR�,q denote a set of coset representatives of (Z/�Z)∗ modulo the cyclic subgroup
〈q〉. Following [18], we define the polynomial the complex polynomial

��,nq (y) =
∏

j∈R�,q

⎛

⎝y −
nq−1∑

k=0
ω
jqk
�

⎞

⎠ , (4.6)

This is a polynomial of degree �−1
nq . Notice that for nq = 1,��,1(y) gives the �th cyclotomic

polynomial and for nq = 2, ��,2(y) gives the �th real cyclotomic polynomial.
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Gupta and Zagier prove various results regarding the coefficients of ��,nq (y), and in
particular, they recover a formula of Gauss:

��,2(y) =
�−1
2∑

n=0
(−1)

⌊
�−1−2n

4

⌋(⌊
�−1+2n

4
⌋

n

)

yn. (4.7)

In the following result we relate the coefficients in the equation defining CF in (4.3) to
those of ��,nq . Together with the results of [18], and (4.7) in particular, this allows us to
compute a more explicit formula for Eq. (4.3) in the case nq = 2.

Proposition 4.9 Let � be an odd prime coprime to q and let��,nq (y) be defined as in (4.6).
Let am be the coefficients of the following polynomial

y� +
�−1∑

m=0
amym := ��,nq (y)nq (y − nq). (4.8)

Then, am ∈ Z, and there exists certain coefficients bs0 ,...,snq−1 ∈ Fp ⊆ Fq such that the
equation defining CF in (4.3) can be written as

CF : y� +
�−1∑

m=0

∑

0≤sk
∑nq−1

k=0 sk=�−m
∑nq−1

k=0 qk sk≡0 mod �

bs0 ,...,snq−1F
1
�

∑nq−1
k=0 sk [qk ]�

1

F
1
�

∑nq−1
k=0 sk [qk−1]�

2 . . .F
1
�

∑nq−1
k=0 sk [qk+1−nq ]�

nq ym = 0. (4.9)

Furthermore, the bs0 ,...,snq−1 satisfy
∑

0≤sk
∑nq−1

k=0 sk=�−m
∑nq−1

k=0 qk sk≡0 mod �

bs0 ,...,snq−1 = am, (4.10)

where the am are given by (4.8) and the equality takes place in Fp ⊆ Fq after reducing the
am modulo p (the characteristic of Fq).
In particular, for nq = 2, we have

CF : y� +
�−1
2∑

r=1
a2r−1(F1F2)

�+1
2 −ry2r−1 − F1F2(F�−2

1 + F�−2
2 ) = 0. (4.11)

Before proceeding to the proof, we remark that the condition
∑nq−1

k=0 qksk ≡ 0 mod �

implies that
∑nq−1

k=0 qk−jsk ≡ 0 mod � (since (q, �) = 1), and therefore each of the expo-
nents of the Fj in (4.9) is an integer. One can also see that the bs0 ,...,snq−1 are invariant
by cyclic permutation of the subindexes. Each of these cyclic permutations results in a
permutation in the exponents of the Fj . Thus, the final polynomial is symmetric in the Fj .

Proof The initial step of the proof follows from the elementary fact that

��,nq (y)nq (y − nq) =
�−1∏

j=0

⎛

⎝y −
nq−1∑

k=0
ω
jqk
�

⎞

⎠ .

Since the above polynomial has coefficients in the algebraic integers Z, and is invariant
under Galois action, we conclude that ��,nq (y)nq (y − nq) ∈ Z[y] and am ∈ Z.
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Following some ideas from [18], we consider more generally

f�,nq (A0, . . . , Anq−1) =
�−1∏

j=0

⎛

⎝1 −
nq−1∑

k=0
ω
jqk
� Ak

⎞

⎠ ,

and we remark again that this polynomial has coefficients in Z.
Taking the formal logarithm,

− log f�,nq (A0, . . . , Anq−1)

