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Abstract

Let (A, Z, ©p) be a dimension g abelian variety together with a level n theta structure
over a field k of odd characteristic. We thus denote by (9/@3 Jz/nzye € T(A L) the
associated standard basis. For a positive integer £ relatively prime to n and the
characteristic of k, we study change of level algorithms which allow one to compute

e)
level £n theta functions (6, ¢ X)ie@/enzye from the knowledge of level n theta

functions (9,@’5" )@ nzye Or vice versa. The classical duplication formulas are an
example of change of level algorithm to go from level n to level 2n. The main result of
this paper states that there exists an algorithm to go from level n to level £n in O(n9¢%9)
operations in k. We derive an algorithm to compute an isogeny f : A — B from the
knowledge of (A, .Z, ®,) and K C A[£] isotropic for the Weil pairing which computes
f(x) for x € A(k) in O((n€)9) operations in k. We remark that this isogeny computation
algorithm is of quasi-linear complexity in the size of K.

Keywords: Isogenies, Abelian varieties, Computational algebraic geometry
Mathematics Subject Classification: 14K02, 14Q15

1 Introduction

1.1 Fast change of level

Let A = C#/A beadimension g complexabelian variety. An analytic projective embedding
of A can be defined provided that we have enough analytic functions on quasi-periodic
C¢ with respect to A. Let n € N; if A = 78 + Q78 where Q € $4(C) is a Siegel period
matrix, we define following [18, Chap. II, §1, Def. 1.2] the A-quasi-periodic functions of
level # as the vector space RY, over C of analytic functions f on C# such that

fz+ 1) =f(z), flz+ QL) = exp(—min AQA — 2min'zA)f (2), (1)

forallz € C8, A € Z8. Let Z(n) = (Z/nZ)?. 1t can be shown that the dimension of RY, is n¢,
and a standard basis of it is provided by the classical theta functions with characteristics
0 [b(/)n] (z Q/n) for b € Z(n).

Now, if £ and # are two positive integers, by a change of the level algorithm, we mean an
algorithm to compute the elements of the standard basis of Rf, from the knowledge of the
standard basis of RY' (going down in level) and the other way around (going up in level).
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The vector spaces Rf, can be interpreted as the space of sections I'(4, ') where %} is
a principal line bundle on A. The standard basis of I'(A, ') given by the theta functions
is determined by the canonical (symmetric) theta structure (see Definition 2.6) associated
to Q. This point of view generalizes for an abelian variety over any field k. Let (4, ) be a
dimension g abelian variety over a field k together with an ample line bundle . such that
£ = £ with % as a principal line bundle. Then a theta structure ©® & determines a
standard basis which we denote by («91.@‘*7 )ieza) € T'(4, £).If £ is very ample (e.g. n > 3
by a theorem of Lefschetz), © & defines a unique projective embedding A — PZ given
on points by x > (Oi@” (x)). The projective point (9?‘5" (04))icz (@) is called the theta null
point of (4, .Z, ©,).

In the literature, change of level algorithms often take the form of a formula giving an
expression of (6’;9”2” ‘ (%));e Z(n) 38 @ function of (Ql.@”Z (%))iez@m) or vice versa. Change-of-
level formulas are central in the theory of theta functions. In fact, multiplication formulas
[16, p. 330] from which one can immediately deduce Riemann formulas can be seen as
a formula to go from level # to level 2n. Using Koizumi formulas [11], the authors of [4]
deduce a formula to go down from level £# to level #. In this paper, we are interested in
the computational efficiency of change-of-level algorithms measured as the number of
field operations required to obtain the result. In this regard, we prove the following two
theorems. The first theorem, proved in Theorem 4.4, is for going from level n up to level
Ln:

Theorem 1.1 Let n, £ be relatively prime integers with n even. Let (A, £, © &) be a dimen-
sion g abelian variety together with a level n symmetric theta structure defined over k.
Assume that k is of characteristic zero or prime to £n.
We have the following:

+ Given a basis of A[{] and the corresponding symplectic decomposition for the Weil
pairing A[€] = A1[€] ® A2[L], there is a canonical symmetric theta structure © 4 of
level tn on (A, L)

o Letx be a point of A, such that from the knowledge of (9?3 (%))icz(m) defined over k(x),

O,
one can compute (0, 2t (%)) Z(n) with O(n€%) operations in k(x).
In particular, we can compute the theta null point of level tn in O(n€€%€) operations in k.

We also have a change-of-level algorithm to go from level £n down to level n.

Corollary 1.2 Let n be an even integer and € an integer relatively prime to n. Let
(A, Z% © 41) be a dimension g abelian variety together with a level n symmetric theta
structure. We suppose that k, the field of definition of (A, £, © ), is of characteristic zero
or prime to {n.

We have the following:

o © ¢ induces a unique symmetric theta structure of level n for (A, Z);
o Let x be a point of A defined over k(x) given by (QL,@'ﬂ(x))iez(H). One can compute
(Qi(")y (€x))iez@m) in O(n8L8) operations in k(x).

