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Abstract

Given a genus 2 curve C with a rational Weierstrass point defined over a number field,
we construct a family of genus 5 curves that realize descent by maximal unramified
abelian two-covers of C , and describe explicit models of the isogeny classes of their
Jacobians as restrictions of scalars of elliptic curves. All the constructions of this paper
are accompanied by explicit formulas and implemented in Magma and/or SageMath.
We apply these algorithms in combination with elliptic Chabauty to a dataset of 7692
genus 2 quintic curves overQ of Mordell–Weil rank 2 or 3 whose sets of rational points
have not previously been provably computed. We analyze how often this method
succeeds in computing the set of rational points and what obstacles lead it to fail in
some cases.
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1 Introduction
Let C be a nice (smooth, projective, geometrically integral) curve over a number field k .
A central problem in arithmetic geometry is to determine the set of rational points C(k).
When C is of genus at least two, by Faltings’ theorem, C(k) is a finite set [13,14]; however,
no general algorithm for provably computing C(k) is currently known. (See [30] for an
overview.)
One common strategy for computing C(k) is descent, which involves finding a family of

curvesDδ (with δ ranging over some computable finite set) together with maps ϕδ : Dδ →
C with the property that C(k) ⊆ ⋃

δ ϕδ(Dδ(k)). In many cases, one can construct such
families so that the covering curves Dδ are amenable to other techniques for determining
the set of rational points that might not apply directly to C .
In this paper, we make explicit a particular descent construction for curves of genus

two with a rational Weierstrass point. All the constructions involved are implemented in
Magma [4] and/or SageMath [32]; source code is available online at [22]. We then apply
these algorithms to all 7692 genus 2 curves over Q with a rational Weierstrass point and
Mordell–Weil rank 2 or 3 in the database of genus 2 genus computed by Booker, Sijsling,
Sutherland, Voight, and Yasaki [3] (available at [25]) and analyze the results.
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The general strategy is inspired by prior work of Bruin, Flynn, Stoll, and Wetherell
computing rational points on curves using explicit descent constructions; see, for example,
[6,8,16,17]. The constructions of this paper are closely related to those of Bruin and Stoll
[9] for two-cover descent on arbitrary hyperelliptic curves C : y2 = f (x); we construct
genus 5 quotients of their two-covering curves alongwith explicit formulas (as a restriction
of scalars of an elliptic curve) for a model of the isogeny class of the Jacobian of these
quotients. The elliptic curves constructed in this way are isomorphic to those arising from
degree four factors of f as discussed in [9, Sect. 8].
From now on, suppose C is of genus 2 and has a k-rational Weierstrass point. Then

C has an affine model given by an equation y2 = f (x), where f has degree exactly 6, is
squarefree, and has a rational root α. Thus, elements of C(k) correspond to solutions in
k to the equation y2 = f (x), with the possible addition of two rational points at infinity
that are excluded from the affine model. (More precisely, C has two points at infinity, and
these points are rational if and only if the leading coefficient of f is a square in k .)
Let J = Jac(C) be the Jacobian variety of C . This is an abelian surface whose points

correspond to degree zero divisors on C modulo linear equivalence. Embed C in J by
the Abel–Jacobi map P �→ (P) − ((α, 0)) associated to the given Weierstrass point (α, 0).
Since the chosen base point is a Weierstrass point, multiplication by −1 on J induces the
hyperelliptic involution i : C → C .
A natural 16-covering of C is given by pullback along [2] : J → J , where [2] is multipli-

cation by 2 in J : LetW = [2]−1(C). Then [2] : W → C is a degree 16 étale covering, so by
the Riemann–Hurwitz formula [20, Ch. IV, Cor. 2.4], the curveW has genus 17. In order
to compute C(k) via descent using this covering, we would need to do the following:

1. compute a finite set of twists ϕδ : Wδ → C such that C(k) ⊆ ⋃
δ ϕδ(Wδ(k)); and

2. computeWδ(k) for each twistWδ .

To make the computations more tractable, it is useful to work instead with a suitable
quotient of W . Since multiplication by −1 on J induces the hyperelliptic involution on
C , we can lift the hyperelliptic involution to an involution on W . Let Z be the quotient
of W by this involution. The map W → Z is ramified exactly at the 2-torsion points of
J , of which there are 16, so Z has genus 5 by the Riemann–Hurwitz formula. (Another
model for this curve can be constructed using the methods of [6, Sect. 3.1]; we choose this
approach to emphasize the connection with Kummer surfaces.)
Thepurpose of this paper is to give explicit, computationally tractable formulas forZ and

its Jacobian (and their twists), alongwith the associatedmaps realizing the correspondence
with C ; to apply these constructions in combination with the elliptic Chabauty method
to the aforementioned large dataset of curves; and to determine what the obstructions
are in the cases where it does not succeed. The key ingredient is to embed (twists of)
Z in (twists of) the desingularized Kummer surface of J . Our primary references for the
requisite explicit descriptions of Kummer surfaces and their twists are [10,15].
In Sect. 2, we provide the necessary background on desingularized twisted Kummer

surfaces, construct the canonical embedding of Z and its twists as hyperplane sections of
these surfaces, and describe the primes of bad reduction. In Sect. 3, we prove an explicit
formula for the twisted duplicationmap and describe its ramification divisor. In Sect. 4, we
construct a map to a genus one curve through which the twisted duplication map factors,
which supplies the necessary data to apply the elliptic Chabauty method [7]; we also use
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this to give an explicit model for the Jacobian of Z up to isogeny. In Sect. 5, we report
on the results of applying this method to the aforementioned dataset of 7692 curves; the
method succeeds for 1045 of these curves, and we analyze the obstacles encountered for
the remaining curves. Finally, in Sect. 6, we analyze the method and results in detail for
several examples.

