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Abstract

Given a genus 2 curve C with a rational Weierstrass point defined over a number field,
we construct a family of genus 5 curves that realize descent by maximal unramified
abelian two-covers of C, and describe explicit models of the isogeny classes of their
Jacobians as restrictions of scalars of elliptic curves. All the constructions of this paper
are accompanied by explicit formulas and implemented in Magma and/or SageMath.
We apply these algorithms in combination with elliptic Chabauty to a dataset of 7692
genus 2 quintic curves over Q of Mordell-Weil rank 2 or 3 whose sets of rational points
have not previously been provably computed. We analyze how often this method
succeeds in computing the set of rational points and what obstacles lead it to fail in
some cases.
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1 Introduction

Let C be a nice (smooth, projective, geometrically integral) curve over a number field k.
A central problem in arithmetic geometry is to determine the set of rational points C(k).
When C is of genus at least two, by Faltings’ theorem, C(k) is a finite set [13,14]; however,
no general algorithm for provably computing C(k) is currently known. (See [30] for an
overview.)

One common strategy for computing C(k) is descent, which involves finding a family of
curves Ds (with § ranging over some computable finite set) together with maps ¢s5: Ds —
C with the property that C(k) € (J; ¢s(Ds(k)). In many cases, one can construct such
families so that the covering curves Ds are amenable to other techniques for determining
the set of rational points that might not apply directly to C.

In this paper, we make explicit a particular descent construction for curves of genus
two with a rational Weierstrass point. All the constructions involved are implemented in
Magma [4] and/or SageMath [32]; source code is available online at [22]. We then apply
these algorithms to all 7692 genus 2 curves over Q with a rational Weierstrass point and
Mordell-Weil rank 2 or 3 in the database of genus 2 genus computed by Booker, Sijsling,
Sutherland, Voight, and Yasaki [3] (available at [25]) and analyze the results.

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
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The general strategy is inspired by prior work of Bruin, Flynn, Stoll, and Wetherell
computing rational points on curves using explicit descent constructions; see, for example,
[6,8,16,17]. The constructions of this paper are closely related to those of Bruin and Stoll
[9] for two-cover descent on arbitrary hyperelliptic curves C: y* = f(x); we construct
genus 5 quotients of their two-covering curves along with explicit formulas (as a restriction
of scalars of an elliptic curve) for a model of the isogeny class of the Jacobian of these
quotients. The elliptic curves constructed in this way are isomorphic to those arising from
degree four factors of f as discussed in [9, Sect. 8].

From now on, suppose C is of genus 2 and has a k-rational Weierstrass point. Then
C has an affine model given by an equation y> = f(x), where f has degree exactly 6, is
squarefree, and has a rational root «. Thus, elements of C(k) correspond to solutions in
k to the equation y> = f(x), with the possible addition of two rational points at infinity
that are excluded from the affine model. (More precisely, C has two points at infinity, and
these points are rational if and only if the leading coefficient of f is a square in k.)

Let J = Jac(C) be the Jacobian variety of C. This is an abelian surface whose points
correspond to degree zero divisors on C modulo linear equivalence. Embed C in J by
the Abel-Jacobi map P — (P) — ((«, 0)) associated to the given Weierstrass point (, 0).
Since the chosen base point is a Weierstrass point, multiplication by —1 on J induces the
hyperelliptic involution i: C — C.

A natural 16-covering of C is given by pullback along [2]: ] — ], where [2] is multipli-
cation by 2in J: Let W = [2]71(C). Then [2]: W — C is a degree 16 étale covering, so by
the Riemann—Hurwitz formula [20, Ch. IV, Cor. 2.4], the curve W has genus 17. In order
to compute C(k) via descent using this covering, we would need to do the following:

1. compute a finite set of twists g5: W5 — C such that C(k) € (J; ¢s(Ws(k)); and
2. compute Wj(k) for each twist Ws.

To make the computations more tractable, it is useful to work instead with a suitable
quotient of W. Since multiplication by —1 on J induces the hyperelliptic involution on
C, we can lift the hyperelliptic involution to an involution on W. Let Z be the quotient
of W by this involution. The map W — Z is ramified exactly at the 2-torsion points of
J, of which there are 16, so Z has genus 5 by the Riemann—Hurwitz formula. (Another
model for this curve can be constructed using the methods of [6, Sect. 3.1]; we choose this
approach to emphasize the connection with Kummer surfaces.)

The purpose of this paper is to give explicit, computationally tractable formulas for Z and
its Jacobian (and their twists), along with the associated maps realizing the correspondence
with C; to apply these constructions in combination with the elliptic Chabauty method
to the aforementioned large dataset of curves; and to determine what the obstructions
are in the cases where it does not succeed. The key ingredient is to embed (twists of)
Z in (twists of) the desingularized Kummer surface of /. Our primary references for the
requisite explicit descriptions of Kummer surfaces and their twists are [10,15].

In Sect. 2, we provide the necessary background on desingularized twisted Kummer
surfaces, construct the canonical embedding of Z and its twists as hyperplane sections of
these surfaces, and describe the primes of bad reduction. In Sect. 3, we prove an explicit
formula for the twisted duplication map and describe its ramification divisor. In Sect. 4, we
construct a map to a genus one curve through which the twisted duplication map factors,
which supplies the necessary data to apply the elliptic Chabauty method [7]; we also use
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this to give an explicit model for the Jacobian of Z up to isogeny. In Sect. 5, we report
on the results of applying this method to the aforementioned dataset of 7692 curves; the
method succeeds for 1045 of these curves, and we analyze the obstacles encountered for
the remaining curves. Finally, in Sect. 6, we analyze the method and results in detail for

several examples.