=
�−1∑

j=0

∞∑

m=1

(
∑nq−1

k=0 ω
jqk
� Am

)m

m

=
�−1∑

j=0

∞∑

m=1

1
m

∑

h0+···+hnq−1=m
hi≥0

(
m

h0, . . . , hnq−1

)

ω

∑nq−1
k=0 jqkhk

� Ah1
0 . . .A

hnq−1
nq−1

=
∞∑

m=1

1
m

∑

h0+···+hnq−1=m
hi≥0

(
m

h1, . . . , hnq

)

Ah0
0 . . .A

hnq−1
nq−1

�−1∑

j=0
ω
j
∑nq−1

k=0 qkhk
�

and the innermost sum is zero unless
∑nq−1

k=0 qkhk ≡ 0 mod �.
In conclusion, the only powers of A0, . . . , Anq−1 appearing in the Taylor series of

log f�,nq (A0, . . . , Anq−1) and consequently in the Taylor series of f�,nq (A0, . . . , Anq−1) are of
the form As0

0 . . .A
snq−1
nq−1 such that

nq−1∑

k=0
qksk ≡ 0 mod �. (4.12)

But the total degree of f�,nq is �, and therefore 0 ≤ s0 + · · · + snq−1 ≤ �. Putting this
information together, we obtain

f�,nq (A0, . . . , Anq−1) = 1 +
�−1∑

m=0

∑

0≤sk
∑nq−1

k=0 sk=�−m

sumnq−1
k=0 qk sk≡0 mod �

bs0 ,...,snq−1A
s0
0 . . .A

snq−1
nq−1 . (4.13)

Reducing modulo p (the characteristic of Fq), making the change of variables

Ak =
�
√
Fvk
y

= 1
y
F

[qk ]�
�

1 F
[qk−1]�

�

2 . . .F
[qk+1−nq ]�

�
nq ,

and multiplying by y�, we obtain Eq. (4.9). Identity (4.10) follows from comparing with
(4.8).
When nq = 2, we have q ≡ −1 mod �. Equation (4.12) and condition

∑nq−1
k=0 sk = �−m

reduce the choices of s0, s1 to two cases: either s0 = s1 andm 
= 0 or (s0, s1) = (0, �), (�, 0)
andm = 0.
For the case s0 = s1, we can set A0 = A1 and reduce to the case of [18, Theorem 3] to

find the coefficients of each (A0A1)s1 . We then replace A0 =
�
√
F1F

�−1
2

y , A1 =
�
√
F�−1
1 F2
y (or

equivalently, we replace A0A1 by F1F2
y ), and obtain the coefficients am for m 
= 0 from
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the statement. In this case one can see from working with ��,2(y) that am = 0 form even
different from 0.
The cases (s0, s1) = (0, �), (�, 0) only occur for the constant coefficient in (4.9) which is

(−1)�ω0+···+(�−1)
� (A�

0 + A�
1) = −(A�

0 + A�
1).

Replacing again A0 =
�
√
F1F

�−1
2

y , A1 =
�
√
F�−1
1 F2
y and multiplying by y� gives Eq. (4.11).

5 Numerical data
5.1 Description of the code

We want to compute L-functions L(E,χ , u) described by (2.8), where χ is a character of
conductor F . To simplify, we are choosing q = p to be prime.
Following Sect. 2, the L-functions are polynomials of degree

n = degNE + 2 deg F − 4 + 2δχ , and

L(E,χ , u) =
n∑

n=0

⎛

⎝
∑

f ∈Mn

af χ (f )

⎞

⎠un =
n∑

n=0
cnun,

whereMn is the set of monic polynomials of degree n in Fp[t].
Using the functional equation (2.10), we get

cn = ωE⊗χ p2(n−�n/2�−1) cn−n, 0 ≤ n ≤ n, (5.1)

and it suffices to compute ci for 0 ≤ i ≤ �n/2�.5
We then need to compute the af appearing in (2.8), for deg f ≤ n/2. It follows from the

Euler product that afg = af ag for (f, g) = 1, and for P ∈ Fp[t] and n ≥ 1,

aPn =
⎧
⎨

⎩

aPaPn−1 − paPn−2 , if P � NE,

aPaPn−1 , if P | NE.