2 Genus 5 curves in twisted Kummer surfaces
Let k be a field not of characteristic 2. Let C : y2 = f (x) be a genus 2 curve over k with
deg(f ) = 6 such that C has a k-rational Weierstrass point (α, 0). (Although such a curve
does have a quintic model over k , we work with sextic models in order to use the explicit
description of desingularized twisted Kummer surfaces outlined below.) Let i : C → P1

be the canonical map. Let f0, f1, . . . , f6 ∈ k and γ1, γ2, . . . , γ6 ∈ k such that

f (x) =
6∑

i=0
fixi = (x − α)(γ1 + γ2x + · · · + γ6x5).

Let J be the Jacobian variety of C . Let L = k[X]/〈f (X)〉, and let δ = ∑5
i=0 diXi ∈ L∗

be arbitrary. When k is a global or local field, Flynn, Testa, and van Luijk [15, Sect. 7]
construct a twist πδ : Aδ → J of the multiplication-by-2 map [2] : J → J , depending up to
isomorphism only on the class of δ in L∗/L∗2k∗, whose class inH1(k, J [2]) maps to δ under
the Cassels map μ : J (k)/2J (k) → L∗/L∗2k∗. They also show that every two-covering of J
that has a k-rational point arises in this way [15, Prop. 2.15], and so if� ⊆ L∗ is any subset
whose image in L∗/L∗2k∗ contains the image of the Cassels map μ, we have

J (k) =
⋃

δ∈�

πδ(Aδ(k)).

Each surface Aδ is equipped with a natural involution ιδ : Aδ → Aδ lifting [−1] : J → J .
The (twisted) Kummer surfaces Kδ = Aδ/〈ιδ〉 have 16 simple nodes. For computational
purposes, it turns out to bemore convenient toworkwith theirminimal desingularizations
Yδ . Let pδ : Aδ ��� Yδ be the rational quotient map. Let Wδ = π−1

δ (C), where we embed
C in J by the Abel–Jacobi map P �→ (P)− ((α, 0)). By the Riemann–Hurwitz formula,Wδ

has genus 17. Let

Zδ = pδ(Wδ),

and let

π̄δ : Zδ → P1

be the map defined by sending a general point Q ∈ Zδ to i(πδ(Q̃)), where Q̃ ∈ Aδ is such
that pδ(Q̃) = Q. (Since C is embedded in J via an Abel–Jacobi map whose base point is a
Weierstrass point, the hyperelliptic involution onC lifts to ιδ onAδ , so this iswell-defined.)
Thus Zδ fits into a commutative diagram

Wδ

pδ πδ

Zδ

π̄δ

C
i

P1

Aδ

pδ πδ

Yδ

π̄δ

J

K

(2.1)
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where each curve in the left diagram embeds into the corresponding surface in the right
diagram, and K = J/[−1] is the Kummer surface of J .
We reproduce here the model of Yδ constructed in [15, Sect. 4] as the complete inter-

section of three quadrics in P5 = P(L) (recall that L = k[X]/〈f (X)〉), which we have
implemented in both SageMath and Magma.

Definition 2.1 Write f (X) = ∑6
i=0 fiXi and δ = ∑5

i=0 diXi ∈ L. Let

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 −f0f −1
6

1 0 0 0 0 −f1f −1
6

0 1 0 0 0 −f2f −1
6

0 0 1 0 0 −f3f −1
6

0 0 0 1 0 −f4f −1
6

0 0 0 0 1 −f5f −1
6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 f2 f3 f4 f5 f6
f2 f3 f4 f5 f6 0
f3 f4 f5 f6 0 0
f4 f5 f6 0 0 0
f5 f6 0 0 0 0
f6 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let g1, . . . , g6 be the basis of L defined by

g1 = f1 + f2X + f3X2 + f4X3 + f5X4 + f6X5,

g2 = f2 + f3X + f4X2 + f5X3 + f6X4 ,

g3 = f3 + f4X + f5X2 + f6X3,

g4 = f4 + f5X + f6X2,

g5 = f5 + f6X,

g6 = f6,

and let v1, . . . , v6 be the dual basis of L̂. For j ≥ 0, let Q(δ)
j be the quadratic form corre-

sponding to the symmetric matrix
∑5

i=0 f6diRi+jT in the basis v1, . . . , v6. Let Yδ ⊂ P(L)
be defined by

Q(δ)
0 = Q(δ)

1 = Q(δ)
2 = 0.

Flynn, Testa, and van Luijk show that Yδ is indeed the minimal desingularization of Kδ

[15, Sect. 7].

Theorem 2.2 Let evα : L → k be the homomorphism defined by evα(ξ ) = ξ (α). The curve
Zδ is the intersection of Yδ with the hyperplane P(ker(evα)) ⊂ P(L), which is given in
coordinates by

γ1v1 + γ2v2 + γ3v3 + γ4v4 + γ5v5 + γ6v6 = 0,

where as above, γ1, . . . , γ6 are the coefficients of f (x)/(x − α).

Proof Note that evα is well-defined since f (α) = 0. The first step is to understand how
the base P1 embeds into K. Recall that a trope of a quartic surface K ⊂ P3 is a tangent
plane that intersects the surface at a conic (with multiplicity two). A Kummer surface has
exactly 16 tropes, which are the projective duals of the 16 nodes [10, Sect. 3.7] [23, Sects.
8–9].
The description of six of the tropes of the Kummer surface given in [10, Sect. 7.6] shows

that the image of P1 in K corresponding to the Abel–Jacobi map with base point (α, 0) is
contained in the trope Tα with equation α2κ1 − ακ2 + κ3 = 0, where κ1, κ2, κ3, κ4 are the
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coordinates of the usual embedding of K as a quartic surface in P3 (as described in [10,
Sect. 3.1], using the letters ξi instead of κi). (Strictly speaking, Tα intersectsK in twice the
conic corresponding to the base P1; we also denote this conic by Tα .)
Instead of constructing Zδ as the quotient of a genus 17 curve embedded in J , we

compute Zδ using maps between the twisted Kummer surfaces. The preimage of Tα

under the map π̄δ : Yδ → K also contains some exceptional divisors, which we wish to
omit when constructing Zδ , so we instead consider the condition for a general element of
Yδ to map to Tα via the map π̄δ .
Let P ∈ Yδ be an arbitrary point not contained in the locus of indeterminacy of the