2 Genus 5 curves in twisted Kummer surfaces

Let k be a field not of characteristic 2. Let C: y> = f(x) be a genus 2 curve over k with
deg(f) = 6 such that C has a k-rational Weierstrass point (o, 0). (Although such a curve
does have a quintic model over k, we work with sextic models in order to use the explicit
description of desingularized twisted Kummer surfaces outlined below.) Let i: C — P!
be the canonical map. Let fy, f1, .. ., fo € k and y1, 2, . . ., 6 € k such that

6
f) =) fix' = (@ —a)y1+ yax+ - + yex°).
i=0

Let J be the Jacobian variety of C. Let L = k[X]/{f(X)), and let § = Z?:o diXt e L*
be arbitrary. When k is a global or local field, Flynn, Testa, and van Luijk [15, Sect. 7]
construct a twist 75: As — J of the multiplication-by-2 map [2]: ] — J, depending up to
isomorphism only on the class of § in L*/L*2k*, whose class in H(k, J[2]) maps to § under
the Cassels map p: J(k)/2J (k) — L* /L*zk*. They also show that every two-covering of J
that has a k-rational point arises in this way [15, Prop. 2.15], and so if A € L* is any subset
whose image in L*/L*2k* contains the image of the Cassels map u, we have

Jk) = ms(As (k).

SeA
Each surface As is equipped with a natural involution t5: As — Ajs lifting [-1]: ] — J.
The (twisted) Kummer surfaces s = As/{ts) have 16 simple nodes. For computational
purposes, it turns out to be more convenient to work with their minimal desingularizations
Vs. Let ps: As --» Vs be the rational quotient map. Let W = na_l(C), where we embed
C in ] by the Abel-Jacobi map P > (P) — ((«, 0)). By the Riemann—Hurwitz formula, W;
has genus 17. Let

Zs = ps(Ws),
and let
s Lg —> p!

be the map defined by sending a general point Q € Zs to i(s(Q)), where Q € Ajs is such

that ps(Q) = Q. (Since C is embedded in J via an Abel-Jacobi map whose base point is a

Weierstrass point, the hyperelliptic involution on C lifts to (5 on As, so this is well-defined.)
Thus Z; fits into a commutative diagram

Wi 8 (2.1)
\7 X ps // TS
7
)4
Zs C Vs J
NS N S
P! K
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where each curve in the left diagram embeds into the corresponding surface in the right
diagram, and KL = J/[—1] is the Kummer surface of J.

We reproduce here the model of Vs constructed in [15, Sect. 4] as the complete inter-
section of three quadrics in P° = P(L) (recall that L = k[X]/{f(X))), which we have
implemented in both SageMath and Magma.

Definition 2.1 Write f(X) = Y0 fiX'and § = Y5, d;iX’ € L. Let

00 0 0 0 —fif! h £ B fi S
1 0 0 0 0 —fif! o s fa s fo O
e_ |01 000 —fzféj wd T |2 2 S fo 00
00 1 0 0 —fif fa fs fo6 0 0 0
0 0 0 1 0 —fiff! fs fo 0 0 0 0
0 0 0 0 1 —fifi? 5 0 0 0 0 0

Let gy, ..., g6 be the basis of L defined by

g =A +HX +LXE+AX3 + X+ fe X5,
& =f+ X+ X2+ X3+ fo X,

B =H+X + X2+ fe X3,

g =fu + X + X,

g5 =f5 +f6X,

% =Jfo

and let vy, . . ., vg be the dual basis of L. For j > 0, let Q]@) be the quadratic form corre-
sponding to the symmetric matrix Z?:o fod;R“T in the basis vy, ..., vs. Let Vs C P(L)
be defined by

) ) §
Q=Y =Y =0

Flynn, Testa, and van Luijk show that Vs is indeed the minimal desingularization of s
[15, Sect. 7].

Theorem 2.2 Letevy: L — k be the homomorphism defined by ev, (&) = &(«). The curve
Zs is the intersection of Vs with the hyperplane P(ker(evy)) C P(L), which is given in
coordinates by

y1ivi + vava + v3vs + yava + ¥svs + Yeve = 0,

where as above, y1, . . ., Vg are the coefficients of f (x)/(x — «).

Proof Note that ev, is well-defined since f(«) = 0. The first step is to understand how
the base P! embeds into K. Recall that a trope of a quartic surface X C P is a tangent
plane that intersects the surface at a conic (with multiplicity two). A Kummer surface has
exactly 16 tropes, which are the projective duals of the 16 nodes [10, Sect. 3.7] [23, Sects.
8-9].

The description of six of the tropes of the Kummer surface given in [10, Sect. 7.6] shows
that the image of P! in K corresponding to the Abel-Jacobi map with base point (a, 0) is

2

contained in the trope T, with equation a“kx; — aky + k3 = 0, where 1, k9, k3, k4 are the
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coordinates of the usual embedding of K as a quartic surface in P3 (as described in [10,
Sect. 3.1], using the letters &; instead of «;). (Strictly speaking, T,, intersects K in twice the
conic corresponding to the base P!; we also denote this conic by Ty,.)

