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Abstract

We investigate in this paper the vanishing at s = 1 of the twisted L-functions of elliptic
curves £ defined over the rational function field F(t) (where g is a finite field of g
elements and characteristic > 5) for twists by Dirichlet characters of prime order £ > 3,
from both a theoretical and numerical point of view. In the case of number fields, it is
predicted that such vanishing is a very rare event, and our numerical data seems to
indicate that this is also the case over function fields for non-constant curves. For
constant curves, we adapt the techniques of Li (J Number Theory 191:85-103, 2018)
and Donepudi and Li (Rocky Mountain J Math 51(5):1615-1628, 2021) who proved
vanishing at s = 1/2 for infinitely many Dirichlet L-functions over F,(t) based on the
existence of one, and we can prove that if there is one xo such that L(E, xo, 1) = 0, then
there are infinitely many. Finally, we provide some examples which show that twisted
L-functions of constant elliptic curves over F4(t) behave differently than the general
ones.

Keywords: Non-vanishing of L-functions, Twisted L-functions of elliptic curves,
Function fields, Elliptic curve rank in extensions

Mathematics Subject Classification: Primary 11G05; Secondary 11G40, 14H25

1 Introduction

Let E be an elliptic curve over Q with L-function L(E,s) = ), a,n~*, and x be a Dirichlet
character. Let L(E, x,s) = Y, anx(n)n~* be the twisted L-function. By the Birch and
Swinnerton-Dyer conjecture, the vanishing of L(E, x, s) at s = 1 should be related to the
growth of the rank of the Mordell-Weil group of E in the abelian extension of Q associated
to x. Heuristics based on the distribution of modular symbols and random matrix theory
[11, Conjecture 1.2], [28] have led to conjectures predicting that the vanishing of the
twisted L-functions L(E, x,s) at s = 1 is a very rare event as x ranges over characters
of prime order ¢ > 3. For instance, it is predicted that there are only finitely many
characters y of order £ > 5 such that L(E, x, 1) = 0. Mazur and Rubin rephrased this
in terms of “Diophantine Stability”, and conjectured that if E is an elliptic curve over Q
and K /Q is any real abelian extension such that K contains only finitely many subfields
of degree 2, 3, or 5 over Q, then the group of K-rational points E(K) is finitely generated.
They also proved that for each ¢ (under some hypotheses that can be shown to hold in
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certain contexts), there are infinitely many cyclic extensions K/Q of order ¢ such that
E(K) = E(Q) (and then, assuming the Birch and Swinnerton-Dyer conjecture, such that
the twisted L-functions L(E, x, s) associated to the extensions K/Q do not vanish) [27].

We remark that the case of vanishing of quadratic twists is very different from the higher
order case £ > 3 considered in this work, as the L-function of E twisted by a quadratic
character of conductor D corresponds to the L-function of another elliptic curve Ep, and
for half of the quadratic twists, L(E, xp, 1) = 0. Goldfeld has conjectured that half of the
twists Ep/Q have rank 0, and half have rank 1 (asymptotically) [16]). Furthermore, Gouvea
and Mazur [17] have shown that the analytic rank of Ep, is at least two for 3> X1/27€ of the
quadratic discriminants |D| < X. It is conjectured that the number of such discriminants
|D| < X should be asymptotic to CpXx3/4 long (X) [9], for some constants Cg and bg
depending on the curve E. The case of nonabelian extensions K/Q of degree d with
Galois group Sy is also different from the abelian extensions of order £ > 3: in recent
work, Lemke Oliver and Thorne [22] showed that there are infinitely many such extensions
where rank(E(K)) > rank(E(Q)), for each d > 2, and Fornea [15] has shown that for some
curves E/Q, the analytic rank of E increases for a positive proportion of the quintic fields
with Galois group Ss.

The vanishing (and non-vanishing) of twisted L-functions of elliptic curves is closely
related to the one-level density, which is the study of low-lying zeroes, or the average
analytic rank. This was studied over number fields and functions fields, for quadratic and
higher order twists. For quadratic twists, it is possible to prove results on the one-level den-
sity strong enough to deduce that a positive proportion of twists with even (respectively
odd) analytic rank do no vanish (respectively vanish of order 1) at the central critical point
[8,20]. The one-level density, or average rank, of higher order twists for elliptic curves
L-functions was studied by [7] over number fields and [8,29] over function fields.
Quadratic twists of elliptic curve over functions fields were also studied by [6] who
obtained results on the correlation of the analytic ranks of two twisted elliptic curves.
The behavior of the algebraic rank of elliptic curves in cyclic extensions of Q was investi-
gated by Beneish, Kundu, and Ray [3].

We investigate in this article the vanishing at s = 1 of the twisted L-functions of elliptic
curves E defined over the rational function field F,(t),! for twists by Dirichlet characters of
prime order £ > 3, from both a theoretical and numerical point of view. It is natural to ask
if the recent results of Li [23] and Donepudi and Li [13], who have found infinitely many
instances of vanishing for L-functions of Dirichlet characters at s = 1/2, can be extended
to L-functions of elliptic curves twisted by Dirichlet characters. We find that this is the
case when E is a constant elliptic curve over IETq(t),2 and we can produce infinitely many
cases of vanishing at the central critical point for characters of order ¢ provided we find
one (Theorem 1.2). Then, the conjectures of [11,28] do not hold in the special case of
constant elliptic curves, and we present specific numerical examples in Sect. 5.2.

We also study non-constant elliptic curves over F,(¢) where g is a power of a prime
p > 5say E : y> = & + a(t)x + b(t), for some polynomials a(t), b(t) € F,[t]. The
L-function of E/F,(¢) is defined analogously as for £/Q, by an infinite Euler product over

'Throughout this article, we assume that F is a finite field of 4 elements and characteristic > 5.
“Constant elliptic curves, i.e. elliptic curves over F, considered as a curve over F(¢), were studied by many authors

because of their special properties. In particular, Milne showed that the Birch and Swinnerton-Dyer conjecture is true
for constant elliptic curves [30].
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the primes of IF (£) (see (2.6)), but in this case, it follows from the work of Weil and Deligne
that, after setting u = q—*, L(E, s) = L(E, u), a polynomial in Z[u]. Similarly, the twisted
L-function L(E, x, u) is a polynomial in Z[¢,][u], where x is a Dirichlet character of order
£ over F,;(£). More details and all relevant definitions are given in Sect. 2.

We present in Sect. 5.3 computational results for the vanishing of numerous twists
of two base elliptic curves over [F,(t), the Legendre curve and a second curve, chosen
to have good reduction at infinity. The data seems to indicate that the conjectures of
[11,28] also hold for non-constant elliptic curves over function fields, while presenting
some unexpected features. To our knowledge, this is the first data about the vanishing of
L-functions of elliptic curves twisted by characters of order £ > 3, over function fields.
The case of quadratic twists of elliptic curves over function fields was considered by Baig
and Hall [1] to test Goldfeld’s conjecture in that context, and our numerical computations
are similar.

The case of a constant curve E/F,(¢) is defined by taking an elliptic curve Eo/F, and
considering its base change to IF,(¢), denoted by E = Ey xp, F,(¢). In this case, the roots
of L(E, x, u) can be described in terms of the roots of the L-functions £(Ey, #) and L(C, u),
where the L-functions are respectively associated to the elliptic curve Ey/F; and the
£-cyclic cover C over ]P’H{-q corresponding to the Dirichlet character x (see Sect. 3). This
allows us to use a generalized version of the results of Li [23] and Donepudi and Li [13]
about vanishing of the Dirichlet L-functions £(, &) to obtain some vanishing for £(E, x, u)
at u = g~1. The argument of [13,23] has two distinct parts, first finding one character xo
such that £(xo, uo) = 0 for some fixed 1y, and then sieving to produce infinitely many
such characters. The order of g mod £ is related to the presence/absence of £-th roots
of unity in F,(¢), which makes the study of the characters of order ¢ delicate, and the
authors of [13,23] restrict to the Kummer case where ¢ = 1 mod ¢. As we need to treat
all the cases (in particular, we often work over the finite field F, where p is prime), we
generalize their sieving beyond the Kummer case. We also need to consider vanishing at

1/2 a5 in their work.

any up where L(Eo, up) = 0, and not only uy = g~
We recall that an algebraic integer « is called a g-Weil integer if |a| = ¢!/ under every

complex embedding.

Theorem 1.1 Let{ be a prime and q be a prime power coprime to L. Let uy be a g- Weil inte-
ger. Suppose there exists a Dirichlet character xo over F(t) of order £ and with conductor of
degree dy such that L(xo, uy Y = 0. Then, there are at least > g% Dirichlet characters
x of order £ over I ,(t) with conductor of degree bounded by n such that L(, ual) =0.