In particular, one can compute the theta null point of level n from the knowledge of the
theta null point of level tn in O(n8£€) operations in k.
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To obtain this result, proved in Theorem 5.1, the idea is to first use Theorem 1.1 to go
from level #€ to level n¢2, and then descend along the isogeny [£] using Mumford’s isogeny
theorem [16, Sect. 1, Theorem 4] to land in level # (see also Example 2.17). Note that if
¢ = m?, we can descend along [] directly, which only costs O((nm)?) field operations to
compute (91.@5 (mx))icz(m), hence O((nm)?) field operations to compute (Ol.@f (€x))iez@m)-

In [4], the authors used Koizumi’s formulas, given by an integral matrix F such that
!FF = (1d,, to descend levels. These take O(¢¢/2) field operations, where r = 1if £ is a
square, r = 2 if £ is a sum of two squares, and » = 4 otherwise. This dependence on r of
the complexity of Koizumi’s formulas comes from the size of the kernel of F : A" — A"
which is 8. As a consequence, Theorem 1.2 achieves a better complexity than Koizumi’s
formulas in the case in which £ is not a sum of two squares.

Asan application, we can improve the complexity of the isogeny computation algorithms
[4,14]. Let f : A — B be an isogeny with kernel K C A[{] isotropic for the Weil pairing.
In order to compute f, starting from (4, .Z, ® »), an abelian variety together with a level
n symmetric theta structure, we have to equip B with a level # symmetric theta structure
and compute the isogeny in the coordinates provides by these theta structures. There are

two strategies:

« ascend to level €n on A using Theorem 1.1 and then use Mumford’s theorem to
compute the isogeny from A with a theta structure of level £n to B with a theta
structure of level #; and

+ use the contragradientisogeny f : B — Atoendow Bwithalevel £x theta structure by
inverting Mumford’s isogeny theorem using [13] (see also Sect. 4.1) and use Theorem
1.2 to descend from level £x on B to level n.

Both strategies give a quasi-linear time isogeny algorithm:

Theorem 1.3 Let (A, .Z, ©®y) be an abelian variety together with a level n symmetric
theta structure over k, n even.

Let € be an odd integer prime to n, and we suppose that {n is prime to the characteristic
of k, or that k is of characteristic zero. Let K C A[{] be a totally isotropic subgroup for the
Weil pairing defined over k, and let f : A — B = A/K be an isogeny.

Then f induces a line bundle .4 together with ® 4 a level n symmetric theta struc-
ture for (B, #). Moreover, for a point x of A with field of definition k(x) and given by
((9[.@*% (%))iez(m) and suitable equations for K, we can compute (GLQ“” (f(x))icz@m) in time
O((nt)®) operations in k(x).

Here, we say that K is totally isotropic whenever there exists a symplectic decomposition
A[f] = K @ K'; in particular, K is then maximal isotropic. (The converse is not true; for
instance, A[¢] is maximal isotropic in A[¢2] for the Weil pairing e,2, but is not totally
isotropic.) In Remark 4.8, we explain the tweaks to make for the algorithms above when
£ is no longer prime to #. This algorithm improves the isogeny algorithms of [4,13]: these
followed the second approach with the slower descent of level algorithm from Koizumi’s
formula. Compared to Theorem 1.1, in Theorem 1.3, we only have to compute the action
of the level subgroup K above K rather than the full £z theta structure, which explains
the resulting complexity. We refer to Corollary 4.6 for the proof, and we give examples of
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isogeny computations in genus 1 and 2 in Examples 4.9 and 4.10. A similar approach is
used in [5] but is limited to isogenies between Jacobians.

In Sect. 6, we outline how to extend these algorithms when the abelian variety A has real
multiplication. For descending levels and computing cyclic isogenies, Koizumi’s formula
was extended to this case in [6]. But a drawback of this approach is that the isogeny F given
by Koizumi’s formula does not preserve the product theta structure, and hence required
a very costly disentangling which makes the algorithm almost impractical. This drawback
does not exist with the new approach. We stress however that our new approach has not
yet been implemented for cyclic isogenies, so we leave the practical complexity for future
work. There are still many hurdles to overcome: see Remark 6.6.

We note that apart from isogeny computations, being able to change level allows us to
give the equivalent of Thomae formula for theta functions of higher level. These could also
be used to compute modular forms (expressed as polynomials of theta functions of suitable
levels), but, unfortunately, our method only gives the projective theta constants, not the
affine (modular) ones. So for now, we can only apply our results to modular functions. See
Sect. 1.3 for more details.