Instead of constructing Zs as the quotient of a genus 17 curve embedded in J, we
compute Zs using maps between the twisted Kummer surfaces. The preimage of T,
under the map 75: Vs — K also contains some exceptional divisors, which we wish to
omit when constructing Zs, so we instead consider the condition for a general element of
Vs to map to T, via the map 7.

Let P € Y5 be an arbitrary point not contained in the locus of indeterminacy of the
rational map ps: As --» Vs. Let &£ € L be an arbitrary lift of P from P(L) to L. We will
show that 775(P) € T, if and only if £ (@) = 0.

We first treat the untwisted case § = 1. Let D = ((x1, y1)) + ((x2, 2)) — K¢ such that
p1([D]) = [£D] = P. As explained in the paragraph preceding [15, Prop. 4.11], the x-
coordinates of the points R; and Ry such that 2D ~ R; 4+ Ry — K¢ are the roots of the
quadratic polynomial H(X) corresponding to £2. (This does not depend on the choice of
lift ¢ € L since choosing a different lift multiplies H by an element of k*, which does not
change the roots.) The condition that 2D is contained in T} is exactly that one of the
x-coordinates of R and Ry is a, i.e., that « is a root of H, or equivalently, that £2(a) = 0,
which is the case if and only if £(«) = 0.

Now we handle the twisted case. Let D = ((x1, y1))+((x2, ¥2)) —K¢ such that ps([D]) = P.
Let k* be a separable closure of k, let L* = L ®; k°, and let ¢ € L* such that £ = §. Then
882 = ()2, s0 e£ € ). Let D' € ] such that the image of D’ in ) is &. By [15, Sect. 7],
we have 75 = [2] o g, where g is defined by multiplication by ¢ in L. So

75(€) = 75 (¢ (68)) = [2](e8),

and lifting to the Jacobian, the divisor class corresponding to 75(§) is equal to [2D'], i.e.,
75([D]) = [2D’]. As in the previous paragraph, the roots r1, ry of the quadratic polynomial
H such that 862 = H (mod f) are the x-coordinates of points R;, Ry € C such that
(R1) + (Rp) — K¢ ~ 2D'. Thus, 5(P) € Ty if and only if « is a root of H, which is
equivalent to §(a)&%(a) = 0. Since 8§ € L*, we have 8(ar) # 0, so this is equivalent to
E(a) =0.

Represent £ in the basis g1, ..., g6 as & = Z?Zl vi(§)gi. Then

6
E@) =) glevi),
i=1
so in the basis vy, . . ., vg, the condition & (o) = 0 becomes
gi(a)v1 + ga(a)va + g3(@)vs + gala)va + gs(a)vs + ge(a)ve = 0.
It follows immediately from the definitions of g3, . . ., g that
@) = (x — @) (gie) + ga(a)x + gs(@)x® + gale)x® + gs(@)x* + golc)x®),

i.e., i = gi(o) for each i € {1,..., 6}, so Zs is in fact the hyperplane section of Js whose
coefficients in the basis vy, . . ., vg are the coefficients of the polynomial f (x)/(x —«). O

Proposition 2.3 The curve Zs is smooth, has genus 5, and is canonically embedded in
P(ker(evy)) = P%.
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Proof Letgs: As — Ks be the quotient map. The ramification divisor of g5 is 7 L0). At
each point P € my 1(0), since gs has degree 2, the point g5(P) is either nonsingular or a
simple node. Themap Vs — Ks is given by blowing up at gs (75 1(0)), which desingularizes
any simple nodes, so Z;s (being the proper transform of gs(W5s)) is smooth.

By Theorem 2.2, the curve Zs is a complete intersection of three quadrics in P4, so Z; is
a canonical curve of genus 5 (cf. [20, Ch. IV, Ex. 5.5.3]). O

Proposition 2.4 Suppose that k is a local field with residue field ¥, and that C/k has
good reduction. If q is odd, then Zs also has good reduction.

Proof Write g = p”, where p is an odd prime. By [19, Exposé X, Cor. 3.9], specialization
to IF; induces an isomorphism between the prime-to-p parts of the étale fundamental
groups of C and the special fiber C/F,. Thus Wj, being a degree 16 étale cover of C,
also has good reduction. Euler characteristic (and hence also arithmetic genus) are locally
constant in proper flat families [28, Sect. 5, Cor. 1], so Proposition 2.3 implies that the
special fiber Zs/F,; has arithmetic genus 5, hence geometric genus at most 5. Since p is
odd, the quotient map W5 — Zs is tamely ramified, so the Riemann—Hurwitz formula
implies that Zs has geometric genus exactly 5 and thus is smooth over F,. ]

3 The twisted duplication map

In this section, we give explicit formulas for the map 75 : Zs — P! induced by the twisted
duplication map. We also give an explicit description of the ramification divisor of this
map.

Theorem 3.1 Forall P € Zs, we have

75(P) = (=5 + )@ (P) — /6@ (P) : 0" (P)) € P.

Proof As in [15, Sect. 4], let C(()‘S), e Céa) € Symz(ﬁ) be quadratic forms such that
C@(z) = pj(6z2) for z € L, where p; gives the coefficient of X/. We have

]
fo- (c((;” co . («») (Q(a> QW .. Qé‘”) T

where T is the matrix defined in Definition 2.1, so that in particular

(8)

Thus, taking into account that Q vanishes on Vs forj € {0, 1, 2}, we have

(—(fs +f6)QY(P) — /sQP(P) : QP (P)) = (—CP(P) — «CP)(P) : CP(P)).