rational map pδ : Aδ ��� Yδ . Let ξ ∈ L be an arbitrary lift of P from P(L) to L. We will
show that π̄δ(P) ∈ Tα if and only if ξ (α) = 0.
We first treat the untwisted case δ = 1. Let D = ((x1, y1)) + ((x2, y2)) − KC such that

p1([D]) = [±D] = P. As explained in the paragraph preceding [15, Prop. 4.11], the x-
coordinates of the points R1 and R2 such that 2D ∼ R1 + R2 − KC are the roots of the
quadratic polynomial H (X) corresponding to ξ2. (This does not depend on the choice of
lift ξ ∈ L since choosing a different lift multiplies H by an element of k∗, which does not
change the roots.) The condition that ±2D is contained in Tα is exactly that one of the
x-coordinates of R1 and R2 is α, i.e., that α is a root of H , or equivalently, that ξ2(α) = 0,
which is the case if and only if ξ (α) = 0.
Nowwehandle the twisted case. LetD = ((x1, y1))+((x2, y2))−KC such thatpδ([D]) = P.

Let ks be a separable closure of k , let Ls = L ⊗k ks, and let ε ∈ Ls such that ε2 = δ. Then
δξ2 = (εξ )2, so εξ ∈ Y1. Let D′ ∈ J such that the image of D′ in Y1 is εξ . By [15, Sect. 7],
we have π̄δ = [2] ◦ g , where g is defined by multiplication by ε in L. So

π̄δ(ξ ) = π̄δ(g−1(εξ )) = [2](εξ ),

and lifting to the Jacobian, the divisor class corresponding to π̄δ(ξ ) is equal to [2D′], i.e.,
πδ([D]) = [2D′]. As in the previous paragraph, the roots r1, r2 of the quadratic polynomial
H such that δξ2 ≡ H (mod f ) are the x-coordinates of points R1, R2 ∈ C such that
(R1) + (R2) − KC ∼ 2D′. Thus, π̄δ(P) ∈ Tα if and only if α is a root of H , which is
equivalent to δ(α)ξ2(α) = 0. Since δ ∈ L∗, we have δ(α) �= 0, so this is equivalent to
ξ (α) = 0.
Represent ξ in the basis g1, . . . , g6 as ξ = ∑6

i=1 vi(ξ )gi. Then

ξ (α) =
6∑

i=1
gi(α)vi(ξ ),

so in the basis v1, . . . , v6, the condition ξ (α) = 0 becomes

g1(α)v1 + g2(α)v2 + g3(α)v3 + g4(α)v4 + g5(α)v5 + g6(α)v6 = 0.

It follows immediately from the definitions of g1, . . . , g6 that

f (x) = (x − α)(g1(α) + g2(α)x + g3(α)x2 + g4(α)x3 + g5(α)x4 + g6(α)x5),

i.e., γi = gi(α) for each i ∈ {1, . . . , 6}, so Zδ is in fact the hyperplane section of Yδ whose
coefficients in the basis v1, . . . , v6 are the coefficients of the polynomial f (x)/(x − α). ��

Proposition 2.3 The curve Zδ is smooth, has genus 5, and is canonically embedded in
P(ker(evα)) ∼= P4 .
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Proof Let qδ : Aδ → Kδ be the quotient map. The ramification divisor of qδ is π−1
δ (0). At

each point P ∈ π−1
δ (0), since qδ has degree 2, the point qδ(P) is either nonsingular or a

simple node. ThemapYδ → Kδ is given by blowing up at qδ(π−1
δ (0)), which desingularizes

any simple nodes, so Zδ (being the proper transform of qδ(Wδ)) is smooth.
By Theorem 2.2, the curve Zδ is a complete intersection of three quadrics in P4, so Zδ is

a canonical curve of genus 5 (cf. [20, Ch. IV, Ex. 5.5.3]). ��

Proposition 2.4 Suppose that k is a local field with residue field Fq, and that C/k has
good reduction. If q is odd, then Zδ also has good reduction.

Proof Write q = pn, where p is an odd prime. By [19, Exposé X, Cor. 3.9], specialization
to Fq induces an isomorphism between the prime-to-p parts of the étale fundamental
groups of C and the special fiber C̄/Fq . Thus Wδ , being a degree 16 étale cover of C ,
also has good reduction. Euler characteristic (and hence also arithmetic genus) are locally
constant in proper flat families [28, Sect. 5, Cor. 1], so Proposition 2.3 implies that the
special fiber Z̄δ/Fq has arithmetic genus 5, hence geometric genus at most 5. Since p is
odd, the quotient map W̄δ → Z̄δ is tamely ramified, so the Riemann–Hurwitz formula
implies that Z̄δ has geometric genus exactly 5 and thus is smooth over Fq . ��

3 The twisted duplicationmap
In this section, we give explicit formulas for the map π̄δ : Zδ → P1 induced by the twisted
duplication map. We also give an explicit description of the ramification divisor of this
map.

Theorem 3.1 For all P ∈ Zδ , we have

π̄δ(P) =
(
−(f5 + f6α)Q(δ)

3 (P) − f6Q(δ)
4 (P) : f6Q(δ)

3 (P)
)

∈ P1.

Proof As in [15, Sect. 4], let C (δ)
0 , . . . , C (δ)

5 ∈ Sym2(L̂) be quadratic forms such that
C (δ)
j (z) = pj(δz2) for z ∈ L, where pj gives the coefficient of Xj . We have

f6 ·
(
C (δ)
0 C (δ)

1 . . . C (δ)
5

)
=

(
Q(δ)
0 Q(δ)

1 . . . Q(δ)
5

)
· T,

where T is the matrix defined in Definition 2.1, so that in particular

f6C (δ)
1 = f2Q(δ)

0 + f3Q(δ)
1 + f4Q(δ)

2 + f5Q(δ)
3 + f6Q(δ)

4 ,

f6C (δ)
2 = f3Q(δ)

0 + f4Q(δ)
1 + f5Q(δ)

2 + f6Q(δ)
3 .