1.2 Outline

For simplicity, we work over the base field C. Since our resulting algorithms are given
by polynomial equations, by standard lifting and rigidity arguments, they apply over an
algebraically closed field of characteristic p too as long as everything is étale, that is, as long
as p is prime to £n. Indeed, the moduli stack of abelian varieties with a symmetric level £n
structure is smooth over Z[ﬁ], so we can lift them to characteristic zero (this works even
for non-ordinary abelian varieties). Alternatively, it is not hard to use Mumford’s algebraic
theory [16] to give direct proofs; we refer to [21, Sect. 2.10] for this. Concerning the field
of definition in Theorem 1.3, we explain in Remark 4.7 how to adapt the methods of [14]
to compute the isogeny f using computations in the field of definition of K.

In Sect. 2, we review the theory of theta functions. Let A be an abelian variety and H a
polarisation of A. We define the “universal theta group” &(H) associated to H, and the
theta group G(.Z) (a subgroup of &(H))) associated to a line bundle .Z whose polarisation
is H. The group &(H) acts on analytic functions, and this gives an action of G(.Z) on
sections of .Z. The group &(H) may be seen as the theta group of all isogenous abelian
varieties with polarisation given by H glued together. In Proposition 2.11, we give a simple
recipe to recover the basis of theta functions from just one section u of . and the action
of G(.Z). As an application, we recover Mumford’s isogeny theorem and explain how to
compute theta functions of isogenous abelian varieties in Proposition 2.15.

In Sect. 3, we explain how we may compute the action of a larger group G’ than G(.%)
on sections of .Z, namely, G’ = {g € B(H) | g* € G(ZL)}. A caveat is that sections are no
longer sent to sections. So algebraically, the action involves some non-canonical choices.

In Sect. 4.1, as an application, we show how to use this extended action to go up in level
along an isogeny, i.e., given an isogeny f : A” — A, recover the theta basis for f*.¢. Then
in Sect. 4.2, given a decomposition £ = Y a?, we construct a section u of #* from sections
of .Z, and we use the action of G’ determined previously on these sections to compute
the action of &(¢H) on u, and hence of G(.£*) on u. Here, the action does give sections,
so the choices we made earlier all give the same final result. Applying Proposition 2.11
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then gives our basis of theta functions of level £n on A. The full algorithm is described in
Theorem 4.4 and its application to isogenies in Corollary 4.6.

In Sect. 5, we explain how to descend in level. Finally, in Sect. 6, we outline how to
extend our algorithms to the case of real multiplication.

1.3 Open problem

A drawback of Proposition 2.11 for constructing theta functions is that it only works
projectively; i.e., our basis of theta functions is defined up to a constant. But theta constants
are also modular forms (of weight 1/2), so given a period matrix €2, there is a canonical
affine basis of the theta function (the basis 6 [ i?n] (2, 2/n)). Algebraically, to a basis of
differential forms wy, ..., wy on A, corresponds a canonical theta constant (up to a sign)
depending only on w1 A - - - A w,. Keeping this basis when going up, or pushing it forward
through an isogeny, this also defines canonical theta coordinates of level £n. We leave
as an open problem working out exactly how to get the correct coordinates as modular
forms. In other words, how to determine the unknown constant C appearing in Theorem
4.4, Corollary 4.6 and Theorem 5.1. For the older isogeny algorithm of [4,13], getting this
correct constant was done in [10], which was used to compute modular forms.

As mentioned in the Introduction, the importance of this problem lies in the following:
by [9], every modular form of a certain level N is integral over a suitable ring of theta
constants. Hence, being able to evaluate theta constants of arbitrary level would allow one
to evaluate algebraically modular forms of any level (provided we are able to express its
minimal polynomial over the theta constants and then select the correct root). Unfortu-
nately, as long as we are not able to get the correct constant, we can only use the results
of this paper to evaluate modular functions of level N, and not modular forms.

2 Constructing theta functions

In order to fix the notations, we briefly review complex abelian varieties and theta functions
and refer to [1,18,19] for more details. Our presentation follows closely that of [1, Chap.
6] with slight changes in the definition of theta structure and symmetric theta structure
for the sake of simplicity. Let A = V' /A be a complex abelian variety, where V = C$, and
A is a Z lattice in V of rank 2g. We denote by 7 : V' — A the canonical projection.

2.1 Line bundles

Projective coordinates on A are given by analytic functions # : V' — C which are periodic
with respect to A up to some automorphic factors: u(z + 1) = a.(z, A) " lu(z) forz € V,
A € A.Thefactors a ¢ (z, 1) verify the cocycle conditiona ¢ (z, A1 +X2) = ag¢(z A1)ay (z+
A, A2),z € V, A1, Ao € A. Equivalently, the automorphic factor a » defines a line bundle
Z on A as the quotient of the trivial line bundle on V' x C over V by the action of A given
by A.(v, £) = (v + 4, az(z M)

The possible automorphic factors are classified by the Appel-Humbert theorem. Up to
changing the automorphic factor by a suitable coboundary (this simply changes the corre-
sponding line bundle by an isomorphism), wehave a. ¢ (z, A) = & (1)e™/?12 W) rHy (1),
where H ¢ is an Hermitian form on V associated to .. The Hermitian form H ¢ is such
thatif E = JH ¢ (where 3 stands for the imaginary part), E¢ (A, A) C Z, and x¢ is a
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semi-character for Hy [1, Theorem 2.2.3]. We recall that a semi-character for Hy is a
map x : A — Cy, satisfying x (A + 1) = x (A) x (\)e™E2 ®) forall A, A € A.