Moreover, C((S) C((S C( ) — =0on)s.
Let & € L be alift of P € Zs C P(L). By construction of Vs, we have

562 = CYEX? + cPEX + CPE)  (mod f).

As explained in the proof of Theorem 2.2, the roots of this quadratic polynomial are the x-
coordinates of points of the divisor in J corresponding to 775(P). Moreover, since P € Zs,
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one of these roots is . Thus, in the affine patch where the second coordinate of P! is
nonzero, writing 775(P) = (r : 1), we have

cPEX2+ CPE)X + D) = (X — ) (X — 1)

for some nonzero ¢ € k*. Comparing coefficients, we obtain Cé‘”(g) = ¢ and C;‘S)(g) =
—c(a + 1), so

_—G® e @)
e

This gives the desired formula for 775(P). Finally, we have 75(P) = (1 : 0) if and only if
Cég)(s ) = 0, completing the proof. o

Theorem 3.2 Let Q C k° be the set of roots of f. The branch locus of 7s: Zs — Pl s
Q\ {a}. Foreach w € 2\ {a}, we have

5 Hw) = Zs N P(ker(ev,,)) C P(L),

which consists of 8 geometric points, each of ramification index 2.

Proof Observe that s: W5 — C is étale, the branch locus of i: C — P! is ©, and the
branch locus of ps: Ws — Zs is w5 l(a), with all ramification indices in the preimage of
the branch locus equal to 2. Thus, commutativity of diagram (2.1) implies that the branch
locus of 775 is 2\ {a}, and for each w € @\ {«}, the preimage 775 () consists of 8 geometric
points of ramification index 2.

The remaining claim that 77 L(w) is the hyperplane section of Zs given by intersection
with P(ker(ev,,)) follows from the description of 75 given in the proofs of Theorems 2.2
and 3.1: For § € L lifting a point P € Zs, we have 775(P) = (w : 1) if and only if the
quadratic polynomial defining 8&2 has roots o and , which is equivalent to the condition
&(a) = &E(w) = 0, i.e., P is in the kernel of both the evaluation maps ev, (which defines Zs
as a hyperplane section of V) and ev,,, as was to be shown. O

4 Maps to genus one curves

We now construct a map to a genus one curve through which the twisted duplication
map factors, and prove that this map induces an isogeny from the Jacobian of Z; to the
restriction of scalars of the Jacobian of this genus one curve. These genus one curves are
geometrically Prym varieties [2, Ch. 12] associated to double coverings of C. This is a
substantial motivation for the constructions of this paper, since a restriction of scalars of
an elliptic curve is much more computationally accessible than a general Jacobian variety

of the same dimension.

Theorem 4.1 LetK = k(w), wherew € k®isarootoff andw # a. Writef (x) = (x—a)(x—
w)h(x), let H(x, z) be the homogenization of h(x) with respect to z, and let B1, B2, B3, Ba € k*
be the roots of h. Let Yo, = €vp, -€vp, - evp, - evp,, where evg, = Zlegi(ﬂj)vi is given by
evaluation at p;. (Note that Yy, is a quartic form over K.)

Define a curve Ds,, C P(1, 2, 1) in weighted projective space by the equation

Yo,o(8)y” = h(@)H (%, 2).
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Define a map ¢: Zs — P(1,2,1) over K by

0(P) = (= + £s)QY(P) = s Q) (P) : f Yoro(P) : /6@ (P)) .

Then the image of ¢ is Ds, ., and the following diagram commutes:

¢
Zs — Ds,

A

Pl

Proof Since evg, isaringhomomorphism for eachj, the quartic form Y, is multiplicative
with respectto L, i.e., Yo (1) = Y4,0(8)Ye0(n) forall§, n € L. As proved in Theorem 3.1,
for all £ € L? lifting a point P € Zs(k®), we have

fi? = (X =) (fQ0 X + (5 + Q) (€) +£Q)©))

Putting these together, we obtain

Yot,w(3)(f§3 Ya,w(g))z :f§6 Ya,w(aéz) :f62 Yoz,w(f65€2)
4 4

= [16 - ) S [T (60 ©8; + s + Q) + /0 €))

j=1 j=1

= h@H(~(fs + fs) Q¥ (€) — f:Q2 (), QY (€)).

Thus ¢(Zs) € Ds,. Since ¢ is non-constant and Ds , is an irreducible curve, ¢(Zs) = Ds,,.
Commutativity of the diagram is immediate from the formulas. O

Remark 4.2 Theorem 3.2 gives another perspective on Theorem 4.1 in terms of divisors:
Denote ¢ = (¢, : @y : ;). By Theorem 3.2, for each root § of &,

#1((B) - (00)) = div(ev /g,)
Consider the rational functions R = ¢, /¢, and S = goy/gozz. Then
div(i o R) = 7 (div(h) = 7 (B1) + (B2) + (B3) + (Ba) — 4(00)) = div(S?).

So S? is a scalar multiple of /2 o R; comparing their values at any point outside the divisor
of zeroes and poles yields Theorem 4.1. (This is how the author initially discovered the
formulas.)