Wenow turn to the computation of the aP of a fixed curveE : y2=x3+a(t)x2+b(t)x+c(t).
For P prime, we compute aP using

aP = −
∑

x∈Fp[t]
deg(x)<deg(P)

(
x3 + a(t)x2 + b(t)x + c(t)

P

)

.

After we have computed all af for deg f ≤ (degNE + 2d − 4 + 2δχ )/2, we can evaluate
L(E,χ , u) for anyDirichlet characterwith conductor of degreed overFp[t].Wego through
the characters of order � and conductor degree d in the following way. Let np be the
multiplicative order of p modulo � as before. Let F ∈ Fp[t] be a polynomial of degree
d supported on np-divisible primes. We can enumerate all characters of order � and
conductor F by choosing only one character per cyclic extension of order � of Fp(t), since
the L-functions of the �−1 characters associated to the same extensionK vanish together.

5It follows from (5.1) that we can compute numerically the sign of the functional equation by computing cn/2 when n

is even, and c�n/2� and c�n/2�+1 when n is odd. We used this in the numerical data to compute twists of the Legendre
curve by odd characters, as in this case Theorem 2.2 does not apply. Of course, this requires cn/2 
= 0. When cn/2 = 0,
we computed the next coefficient c(n/2)+1 to get the sign of the functional equation. In all the cases considered, c(n/2)+1
was not zero (when cn/2 = 0), so this was enough.
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Writing F = P1 . . .Pk , where the Pi are distinct np-divisible primes, and Pi = Pi,1 . . .Pi,np
over Fpnp (t), we consider the (non-conjugate) characters of conductor F over Fp(t) given
by

χ (A) = χP1,1 (A)
k∏

j=2
χ
aj
Pj,1

(A), (5.2)

for aj ∈ {1, . . . , � − 1}, and where each χPj,1 is the �th-power residue symbol moduloPj,1
over Fpnp (t) defined in Sect. 2.

5.2 Vanishing of twists of constant curves: numerical data

Let E0 be an elliptic curve over Fp with L(E0, u) = (1 − α0u)(1 − α0u), and let E =
E0 ×Fp Fp(t). By (2.9), L(E,χ , p−1) = 0 for some character χ associated to K/Fp(t) if and
only if L(E/K, p−1) = 0, and using the results of Sect. 3, this is equivalent to

L(E0, u) | L(Cχ , u) =
�−1∏

j=1
L(χ j , u).

By Theorem 1.2, once we have found one χ0 such that L(Cχ0 ,α
−1
0 ) = 0, then there are

infinitelymany, so we concentrate on findingχ0.We examined degree 2 factors ofL(χ j , u)
which arise as L(E0, u) for some E0 over Fp.
In particular, we considered the case where L(χ , u) has degree 2, which in the case

of even (respectively odd) characters means that the conductor of χ is a polynomial of
degree 4 (respectively 3) in Fp[t]. Table 1 presents results for this case: for fixed values
of � and p, we computed L(χ , u) for all characters such that L(χ , u) is a polynomial of
degree 2, and we listed all the cases that we found where L(χ , u) = L(E0, u) for some
elliptic curve E0/Fp. Notice that this means L(Cχ , u) = L(E0, u)�−1. Each entry in Table
1 may correspond to many characters χ . We did not count them, but our program keeps
an instance for each case. For example, the curve C1/F5 given by

y3 + (2t4 + 2t3 + t2 + 4t + 4)y + (3t6 + 2t5 + 2t4 + 2t3 + t2 + t + 3) = 0

has L-function L(C1, u) = (1 + 5u2)2; the curve C2/F59 given by

y5 + (54t4 + 18t3 + 34t2 + 18t + 39)

y3 + (5t8 + 23t7 + 44t6 + 20t5 + 35t4 + 30t3 + 17t2 + 33t + 21)