We prove the above theorem in Sect. 4. The next result is then a direct consequence of
Theorem 1.1, using the properties of constant elliptic curves discussed in Sect. 3.

Theorem 1.2 Let Ey be an elliptic curve over ¥y, and let E = Eo xy, F4(t). Suppose there
exists a Dirichlet character xo over Fy(t) of order £ and with conductor of degree dy such
that L(E, xo, g~ ') = 0. Then, there are at least > q*"/ 4o Dirichlet characters x of order ¢
over IFy(t) with conductor of degree bounded by n such that L(E, x, ghH=o

Then, to guarantee that a constant elliptic curve E/F,(t) has infinitely many twists of

1

order ¢ such that L(E, x, u) vanishes at g, it suffices to find one. Using the results of

Sect. 3, this can be rephrased in terms of finding curves C/IF; which are £-cyclic covers of
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Prqu and such that L(Ey, ) divides £(C, u), and we investigate this question numerically in
Sect. 5.2, where we find isogeny classes of elliptic curves Ey over different prime fields such
that L(E, x, g~ ') = 0 for characters x of prime order £ = 3, 5,7, 11. One observation from
the data is the existence of supersingular curves defined over primes fields I, which admit
a degree £ cyclic map to P! ramifying at 4 points where p = —1 mod £. The existence of
such curves does not follow from previous results on the topic and one may hope to prove
this statement following the strong evidence presented in Table 1.

It is natural to ask if the same dichotomy (no instances of vanishing or infinitely many
cases of vanishing) also holds for non-constant elliptic curves over [F,(£), but there is no
reason to believe it would be the case. The ideas leading to the proof of Theorem 1.2
for constant curves do not apply to the general case, as the change of variable trick used
to produce infinitely many extensions where E acquires points would send points on E
to points on a different elliptic curve when E is not constant. However, there are results
of that type for an elliptic curve E over Q due to Fearnley, Kisilevsky, and Kuwata [14],
where the authors prove that if there is one cyclic cubic field K such that E(K) is infinite,
then there are infinitely many, and there are always infinitely many such K when E(Q)
contains at least 6 points. On the non-vanishing side, Brubaker et al. [4] use the method of
multiple Dirichlet series to prove that if there exists a single non-vanishing order ¢ twist
of an L—function associated to a cuspidal automorphic representation of GL(2, Ag), then
there are infinitely many.

The structure of this article is as follows: we define in Sect. 2 the L-functions attached
to Dirichlet characters and elliptic curves over F,(¢), and we recall their properties. We
discuss in Sect. 3 the case of L-functions of constant elliptic curves. We describe the £-
cyclic covers of IP’]IFq and their characters in Sect. 4, for all cases (not only the Kummer case
q = 1 mod ¢) using the work of Bary-Soroker and Meisner [2], and we then generalize
the sieves of [13,23] to those general £-cyclic covers. We then use those results to prove
Theorems 1.1 and 1.2. Finally, we describe our computations in Sect. 5.1, and we present
our numerical data in Sections 5.2 and 5.3.

2 Dirichlet characters, elliptic curves and L-functions over [Fg(t)

2.1 Dirichlet characters of order £

Let £ be a prime not dividing g. We review here the theory of Dirichlet characters of order
£ over F,(¢) and their L-functions. We refer the reader to [2,12] for more details.

Let n; be the multiplicative order of g modulo £. We say that we are in the Kummer case
if n; = 1 and in the non-Kummer case otherwise. We also say that a monic irreducible
polynomial P € [F;[¢] is n,-divisible if n; | deg P.

We fix once and for all an isomorphism €2 from the ¢-th roots of unity in F(’;nq to p¢, the
£-th roots of unity in C*.

We first define the £-th order residue symbol

xp : Fqlt]l/(P) — pes

for P an irreducible #,-divisible monic polynomial in [ [¢]. It is clear that the ¢-th
residue symbols xp can be defined only for the ,-divisible primes P, since we must have
2| qdegP
the residue field Fp = IF,[t]/(P) is not divisible by £, and therefore it does not contain any

— 1:indeed, unless n, | deg(P), the order of the group of non-zero elements in

non-trivial £-th root of unity.
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For any a € F,[t], if P | a, then xp(a) = 0, and otherwise xp(a) = o, where « is the
unique £-th root of unity in C* such that

qdeg(P)71

a T =Q Ya)modP. (2.1)

If F e F,[t] is any monic polynomial supported only on n,-divisible primes, writing
F =P{' ... P§* with distinct primes P;, we define
XE = Xpy - Xpo

Then, xr is a character of order dividing ¢ with conductor P; ...P;. Conversely, the
primitive characters of order ¢ and conductor P ...Ps, where the P; are n,-divisible
primes, are given by taking all choices 1 < e¢; < £ — 1. Then, the conductors of the
primitive characters are the square-free monic polynomials F € FF,[t] supported on
ng-divisible primes, and for each such conductor, there are (£ — l)w(F ) such characters,

where o(F) is the number of primes dividing F.
We can also write each primitive character of order ¢ with conductor F as

2 -1
XF = XFLXF, -+ XF, (2.2)
corresponding to a decomposition F = Fj...F, where the F;’s are square-free and
coprime.

For any Dirichlet character x, we say that x is even if its restriction to [F, is trivial;
otherwise, we say that yx is odd.
Dirichlet characters are also defined at the prime at infinity Po.. The following statement

clarifies how to compute x (Po).

Lemma 2.1 Let F be a monic squarefree polynomial in F;[t], and x be a Dirichlet char-
acter on IF[t] of order £ with conductor F.

Ifq # 1 mod ¢, then x does not ramify at infinity, x (Po) = 1, and x is even.

Ifq =1mod¢ let x = XFIXI%Z e Xﬁ(j as in (2.2). Then, x ramifies at Poy <=
24 deg(Fle2 .. .Ff__ll) & yx isodd, and

1 ¢|deg(FiF}...F{Th,

X (Poo) = N -1
0 £fdeg(FiFy...F,—)).

Proof We first discuss under which conditions the characters are odd or even. Let P be
an #ny-divisible prime. We remark that for a € I,

gdesP)_; deg(P)(¢"1 ~1)
xp(a) = Q (a v ) =Q (a gt ) (2.3)

Indeed, writing deg(P) = nzk, we have

deg(P) _ 1 ngk _ 1 ng _ 1
1 ; -1 7 _1 7 (1+g" 4+ g"ak=D)

and we use the fact that 1 4+ ¢ + - - - + g"a*=1) = k mod ¢.
Then by applying multiplicativity to Eq. (2.3), we find

deg(FyF3..FE"1)(q"0 ~1) )
)

xr(a) = Q (a "t




76 Page 6 of 28 A. Comeau-Lapointe et al. Res. Number Theory (2022) 8:76

If n; = 1, then y is trivial on F iff £ | deg(l—"le2 .. .Ff:ll).

Now suppose that 7; > 1. Then, £ { (7 — 1), and in fact, (¢, ¢ — 1) = 1 since £ is prime.
Now we have that both £ | (" — 1) and (g — 1) | (g — 1). It follows that (g — 1) | qnq[l.
Since a € ]F;, we have

deg(F\FS . Fy_)(q"1 -1)
xe(a) = |a " =1

and therefore xr is an even character.

The statement that Ps, does not ramify in the non-Kummer case follows from the
fact that the cyclic field extension associated to xr can only ramify at primes of degree
divisible by #; > 1 and Py is a prime of degree 1. In the Kummer case, the character xr
is associated with the cyclic cover ye = F1F22 .. .Fffl, and there is ramification at P iff
IR deg(Fle2 .. .Ff__ll), and xr(Ps) = O in this case. If xr does not ramify at Py, then
xr(Poo) = 1 since we are only considering the case in which 1-"11-"22 ...F 5:11 ismonic. O

2.2 L-functions of Dirichlet characters
Let x be a Dirichlet character, and let L£(x, ) be the Dirichlet L-function defined by
Luw) =[]0 - x@ude?)™,
P

where the product includes the prime at infinity.
We define §, by

0 when y is even,
8y = (2.4)
1 when y is odd,

and we remark from Lemma 2.1 that x (Po) = 1 — .
For a primitive character y of conductor F, it follows from the work of Weil [38] that
L(x, u) is a polynomial of degree deg(F) — 2 + §, and satisfies the functional equation

L w) = oy (Jqu)* O >0 L, 1/(qu)). (2.5)

The sign of the functional equation is

() '

wy = |i3/9<)| o when y is even,
9 G(x .