One can recover H ¢ from E ¢, so we will call either a Riemann form of .Z. The Riemann
form of .Z characterises its algebraic equivalence class. The map .Z +— (x»,Hy) is a
bijective correspondence between isomorphism classes of line bundles and their associ-
ated semi-characters and Riemann forms.

The algebraic equivalence class Hy of a line bundle . is called a polarisation on
A. The data of the polarisation associated to . is equivalent to that of the morphism
by A — /A\k, x > 1. # 71 whose analytic form is z > Hg (z -). We recall that . is
ample if and only if either ¢« is an isogeny or H ¢ is definite positive. The symplectic form
E & allows one to define the Weil pairing on K(.Z) by e (&1, &) = e 27 E2 @1%2) | where
% =x; mod A fori = 1,2. We denote by K(.Z) = L ¢ the kernel of the polarisation,
so we have K(.Z) >~ A(Z)/A, where A(L) = Atz istheey orthogonal of A. We say
that . is of type n if E is of type n on A, in which case K (%) ~ (Z/nZ)*; equivalently,
£ = £} is the nth power of a principal line bundle (associated to the Hermitian form
Hg, = Hg /n).

Assume that we have a symplectic decomposition A = A; @ A of A for a Riemann
form E . We will denote such a decomposition by o = (o1, 02) where o; is the projector
onto A;. Using o, we can define a canonical semi-character by x(A) = €” iE(o1(1):02(4)
[1, Lemma 3.1.1], which by Appel-Humbert theorem gives a canonical symmetric line
bundle .£?, often denoted herein by . for simplicity.

Remark 2.1 For reasons explained in Sect. 3, we will mostly consider the case when the
level # is even. In this case, all the symplectic decompositions o of A give x¢o = 1;
hence, the line bundle associated by the Appel-Humber theorem to the canonical semi-
character does not depend on the choice of a symplectic decomposition of A. This means
that . is the unique (totally) symmetric line bundle in the algebraic class given by H, i.e.
the unique line bundle in this algebraic equivalence class such that ¥ = £’ with %

principal symmetric.

2.2 The theta group
In this section, we introduce the theta group and study two important properties of that
group that we will use, namely

« the structure of extensions of V by C* and the existence of sections above V; and
« the action of the theta group on sections of .Z.

Following [1, Chap. 6], we denote by &(.%) = {[o, w] | « € C*, w € V} the group with
composition law [ory, w1 ].[ag, wa] = [@jane™12 W2w1) w1 4+ wy]. We can interpret &(.%)
as the automorphism group of the trivial line bundle 7*.Z ~ V x C above translations
on V. Note that (%) only depends on H ¢, so we may also use the notation &(H ) (or
®(H) if H is a general Riemann form).

The group &(.Z) is non-commutative. If z3, z0 € V, g1 = [0, z1] and gy = [, 22] two
elements of &(.Z) above z; and zy, we also recover the Weil pairing e » as the commutator
pairing: g1828, lgz_ 1 = [e%mEz (212) 0], It is clear that &(%) is a central extension of V/
by C*. In order to study its sections above V, we need the following definition:
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Definition 2.2 Let H be a Riemann form on V. Let o : V = V7 @ V, be a symplectic
decomposition of V for E. Let A be a lattice of V, so we say that A is compatible with o
if A = ANVi& ANV, We note that A is compatible with o if and only if A~ is.

A symplectic decomposition o on A induces a symplectic decompositionoc @ R: V' —
V1 @ V5 on V which is compatible with A. This allows one to extend ¢ o toallof V x V'
viaa.go (v, 1) = " E@M02()pm/2HMLA) emHWA) forall (v, ) € V x V. This extension does

not satisfy the cocycle condition and thus is not an automorphy factor.

Lemma 2.3 Let H be a Riemann form on V. Let 0 : V = V1 & V, be a symplectic
decomposition of V for E = IH. Let A’ be a lattice in V compatible with o.

Then A’ is isotropic for E (i.e. E(A, A") C Z) if and only if ayo satisfies the cocycle
condition on V x N/, if and only if there is a group section sy : A' — &(L).

In this case, the map

S 1 A= &(L)

so(A) = [ago(0,0), A] = [eﬂiEf (01(),02(4)) g7t [2H 2 (M)) Al
is an explicit group section.

Proof Writing the cocycle condition fora ¢+ or V x A, it is easy to see that it is equivalent
to A’ being isotropic for E. If there is a group section A" — &(.¥), then the commuta-
tor interpretation of the Weil pairing shows that A’ has to be isotropic, since s(A’) is
commutative.