Thus, taking into account that Q(δ)
j vanishes on Yδ for j ∈ {0, 1, 2}, we have

(−(f5 + f6α)Q(δ)
3 (P) − f6Q(δ)

4 (P) : f6Q(δ)
3 (P)) = (−C (δ)

1 (P) − αC (δ)
2 (P) : C (δ)

2 (P)).

Moreover, C (δ)
3 = C (δ)

4 = C (δ)
5 = 0 on Yδ .

Let ξ ∈ L be a lift of P ∈ Zδ ⊂ P(L). By construction of Yδ , we have

δξ2 ≡ C (δ)
2 (ξ )X2 + C (δ)

1 (ξ )X + C (δ)
0 (ξ ) (mod f ).

As explained in the proof of Theorem 2.2, the roots of this quadratic polynomial are the x-
coordinates of points of the divisor in J corresponding to π̄δ(P). Moreover, since P ∈ Zδ ,
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one of these roots is α. Thus, in the affine patch where the second coordinate of P1 is
nonzero, writing π̄δ(P) = (r : 1), we have

C (δ)
2 (ξ )X2 + C (δ)

1 (ξ )X + C (δ)
0 (ξ ) = c(X − α)(X − r)

for some nonzero c ∈ ks. Comparing coefficients, we obtain C (δ)
2 (ξ ) = c and C (δ)

1 (ξ ) =
−c(α + r), so

r = −C (δ)
1 (ξ ) − αC (δ)

2 (ξ )
C (δ)
2 (ξ )

.

This gives the desired formula for π̄δ(P). Finally, we have π̄δ(P) = (1 : 0) if and only if
C (δ)
2 (ξ ) = 0, completing the proof. ��

Theorem 3.2 Let � ⊂ ks be the set of roots of f . The branch locus of π̄δ : Zδ → P1 is
� \ {α}. For each ω ∈ � \ {α}, we have

π̄−1
δ (ω) = Zδ ∩ P(ker(evω)) ⊂ P(L),

which consists of 8 geometric points, each of ramification index 2.

Proof Observe that πδ : Wδ → C is étale, the branch locus of i : C → P1 is �, and the
branch locus of pδ : Wδ → Zδ is π̄−1

δ (α), with all ramification indices in the preimage of
the branch locus equal to 2. Thus, commutativity of diagram (2.1) implies that the branch
locus of π̄δ is�\{α}, and for eachω ∈ �\{α}, the preimage π̄−1

δ (ω) consists of 8 geometric
points of ramification index 2.
The remaining claim that π̄−1

δ (ω) is the hyperplane section of Zδ given by intersection
with P(ker(evω)) follows from the description of π̄δ given in the proofs of Theorems 2.2
and 3.1: For ξ ∈ L lifting a point P ∈ Zδ , we have π̄δ(P) = (ω : 1) if and only if the
quadratic polynomial defining δξ2 has roots α and ω, which is equivalent to the condition
ξ (α) = ξ (ω) = 0, i.e., P is in the kernel of both the evaluation maps evα (which defines Zδ

as a hyperplane section of Yδ) and evω, as was to be shown. ��

4 Maps to genus one curves
We now construct a map to a genus one curve through which the twisted duplication
map factors, and prove that this map induces an isogeny from the Jacobian of Zδ to the
restriction of scalars of the Jacobian of this genus one curve. These genus one curves are
geometrically Prym varieties [2, Ch. 12] associated to double coverings of C . This is a
substantial motivation for the constructions of this paper, since a restriction of scalars of
an elliptic curve is much more computationally accessible than a general Jacobian variety
of the same dimension.

Theorem 4.1 LetK = k(ω), whereω ∈ ks is a root of f andω �= α.Write f (x) = (x−α)(x−
ω)h(x), let H (x, z) be the homogenization of h(x)with respect to z, and let β1,β2,β3,β4 ∈ ks

be the roots of h. Let Yα,ω = evβ1 · evβ2 · evβ3 · evβ4 , where evβj = ∑6
i=1 gi(βj)vi is given by

evaluation at βj . (Note that Yα,ω is a quartic form over K .)
Define a curve Dδ,ω ⊂ P(1, 2, 1) in weighted projective space by the equation

Yα,ω(δ)y2 = h(α)H (x, z).
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Define a map ϕ : Zδ → P(1, 2, 1) over K by

ϕ(P) =
(
−(f5 + f6α)Q(δ)

3 (P) − f6Q(δ)
4 (P) : f 36 Yα,ω(P) : f6Q(δ)

3 (P)
)
.

Then the image of ϕ is Dδ,ω , and the following diagram commutes:

Zδ

ϕ

π̄δ

Dδ,ω

x

P1

Proof Since evβj is a ring homomorphism for each j, the quartic formYα,ω ismultiplicative
with respect to L, i.e.,Yα,ω(ξη) = Yα,ω(ξ )Yα,ω(η) for all ξ , η ∈ L. As proved in Theorem 3.1,
for all ξ ∈ Ls lifting a point P ∈ Zδ(ks), we have

f6δξ2 = (X − α)
(
f6Q(δ)

3 (ξ )X + (f5 + f6α)Q(δ)
3 (ξ ) + f6Q(δ)

4 (ξ )
)
.

Putting these together, we obtain

Yα,ω(δ)(f 36 Yα,ω(ξ ))2 = f 66 Yα,ω(δξ2) = f 26 Yα,ω(f6δξ2)

= f6
4∏

j=1
(βj − α) · f6

4∏

j=1

(
f6Q(δ)

3 (ξ )βj + (f5 + f6α)Q(δ)
3 (ξ ) + f6Q(δ)

4 (ξ )
)

= h(α)H (−(f5 + f6α)Q(δ)
3 (ξ ) − f6Q(δ)

4 (ξ ), f6Q(δ)
3 (ξ )).