TG0 TGLo  When x is odd,

where if x odd,
T(X) — Z X(ﬂ)gZﬂitr]]rq/]Fp(a)/p,
ae]F;;
and for any yx, G(x) is the Gauss sum

G(x) = Z x(a)eq(%>-

a mod F
Here e, is the exponential defined by Hayes [19] for any b € F,((1/7)):

2riteg, /5, (1)
eqb) =e B s

where b; is the coefficient of 1/T in the Laurent expansion of b. We refer the reader to
[12] for a proof of those results.
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2.3 L-functions of elliptic curves over [Fg(t)

Let E be an elliptic curve over F,(¢). Let P be a prime of Fy(t), i.e P = P(t) € Fy[t] is a
monic irreducible polynomial or P = P, the prime at infinity. If P is a prime of good
reduction, then the reduction of E (which we also denote by E) is an elliptic curve over
the finite field Fp = F,[¢t]/(P) = ]quegP (where Foo = FFy since the prime at infinity has
degree 1), and

#E(Fp) = q%¢” + 1 —ap, ap = ap +@p, lap| = /q%eP.
Let
1 degP, 2 __ _ _ =
Lp(Eu):=1—apu+q = (1 — apu)(1 — apu)

be the L-function of E /Fp.
If P is a prime of bad reduction, we define

Lp(E, u) = (1 — apu),

where ap = 0, 1, —1 depending on the type of bad reduction (additive, split multiplicative,
and non-split multiplicative respectively).

Let Ng be the conductor of E, which is the product of the primes of bad reduction with
the appropriate powers.> Let Mg (respectively Ag) be the product of the multiplicative
(respectively additive) primes of E. Then Ng = M EA%.

The L-function of E is defined by

LEu) = [] LpE u®eP)"" [T Lo(E ute?)~". (2.6)
PN PINEg

It is proven by Weil [1,21] that £(E, u) is a polynomial of degree* deg Ng — 4 for any
non-constant elliptic curve defined over the rational function field F,(¢) and it satisfies
the functional equation

L(E, u) = wg (qu)* SN~ L(E 1/(q%u)), (2.7)

where wg = %1 is the sign of the functional equation. We refer the reader to [5, Appendix]
and [1] for more details.

Let x be a Dirichlet character of order £ and conductor F, and suppose that (F, Ng) = 1.If
x is odd, we also assume that E has good reduction at Py, (since the prime at infinity is not
included in the conductor of the Dirichlet character, we need this additional condition to
ensure that the places where x ramifies and the places of bad reduction for E are disjoint).
The L-function of E twisted by x is defined by

LE xw =[] = x(Papu's®)"1(1 — x(P)apue®)~!
P{Ng

x ]‘[ (1 — x(P)apudes®)—1, (2.8)
P|Ng

3\We emphasize that we include the prime at infinity in the conductor of the elliptic curve (if the curve has bad reduction
at infinity of course). Our conductor is an effective divisor, written multiplicatively.

*The formula for the degree of L(E, u) implies in particular that there are no non-constant elliptic curves over Fy(¢)
with conductor of degree smaller than 4, which can be thought of as the analogue to the fact that there are no elliptic
curves over Q with conductor smaller than 11.
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Let K be the cyclic field extension of degree £ of IF;(¢) corresponding to x. Then,

-1
LE/Ku) = LE u) [ | LE x",u). (2.9)
i=1

It follows from the Riemann Hypothesis that

B
LE/Kuw=]] (1 - qei%u),
j=1
Since (F,, Ng) = 1 and E has good reduction at P, when x is odd, (2.9) and Theorem 2.2
(stated and proven below) imply that B = £(deg Np — 4) + 2(¢ — 1)(deg F + ).

It is well-known that L(E, x, u) satisfies a functional equation from the work of Weil
[38]. The explicit formula for the sign of the functional equation is contained in [38] in a
very general context, but we need a precise formula for the numerical computations, so
we deduce it below from the work of Tan and Rockmore [35,36].

Theorem 2.2 Let £ be a prime, x a primitive Dirichlet character of conductor F and order
¢, and let E be a non-constant elliptic curve with conductor Ng such that (Ng, F) = 1. If
Py | NE, we also assume that x is even. The L-function L(E, x, u) is a polynomial of degree

n:=degNg +2degF — 4+ 25,,
where &, is given by (2.4). Each L(E, x, u) satisfies the functional equation

L(E 3, u) = 0rgy (qu)" LET, 1/(q*u)) (2.10)
where wgg, is the sign of the functional equation for L(E, x, u), given by

wEwy = @y wf X(NE).

Proof The sign of the functional equation (and the functional equation itself) can be
deduced from the modularity of elliptic curves over function fields. We follow [35,36]
who use modular symbols over function fields. They consider different normalizations,
so we explain here how to adjust their work to get the result that we need. Let K = IF,(¢).
For any place v, let O, be the associated ring of integers. If N = )", N,v is an effective
divisor over K|, let

To(N) = {(‘c’ Z) = ((i’ Z:))V c UGLZ(OV) o= OmodN}.

Let Ak be the ring of adeles over K. Then A} embeds in GLy(A) as diagonal matrices.
Also GLy(K) embeds in GLy(Ag) by the diagonal map.

A C-valued function on GLy(Ag) is called a modular function of level N if it satisfies that
fyti) =f(r) forall T € GLy(Ak), ¥ € GLa(K), and k € Ay - T'o(N). It is a fundamental
result that if E is a non-constant elliptic curve over K, then there is a normalized cuspidal
modular function f of level Ng such that the L-function of E is the L-function of f. This
also holds for the twisted L-functions. To make that statement precise, and use it to get
the functional equation, we will follow the notation of [35,36], where the L-functions
are normalized differently (and we will go back to our L-function at the end). Let f be
the normalized cuspidal modular function corresponding to E, x a Dirichlet character of
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conductor coprime to Ng and we define as [35, (1.10)]

(M) x (M)

o
LiOus) = it
C M|

where M runs through all effective divisors, x is naturally extended over effective divisors,
and the ¢;(M) are the normalized coefficients obtained from the Fourier expansion of f.
This is also true when yx is a quasi-character, which for our purposes is the product of a
Dirichlet character and a map x; given by xs(M) = |M|~*.

We now use the modular symbols ©¢p to get the functional equation. The modular
symbols O¢p are elements of the group ring R[Wp], where Wp = K*\A} /Up is the Weil
group of a divisor D of K, and R is a ring containing all the Fourier coefficients of f. We
refer to [35] for all the relevant definitions. The modular symbols are used to interpolate
special values of the twisted L-functions, and we have [35, Proposition 2],

Li(x, 1) = 7, ' x(©4p), (2.11)

where 7, is a Gauss sum. Using quasi-characters, we also have

Li(x,8) = Li(x xs—1, 1) = 11| (X Xs-1)(©pp). (2.12)

Using the Atkin—Lehner involution wy,., we have when (D, Ng) = 1 (including at P) [35,
Proposition 3]

Ofp = ®5¢Nf(f>,p NE, (2.13)

where t is the involution on R[Wp] sending Y"1y, @ww to Y-,y aww ™.
Applying a quasi-character x to ® = )y, ayw results in x(©) = >, .y, awx(w),
while applying x together with the involution ¢ results in x (®%) = > wewy, Aw x tw) =
-1
X (©).
We apply x xs—1 to (2.13), and we combine it with (2.12) to get

Lf(X, s) = tx_xlsq (x XS—l)(G)ﬁD)
= Trps (=)l () p) X (NE)INE| "6

T,-1
= XA L (T e DX (NE)INg 76D
Txxs—1

= Sy L2 = X (NE)INEI
Tx xs—1
The third line above follows from using (2.11) with f replaced by wn,(f) and x xs—1
replaced by () xs_1) !, together with the observation that the involution ¢ has the effect
of inverting the character. Using the fact that f is an eigenvector for the self-dual Atkin—
Lehner operator, we have wn,.(f) = wgf, where wg = =1 is the sign of the functional
equation (2.7), and then LWNE o (x “1o_g = a)ELf(X’l, 2 —5s).
To compute the Gauss sums associated with the quasi-characters, we use [36, (2.2.3)]

__ _s(degD-2)
Txxs =4 Txo

where 7, is the Gauss sum of the Dirichlet character x of conductor D. Replacing above,
this gives

T L (1, 8) = weT, -1 x (Np)q! ~5deeNe)+2degDI=y (=1 5 ), (2.14)
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where [35, (3.4)] is a particular case (for s = 1). The twisted L-function of the elliptic curve
is given by

cr (M)IM] x (M)
L(E, X S) = Z T = £(E, X5 M)
M
for u = q~*. The functional equation can be obtained by noticing that L¢(x, s) = L(E, x, s),

and replacing in (2.14). This leads to
T, L(E x,5) = WET, 1Y (NE)q(l—S)(deg(NEHZ deg(D)—‘L)L(E, X_l: 2 —5).
Using u = g%, we finally get
L(E, X, 1) = wEy (qu) SN2 8P L(E 7L 1/(qPw)), (2.15)

where

2
T
WE@y = (IDW—);/Z> wE X (NE).

In order to get exactly the statement of the theorem, we need to take into account the
difference of notation between [35] and this paper. When y is odd and there is ramification
at Py, the conductor D of (2.15) is PooD’, where D' € Fy[t], and so D' is the definition
of the conductor in this paper. Adjusting the formula to make it compatible with our
notation, we get for all cases

L(E x, u) = wE®X(qu)(deg(NE)+2 deg(D)—4+26X)£(E X_l: qzu_l),

which is the functional equation (2.10). Finally, we remark that ID;\;){/Z is by definition the
sign of the functional equation of L(x, u), since it is the product of the same local Gauss
sums because (D, Ng) = 1, and we have wgg, = a))z( wg X (NE).