Finally, if A’ is isotropic, it remains to check that s, is a group section. We have
seen that @40 verifies the cocycle condition. We then have [a.40(0, A + 1), A + A/]
lago (0, M Yags (M, A), L + A'] = [ags(0,M)aye (0,1 )ags (M, L) ayps(0,A), 1 + 1]
[ags(0,A), A][aya (0, 1)), A]. o

The group &(.Z) acts on analytic functions u in V via I+ wlo(Id x u) = (Id x [I+, w]-
u) o t_y, where t_,,(z) = z — w; namely, we have

[o, W] - u(z) = ae™2 EWWy (7 — w), 2)

Let o : V = V1 @ V, be a symplectic decomposition of V' and suppose that A is
compatible with o. By Lemma 2.3, we have a group section s, : A — &(Z). We may
extend it to a set section on the whole of V via s, (v) = [a.g0 (0, v), v].

We have the following:

Lemma 2.4 [I, Theorem 6.1.3] The automorphism group G(.L) of £ is equal to G(L) =
Z(s(A))/s(A), where Z(s(A)) denotes the commutator of s(A) in 8(H .y ). The action of Equa-
tion 2 induces an action of G(£) on T'(4, Z).

Explicitly, for A € A(ZL) and u € T'(A, L), we have

So(A) - u(z) =ay(z — A Nu(z — ). (3)

Proof As.Z is the quotient of the trivial bundle over V by the action of s, (A), it is clear
that 55 (A) acts trivially on I'(4, .Z) (in fact, by definition, I'(4, .Z’) are exactly the analytic
functions on V fixed by this subgroup). In particular, the action (2) restricted to elements
of Z(s(A)) sends sections of .Z to other sections, and hence induces an action of G(.¥)
on I'(4, £). Equation 3 is a simple computation. O
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2.3 Theta structures

In this section, we introduce the notion of theta structure. Let (A = V /A, %) be a
polarised abelian variety. Let o be a symplectic decomposition of V, and we suppose that
A is compatible with o and that . = £°. Note that by taking the quotient of A(Z)
by A, o induces a decomposition K(.Z) = K1(.£) & Ka(Z) for e . Let A’ be such that
A C AN C A(Z)andlet K = A’/A. Then A’ is compatible with o if and only if the
symplectic decomposition of K(.Z) above induces a symplectic decomposition of K for
the Weil pairing e : K = Kj @ K with K; = K;(£) N K.

Given such a compatible A’, using Lemmas 2.3 and 2.4, s,(A’) induces a canonical
section K of K into G(.Z). Applying thisto A’ = A1(.£) @ Ay andto A’ = A1 @ Ay(D),
we get canonical sections s; and sp of K1 (£) and Ky (.£) (or more generally of any isotropic
K =K @& Ky C Ki(Z) & K7(.%)) into G(.Z). We stress that these canonical sections
depend on a choice of the symplectic decomposition o of V; a choice of a symplectic
decomposition of K (%) is not sufficient to determine the sections s;. We have proved the

following:

Proposition 2.5 Let (A = V /A, ) be an abelian variety together with an ample line
bundle. A choice of o, a symplectic decomposition of A for E ¢, determines a symplectic
decomposition K(£) = K1(Z) ® Ky(£) and sections s; : Ki(£) — G(ZL).

This motivates the following definition, slightly adapted from that of [16] and [1, Chap.
6.6]:

Definition 2.6 Let (A = V /A, .Z) be an abelian variety of dimension g together with
an ample line bundle. Let K(.Z) be the kernel of the polarisation defined by .Z. A theta
structure © ¢ for (A4, %) is the data of

o K(Z) =K (Z)® Ky(ZL), a symplectic decomposition of K(.¥) for e ; and
« fori=1,2,sections slog :Ki(%) — G(2).

Via s?'g fori = 1,2, we thus get an action of K;(.#) on T'(4, .¥). Fori = 1, 2,if P € K;(%£),
we will denote by P - u the action si@ff (P) - u of sl@f/ (P) € G(&) on u.

In the following, if 0 : A = A; & Ay is a symplectic decomposition of A, we denote
by ®9, the associated canonical theta structure following Proposition 2.5. We say that
O ¢ is symmetric if there exists a symplectic decomposition o : A = A1 @ Aj such that

L =2%and By = 0%.

Remark 2.7 We briefly explain the link between our definition of a symmetric theta struc-
ture and the usual one of [16] or [1, Chap. 6.9]. Let §_; be the group automorphism of &(.Z)
defined by S_1([I+ w)) = [I+, —w]. Following [16], we say that an element g of &(.Z) is
symmetric if I” 1& = g~ 1. One can check that the sections si@g for i = 1, 2 deduced from
the symplectic decomposition o have value in symmetric elements of &(.Z’), and hence
symmetric elements of G(.Z’). So a symmetric theta structure following Definition 2.6 is
symmetric in the sense of [16].

Changing the symplectic decomposition of A will thus only change our sections by a
sign on each element. Furthermore, symplectic decompositions o of A give the same
symmetric theta structure on G(.%) whenever they induce the same symplectic decom-
position on K (.£?) ~ %A(X)/A. Finally, if » € A’ is of odd order modulo A, then s, ())
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is uniquely defined as the unique symmetric lift of order ¢, and hence does not depend

ono.