Thus ϕ(Zδ) ⊆ Dδ,ω. Sinceϕ is non-constant andDδ,ω is an irreducible curve, ϕ(Zδ) = Dδ,ω.
Commutativity of the diagram is immediate from the formulas. ��
Remark 4.2 Theorem 3.2 gives another perspective on Theorem 4.1 in terms of divisors:
Denote ϕ = (ϕx : ϕy : ϕz). By Theorem 3.2, for each root β of h,

π̄∗
δ ((β) − (∞)) = div(ev2β /ϕz).

Consider the rational functions R = ϕx/ϕz and S = ϕy/ϕ2
z . Then

div(h ◦ R) = π̄∗
δ (div(h)) = π̄∗

δ ((β1) + (β2) + (β3) + (β4) − 4(∞)) = div(S2).

So S2 is a scalar multiple of h ◦ R; comparing their values at any point outside the divisor
of zeroes and poles yields Theorem 4.1. (This is how the author initially discovered the
formulas.)

Remark 4.3 If Dδ,ω(K ) is empty, then so is Zδ(K ). If Dδ,ω(K ) is nonempty, then Dδ,ω
is isomorphic to an elliptic curve Eδ = Jac(Dδ,ω) over K . In the latter case, if k = Q,
then Theorem 4.1 provides exactly the requisite data to compute Zδ(Q) using the elliptic
Chabauty method, provided that we can compute generators for theMordell–Weil group
Eδ(K ) and that the rank of Eδ(K ) is less than [K : Q].
One canfindanupper boundon the rankofEδ(K ) by computing the2-Selmer group (and

this is themethodwe use in the examples of the next section). This requires computing the
class group of K [x]/〈ηδ(x)〉, where we write Eδ : y2 = ηδ(x). This is often computationally
expensive unless we assume Bach’s bound [1] on the norm of prime ideals needed to
generate the class group, which is conditional on the generalized Riemann hypothesis
(GRH). However, since varying δ only changes Dδ,ω by a quadratic twist, the elliptic
curves Eδ also only differ by a quadratic twist, so the quotient algebra K [x]/〈ηδ(x)〉 does
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not depend on δ. Thus, the expensive class group computation need only be carried out
once for the whole twist family, rather than for each twist individually.

We now relate the above genus one curves to the Jacobian of Zδ .

Theorem 4.4 Let g(x) = f (x)/(x − α), let B = k[w]/〈g(w)〉, let K1, . . . , Kr be fields over k
such that B ∼= K1×· · ·×Kr, and letωi be the image of w inKi for each i. LetDδ = ∐r

i=1 Dδ,ωi

be the curve from Theorem 4.1 considered as a curve over B, let ϕ : Zδ → Dδ be the
correspondingmorphism over B, and let Eδ = Jac(Dδ) = ∐r

i=1 Jac(Dδ,ωi ). Then the induced
k-morphism of abelian varieties

Jac(Zδ) → ResBk (Eδ) ∼=
r∏

i=1
ResKi

k (Jac(Dδ,ωi ))

is an isogeny.

Proof Our strategy is to consider universal families of curves and abelian varieties corre-
sponding to the above situation, observe that the properties of interest are deformation-
invariant, and deform the problem to a more computationally tractable case.
Let S = SpecA be the space parametrizing triples (g,α, δ) ∈ k[w]× k × k[X] such that g

is a monic squarefree quintic polynomial with g(α) �= 0, the degree of δ is at most 5, and δ

is invertible modulo (X −α) ·g(X). Let P ∈ A[w] be the generic monic quintic polynomial,
and let T = SpecA[w]/〈P(w)〉. LetZ → S andD → T be the relative curves whose fibers
above a point (g,α, δ) ∈ S are the genus 5 curve Zδ and the genus 1 curve Dδ , respectively,
that are associated to the twisting parameter δ for the hyperelliptic curve y2 = (x−α)g(x).
Let J → S be the relative Jacobian variety of Z , and let A = ResTS (Jac(D)), which exists
as a scheme since T → S is étale.
The formulas of Theorem 4.1 define a T -morphism Z ×S T → D, which induces a

homomorphism of abelian S-schemes � : J → A. By [29, Lemma 6.12], the homomor-
phismJ → �(J ) is flat. The kernel ker(�) is the fiber product of�with the unit section
S → A, so ker(�) is a flat proper S-group scheme since flatness and properness are pre-
served by base change. By [12, Exposé VIB, Cor. 4.3], since S is also connected, the fibers of
the map ker(�) → S all have the same dimension. Moreover, if ker(�) → S has relative
dimension zero, then ker(�) is a finite flat S-group scheme by [18, Thm. 8.11.1]. Thus, we
can compute the relative dimension of � on any fiber, and if � is an isogeny, we can also
compute its degree on any fiber.
Let g ∈ k[w] such that s := (g, 0, 1) ∈ S(k) and g splits completely over k . Let ω1, . . . ,ω5

be the roots of g . By functoriality of restriction of scalars,

As ∼= Resk
5

k (Jac(Ds)) ∼=
5∏

i=1
Ei,

where Ei is the Jacobian of the genus 1 curve defined by y2 = −ω−1
i g(0)g(x)/(x − ωi).

Furthermore, choose g so that the elliptic curves Ei are pairwise non-isogenous. (If no
such polynomial g is defined over k , it is harmless to extend scalars to a larger field, since
this preserves both dimension and degree.)
The composition of the map �s : Js → ∏5

i=1 Ei with any of the five projection maps
∏5

i=1 Ei → Ej is induced by the map ϕ of Theorem 4.1 (with ω = ωi), hence is surjective.
Thus, the image of�s contains an elliptic curve isogenous to Ej for each j. Since the Ej are
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Table 1 Outcomes of running the code on the dataset of 7692 genus 2 curves

Outcome Count Percent (%)

Success 1045 13.6

Apparent failure of Hasse principle 2120 27.6

Mordell–Weil rank too high 802 10.4

Unable to compute Mordell–Weil group 2271 29.5

Exceeded time or memory limits 1685 21.9

Miscellaneous error 19 0.2

pairwise non-isogenous, this implies that �s is surjective. Since dimJs = 5, this means
�s is an isogeny. ��

Remark 4.5 An analytic computation using Magma’s algorithms for period matrices of
Riemann surfaces shows that in characteristic zero, up to numerical error, Jac(Zδ) is
isogenous to ResBk (Eδ) via a degree 32 isogeny. The above proof shows that it suffices
to compute the degree for any one example, and we then apply the algorithms to the
example f (x) = ∏3

ω=−2(x−ω). Given big period matrices P1 and P2 of the corresponding
Riemann surfaces, the IsIsogenousPeriodMatrices function inMagma computes
matrices M ∈ M5(C) and N ∈ M10(Z) such that MP1 = P2N . This defines an isogeny of
degree det(N ) between the corresponding complex tori; we compute det(N ) = 32 for this
example.