O

Remark 2.3 When E is a constant elliptic curve, we prove in the next section that L(E, x, u)
satisfies the same functional equation withn = 2deg F —4 + 25, and wgg, = a))Z( This is
consistent with the fact that such E has good reduction at all primes of K, and therefore
N =0.

3 L-functions of constant elliptic curves over [Fq(t)
By class field theory, Dirichlet characters of order £ over IF4(¢) correspond to cyclic exten-
sions K /IF,(t) of order ¢, where K = F,(C) is the function field of a projective smooth
curve C defined over IF;. We call such a curve a £-cyclic cover of ]PIqu, or simply a £-cyclic
cover.

Let C be a £-cyclic cover of IP’Iqu of genus g, and let K = F,(C) be the corresponding
extension of [F;(£). The zeta function of C can be expressed as

2g
[]a- 8w
j=1

Z2(Cu)=ZwL(Cu) = m;

(3.1)
where | 8| = q"?* for1 <j < 2g,and
1

2= T
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We also have
-1 ’
L(C M) = 1_[ ‘C(Xll u):
i=1

where the x! are the characters of order ¢ associated to the extension K /I 4(0).
Let Eg be an elliptic curve over IF, with L-function

,C(E(), bl) = (1 — (xlu)(l — Olgu),

Theorem 3.1 Let E = E XF, Fy(t), and let C, K and a1, ay, and the B;’s be as above.
Then,

[T1<i<2 (1 — a;Bju)

1<j<2¢g
[Ticico — i)l — ctique)’

LE/K u) = Z(C oaau) Z(C, aau) =

Moreover, L(E, x, u) = L(x, a1u)L(x, aau), and writing
Low= T[] @-yw
1<j=<2g/(t-1)

then

L(E x,u) = l_[ (1 — a;yju).
1<i<2

1<j=<2g/(¢-1)

Proof We refer the reader to [30, Sect. 3] and to [31, Sect. 3.2] for the general proof. To
illustrate the ideas, we prove (3.2) when K = [F,(¢). Since #E¢(Fy») = ¢" + 1 — o — a,
if P is a prime, then

#E(Fp) = #Ey(Fp) = qdeg(P) +1-— Ol;leg(P) _ ageg(p)'

Since all the primes are of good reduction, we have

L(E/Fq(0) u) = LE 1) = [T (1~ (@87 + a5 B P)udes®) 4 gdeelP), 2deg())~1

P
_ H (1 _ afeg(P)udeg(P))—l(l _ aéleg(P) udeg(P))—l
P

1
(1= au)(1 — qoqu)(1 — aau)(1 — gagu)
= Z(o1u) Z(azu).

Remark 3.2 From the above result, it is easy to get the functional equation for L(E, x, u)
when E is a constant curve, using the functional equation of L(x, u) given by (2.5). Let
m = deg, L(x,u) = 2g/(£ — 1). In the notation of Sect. 2, we have m = 2g/(¢ — 1) =
degF — 2+ 4,,and

L(E, 3, 1) = L(x, cr) L(x, o) = oy (Geau)™ LT, 1/qeu)
wy (Vgoau)™ L(X, 1/qazu)
= W (q"u?)" L(X, o2 /(W) L(X, o1/ (q*u)
= o2 (qu)™ LIE T 1/(q*w) = o’ (qu)* 4820 L(E %, 1/(q%w))

Page 11 of 28
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Corollary 3.3 Let E = Ey X, Fy(t), and let x be a Dirichlet character over F,(t) with
associated curve C and function field K = F,(C) respectively. Then, L(E/K,q™ ') = 0 if
and only if L(C a;") = L(C o) = 0,

Proof From Eq. (3.2) in Theorem 3.1, L(E/K, q~') = 0 if and only if there is one Bi =
q/a1 = ay or Bj = q/ay = a1, where the ;s are given by (3.1), and both al_l and az_l are
roots of L(C, u), because of the functional equation of £(C, u). O

4 Cyclic extensions of degree { over [Fy(t)
We prove in this section the following result which extends the result of [13] to general g
and ¢ (removing the restrictions g = 1 mod ¢ and y* = F(¢) with £ | deg F).

Proposition 4.1 Let ¢ be an odd prime. Fix an £-cyclic cover Cy over P}i‘q with conductor

of degree do. Then there are at least > q*"/% (-cyclic covers C over P]%q with conductor of
degree bounded by n admitting a non-constant map from C to Cy.

The proof of this result is fairly long and will require several intermediate steps.

4.1 General £-cyclic covers over IP’]}
q
The affine equations of ¢-cyclic covers over PL are well-known in the Kummer case
q

g = 1 mod ¢, which is the case treated in [13]. In this case, such a cover C over ]P’]%q has

an affine equation y* = F1F22 .. .Ff__ll, where F; € F,[t] are square-free and pairwise co-

prime of degree d;. The conductor of the £-cyclic cover is F . .. F;_; and by the Riemann—
Hurwitz formula, the genus of C is %(dl 4o otdp_1-2)ifl | (d14+2do+- - -+(€—1)de_1)
and %(dl + -+ +dp_1 — 1) otherwise. In this later case, there is ramification at infinity
since £t (d1 +2dy+ --- + (£ — 1)d¢—1) by Lemma 2.1.

To treat the general case and prove Proposition 4.1, we use the work of Bary-Soroker
and Meisner [2], who explicitly give the affine equations of general £-cyclic covers over
]P’H{-q. We summarize their results in this section.

As before, let n; be the multiplicative order of g modulo £. As seen in Sect. 2, the
conductors of the £-cyclic covers of IF’]%q (or of Dirichlet characters of order £) are monic
square-free polynomials in [F,[£] supported on #,-divisible primes. In order to count all
the €-cyclic covers, or characters of order ¢, with such conductors, let

Fov={F €Fylt]: F=P'...P® ny|degP;, 1 <¢ <t—1},

where the P; are monic irreducible #,-divisible polynomials in Fy [£].
Let ¢, be the Frobenius automorphism of F;. Then, ¢, acts on f () € F [t] by acting
on the coefficients, and we define
-1
N, () = foq () .. b () € Fylt].
Notice that Ny, (f) has degree n; deg(f), which is always divisible by .
By hypothesis, each prime P; in the factorization of F € F, splits as a product of n,
primes in [F [t], and we can write any F € F as

F=31...8np Si€Fpualt], ¢q@) =Tir11<i<ng—1 ¢Fn) =51 (41)
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In other words, for F € Fy, F = Ny, () for any i. Since §1 determines §; for all j, it
suffices to work with §. Let

Fod = (81 € Fyralt] : Ny, (31) € Fpe

Thus, §1 € F, ;}2 when F € F,¢. We also have
S1=Af S (4.2)

where the f; € Frq [t] are pairwise co-prime and square-free.

For any vectorv = (vy, ..., vnq) eV ={012...,£—1}"%,and any F € F, written as
in (4.1), let Fy = 37" ...%:,:q. ForO0 <k <ng—1,letvy = (1g"e [g" e, . .., [gFT174]p),
where [a]¢y = @ (mod ¢)and 0 < [«]¢; < £—1,in other words, [«]¢ indicates the reduction
modulo ¢ of a. Thus, we have vi € V. Let ¢y € F 7 be a fixed primitive £th root of unity.
For any F € F 4, let Cr be the curve over IF; with affine model

-1 nglo
Cce: [[ly-D. " VR | =0 (4.3)
j=0 k=0

Notice that there is no canonical choice for (/Fy,, but the above equation is still well
defined, since the factors include all the Galois conjugates.