Definition 2.8 Let (A = V /A, %, ®«) be an abelian variety with a symmetric theta
structure on .Z. We say that a symmetric theta structure ® ;¢ on .Z* is compatible
with ® ¢ if there exists a symplectic decomposition o of A such that ® ¢ = ©9, and
Oy =07,

The importance of theta structures lies in part in the following result (see [16, Sect. 1,
Theorem 2]):

Theorem 2.9 (Maschke—Mumford) The vector space T'(A, £) is the unique projective
irreducible representation of G(.ZL).

Corollary 2.10 Suppose we have chosen a theta structure © ¢ for (A, £). There is a unique
basis (01.@Z )ieky () (up to a common projective factor ) of sections of £ such that 9(? Z s
invariant under the action ofs?x (K1(D)), and if i € K»(L), Gi@)'z = Sg)z (@) - 9(?5/ . This
basis is called the basis of theta functions of level n if £ is of type n.

The action ofs?”(Z (Ki(2)) for i = 1,2 on this basis is given by j - 9?"2” = ey (j1, 0)0; if
j1 € Ki(L) andjo - 607 =657 ifja € Ka(ZL).
Proof Since I'(4, .Z) is irreducible, it is isomorphic to the unique irreducible Heisenberg
representation of G(.Z) as described in [16, p. 297], from which we deduce the existence
of the basis (GL.@Z ). The computation of the action of 5;(K;(.Z)) for i = 1, 2 on the family

(9].@5' )jek, () is immediate from its definition. m

We thus immediately get the following recipe to construct the basis of theta functions
of level # associated to a theta structure ® &:

Proposition 2.11 Let © ¢ be a theta structure for (A,.L). Let u be any section of
T'(A, %) such that if u = ) Aiel@f , Ao # 0. Then, up to a constant, we have Qg)'z’ =

Y ek () 27 () - w, and for i € Ko(L), 677 = s,(i) - 637 .

We remark that using Mumford’s algebraic theory of theta functions, the above propo-
sition is valid for any theta structure of level # prime to the characteristic of the base
field.

Remark 2.12 1If u is such that Ay = 0, we can still reconstruct our theta basis as follows:
assume that A; # 0. Then, since I'(4, .Z) decomposes into a sum of one-dimensional
eigenspaces for the action of G(£): T'(4, ) = @, ek, () (4, £L)%, and 01,@'5'” is a gen-
erator of I'(4, £)X for the character x = e« (i, -), we recover OZQJ) as the trace of u under

K1 (Z) twisted by this character: 91‘@‘? = Zjelﬁ(f) ey (L))s() - u= ZjeKl(f) si+j)-u
(SX% . .
=s(i—i

(SX?
p /).ei /'

(alternatively, one could take the trace applied to s(—i) - &). Then 6
@(7

Example 2.13 Leto : A = A1 @ A be a symplectic decomposition and let (6, * )iex,(2)

be the associated basis of theta functions. Then, permuting this decomposition o’ : A =

Ay @ A gives another basis (9i®*f ), indexed by i € K;(.%).

07, o9
Applying Proposition 2.11, we get that (up to a constant) 6, ¥ = >k, () 0, Z , and if

’ /

, 0% . 0% NG
i€ Ki(L), 60,7 =i007 = Vs ez ()6 7 -
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2.4 Theta groups and isogenies

Let A = V4/Aa B = Vp/Ap be dimension g abelian varieties. Let f : A — B be an
isogeny and let F : V4 — Vp be the analytic representation of f. Let M be a line bundle
on B with polarisation H, then . = f* M has associated polarisation Hy = F*H 4.
We have a map F : (%) — &(M), [o, w] — [a, F(w)], which is compatible with the
action on sections: if # is an analytic function on V3, then

[o, w] - F*u = F*([a, F(W)] - u). (4)

Fixo = (01, 02) asasymplectic decomposition of A 4 with respectto Hy andlet K(.¥) =
Ki(Z) ® Ky(.Z) be the symplectic decomposition of K(.Z’) deduced from o. Assume that
A = F~Y(I >3) ¢ A(Z) is compatible with . This means that there exists a symplectic
decomposition of K = Zf, K = K; @ K3 such that K; = K N K;(.Z). Then pushing o
through F, we obtain a symplectic decomposition of A g that we denote by Fy.(0 @ R)|z, =
Fy(0c ® Rjas). Concretely, Fy(o; ® R) = F o (0; ® R) o F~L If M is the line bundle
corresponding to the canonical automorphic factor a ¢ associated to Fx(o ® R), and .Z
is the line bundle corresponding to o, then we check that a ((F(v), F(A)) = ay (v, 1),
and hence f* M = Z. Using Lemma 2.3, we have sections s ,, sp, and s/, respectively,
on Ag, Ap and A’ which verify sy/(I >') = sAB(F(i >')). Taking the quotient modulo
sa’(A4), we get a canonical section 5 : K — G(Z). Since G(M) = Z(sp,(AB))/saz(AB),
we get that G(M) ~ Z(s(K))/s(K).