Remark 4.3 1If Ds,(K) is empty, then so is Zs(K). If Ds,,(K) is nonempty, then Ds,,
is isomorphic to an elliptic curve Es = Jac(Ds,,) over K. In the latter case, if k = Q,
then Theorem 4.1 provides exactly the requisite data to compute Z5(Q) using the elliptic
Chabauty method, provided that we can compute generators for the Mordell-Weil group
Es(K) and that the rank of E5(K) is less than [K : Q].

One can find an upper bound on the rank of E5(K) by computing the 2-Selmer group (and
this is the method we use in the examples of the next section). This requires computing the
class group of K[x]/(ns(x)), where we write Es: y> = ns(x). This is often computationally
expensive unless we assume Bach’s bound [1] on the norm of prime ideals needed to
generate the class group, which is conditional on the generalized Riemann hypothesis
(GRH). However, since varying § only changes Ds,, by a quadratic twist, the elliptic
curves Ej also only differ by a quadratic twist, so the quotient algebra K[x]/(ns(x)) does
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not depend on §. Thus, the expensive class group computation need only be carried out
once for the whole twist family, rather than for each twist individually.

We now relate the above genus one curves to the Jacobian of Z;s.

Theorem 4.4 Let g(x) = f(x)/(x — ), let B = k[w]/{(g(w)), let K3, . . ., K, De fields over k
suchthat B = Ky x - - - x Ky, and let w; be the image of w in K; foreach i. Let Ds = | [i_; Ds,u,
be the curve from Theorem 4.1 considered as a curve over B, let ¢: Zs — Ds be the
corresponding morphism over B, and let Es = Jac(Ds) = | [}_, Jac(Ds,o,;). Then the induced
k-morphism of abelian varieties

Jac(Zs) — Resk (Es) = [ | Resy (Jac(Ds.0,))
i=1

is an isogeny.

Proof Our strategy is to consider universal families of curves and abelian varieties corre-
sponding to the above situation, observe that the properties of interest are deformation-
invariant, and deform the problem to a more computationally tractable case.

Let S = Spec A be the space parametrizing triples (g «, §) € k[w] x k x k[X] such that g
is a monic squarefree quintic polynomial with g(a) # 0, the degree of § is at most 5, and §
is invertible modulo (X — «) - g(X). Let P € A[w] be the generic monic quintic polynomial,
andlet T = Spec A[w]/{(P(w)). Let Z — S and D — T be the relative curves whose fibers
above a point (g «, §) € S are the genus 5 curve Zs and the genus 1 curve Ds, respectively,
that are associated to the twisting parameter § for the hyperelliptic curve y> = (¥ — a)g(x).
Let J — S be the relative Jacobian variety of Z, and let A = Resg(]ac(D)), which exists
as a scheme since 7' — S is étale.

The formulas of Theorem 4.1 define a T-morphism Z xg T — D, which induces a
homomorphism of abelian S-schemes ®: 7 — A. By [29, Lemma 6.12], the homomor-
phism J — ®(J) is flat. The kernel ker(®) is the fiber product of ® with the unit section
S — A, so ker(®) is a flat proper S-group scheme since flatness and properness are pre-
served by base change. By [12, Exposé Vg, Cor. 4.3], since S is also connected, the fibers of
the map ker(®) — S all have the same dimension. Moreover, if ker(®) — S has relative
dimension zero, then ker(®) is a finite flat S-group scheme by [18, Thm. 8.11.1]. Thus, we
can compute the relative dimension of ® on any fiber, and if ® is an isogeny, we can also
compute its degree on any fiber.

Let g € k[w] such thats := (g 0, 1) € S(k) and g splits completely over k. Let wy, . . ., ws
be the roots of g. By functoriality of restriction of scalars,

5
A = Resé5 (Jac(Dy)) = l_[Ei
i=1
where E; is the Jacobian of the genus 1 curve defined by y> = —w;l 2(0)g(x)/(x — ;).
Furthermore, choose g so that the elliptic curves E; are pairwise non-isogenous. (If no
such polynomial g is defined over k;, it is harmless to extend scalars to a larger field, since
this preserves both dimension and degree.)

The composition of the map &;: J; — l_[i5=1 E; with any of the five projection maps
]—[?:1 E; — Ejis induced by the map ¢ of Theorem 4.1 (with @ = w;), hence is surjective.
Thus, the image of ®; contains an elliptic curve isogenous to E; for each j. Since the E; are
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Table 1 Outcomes of running the code on the dataset of 7692 genus 2 curves

Qutcome Count Percent (%)
Success 1045 13.6
Apparent failure of Hasse principle 2120 276
Mordell-Weil rank too high 802 104
Unable to compute Mordell-Weil group 2271 29.5
Exceeded time or memory limits 1685 219
Miscellaneous error 19 0.2

pairwise non-isogenous, this implies that ®; is surjective. Since dim J; = 5, this means
@y is an isogeny. O

Remark 4.5 An analytic computation using Magma’s algorithms for period matrices of
Riemann surfaces shows that in characteristic zero, up to numerical error, Jac(Zs) is
isogenous to Resf(E(;) via a degree 32 isogeny. The above proof shows that it suffices
to compute the degree for any one example, and we then apply the algorithms to the
example f(x) = ]_[S’Uz_z(x — w). Given big period matrices P; and P, of the corresponding
Riemann surfaces, the IsIsogenousPeriodMatrices function in Magma computes
matrices M € M5(C) and N € Mio(Z) such that MP; = P,N. This defines an isogeny of
degree det(N) between the corresponding complex tori; we compute det(N) = 32 for this

example.