In the Kummer case n; = 1, Fy, = §1 = F, and Cf has affine model y‘Z = F(¢). In the
case £ = 3 and g = 2 mod 3, F = §15§2 and by (4.3), Cr has equation

Cr: (y—\y&i@%—%) <y—é“3€/€1i8%—§§€/%)
X (y—Cgm—C3M>=O

=y - 35150 - 515261 +F2) =0,

which is defined over F,. In general, Cr is birationally equivalent to y* = Fy, over Fq.
More explicit versions of (4.3) are given in Sect. 4.3, including a precise formula for the

case ng = 2.

Proposition 4.2 [2, Proposition 2.14] Let B = {b € F*,, /(F*,, V). There is a (£ —1)-to-1
q q

correspondence between Fy ¢ x B and the L-cyclic covers of Fy(t), and then a 1-to-1 corre-

spondence between Fy o x B and the characters of order £ over F,(t).

We restrict in this paper to characters with monic conductors, and it then suffices to

work with the set 7.

Lemma 4.3 With notation as above, assume ng > 1. Then for each 0 < k < nz — 1, we
have € | deg(Fx).

Proof By construction,

deg(Fu) = 3 iy deg(®) = Y vi deg (¢ (A7 .. /7))
j=1 j=1

g -1 -1
=Yg T hdeg(@ () = Y hdeg(fi) Y g7 mod ¢.
j=1 h=1 h=1

j=1
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Since ng > 1,

g (gt — 1)

nq ) qk
qu“_/ = = 0 mod .
j=1 -1

4.2 From one to infinitely many £-cyclic covers

Given an £-cyclic cover Cy, we can build £-cyclic covers C with a non-constant map to Cp
by a change of variables, as done in [13, Lemma 3.2] for the Kummer case when ¢ | deg F.
We can detect the curves Cr with F € F,; using the following lemma.

Lemma 4.4 Letf € Fyn[t]. Then, Ny, (f) is square-free iff f = p1...ps where the p; are
such that Ny, (p;) are distinct ng-divisible primes of F 4 [t].

Proof Iff = p1...ps, where the p; are such that Ny, (p;) are distinct n,-divisible primes
of Iy [¢], then it is clear that Ny, (f) = Ny, (p1) . . . Ny, (ps) is square-free.

Now assume that Nj,, f) = Ny, (p1) .. Ny, (ps) is square-free. Then it is clear that the
Ny, (pi) are distinct primes in [F[£]. Finally, they are n,-divisible, since they are the result
of taking the N, -norm. O

Definition 4.5 For a one-variable polynomial f(¢) € ]F_q[t], let f*(u,v) == vdeg(f)f(u/ V)
denote the homogeneous polynomial in variables u, v resulting from the change of vari-
ables t = u/v.

Lemma 4.6 Let F € Fuy, with §1 € f;,le) given by (4.1) and Cr given by (4.3). As in (4.2),
we write §1 = flfz2 .. f__ll, where f; € I q [t] are pairwise co-prime and square-free.

+ Let h(t) be a non-constant polynomial in Fy[t] such that
Ny, (i (h@)f2(h(2)) . . . fe-1(h(2)))
is square-free. Then, (F oh)(t) = Ny, (§1(h(¢))) € Fge. Let Cpop be given by (4.3). Then,
Cron — CF
ty) > (h(2)y)

is a non-constant map from Cg,j, to Cr.
o Assume that ng > 1. Let u(t), v(t) be non-constant polynomials in F,[t] such that

Ny, (fl*(u, V). i v))
is square-free. Then G(t) = Ny, (@’{(u(t), V(t))) € Fye. Let Cg be given by (4.3). Then

Cc — Cr
(ty) (u(t)/v(t), yvle)~deBE)

is a non-constant map from Cg to Cr.

+ Assume that ny = 1 and write degF = Al — 8, where 0 < § < £ — 1. Let u(t), v(¢)
be non-constant polynomials in ¥y [t] such that f*(u, v)f5 (w, v) .. . f; 1 (w, V) is square-
Jree. Let g = f* for i # 8 and g§ = vf§*. Then, gf'(u,v)g; (w,v)...g;_(u,v) is also
square-free and G(t) = gf (u, v)g; (4, v)?.. g1 -l e Fye Let Cg 9t = G(t).
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Then
Cec — Cr
y) > (w00, e ™)
is a non-constant map from Cg to Cr.
Proof We prove the second and third point in the statement, as the first point is a con-

sequence of them. First consider the case where n, > 1. We replace ¢ by u(¢)/v(t) in Eq.
(4.3) and we get

-1 ng—1
(-3 e ol

E o\ ydes(Fy)
j=0 k=0

Recall from Lemma 4.3 that for the non-Kummer case, £ | deg(Fy, ). Notice also that the
vy are all permutations of each other. In fact, vi41 can be constructed from vy by shifting
each element one place to the right cyclically and using the fact that g”7 = 1 mod ¢.

Writing A = w, and making the change of variables ¥ = vy, we finally have
-1 ng—1 .
[TIY-> & JFrwv | =0
j=0 k=0

which is Cg for G(¢t) = Ny, (Sf(u(t), v(t))).
We now consider the Kummer case. We replace ¢ by u(¢)/v(¢) in yZ = F(¢) to get

vAGE = VF* u,v) = gf (i v)gs w v)* .. gp ()L
and with the change of variables Y = v4y, we get
Y =g wg wv)?. . . g )

which is Cg for G(t) = g (u, v)g; (1, V2. 81 (u, v)e-L O

Then Lemma 4.6 translates the conditions for finding curves Cg with a map to Cr
to detecting when N,,, (fl*(u, v).. i v)) is square-free. We can now proceed to the
proof of Proposition 4.1.

Proof of Proposition 4.1 Our proof follows the argument of [13], but without restricting
to the particular case where 7, = 1 and £ | deg F. We concentrate on the parts of their
argument where using the general setting explained above introduces some changes, and
we just refer to their article for the parts of their argument that can be directly used.

Let F = Fj be as in Lemma 4.6 and let Cy = Cp, be the curve (4.3). Let dy be the
degree of the conductor. We now give a lower bound for the number of £-cyclic covers
with conductor of degree smaller than # that can be obtained by the process of Lemma
4.6 applied to Fp, by using the square-free sieve over IF,[¢].

Let
P(n) = {(Dy,...,De-1) € (Fyra ENt: Dy,..., Do pairwise co-prime, monic, square-free,
S1=D;.. Dg:% € .7:;,1[), deg(Dy...Dy—1) < n}

={(Dy,..., De—1) € Fpra[t) ™" : Dy,..., De—y monic, Ny, (D1 ... Dg—1) square-free,
deg (D1 ...D¢—1) < n},

76
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where the second line follows from Lemma 4.4.

By the above discussion, each tuple (Dy, .. ., D¢—1) € P(n) gives rise to the £-cyclic cover
Cr where §1 = D1D% .. .Dﬁ:} and F = N, (§1)- The conductor is Ny, (D1 ...D¢-1) of
degree < n4n, and then the genus is such that g < %(nqn —2).

We write § = fif?...f/"] where f; € F n[t] and N, (39) = Fo. Notice that dp =
deg(Ny, (f1 .. - fi—1)) = ng(deg(f1) + --- + deg(fr—1)). We count the number of distinct
(D1, ...,D¢_1) € P(n) such that there exists (4, v) € IFq[t]2 with

Di(2) = fi (u(t), v(t)), . .., De—1(t) = fi_ 1 (u(t), v(2)). (4.4)

We then need to detect when Ny, (D1 ...D¢—1) is square-free. Let G(u, v) denote the
homogeneous polynomial such that

Ny, (i (w,v) .. fi1(m,v)) = G(u, v).

We now apply a result of Poonen [32] which counts the number of square-free values
of G(u, v) as u, v runs over polynomials in I, [¢], as given in [13] in a form suitable for our

application.

Proposition 4.7 [32, Theorem 8.1], [13, Proposition 3.4] Let P be a finite set of
primes in F[t], B be the localization of F(t] by inverting the primes in P, K = F4(¢),
f € Blx1, ..., %m] be a polynomial that is square-free as an element of K[x1, . .., %] and
Jor a choice of x € Fy[t]"™, we say that f (x) is square-free in B if the ideal (f (x)) is a product
of distinct primes in B. For b € B, define |b| = |B/(b)| and forb = (by, ..., b,) € B", define
|b| = max |b;|. Let

S = {x € Fy[t]"™ : f (x) is square-free in B},

— lim |{b ESf 1 |b| < N}
sy T Nooo N™ '

For each nonzero prime 7 of B, let c;; be the number of x € (A/w>)" that satisfy f (x) = 0
in A/mc?. The limit s, exists and is equal to [ [, (1 — cx /| |P™).