5 Results
Using Magma v2.26-10 and SageMath 9.3 on Boston University’s Shared Computing
Cluster [5], a heterogeneous Linux-based computing cluster with approximately 21,000
cores, the above algorithms were applied to all 7692 genus 2 curves over Q in [3] that
have at least one rational Weierstrass point and Mordell–Weil rank at least 2. Each of
these curves has Mordell–Weil rank 2 or 3, so Chabauty’s method [11,26] is not directly
applicable. Table 1 summarizes the results.
By “apparent failure of the Hasse principle”, we mean that one of the genus 5 covering

curves Zδ is locally solvable, but a point search did not find any rational points on it. Note
that the counts add up to more than 7692 because multiple obstructions were found for
some curves—for example, a genus 5 curve might map to two different elliptic curves,
one of which has too high rank and the other for which Magma cannot compute the
Mordell–Weil group.
The raw data is publicly available on GitHub [21]. The data is in the format of a JSON

file for each curve, containing the results of the computation as well as the necessary data
to reproduce some of the intermediate steps. (This data includes, for example, coefficients
of all curves constructed, as well as coordinates of generators of anyMordell–Weil groups
computed.)
The computations ofMordell–Weil groups of Jacobians, and hence the results on ratio-

nal points on curves, are conditional on GRH. Additionally, since Magma’s implemen-
tation of elliptic curve arithmetic over p-adic fields is not fully numerically stable, we
cannot entirely rule out the possibility of an error in precision tracking that compromises
the correctness of the computation; however, such errors, even if theoretically possible,
are highly unlikely to occur in practice, as this would require unfortunate numerical coin-
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Fig. 1 Histogram of runtimes (in min) for the curves where the method succeeded in computing the set of
rational points

cidences at a high degree of precision. At such time as numerically stable p-adic elliptic
curve arithmetic is implemented inMagma, the computations could be re-run to rule out
this possibility.
The runtime and memory requirements seem hard to predict for any given curve, so a

time limit of several hours and a memory limit of 8 GB of RAM was set for each curve.
Processes that exceeded these limits were terminated. For curves where the computation
completed successfully, runtimes appeared to follow a long-tail distribution (Fig. 1); the
median runtime was 529 s, and the mean was 1145 s. For curves where a Mordell–Weil
group could not be provably computed (but without timing out) or was found to have too
high rank, the distribution of runtimes was similar: median 581 s and mean 1250 s.
Interestingly, while the success rate decreased for curves with larger discriminant, the

average runtimes in the cases where the method succeeded did not appear to significantly
increase with the discriminant. Rather, themajority of this decrease was due to an increase
in failures of the Hasse principle (see Fig. 2).
To reduce the computational resources required, the code was designed to terminate

for a given curve as soon as certain obstructions to the success of the computation were
detected. Hence, for example, Mordell–Weil groups were not computed when there is an
apparent failure of the Hasse principle, so the runtimes for such curves are typically much
shorter: a mean of 35 s, a median of 17 s, and only three such curves having a runtime
over 10 min.
We also make some observations about the number and height of points on the 4748

genus 5 curves Zδ associated to the 1045 genus 2 curves where the method succeeded.
The largest cardinality of Zδ(Q) observed was 6; the full distribution is shown in Table 2.
We can also analyze the maximum Hmax of the naive heights H (P) of points P ∈ Zδ(Q)

with Zδ associated to a genus 2 curve C as above. Among the same set of 1045 genus 2
curves, the median value of the largest coordinate was 16; the arithmetic and geometric
meanswere approximately 739.8 and 20.2, respectively, suggesting a long-tail distribution.
The statistic Hmax appears to increase gradually with the absolute discriminant � of C :
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Fig. 2 Portion of curves for which the method succeeded (blue) or encountered an apparent failure of the
Hasse principle (red), plotted against the discriminant of the curve (grouped into 10 bins of width 105)

Table 2 Distribution of cardinalities of Zδ (Q)

#Zδ (Q) Count Percent (%)

0 1136 23.9

1 1602 33.7

2 1531 32.2

3 326 6.9

4 128 2.7

5 18 0.4

6 7 0.1

Fig. 3 Log-log plot (base 10) of the absolute discriminant � (x-axis) versus the maximum naive height Hmax

of points in Zδ (Q) (y-axis)

a Pearson correlation test on a log-log plot yields a correlation coefficient of r ≈ 0.094
(p ≈ 0.0023); see Fig. 3.
Let us further note what sort of progress would be necessary to handle the remaining

cases:
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1. In cases where a curve Zδ is found to be locally solvable but no rational points can be
found, amethodof verifying failure of theHasse principle (such as an implementation
of the Mordell–Weil sieve for such curves) would be necessary to proceed.

2. If one of the elliptic curves has rank greater than or equal to the degree of its base field,
then Chabauty’s method cannot be applied. In some such cases, Kim’s non-abelian
generalization of Chabauty’s method [24] might be a promising approach.

3. If Magma is unable to provably compute theMordell–Weil group of an elliptic curve
over a number field within the allotted time, then either an unknown amount more
computation time or further advances in descent algorithms for elliptic curves over
number fields would be required.

4. In a small number of cases, either a local solvability test or elliptic Chabauty exceeded
the time or memory limits for unclear reasons.