y + (57t10 + 18t9 + 24t8 + 58t7 + 14t6 + 9t5 + 41t4

+ 17t3 + 38t2 + 48t + 44) = 0

has L-function L(C2, u) = (1 + 59u2)4; and the curve C3/F13 given by

y7 + (6t4 + 6t3 + 6t2 + 12t + 1)y5 + (t8 + 2t7 + 3t6 + 6t5 + t4 + 5t + 4)y3

+ (6t12 + 5t11 + 10t10 + 7t8 + 2t7 + 3t6 + 9t5 + 3t4 + 2t3 + 6t2 + t + 4)y

+ (11t14 + 6t13 + 12t12 + 10t11 + 5t10 + 8t9 + 6t8 + 2t7 + 2t6 + 10t5 + 7t4

+ 12t3 + 3t2 + 3t + 9)

= 0

has L-function L(C3, u) = (1 + 13u2)6.
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Table 1 All instances of E0 for which there is a χ of order � over Fp such that L(χ , u) = L(E0 , u) for
some elliptic curve E0/Fp

� p np L(χ , u) = 1 + apu + pu2

3 5 2 0, 3

7 1 −2,−1, 1, 2, 4

11 2 −3, 0, 3, 6

13 1 −5,−4,−2,−1, 1, 2, 4, 5

17 2 −6,−3, 0, 3, 6

19 1 −8,−7,−5,−4,−2,−1, 1, 2, 4, 5, 7, 8

5 3 4 ∅

7 4 3

11 1 −2, 2, 3

13 4 −1, 4

19 2 0, 5

29 2 0

31 1 −2, 2, 3, 8

7 13 2 0

29 1 −2, 2, 5

11 23 1 ∅

43 2 0

13 5 4 ∅

61 11 4 ∅

Table2 More cases where there is a character χ of order � over Fp such that L(χ , u) = (1 + p2u)

� p np L(χ , u) = 1 + apu + pu2

13 103 2 0

17 67 2 0

101 2 0

19 37 2 0

31 61 2 0

37 73 2 0

For the cases (�, p) = (17, 67) and (19, 37), we considered all characters in the thin family, and we did not find any other
cases whereL(χ , u) = L(E0 , u) except forL(E0 , u) = (1 + p2u). For the other cases, we stopped after finding χ such that
L(χ , u) = (1 + p2u), and we did not find any otherL(E0 , u) up to that point

Of course, it would be interesting to prove some criteria which guarantees the existence
of a character of degree � over Fp such that L(E0, u) divides L(χ , u). From the data, we
are led to believe that this could always be the case when np = 2 and L(E0, u) = 1 + pu2,
corresponding to the isogeny class of supersingular elliptic curves overFp, butwe currently
do not have a proof.We present further evidence for larger values of � in Table 2. Since this
becomes more time-consuming, we only consider a thin family of the characters of order
�, where aj = 1 for all j in (5.2). In some cases ((�, p) = (13, 103), (17, 101), (31, 61), and
(37, 73)), we did not go over all characters in the thin family, we stopped after we found
L(χ , u) = (1+ pu2), so there might be other characters where L(χ , u) = (1+ apu+ pu2).
In summary, the following is true for all the cases that we tested: for every �, p such that
np = 2, there exists a character χ of order � over Fp such that L(χ , u) = 1 + pu2.

Remark 5.1 There is a large amount ofwork in the literature onNewtonpolygons of cyclic
covers ofP1, in particular on the existence of supersingular and superspecial curves. See for
example, [24–26]. But the existence of the curves we present in this paper does not follow
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from previous work. In fact, the existence of supersingular curves in families of cyclic
covers which ramify at 4 points with growing degree � is surprising from a dimension
counting perspective. More surprisingly, these curves are defined over the prime field Fp.