Definition 2.14 Let (A = V4 /A4, %, ®«) and (B = Vp/Ap, M, ® »4) be abelian vari-
eties together with symmetric theta structures, and let f : A — B be an isogeny with ana-
lytic representation F. We say that ® » and ® ¢ are compatible (along F) if there exists
symplectic decompositions o4 and op such that Fy(c4 @ R) = op ® Rand Hy = F*H 4,
L =L M=MP%0y =0%,0, =0T.

Using Proposition 2.11, we get the following proposition which immediately provides
an algorithm to construct theta coordinates on (B, M), provided that we have a section
u € I'(4, .Z) on which we know the action of G(.¥):

Proposition 2.15 Let o be a symplectic decomposition of A from which we deduce a
decomposition of K(.L) = Ki(L) @ Ky (L). Let K be a finite subgroup of A isotropic for the
Weil pairing and compatible with o, that is, K = K1 ®K, where K; = KNK;(L) fori = 1, 2.
Letf : (A, L) — (B = A/K, M) be the corresponding isogeny with analytic representation
F and such that f* M = Z. Given the symmetric theta structure © o = ©%, on Z, there
is a unique compatible symmetric theta structure © pq on M: in other words, ® r only
depends on ® ¢ and not on the decomposition o used to define © .

@D'
Let u be a non-trivial section of T'(A, £). Up to a constant, we have F*6, ™ =
Ley o5,
N . . . _ . 2% * M _
Z]’EKILE'Z ok, s(j) - u (assuming this trace is non-zero), and for i € K, *, F Gf(i)
@(7
s(i) - 6, M

Proof From the discussion above, M is the quotient of .# by the action defined by the
section K C G(£) of K = K1 @ K> given by K = s1(K7)s2(K) (since K is isotropic, these
two subgroups commute, so their product defines a lift).

Using [16, Sect. 1, Proposition 2], we have K (M) =~ Kllef /Ky GBKZLEJ) /K. Fori=1,2,
let K;(M) = Kl.lef /K; and let S?fz) : Ki(M) - G(Z) (resp. sl@j\" : K;(M) - G(M))
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be the sections defining the theta structure @7, (resp. ®%,). Then we have si@j"’ (P) =
F (s?fg (P)) for P’ € I(L.J_e'f such that P = f(P’). This shows that @} is unique. Taking
a trace of u under K, we get a section of M since I'(B, M) = I'(4, 2K We can then
apply Proposition 2.11 to this trace to obtain the result. O

If the trace of u under KIL ‘Y @ Ky is zero, then since u is non-trivial and I'(4, %) is
irreducible, there always exists an element in g € G(.Z) such that the trace of g - u will be
non-zero. It is only in this case that we need the full action of G(.Z). In general, we only
need to be able to compute the action of Z(s(K)) to recover © 4.

Remark 2.16 As an aside of the preceding proof, if #K is odd, then by Remark 2.7, K, and
hence M, does not depend on o.

Example 2.17 Applying Proposition 2.15 to u = 6’89 # , we recover Mumford’s isogeny
theorem (compare with [1, Theorem 6.8.2]):

fori e K, O =Yk, 0107

Indeed, by definition K; (%) acts trivially on 9(? Z ,and ifj € Ko(&), j - 9(?“5’” = 91@‘2” .
So we have equality up to a constant C not depending on i. But by Example 2.18, in this
case, this constant C is equal to 1.

Example 2.18 Given o : A = A1 @ Ay is a symplectic decomposition of A, up to an
automorphism of V' = C$, we can assume that Ay = Z8. Then A; = QZ% where Q
is a ¢ x g matrix with complex coeflicients called a period matrix of A. The data of a
period matrix is equivalent to the data of A, a principal Riemann form Hyp with matrix
representation J(R271) on V and a symplectic decomposition of A = Q7 @ Z& for Hy.
Let H = nHp and .Z be the line bundle associated to the symplectic decomposition given
by €2 in the algebraic class defined by H.
Recall the definition of the analytic theta functions with the following characteristics:

0 [Z] (2 Q) = Z em“(n+a)§2(n+a)+2nit(n+a)(z+h)} fora, b e @g
neZzs

We have K5(.¥) = %Zg /78 >~ (Z/nZ)8. Under this isomorphism, the classical basis of
level # theta functions is given by 6;(z, ) = 6 [i?n] (z, 2/n) (see [18, Chap. II, Proposition
1.3]). These functions are automorphic with respect to the classical factor of automorphy
from Eq. 1 rather than the canonical one from Sect. 2.1. These two automorphic factors
differ by a coboundary, and by using this coboundary one can translate the above theory
to classical theta functions.