5. In a handful of cases, Magma threw an exception that suggests a bug in the internal
codebase of Magma.

A few more computational remarks:

6. If we do not assume GRH, the bottleneck is provably computing the class group of
a degree 15 number field in order to bound the 2-Selmer rank of the elliptic curves,
and this rapidly becomes computationally infeasible as the discriminant grows. (We
do carry out the unconditional computation in the first example of the next section.)

7. When we assume GRH, most of the time is spent either on computing the Mordell–
Weil groups of the elliptic curves or on the elliptic Chabauty method.

8. We use a singular planar model of the curves to quickly test local solvability. Using
Proposition 2.4, we only need to check local solvability at the primes of bad reduction
ofC , primes p ≤ 97 (for which theHasse–Weil lower bound #Zδ(Fp) ≥ p+1−10√p
(cf. [27]) is non-positive), and the real place. For determining the existence of real
points, we use the algorithm of [31, Sect. 4].

6 Examples
Let us illustrate the results of the previous sections by examining several examples of
successes and failures in detail. The data for the examples in this section was generated
using the batch script paper-examples.sh in [22]; the raw data is available at [21] in
the “examples” folder.

Theorem 6.1 Let C be the genus 2 curve with LMFDB label 6443.a.6443.1, which
has minimal weighted projective equation

C : y2 + z3y = x5z − x4z2 − 2x3z3 + x2z4 + xz5.

The set of rational points C(Q) is

{(1 : 0 : 0), (0 : 0 : 1), (−1 : 0 : 1), (0 : −1 : 1), (1 : 0 : 1), (−1 : −1 : 1),

(1 : −1 : 1), (2 : 2 : 1), (2 : −3 : 1), (−3 : 6 : 4), (−3 : −70 : 4)}.

Proof The change of coordinates (x : y : z) �→ (z : 2y + z3 : x) yields the model

y2 = x6 + 4x5z + 4x4z2 − 8x3z3 − 4x2z4 + 4xz5,
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Table 3 Results for genus 2 curve 6443.a.6443.1

δ ELS Dδ,ω(K ) #Zδ (Q)

δ1 1 yes Z4 2

δ2 X2 + X − 1 yes Z3 3

δ3 X5 + 4X4 + 4X3 − 8X2 − 5X + 4 yes Z3 2

δ4 −X5 − 4X4 − 5X3 + 7X2 + 5X − 4 no (2) – 0

which has a rational Weierstrass point at (0 : 0 : 1). Let J be the Jacobian of C . Com-
puting the Mordell–Weil group J (Q) in Magma, we find it is free of rank 2, and applying
the Cassels map to representatives of each element of J (Q)/2J (Q), we obtain four twist
parameters δ1, δ2, δ3, δ4, each corresponding to a genus 5 curve Zδ as in Theorem 2.2.
We compute using Magma that Zδ4 is not locally solvable at 2, so Zδ4 (Q) = ∅. For each

i = 1, 2, 3, we can find a rational point on Zδi , so we obtain a map to an elliptic curve
Zδi → Ei over K = Q(ω) (where ω is a root of g), as in Theorem 4.1.
We then compute the Mordell–Weil group of each Ei and apply the elliptic Chabauty

method to provably compute the set of K -points of each Ei whose image under the given
map to P1 is rational. To make the computation more efficient, we first compute all four
Mordell–Weil groups under the assumption of GRH (which is only used to make class
group computations faster), and take note of the number field F whose class group we
need to compute, along with the conditionally proven value of its class number hF . By
Remark 4.3, the number field F and the class number hF do not depend on δ. Then we
compute hF unconditionally. The results are summarized in Table 3.
The “ELS” column indicates whether Zδ is everywhere locally solvable, and if not, gives

a prime p such that Zδ(Qp) = ∅. The number field whose class group is computed has
defining polynomial x15 −3x14 +15x13 −60x12 +267x11 −1337x10 +2375x9 −1676x8 +
2625x7 −4167x6 −2687x5 +10176x4 −4556x3 −2616x2 +1238x+406 overQ; this field
was verified in 24,177 s to have class number 2. The other parts of the computation took
1195 s in total.
Next, we apply the map π̄δ : Zδ → P1 to each point P ∈ Zδ(Q):

π̄1((0 : 0 : 0 : 0 : 1)) = 0, π̄δ2 ((22 : 13 : 8 : 2 : 2)) = −60/59,

π̄1((−1 : 0 : −1 : 0 : 2)) = 1/2, π̄δ3 ((1 : 0 : 0 : 0 : 0)) = ∞,

π̄δ2 ((2 : 1 : 1 : 0 : 2)) = 1, π̄δ3 ((3 : 2 : 2 : 0 : 4)) = −1.

π̄δ2 ((8 : 5 : 4 : 2 : 2)) = −4/3,

(Note: we view Zδ as embedded in P4 with coordinates v1, . . . , v5. Since γ6 = f6 �= 0, we
can always reconstruct v6 from this information using Theorem 2.2.) Inverting the change
of coordinates on C , we see that the set of possible x-coordinates of rational points of C is

{∞, 2, 1,−3/4,−59/60, 0,−1}.

The Weierstrass point lies above ∞, and there are two rational points above each of
2, 1,−3/4, 0,−1, accounting for all 11 known points in C(Q). The two points of C above
−59/60 are not rational. ��
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Table 4 Results for genus 2 curve 141991.b.141991.1

δ ELS Dδ,ω(K ) #Zδ (Q)

δ1 1 yes Z3 1

δ2 X2 − 1 yes Z 1

δ3 X5 + 2X4 + 7X3 − 5X2 − 8X + 4 yes Z3 2

δ4 −X5 − X4 − 8X3 + 5X2 + 8X − 4 yes Z3 2

δ5 X5 + 2X4 + 7X3 − 6X2 − 8X + 4 yes Z3 3

δ6 −5X5 − 7X4 − 27X3 + 23X2 + 28X − 16 no (2) – 0

δ7 4X5 + 8X4 + 27X3 − 23X2 − 28X + 16 no (2) – 0

δ8 −X5 − 2X4 − 8X3 + 6X2 + 8X − 4 no (2) – 0

Theorem 6.2 Let C be the genus 2 curve with LMFDB label 141991.b.141991.1,
which has minimal weighted projective equation

C : y2 + (x2z + xz2 + z3)y = x5z − 2x4z2 − 2x3z3 + x2z4.