We then apply Proposition 4.7 to G(u, v). Following [13, Remark 3.5], let B be the
localization of Fy[¢] by the set of primes 7 with || < deg(Ny,(fi...fi—1)) = do. This
guarantees that

0.

. {b € ]Fq[t]z, |b| < N : G(b) is square-free in B}|
nsg = lim >
N—oo N2
The curve Cr associated to F = qu(Dng .. .Dﬁj) = Fi(u(?), v(¢)) as in (4.4) has
genus bounded by %(do deg(u(t)/v(t)) — 2), and therefore, if we want to guarantee that
the genus of Cr is less or equal than g, we can prescribe that
g+e-1

— 4.5
go+i—1 (*5)

deg(u(t)/v(t)) := max{deg u(t), deg v(¢)} <

where gy is the genus of Cp,.

Now we want to give an upper bound for the b = (4, v) € Iﬁ‘q[t]2 satisfying condition
(4.5) such that Eq. (4.4) is satisfied. Now take N = ¢", with n = ZZTgl + 2, and we impose
the condition max{deg u, deg v} < n/dy. Notice that

no 2g+20¢—1) 2g + 2 — 1) g1

dy  dolb—1)  (do—2—-1)+20t—-1) go+¢—-1
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and therefore condition (4.5) is satisfied. Applying Proposition 4.7, we get a positive
proportion of 3> uN?%/% = pg*"/% such that Ny, (D1 ... Dg-1) is square-free.

To conclude, for a fixed tuple (Dy, ..., Dy—1) we need to find an upper bound on the
number of pairs (u(¢), v(¢)) such that (4.4) is satisfied in order to correct a double counting.
Following a similar reasoning to [13], we bound this number by gn?4°".
In total, for # sufficiently large, we have
> ug"®/d—e)
elements in P(n) corresponding to £-cyclic covers of IP’Iqu with conductor of degree
bounded by # that admit a non-constant map to Cp. O

We then need a geometric condition for the vanishing of £(C, u) at some point u = u Y
where C is a curve over IF;. This is given by the following theorem of Li [23, Sect. 2] relating
the existence of a rational map between curves to the divisibility of the L-functions. The
proof uses Honda—Tate theory, which states that every g-Weil number is an eigenvalue
of the geometric Frobenius acting on the £-adic Tate module of a simple abelian variety
over [F,, which is unique up to isogeny. We refer the reader to [23, Sect. 2] for the details,
and the proof of the following theorem.

Theorem 4.8 Let uy be a q-Weil number and let Aq be (the isogeny class of) the unique
simple Abelian variety over Fy having uo as a Frobenius eigenmlue, as guaranteed by the
theorem of Honda—Tate. Let C be a curve over Fy. Then, L(C, uy Y = 0 ifand only if there
exists a non-trivial map C — Ao if and only if L(Ao, u) divides L(C, u).

Proof of Theorems 1.1 and 1.2 The proof of Theorem 1.1 follows directly from Proposi-
tion 4.1 and Theorem 4.8: let Cy be the £-cyclic cover associated to xo, i.e. L(Co, u, h=o.
By Proposition 4.1 and Theorem 4.8, there are at least qZ”/ do ¢-cyclic covers with conduc-
tor of degree < n such that £(Co, u) | L(C, u) ]_[ ! £(x%, u), and then at least g/
characters of order ¢ and conductor of degree < n such that L(x, u, ~y—o.

The proof of Theorem 1.2 follows directly from Corollary 3.3 and the above. Indeed, if
E = Eo xp, [F,4(¢) and there exists xo such that L(E, xo, g~ ') = 0, then by Corollary 3.3,
L(Cyps a;l) = 0, and we reason as above. O

4.3 Explicit equation for £-cyclic covers
We now give more information about Eq. (4.3), including a precise formula for n; = 2,
using the work of Gupta and Zagier [18]. We used these general formulas for n; = 2 to
obtain the equations for the curves Cj, C and Cs in Sect. 5.2.

Let £ be an odd prime number coprime to g, let w, denote a complex £-root of unity,
and let Ry, denote a set of coset representatives of (Z/£Z)* modulo the cyclic subgroup
(q). Following [18], we define the polynomial the complex polynomial

ng—1

Ve, 0) = [ Zaﬂq : (4.6)

JE€ERLq

This is a polynomial of degree %. Notice that for n; = 1, Wy,1(y) gives the £th cyclotomic
polynomial and for n; = 2, Wy5(y) gives the £th real cyclotomic polynomial.
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Gupta and Zagier prove various results regarding the coefficients of W, (y), and in

particular, they recover a formula of Gauss:
-1

2 tam | /] E=142n
Wa(y) = z:(—l)LTJ (L Z J)y" (4.7)
n=0

In the following result we relate the coefficients in the equation defining Cr in (4.3) to
those of Wy, .- Together with the results of [18], and (4.7) in particular, this allows us to
compute a more explicit formula for Eq. (4.3) in the case n; = 2.

Proposition 4.9 Let { be an odd prime coprime to q and let Wy, (y) be defined as in (4.6).
Let a,, be the coefficients of the following polynomial
-1
Yo+ amy" = i, ()"0 — ng). (4.8)
m=0
Then, a,, € Z, and there exists certain coefficients bsO:---:an—l € IF, C Fy such that the
equation defining Cr in (4.3) can be written as

-1 ng—1
1 q k
1 7 2o Skld"le
Gt Y by
m=0 0<si
ng—1
Zkio sg=t—m

—1
ZZZO q*s,=0 mod ¢

151 k-1 151 k+1-n,
7 2ieo Sklg" M 7 2k—o Skla 1]
P Y=o (4.9)
Furthermore, the bsor~~~78nq—1 satisfy
Z bSo,“.,an_1 = am> (4.10)

0<sy
ZZZ;I sk=0—m
Z;Zgl q*s=0 mod ¢
where the ay, are given by (4.8) and the equality takes place in I, C ¥, after reducing the
am modulo p (the characteristic of Fy).

In particular, for ng = 2, we have

-1

Cr:y' + Zﬂzr—l({ﬁ’ﬁz)%_r}’%_l —515RE T 5D =0 (4.11)

r=1
Before proceeding to the proof, we remark that the condition Zzgl q*si =0 mod ¢
—1 ,
implies that ZZ”I:O q* s, = 0 mod ¢ (since (g, £) = 1), and therefore each of the expo-
nents of the §; in (4.9) is an integer. One can also see that the bSO:---:an—l are invariant

by cyclic permutation of the subindexes. Each of these cyclic permutations results in a
permutation in the exponents of the §;. Thus, the final polynomial is symmetric in the ;.

Proof The initial step of the proof follows from the elementary fact that

-1 ng—1

ik

Ve, ) —n) =[] |r— D o}
j=0 k=0

Since the above polynomial has coefficients in the algebraic integers Z, and is invariant
under Galois action, we conclude that Wy, (y)"1(y — 1) € Z[y] and a,, € Z.
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Following some ideas from [18], we consider more generally

-1 ng—1
ﬂ’"q(AO""’Anq—l):H 1— Za]q Ak ,
j=0 k=0

and we remark again that this polynomial has coefficients in Z.
Taking the formal logarithm,

— log fon, (Ao, - .., An,—1)

ng—1 jgk "
£—1 oo < kq:() a)]eq Am)

m

j=0 m=1

00 1.
1 m ol jd e om Png—1

=>> = > w} Agt. AT
m ho .. hyy—1 1

j=0 m=1" ho+-+hy;—1=m
h;>0

] £— ng—1
=X X ) T
m hl, ey hn
m=1" ho+-Ahy,_1=m a =0
h;>0

and the innermost sum is zero unless qu::)l q*h; = 0 mod ¢.

In conclusion, the only powers of A, ...,A,,—1 appearing in the Taylor series of
log fi,n, (Ao, - - ., nq 1) and consequently in the Taylor series of fi,, (Ao, . . ., An,—1) are of
the form Ay .. A, S | such that

ng—1
Z qksk = 0 mod 2. (4.12)
k=0
But the total degree offg,nq is £, and therefore 0 < s + --- + sn;—1 < {. Putting this
information together, we obtain
Sng—1

fongAo, A1) =14 > Dsorssmgr AQ - Aprye (413)

0<sg
ng—1
Zk:lo sg=L—m
L S
sum;_, q"sx=0 mod £

Reducing modulo p (the characteristic of IF;), making the change of variables

YF, [qku [, [*+1-"4),
Ag = _—31 S P

and multiplying by y¢, we obtain Eq. (4.9). Identity (4.10) follows from comparing with
(4.8).