5 Results

Using Magma v2.26-10 and SageMath 9.3 on Boston University’s Shared Computing
Cluster [5], a heterogeneous Linux-based computing cluster with approximately 21,000
cores, the above algorithms were applied to all 7692 genus 2 curves over Q in [3] that
have at least one rational Weierstrass point and Mordell-Weil rank at least 2. Each of
these curves has Mordell-Weil rank 2 or 3, so Chabauty’s method [11,26] is not directly
applicable. Table 1 summarizes the results.

By “apparent failure of the Hasse principle”, we mean that one of the genus 5 covering
curves Z; is locally solvable, but a point search did not find any rational points on it. Note
that the counts add up to more than 7692 because multiple obstructions were found for
some curves—for example, a genus 5 curve might map to two different elliptic curves,
one of which has too high rank and the other for which Magma cannot compute the
Mordell-Weil group.

The raw data is publicly available on GitHub [21]. The data is in the format of a JSON
file for each curve, containing the results of the computation as well as the necessary data
to reproduce some of the intermediate steps. (This data includes, for example, coefficients
of all curves constructed, as well as coordinates of generators of any Mordell-Weil groups
computed.)

The computations of Mordell-Weil groups of Jacobians, and hence the results on ratio-
nal points on curves, are conditional on GRH. Additionally, since Magma’s implemen-
tation of elliptic curve arithmetic over p-adic fields is not fully numerically stable, we
cannot entirely rule out the possibility of an error in precision tracking that compromises
the correctness of the computation; however, such errors, even if theoretically possible,
are highly unlikely to occur in practice, as this would require unfortunate numerical coin-
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Fig. 1 Histogram of runtimes (in min) for the curves where the method succeeded in computing the set of
rational points

cidences at a high degree of precision. At such time as numerically stable p-adic elliptic
curve arithmetic is implemented in Magma, the computations could be re-run to rule out
this possibility.

The runtime and memory requirements seem hard to predict for any given curve, so a
time limit of several hours and a memory limit of 8 GB of RAM was set for each curve.
Processes that exceeded these limits were terminated. For curves where the computation
completed successfully, runtimes appeared to follow a long-tail distribution (Fig. 1); the
median runtime was 529 s, and the mean was 1145 s. For curves where a Mordell-Weil
group could not be provably computed (but without timing out) or was found to have too
high rank, the distribution of runtimes was similar: median 581 s and mean 1250 s.

Interestingly, while the success rate decreased for curves with larger discriminant, the
average runtimes in the cases where the method succeeded did not appear to significantly
increase with the discriminant. Rather, the majority of this decrease was due to an increase
in failures of the Hasse principle (see Fig. 2).

To reduce the computational resources required, the code was designed to terminate
for a given curve as soon as certain obstructions to the success of the computation were
detected. Hence, for example, Mordell-Weil groups were not computed when there is an
apparent failure of the Hasse principle, so the runtimes for such curves are typically much
shorter: a mean of 35 s, a median of 17 s, and only three such curves having a runtime
over 10 min.

We also make some observations about the number and height of points on the 4748
genus 5 curves Z;s associated to the 1045 genus 2 curves where the method succeeded.
The largest cardinality of Z5(QQ) observed was 6; the full distribution is shown in Table 2.

We can also analyze the maximum Hp,x of the naive heights H(P) of points P € Z5(Q)
with Z; associated to a genus 2 curve C as above. Among the same set of 1045 genus 2
curves, the median value of the largest coordinate was 16; the arithmetic and geometric
means were approximately 739.8 and 20.2, respectively, suggesting a long-tail distribution.
The statistic Hmax appears to increase gradually with the absolute discriminant A of C:
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Fig.2 Portion of curves for which the method succeeded (blue) or encountered an apparent failure of the
Hasse principle (red), plotted against the discriminant of the curve (grouped into 10 bins of width 10°)
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Table 2 Distribution of cardinalities of Zs(Q)

#75(Q) Count Percent (%)
0 1136 239

1 1602 337

2 1531 322

3 326 6.9

4 128 2.7

5 18 0.4

6 7 0.1

of points in Zs(Q) (y-axis)

Fig.3 Log-log plot (base 10) of the absolute discriminant A (x-axis) versus the maximum naive height Hmax

a Pearson correlation test on a log-log plot yields a correlation coefficient of » ~ 0.094

(p &~ 0.0023); see Fig. 3.

Let us further note what sort of progress would be necessary to handle the remaining

cases:
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1. In cases where a curve Z;s is found to be locally solvable but no rational points can be
found, a method of verifying failure of the Hasse principle (such as an implementation
of the Mordell-Weil sieve for such curves) would be necessary to proceed.

2. Ifone of the elliptic curves has rank greater than or equal to the degree of its base field,
then Chabauty’s method cannot be applied. In some such cases, Kim’s non-abelian
generalization of Chabauty’s method [24] might be a promising approach.

3. If Magma is unable to provably compute the Mordell-Weil group of an elliptic curve
over a number field within the allotted time, then either an unknown amount more
computation time or further advances in descent algorithms for elliptic curves over
number fields would be required.

4. Inasmall number of cases, either a local solvability test or elliptic Chabauty exceeded
the time or memory limits for unclear reasons.