Assuming GRH, the set of rational points C(Q) is

{(1 : 0 : 0), (0 : 0 : 1), (−1 : 0 : 1), (0 : −1 : 1), (−1 : −1 : 1), (1 : −1 : 1),

(1 : −2 : 1), (2 : −3 : 1), (2 : −4 : 1), (−1 : 6 : 4), (1 : 6 : 9), (3 : −22 : 4),

(−1 : −58 : 4), (3 : −126 : 4), (1 : −825 : 9)}.

Proof The proof strategy is the same as in the previous example. The change of coordi-
nates (x : y : z) �→ (z : 2y + x2z + xz2 + z3 : x) yields the model

y2 = x6 + 2x5z + 7x4z2 − 6x3z3 − 7x2z4 + 4xz5,

which has a rational Weierstrass point at (0 : 0 : 1). In this case, the Jacobian of C has
Mordell–Weil group Z3, so there are 8 twists to consider. Of these, three have no Q2-
points and hence no Q-points, and the rest all have a rational point of low height and are
amenable to elliptic Chabauty (with the upper bounds onMordell–Weil ranks conditional
on GRH). The results are summarized in Table 4.
The total computation time required was 894 s. The number field F whose class group

computation depends on GRH has defining polynomial x15 + 6x14 + 21x13 + 88x12 +
212x11+332x10+1198x9+3248x8+1626x7−8560x6−3892x5−68524x4−315439x3−
494742x2−69455x+384152 overQ, and the class number is 2 assuming the Bach bound.
Verifying this class number would remove the dependence on GRH.
We apply the map π̄δ to each point P ∈ Zδ(Q):

π̄1((0 : 0 : 0 : 0 : 1)) = 0, π̄δ4 ((207 : 82 : 124 : 46 : 106)) = 3361/3215,

π̄δ2 ((0 : −1 : 0 : −1 : 1)) = 1/2, π̄δ5 ((1 : 0 : 0 : 0 : 0)) = ∞,

π̄δ3 ((1 : 0 : 0 : 0 : 0)) = 1, π̄δ5 ((1 : 1 : 0 : 1 : 1)) = 4/3,

π̄δ3 ((−1 : 2 : 2 : 4 : 2)) = 9, π̄δ5 ((2 : 1 : 1 : 0 : 1)) = −4.

π̄δ4 ((3 : 4 : 4 : 4 : 4)) = −1,

Inverting the change of coordinates, the possible x-coordinates for rational points of C
are

{∞, 2, 1, 1/9,−1, 3215/3361, 0, 3/4,−1/4}.
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There is the rationalWeierstrass point above∞, no rational points above 3215/3361, and
two rational points above each of the others, yielding exactly the 15 known rational points.

��

Now we present a few examples illustrating obstacles the method can encounter.

Example 6.3 (Probable failure of the Hasse principle) Let C be the genus 2 curve with
LMFDB label 10681.a.117491.1, which has a sextic Weierstrass model

C : y2 = 121x6 − 308x5 + 276x4 − 92x3 + 4x.

We compute J (Q) ∼= Z2. One of the twist parameters we obtain by applying the Cassels
map to J (Q)/2J (Q) is δ = −X + 1. The corresponding genus 5 curve Zδ is locally solvable,
but the PointSearch function in Magma finds no points on Zδ with a bound of 106.
(These computations took 15 s in total.) Thus, we are unable to provably compute C(Q)
unless we can prove that Zδ(Q) is in fact empty.

Example 6.4 (Toohigh rank for ellipticChabauty) LetC be thegenus2 curvewithLMFDB
label 7403.a.7403.1, which has a sextic Weierstrass model

C : y2 = x6 + 4x5 − 4x4 − 8x3 + 4x2 + 4x.

We compute J (Q) ∼= Z2. One of the twist parameters we obtain by applying the Cassels
map to J (Q)/2J (Q) is δ = x5+4x4 −4x3−7x2+3x+4. The corresponding genus 5 curve
Zδ has three rational points of low height, one of which is (1 : 0 : 0 : 0 : 0), and using this
as a base point, we obtain a map Zδ → E defined over the quintic field K = Q(α) with
α5 + 4α4 − 4α3 − 8α2 + 4α + 4 = 0, where E is the elliptic curve given by

y2 = x3 + (2α + 4)x2 + (11α4 + 57α3 + 18α2 − 68α − 34)x

+ (36α4 + 179α3 + 63α2 − 211α − 115).

Magma computes that E(K ) is free of rank 5. Thus, we are unable to prove that the three
known rational points of Zδ are all of the rational points. These computations took 449 s
in total.

Example 6.5 (Unable to compute Mordell–Weil group) Let C be the genus 2 curve with
LMFDB label 7211.a.7211.1, which has a sextic Weierstrass model

C : y2 = x6 − 4x4 + 10x3 − 8x2 + 1.

We compute J (Q) ∼= Z2. One of the twist parameters we obtain by applying the Cassels
map to J (Q)/2J (Q) is δ = −4x5 −4x4 +11x3 −26x2 +3x+4. The corresponding genus 5
curveZδ has rational point (3 : −1 : −1 : −1 : 3), and using this as a base point, we obtain a
mapZδ → E defined over the quintic fieldK = Q(α) withα5+α4−3α3+7α2−α−1 = 0,
where E is the elliptic curve

y2 = x3 + (−9α4 − 13α3 + 21α2 − 54α − 18)x2

+ (73α4 + 110α3 − 163α2 + 428α + 144)x

+ (82336α4 + 124063α3 − 184134α2 + 483038α + 162465).
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Magma can compute that the rank of E(K ) is at most 1; however, Magma was unable
to either find any non-identity K -points on E or prove that no such points exist. Thus,
we are unable to prove that the list of known rational points of Zδ is complete. These
computations took 389 s in total.
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