When n; = 2, we have g = —1 mod ¢. Equation (4.12) and condition qu:?)l sk=L4—m
reduce the choices of sg, s; to two cases: either so = s; and m # 0 or (sg, s1) = (0, £), (¢, 0)
and m = 0.

For the case so = s1, we can set Ag = A and reduce to the case of [18, Theorem 3] to

£ -1 U ~l—1
V138 TS
find the coefficients of each (AgA1)*. We then replace Ag = ly 2 A= ]y 2 (or

equivalently, we replace AgA; by 3132) and obtain the coefficients a,, for m # 0 from

Page 19 of 28
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the statement. In this case one can see from working with Wy »(y) that a,, = 0 for m even
different from 0.
The cases (so, 51) = (0, £), (¢, 0) only occur for the constant coefficient in (4.9) which is

(—D oy V@A + A = —(Aaf + 4D

Replacing again Ag = z—‘glyggl,Al = l—‘giylgz and multiplying by y* gives Eq. (4.11). O
5 Numerical data
5.1 Description of the code
We want to compute L-functions L(E, x, u) described by (2.8), where x is a character of
conductor F. To simplify, we are choosing g = p to be prime.

Following  Sect. 2, the L-functions are polynomials of degree

n = deg Ng +2degF — 4 + 25,, and

LExw=Y | D ax(f)|u" =3 cud,
n=0

n=0 eMy

where M,, is the set of monic polynomials of degree n in IF,, [£].
Using the functional equation (2.10), we get

Cn = WE®Y 192(’1_ ln/2)=1) Ch-w 0<n=n, (5.1)

and it suffices to compute ¢; for 0 < i < |n/2].%
We then need to compute the ay appearing in (2.8), for deg f < n/2. It follows from the
Euler product that ag = ara, for (fg) = 1, and for P € Fp[t] and n > 1,

apdpn-1 — PApn-2, lfP’TNE,
apn =
apapn-1, if P | NE.

We now turn to the computation of the ap of a fixed curve E : y2 =x3+a(t)x>+b(t)x+c(t).
For P prime, we compute ap using

%3 + a(t)x? + b(t)x + c(t)
r (),

ap = —

xelF,[t]
deg(x)<deg(P)

After we have computed all ay for deg f < (deg Ng + 2d — 4 + 23,)/2, we can evaluate
L(E, x, u) for any Dirichlet character with conductor of degree d over F,,[£]. We go through
the characters of order £ and conductor degree d in the following way. Let n, be the
multiplicative order of p modulo £ as before. Let F € IF,[¢] be a polynomial of degree
d supported on n,-divisible primes. We can enumerate all characters of order ¢ and
conductor F by choosing only one character per cyclic extension of order £ of F, (), since
the L-functions of the £ — 1 characters associated to the same extension K vanish together.

*1t follows from (5.1) that we can compute numerically the sign of the functional equation by computing cn 2 when n
is even, and ¢ n /2] and ¢|n /2)4+1 when n is odd. We used this in the numerical data to compute twists of the Legendre
curve by odd characters, as in this case Theorem 2.2 does not apply. Of course, this requires ¢ /2 # 0. When ¢y o =0,
we computed the next coefficient ¢(n /2)41 to get the sign of the functional equation. In all the cases considered, ¢(n /2)4+1
was not zero (when ¢y, /2 = 0), so this was enough.
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Writing F = P ... P, where the P; are distinct n,-divisible primes, and P; = B;1 ... By,
over I (t), we consider the (non-conjugate) characters of conductor F over [Fj(¢) given
by

k

x(@) = xp, A [ T xgs, @) (5.2)
j=2

fora; € {1, ..., £ — 1}, and where each X is the £th-power residue symbol modulo 931
over I (£) defined in Sect. 2.

5.2 Vanishing of twists of constant curves: numerical data

Let Eq be an elliptic curve over I, with L(Eo, ) = (1 — aou)(1 — aou), and let E =
Eoy xF, F,(t). By (2.9), L(E, x, p~ 1) = 0 for some character x associated to K /Fy(t) if and
only if L(E/K, p‘l) = 0, and using the results of Sect. 3, this is equivalent to

-1
L(Eo,u) | L(Cyow) = [ ] LG, w).
j=1

By Theorem 1.2, once we have found one xo such that £(C,,, ao_l) = 0, then there are
infinitely many, so we concentrate on finding xo. We examined degree 2 factors of £(x/, «)
which arise as L(Eo, u) for some Eg over IF,,.

In particular, we considered the case where L(x, u) has degree 2, which in the case
of even (respectively odd) characters means that the conductor of x is a polynomial of
degree 4 (respectively 3) in IF,[¢t]. Table 1 presents results for this case: for fixed values
of £ and p, we computed L(x, u) for all characters such that £(x, ) is a polynomial of
degree 2, and we listed all the cases that we found where L(x, u) = L(Eo, u) for some
elliptic curve Ey/F,. Notice that this means £(C,, u) = L(Eo, u)*~L. Each entry in Table
1 may correspond to many characters x. We did not count them, but our program keeps
an instance for each case. For example, the curve C; /F5 given by

Pt 22+ A+ )y + G+ 20 2 428 + 2+ 4+3) =0

has L-function £(Cy, u) = (1 + 5u%)?; the curve C,/Fs9 given by

9> + (54¢* + 183 4 3442 + 18t 4 39)
y> + (565 + 23t7 + 44¢° 4 20¢° + 35t* + 3063 + 17¢% + 33t + 21)
y+ (576" + 18¢7 4 2465 + 587 + 14¢° + 9¢° + 41¢*
41763 + 38¢% + 48t +44) = 0

has L-function £(Cy, ) = (1 + 5942)*; and the curve C3/F;3 given by

¥+ (6t* + 613 + 662 + 12t + 1)y° + (13 + 267 + 3t° + 61° + t* 4 5t + 4))3
+ (6¢12 + 561 410610 + 768 + 267 4 365 + 9% + 3¢t + 263 + 612 + £ + 4)y
+ (116M + 6612 + 12612 + 1061 + 5610 4+ 87 + 665 + 2¢7 + 2¢° + 10¢° + 74
+ 1262 +3t2 + 3t +9)
=0

has L-function £(Cs, u) = (1 + 13u2)°.
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Table 1 Allinstances of £q for which there is a x of order £ over F,, such that L(x, u) = L(Eo, u) for
some elliptic curve £o/IF,

¢ p np L(x,u) =1+ apu + pu?
3 5 2 0,3
7 1 —2,—-1,1,2,4
11 2 —-3,0,3,6
13 1 —5,—4,-2,—1,1,2,4,5
17 2 —6,—3,0,3,6
19 1 -8, —7,—5,—4,—-2,—1,1,2,4,5,7,8
5 3 4 %)
7 4 3
11 1 —-2,2,3
13 4 —-1,4
19 2 0,5
29 2 0
31 1 —-2,2,3,8
7 13 2 0
29 1 -2,2,5
1 23 1 %)
43 2 0
13 5 4 %)
61 11 4 %)

Table2 More cases where there is a character x of order £ over IF, such that L(x, u) = (1 + p2u)

4 p np Lx,u)=14apu +pu2
13 103 2 0
17 67 2 0
101 2 0
19 37 2 0
31 61 2 0
37 73 2 0

For the cases (¢, p) = (17, 67) and (19, 37), we considered all characters in the thin family, and we did not find any other
cases where L(x, u) = L(Eo, u) except for L(Eo, u) = (1 + p*u). For the other cases, we stopped after finding x such that
L(x, u) = (1 + p*u), and we did not find any other £L(Eo, «) up to that point

Of course, it would be interesting to prove some criteria which guarantees the existence
of a character of degree £ over I, such that £(Eo, u) divides L(), ). From the data, we
are led to believe that this could always be the case when n, = 2 and L(Eo, u) =1 + pu?,
corresponding to the isogeny class of supersingular elliptic curves over IF,, but we currently
do not have a proof. We present further evidence for larger values of £ in Table 2. Since this
becomes more time-consuming, we only consider a thin family of the characters of order
£, where a; = 1 for all j in (5.2). In some cases ((¢, p) = (13,103), (17, 101), (31, 61), and
(37,73)), we did not go over all characters in the thin family, we stopped after we found
L(x, u) = (1 + pu?), so there might be other characters where £(x, u) = (1 + apu + pu?).
In summary, the following is true for all the cases that we tested: for every ¢, p such that
n, = 2, there exists a character x of order £ over F,, such that L(x, u) =1 + pu.