5.3 Vanishing of twists of non-constant curves: numerical data

We now present data for the vanishing of L(E,χ , p−1), where χ varies over charac-
ters of order � over the finite field Fp for some prime p, and where E is a non-
constant curve. We used the Legendre curve E1 : y2 = x(x − 1)(x − t) and the curve
E2 : y2 = (x − 1)(x − 2t2 − 1)(x − t2).
We remark that E1 has conductorN1 = t(t −1)P2∞, discriminant�1 = 16t2(t −1), and

j-invariant j1 = 256(t2−t+1)3
t2(t−1)2 . Thus, it is smooth and non-constant and has bad reduction

at P∞. Since deg(N1) = 4, we conclude that L(E1, u) = 1. Since the algebraic rank is
bounded by the analytic rank (see [37]) and this last one equals 0, we conclude that E1 has
(algebraic) rank 0 over Fp(t).
Similarly, E2 has conductor N2 = t(t − 1)(t + 1)(t2 + 1), discriminant

�2 = 64t4(t − 1)2(t + 1)2(t2 + 1)2, and j-invariant j2 = 1728(t4+1)3
t4(t−1)2(t+1)2(t2+1)2 . Thus, it

is smooth and non-constant and has good reduction at P∞. Since deg(N2) = 5, we have
L(E2, u) = 1± pu, and the rank of E2 over Fp(t) is at most 1. Let i be a primitive four root
of unity in Fp, and consider the point

P = ((1 + i)t2 + (1 + i)t + 1, (−1 + i)t(t + 1)(t − i))

in E2(K ), where K = Fp(t)(i). One can see that the Néron–Tate height of P is positive,
and therefore P has infinite order (see the book of Shioda and Schütt [34] for a general
reference). As before, we use that the algebraic rank is bounded by the analytic rank [37].
If p ≡ 1 mod 4, then K = Fp(t), and we conclude that E2 has (algebraic) rank exactly 1
over Fp(t). ThereforeL(E2, u) = 1−pu. If p ≡ 3 mod 4, thenK = Fp2 (t), andK/Fp(t) is
a quadratic constant field extension. ThereforeL(E/K, u) = 1−p2u, since degNE−4 = 1.
We also have

L(E2/K, u2) = L(E2, u)L(−E2, u), (5.3)

where

−E2 : −y2 = (x − 1)(x − 2t2 − 1)(x − t2).

We remark that we have L(E2, u2) and not L(E2, u) in (5.3) because K/Fp(t) is a constant
field extension (see [33, Chap. 8] for more details). When p ≡ 3 mod 4, the point 2P =
(t2 + 1, it2) defined over Fp2 (t) yields a (non-torsion) point P̃ = (t2 + 1, t2) defined over
Fp(t) on −E2. Thus the algebraic rank of −E2 over Fp(t) is 1 and L(−E2, u) = 1 − pu.
Now (5.3) implies that L(E2, u) = 1 + pu. In conclusion, we have that

L(E2, u) =
⎧
⎨

⎩

1 − pu if p ≡ 1 mod 4,

1 + pu if p ≡ 3 mod 4.

We present in Tables 3, 4, and 5 our results for twists of the Legendre curve with
characters of order 3, 5, and 7 respectively, and various ground fields Fp(t). For the curve
given by y2 = (x − 1)(x − 2t2 − 1)(x − t2), we present in Tables 7, 8, and 9 our results for
twists of this curve with characters of order 3, 5, and 7 respectively, and various ground
fields Fp(t). We have also tested higher order twists (� = 11, 13 for E1 and � = 11, 31, 71
for E2) but without finding any vanishing. This data is presented in Tables 6 and 10.
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Table 3 Twists of order 3 for the Legendre curve