5. In a handful of cases, Magma threw an exception that suggests a bug in the internal

codebase of Magma.
A few more computational remarks:

6. If we do not assume GRH, the bottleneck is provably computing the class group of
a degree 15 number field in order to bound the 2-Selmer rank of the elliptic curves,
and this rapidly becomes computationally infeasible as the discriminant grows. (We
do carry out the unconditional computation in the first example of the next section.)

7. When we assume GRH, most of the time is spent either on computing the Mordell-
Weil groups of the elliptic curves or on the elliptic Chabauty method.

8. We use a singular planar model of the curves to quickly test local solvability. Using
Proposition 2.4, we only need to check local solvability at the primes of bad reduction
of C, primes p < 97 (for which the Hasse—Weil lower bound #Z; (Fp) = p+1— 10,/
(cf. [27]) is non-positive), and the real place. For determining the existence of real
points, we use the algorithm of [31, Sect. 4].

6 Examples

Let us illustrate the results of the previous sections by examining several examples of
successes and failures in detail. The data for the examples in this section was generated
using the batch script paper-examples. sh in [22]; the raw data is available at [21] in
the “examples” folder.

Theorem 6.1 Let C be the genus 2 curve with LMFDB label 6443.a.6443. 1, which
has minimal weighted projective equation

C: y2 + z3y =x°z — x12% — 2323 + &2 + x5,
The set of rational points C(Q) is

{1:0:0),(0:0:1),(=1:0:1),(0: —1:1),(1:0:1),(—=1:-1:1),

1:-1:1),(2:2:1),(2:-3:1),(=3:6:4),(—3:-70:4)}.

Proof The change of coordinates (x : y : z) > (z : 2y + z° : x) yields the model

¥ = x® + 4a®z + 4xt2? — 8x32% — 4x®2* + 4wz,
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Table 3 Results for genus 2 curve 6443 .a.6443.1
S ELS D, (K) #75(Q)
8 1 yes 74 2
5 X2 4 X =1 yes VA 3
53 X2 4+ 4X* +4X3 —8X2 —5X + 4 yes 7? 2
84 =X —4X* —5X3 4 7X? +5X — 4 no (2) - 0

which has a rational Weierstrass point at (0

: 0 : 1). Let J be the Jacobian of C. Com-

puting the Mordell-Weil group J(Q) in Magma, we find it is free of rank 2, and applying

the Cassels map to representatives of each element of J(Q)/2/(Q), we obtain four twist

parameters 31, 89, 83, 84, each corresponding to a genus 5 curve Z; as in Theorem 2.2.

We compute using Magma that Z;s, is not locally solvable at 2, so Zs,(Q) = @. For each

i = 1,2,3, we can find a rational point on Zs;, so we obtain a map to an elliptic curve

Zs; — E; over K = Q(w) (where w is a root of g), as in Theorem 4.1.

We then compute the Mordell-Weil group of each E; and apply the elliptic Chabauty

method to provably compute the set of K-points of each E; whose image under the given

map to P! is rational. To make the computation more efficient, we first compute all four

Mordell-Weil groups under the assumption of GRH (which is only used to make class

group computations faster), and take note of the number field F whose class group we

need to compute, along with the conditionally proven value of its class number /r. By

Remark 4.3, the number field F and the class number /¢ do not depend on 8. Then we

compute sy unconditionally. The results are summarized in Table 3.

The “ELS” column indicates whether Zs is everywhere locally solvable, and if not, gives

a prime p such that Zs(Q,) = ¢. The number field whose class group is computed has

defining polynomial x> —

3x1% + 15213 — 60412 + 267x!1 — 1337x10 + 2375x% — 167648 +

2625x7 — 4167x° — 2687x° + 10176x* — 455643 — 2616x% + 1238x + 406 over Q; this field
was verified in 24,177 s to have class number 2. The other parts of the computation took

1195 s in total.

Next, we apply the map 775: Zs — P! to each point P € Zs(Q):

71((0:0:0:0:1)) =0,
A1((—1:0: -1:0:2)) =1/2,

75,((2:1:1:0:2)) =1,

775,((8:5:4:2:2)) =—4/3,

(Note: we view Zs as embedded in P* with coordinates vy, . .

75,((22:13:8:2:2)) = —60/59,

o0,

-1

775;((1:0:0:0:0))
775,((3:2:2:0:4))

., V5. Since yg = fg # 0, we

can always reconstruct vg from this information using Theorem 2.2.) Inverting the change

of coordinates on C, we see that the set of possible x-coordinates of rational points of C is

{00,2,1, —3/4, —59/60, 0, —1}.

The Weierstrass point lies above 0o, and there are two rational points above each of

2,1, —3/4, 0, —1, accounting for all 11 known points in C(Q). The two points of C above

—59/60 are not rational.

[}
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Table 4 Results for genus 2 curve 141991.b.141991.1

P ELS D, (K) #Z5(Q)
8 1 yes VA 1
5 X2 -1 yes Z 1
53 X4+ 22X 47X —5X2 —8X +4 yes 73 2
84 —X° —X* —8X3 +5X2 48X —4 yes VA 2
85 X 42X+ 7X3 —6X2 —8X +4 yes 73 3
86 —5X° — 7X* —27X3 + 23X% + 28X — 16 no (2) - 0
857 4X° 4+ 8X* 4+ 27X3 — 23X% — 28X + 16 no (2) - 0
S8 —X° —2X* —8X3 +6X2+8X —4 no (2) - 0

Theorem 6.2 Let C be the genus 2 curve with LMFDB label 141991 .b.141991.1,
which has minimal weighted projective equation

C: y2 + &%z + 22> + z?’)y =x"z — 2x%2% — 2323 + x%24
Assuming GRH, the set of rational points C(Q) is

{1:0:0,(0:0:1),(-=1:0:1),(0:—-1:1),(=1:-1:1),(1:—-1:1),
1:-2:1),2:-3:1),(2:—4:1),(-1:6:4),(1:6:9),(3:—-22:4),
(—1:—-58:4),(3:—-126:4),(1:—-825:9)}.