Remark 5.1 Thereisalarge amount of work in the literature on Newton polygons of cyclic
covers of P!, in particular on the existence of supersingular and superspecial curves. See for
example, [24—-26]. But the existence of the curves we present in this paper does not follow
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from previous work. In fact, the existence of supersingular curves in families of cyclic
covers which ramify at 4 points with growing degree ¢ is surprising from a dimension
counting perspective. More surprisingly, these curves are defined over the prime field I,

5.3 Vanishing of twists of non-constant curves: numerical data
We now present data for the vanishing of L(E, x, p~'), where y varies over charac-
ters of order ¢ over the finite field F, for some prime p, and where E is a non-
constant curve. We used the Legendre curve E; : > = x(x — 1)(x — ¢) and the curve
Ey:9? = (x — 1)(x — 262 — 1)(x — £2).

We remark that £ has conductor N = ¢(¢ — 1)P2,, discriminant A; = 16¢2(¢ — 1), and
j-invariant j; = %

at Poo. Since deg(N1) = 4, we conclude that £(E;, u) = 1. Since the algebraic rank is

. Thus, it is smooth and non-constant and has bad reduction

bounded by the analytic rank (see [37]) and this last one equals 0, we conclude that E; has
(algebraic) rank 0 over IF,(z).
Similarly, E; has conductor Ny = t(t — 1)(t + 1)(t> + 1), discriminant
.. . . 28(t44+1)3 .
Ay = 64t*(t — 1)%(t + 1)*(¢> + 1)%, and j-invariant j, = t4(t—11§2(t(—t|—1-;_21()tz+1)2' Thus, it
is smooth and non-constant and has good reduction at P. Since deg(N2) = 5, we have

L(Ey, u) = 1 £ pu, and the rank of E; over F,(¢) is at most 1. Let i be a primitive four root
of unity in IF,, and consider the point

P=(1+)2+ @A+t +1,(=1+it(t + 1)t — i)

in E3(K), where K = F,(¢)(i). One can see that the Néron—Tate height of P is positive,
and therefore P has infinite order (see the book of Shioda and Schiitt [34] for a general
reference). As before, we use that the algebraic rank is bounded by the analytic rank [37].
Ifp =1 mod 4, then K = [F,(t), and we conclude that E; has (algebraic) rank exactly 1
over I (¢). Therefore L(Ep, u) = 1 —pu.lfp =3 mod 4, then K = F»(¢), and K /F(¢) is
a quadratic constant field extension. Therefore L(E /K, u) = 1—p®u, since deg Ng —4 = 1.
We also have

L(Ez/K, u*) = L(Ep, u)L(—Ey, u), (5.3)
where
—Ey:—y? = (x — D(x — 2t> — 1)(x — £3).

We remark that we have £(Ey, u2) and not £(E», u) in (5.3) because K /Fp(t) is a constant
field extension (see [33, Chap. 8] for more details). When p = 3 mod 4, the point 2P =
(#2 4+ 1, it?) defined over F pz(t) yields a (non-torsion) point P = (¢2 + 1, t2) defined over
F,(t) on —Ej;. Thus the algebraic rank of —E; over F,(¢) is 1 and L(—Ep, u) = 1 — pu.
Now (5.3) implies that L(Ey, ) = 1 4 pu. In conclusion, we have that

1—pu if =1 mod 4,

LEwy=1 PP
14+pu if p=3mod4
We present in Tables 3, 4, and 5 our results for twists of the Legendre curve with

characters of order 3, 5, and 7 respectively, and various ground fields F,(¢). For the curve
given by y2 = (x — 1)(x — 2¢2 — 1)(x — £2), we present in Tables 7, 8, and 9 our results for
twists of this curve with characters of order 3, 5, and 7 respectively, and various ground
fields IF,,(£). We have also tested higher order twists (¢ = 11,13 for E; and £ = 11,31,71
for Ey) but without finding any vanishing. This data is presented in Tables 6 and 10.
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Table 3 Twists of order 3 for the Legendre curve

Twist order p Np deg conductor d Rank 0 Rank 1 Rank 2
3 5 2 2 6 4 0
4 205 32 3
6 5784 260 16
8 302,640 116 4
7 1 1 5 0
2 37 0
3 324 37 1
4 2935 73 0

Table 4 Twists of order 5 for the Legendre curve

Twist order p Np deg conductor d Rank 0 Rank 1
5 7 4 4 585 3
11 1 1 9 0
2 199 0
3 3759 5
4 65,143 11
19 2 2 170 1

Table 5 Twists of order 7 for the Legendre curve

Twist order p np deg conductor d Rank 0
7 5 6 6 2580
M 3 440
13 2 2 78
4 25,116
23 3 3 4048
29 1 1 27
2 2512
3 179,192
41 2 2 820
197 1 1 195
337 1 1 335
379 1 1 377

We have found no instances of vanishing in this case

Table 6 Twists of order 11 and 13 for the Legendre curve

Twist order p Np deg conductor d Rank 0
1 5 5 5 624
23 1 1 21
43 2 2 903
67 1 1 65
89 1 1 87
13 5 4 4 150
29 3 3 8120
53 1 1 51
2 16,678

We have found no instances of vanishing in this case



A. Comeau-Lapointe et al. Res. Number Theory (2022) 8:76

Table7 Twists of order 3 for the curve y? = (x — 1)(x — 2t> — 1)(x — t?)
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Twist order p Np deg conductor d Rank 0 Rank 1 Rank 2 Rank 3

3 5 2 2 8 2 0 0

4 214 26 0 0

6 5780 280 0 0

8 149,222 2136 20 2

7 1 1 4 0 0 0

2 30 2 0 0

3 264 22 2 0

4 2299 49 4 0

5 18670 240 2 0

6 148,537 1343 32 0

11 2 2 53 0 1 0

13 1 1 8 0 0 0

2 122 12 0 0

3 2140 56 4 0

17 2 2 116 20 0 0

19 1 1 14 2 0 0

2 380 28 2 0

23 2 2 244 6 2 0

29 2 2 364 42 0 0

31 1 1 26 2 0 0

2 1190 24 6 0

103 1 1 100 0 0

109 1 1 104 0 0

151 1 1 146 0 0

Table8 Twists of order 5 for the curve y? = (x — 1)(x — 2t2 — 1)(x — t?)

Twist order p Np deg conductor d Rank 0 Rank 1 Rank 2

5 7 4 4 587 0 1

M 1 1 8 0 0

2 166 0 0

3 3064 0 0

19 2 2 170 0 0

29 2 2 388 18 0

31 1 1 28 0 0

2 1975 0 1

41 1 1 36 0 0

101 1 1 96 0 0

131 1 1 128 0 0

Each table has the same format: the first three columns are the values of £, p and r, and

the fourth column is the degree d of the conductors of the characters of order £ over F,(t)

considered (then, 7, always divides d). The L-functions L(E, x, u) are then computed for

all x of order £ over I, () with conductor of degree d, and they are classified according to

their analytic rank, which is defined as rank(x) = ran(E x) = ordu:qflll(E, X, u). Since

rank(x’) = rank(x/), we only count one power per character in our data. Then, the next

columns give the number of such x where the analytic rank is 0, or 1, or 2, ... The most

extensive computation that we did was for twists of order £ = 3 of the curve E; for

conductors of degree 8 over F5(t), where we needed to compute ap for primes of degree
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Table9 Twists of order 7 for the curve y? = (x — 1)(x — 2t> — 1)(x — t?)

Twist order p Np deg conductor d Rank 0 Rank 1
7 5 6 6 2560 20
Il 3 3 440 0
13 2 2 72 6
4 24,984 132
29 1 1 24 0
2 2046 16
41 2 2 800 20

Table 10 Twists of order 11,31, and 71 for the curve y? = (x — 1)(x — 2t2 — 1)(x — t2)

Twist order p Np deg conductor d Rank 0
1 5 5 5 624
23 1 1 20
2 2152
3 168,448
43 2 2 902
67 1 1 64
2 22,370
89 1 1 84
199 1 1 196
31 5 3 3 40
71 5 5 5 624

We have found no instances of vanishing in this case

< 8, which is the most involved part of computing the twisted L-functions L£(Es, x, u) for
characters with conductors of degree 8. This took approximately 20 days on an Intel(R)
Core(TM) i5-4300U CPU. This is also the only case where we found a twist of analytic
rank 3.

The data for the Legendre curve is very compatible with the conjectures of [10,28], as
we have found no instances of vanishing for any character of order 7 or higher. For the
curve E;, we have found many instances of vanishing for characters of order 7, but none
for characters of higher order.
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