Twist order p np deg conductor d Rank 0 Rank 1 Rank 2

3 5 2 2 6 4 0

4 205 32 3

6 5784 260 16

8 302,640 116 4

7 1 1 5 0 0

2 37 4 0

3 324 37 1

4 2935 73 0

Table 4 Twists of order 5 for the Legendre curve

Twist order p np deg conductor d Rank 0 Rank 1

5 7 4 4 585 3

11 1 1 9 0

2 199 0

3 3759 5

4 65,143 11

19 2 2 170 1

Table 5 Twists of order 7 for the Legendre curve

Twist order p np deg conductor d Rank 0

7 5 6 6 2580

11 3 3 440

13 2 2 78

4 25,116

23 3 3 4048

29 1 1 27

2 2512

3 179,192

41 2 2 820

197 1 1 195

337 1 1 335

379 1 1 377

We have found no instances of vanishing in this case

Table 6 Twists of order 11 and 13 for the Legendre curve

Twist order p np deg conductor d Rank 0

11 5 5 5 624

23 1 1 21

43 2 2 903

67 1 1 65

89 1 1 87

13 5 4 4 150

29 3 3 8120

53 1 1 51

2 16,678

We have found no instances of vanishing in this case
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Table7 Twists of order 3 for the curve y2 = (x − 1)(x − 2t2 − 1)(x − t2)

Twist order p np deg conductor d Rank 0 Rank 1 Rank 2 Rank 3

3 5 2 2 8 2 0 0

4 214 26 0 0

6 5780 280 0 0

8 149,222 2136 20 2

7 1 1 4 0 0 0

2 30 2 0 0

3 264 22 2 0

4 2299 49 4 0

5 18670 240 2 0

6 148,537 1343 32 0

11 2 2 53 0 1 0

13 1 1 8 0 0 0

2 122 12 0 0

3 2140 56 4 0

17 2 2 116 20 0 0

19 1 1 14 2 0 0

2 380 28 2 0

23 2 2 244 6 2 0

29 2 2 364 42 0 0

31 1 1 26 2 0 0

2 1190 24 6 0

103 1 1 100 0 0 0

109 1 1 104 0 0 0

151 1 1 146 2 0 0

Table8 Twists of order 5 for the curve y2 = (x − 1)(x − 2t2 − 1)(x − t2)

Twist order p np deg conductor d Rank 0 Rank 1 Rank 2

5 7 4 4 587 0 1

11 1 1 8 0 0

2 166 0 0

3 3064 0 0

19 2 2 170 0 0

29 2 2 388 18 0

31 1 1 28 0 0

2 1975 0 1

41 1 1 36 0 0

101 1 1 96 0 0

131 1 1 128 0 0

Each table has the same format: the first three columns are the values of �, p and np and
the fourth column is the degree d of the conductors of the characters of order � over Fp(t)
considered (then, np always divides d). The L-functions L(E,χ , u) are then computed for
all χ of order � over Fp(t) with conductor of degree d, and they are classified according to
their analytic rank, which is defined as rank(χ ) = ran(E,χ ) = ordu=q−1L(E,χ , u). Since
rank(χ i) = rank(χ j), we only count one power per character in our data. Then, the next
columns give the number of such χ where the analytic rank is 0, or 1, or 2, . . . The most
extensive computation that we did was for twists of order � = 3 of the curve E2 for
conductors of degree 8 over F5(t), where we needed to compute aP for primes of degree
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Table9 Twists of order 7 for the curve y2 = (x − 1)(x − 2t2 − 1)(x − t2)

Twist order p np deg conductor d Rank 0 Rank 1

7 5 6 6 2560 20

11 3 3 440 0

13 2 2 72 6

4 24,984 132

29 1 1 24 0

2 2046 16

41 2 2 800 20

Table10 Twists of order 11, 31, and 71 for the curve y2 = (x − 1)(x − 2t2 − 1)(x − t2)

Twist order p np deg conductor d Rank 0

11 5 5 5 624

23 1 1 20

2 2152

3 168,448

43 2 2 902

67 1 1 64

2 22,370

89 1 1 84

199 1 1 196

31 5 3 3 40

71 5 5 5 624

We have found no instances of vanishing in this case

≤ 8, which is the most involved part of computing the twisted L-functions L(E2,χ , u) for
characters with conductors of degree 8. This took approximately 20 days on an Intel(R)
Core(TM) i5-4300U CPU. This is also the only case where we found a twist of analytic
rank 3.
The data for the Legendre curve is very compatible with the conjectures of [10,28], as

we have found no instances of vanishing for any character of order 7 or higher. For the
curve E2, we have found many instances of vanishing for characters of order 7, but none
for characters of higher order.
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