Proof The proof strategy is the same as in the previous example. The change of coordi-
nates (x : y : z) > (z: 2y + %z + xz> + z : x) yields the model

y2 = x% + 2%z + 7x*2% — 61323 — Ta?2t + 4uz®,

which has a rational Weierstrass point at (0 : 0 : 1). In this case, the Jacobian of C has
Mordell-Weil group 73, so there are 8 twists to consider. Of these, three have no Q-
points and hence no Q-points, and the rest all have a rational point of low height and are
amenable to elliptic Chabauty (with the upper bounds on Mordell-Weil ranks conditional
on GRH). The results are summarized in Table 4.

The total computation time required was 894 s. The number field F whose class group
computation depends on GRH has defining polynomial x> + 6x'* 4 21x!'3 4 88x12 +
212xM + 332210 + 1198x° + 324848 + 162617 — 8560x° — 3892x° — 68524x* — 315439x% —
494742x% — 69455x + 384152 over Q, and the class number is 2 assuming the Bach bound.
Verifying this class number would remove the dependence on GRH.

We apply the map 775 to each point P € Z5(Q):

7#1(00:0:0:0:1)) =0, 775, ((207 : 82 : 124 : 46 : 106)) = 3361/3215,
A5, ((0:—=1:0:-1:1)) =1/2, 755((1:0:0:0:0)) = o0,
775,((1:0:0:0:0) = 1, A5 (1:1:0:1:1)) = 4/3,
Ass((—1:2:2:4:2))=09, s5((2:1:1:0:1)) = —4.

w5, ((3:4:4:4:4))=-1,

Inverting the change of coordinates, the possible x-coordinates for rational points of C
are

{00,2,1,1/9, —1,3215/3361, 0, 3/4, —1/4).
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There is the rational Weierstrass point above 0o, no rational points above 3215/3361, and
two rational points above each of the others, yielding exactly the 15 known rational points.
O

Now we present a few examples illustrating obstacles the method can encounter.

Example 6.3 (Probable failure of the Hasse principle) Let C be the genus 2 curve with
LMFDB label 10681 .a.117491.1, which has a sextic Weierstrass model

C:y* =1212° — 308x° + 276x* — 9243 + 4.

We compute J(Q) = Z2. One of the twist parameters we obtain by applying the Cassels
map to J(Q)/2/(Q) is § = —X + 1. The corresponding genus 5 curve Z;s is locally solvable,
but the PointSearch function in Magma finds no points on Zs with a bound of 10°.
(These computations took 15 s in total.) Thus, we are unable to provably compute C(Q)
unless we can prove that Zs(Q) is in fact empty.

Example 6.4 (Toohigh rank for elliptic Chabauty) Let C be the genus 2 curve with LMFDB
label 7403 .a.7403 .1, which has a sextic Weierstrass model

C:y2:x6+4x5—4x4—8x3+4x2+4x.

We compute J(Q) = Z2. One of the twist parameters we obtain by applying the Cassels
map to J(Q)/2/(Q) is § = x° + 4x* — 4x® — 7x? 4 3x 4 4. The corresponding genus 5 curve
Zs has three rational points of low height, one of whichis (1:0:0: 0 : 0), and using this
as a base point, we obtain a map Z; — E defined over the quintic field K = Q(«) with
o® + 4ot — 4a® — 8a? + 4a + 4 = 0, where E is the elliptic curve given by

y? =% + 2 + 4)x + (11a* + 570> + 180% — 68a — 34)x
+ (36a* 4+ 1790 + 630 — 211a — 115).

Magma computes that E(K) is free of rank 5. Thus, we are unable to prove that the three
known rational points of Z; are all of the rational points. These computations took 449 s
in total.

Example 6.5 (Unable to compute Mordell-Weil group) Let C be the genus 2 curve with
LMFDB label 7211 .a.7211 .1, which has a sextic Weierstrass model

C:y22x6—4x4—|—10x3—8x2+1.

We compute J(Q) = Z2. One of the twist parameters we obtain by applying the Cassels
map to J(Q)/2/(Q) is § = —4x® — 4x* + 11x% — 26x% + 3x + 4. The corresponding genus 5
curve Zs has rational point (3: —1 : —1: —1 : 3), and using this as a base point, we obtain a
map Zs — E defined over the quintic field K = Q(«) witha® +a* —3a3 +7a?>—a—1 =0,
where E is the elliptic curve

y? = x3 + (—9a* — 1303 + 210 — 540 — 18)x>
+ (73a* + 1100 — 1630? + 4280 + 144)x
+ (823360 + 1240630® — 18413402 + 483038« + 162465).
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Magma can compute that the rank of E(K) is at most 1; however, Magma was unable
to either find any non-identity K-points on E or prove that no such points exist. Thus,
we are unable to prove that the list of known rational points of Zs is complete. These
computations took 389 s in total.
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