Mumford’s isogeny theorem from Example 2.17 applied to the isogeny A = C¢ /(QZ3 &
78) — B=C8/ (%Zg @®Z#) becomes the following tautological equation between classical
theta functions of level £z on A and classical theta functions of level # on B: for b € Z8:

0 [b(/’n] @ %) —0 [Eb(/’m] (2 2/n).
3 Affine lifts and Riemann relations
Let (A, .Z, ® ) be an abelian variety together with a line bundle and a symmetric theta
structure of even level #. We have seen that © & defines an embedding (g, : A — PK(2),
P (Gi@g (P))ick,(2)- In this section, we gather some useful definitions and results from
[12,14] to obtain the main ingredients of our algorithms.
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Definition 3.1 We call any preimage P € AX2(¥) of P for the canonical projection
AKAZ) 5 PKAL) an affine lift. If P is an affine lift of P and i € K»(.%), we denote
by (P); or 6;(P) the i™" coordinate of P, so P = (Qi(j)))l’e[(z(g).

Let * : C* x AK(Z) 5 AK(Z) pe the action (A P) — ()»(j’)i)ieKz(g)-

If P is a point of A = V /A, we denote by zp € V any element whose equivalence class
modulo A is P. The element zp defines an analytic affine lift P = (Gi@ “(zp))icky(2) of
P. The action of &(.Z) on analytic functions extends to vectors of analytic functions by
acting coordinate by coordinate, which induces an action of G(.£) on vectors of sections
of .Z, and thus an action of G(.Z) on P.

We can construct the affine translation by points zp € V on theta functions explicitly
via the use of Riemann relations. In this section, in order to ease the notations, we omit

the theta structure symbol when we name theta functions: for i € K»(.%), 6; = Gigf .

Definition 3.2 If) is a commutative group, we say that the elements vy, vy, v3, v4; wy, wy,
w3, wy are in Riemann position whenever there exists # € V such that w; = v; + u and
vi+ vy +v3+vy=—2u.

Theorem 3.3 (Riemann’s relations) Let z1, 22, 23, 24; 2}, 2, 25, 2y, € V and iy, o, i3, ia; I},
i, ig, iy € Ko(ZL) be in Riemann position. Let T = Ko(ZL)[2] =~ (Z/2Z)8. Then for any
character x on T, we have

(Z X (t)9i1+t(zl)9i2+t(zz)> (Z X (t)9i3+t(23)9i4+t(z4)>

teT teT

= (Z X(t)ei’l+t(zi)6i’2+[(zé)> (Z X(t)eié-l-t(zé)ei;-i-t(zé/l-)) .

teT teT

We can use Riemann’s relations as follows. Let z;, zlf € Vfori=1,...,4bein Riemann
position. Assume that we know the affine points P; = (0)(zi))jexy(2) for i = 2,3, 4, and
I:"Lf = (0j(z)))jexy () for i = 1,...,4. We can recover b = (6j(21))jexy(2), i-e. the affine
theta coordinates of z, by first computing the projective theta coordinates of P; using
the addition on A, taking an arbitrary affine lift P; and computing the projective factor
A1 such that Ap % Py, Py, . .. satisfy Riemann’s relations (so we only need to use one such
relation).

Of course, in practice, the arithmetic on A itself is usually derived from Riemann’s rela-
tions. We just present a few examples, and we refer to [15] for more details. In particular,
when n = 2, we need to assume that the even theta null points are non-zero, which means
by a result of Koizumi—Mumford—Kempf that the line bundle . is projectively normal.

Example 3.4 Let r be an integer. Given the affine theta coordinates of 0, z, z2, ...,z € V/
04 = (Bu(0)ucky(z) Pi = (0u(2))uciqy(z) and also of each z; + zj, i # j, Py = (Bu(zi +
zj))uek,(#)» We can recover the affine theta coordinates of m12; + mazy + - - - + m,z, using
Riemann relations. We denote the resulting affine lift by mult_add(m, . . ., m,, P, 135]', 6A).

As a particular case, we can compute the affine theta coordinates of £z; + z given
the affine theta coordinates of 0, z1, zo and z; — z» (via an easy change of variable),
and so of £z; given the affine theta coordinates of 0 and z;. We denote these by
diff_mult(¢, Py, Py, P; = Py, BA) and mult(¢, P;, EA), respectively. These can be computed
in O(log ¢) field operations using a double and add algorithm.
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Another particular case is the computation of the affine theta coordinates of z; + z2 +
z3 given that z1, 23, 23,21 + 22,21 + 23, 22 + z3. With the notations above, we call this
threeway_add(Py, Py, P3, Py3, P13, P, 6,4). Then, conversely, mult_add can be constructed
from threeway_add and diff_mult.

Finally, recall that 6;(zp) = 6_;(zp), so we define (=P); =P_;.

We want to compute the action of suitable affine lifts given by zp € V of the points
of £ torsion P € A[€]. Let o : A = A1 @ Ay be a symplectic decomposition. Then the
lattice A” = ¢A1 &® %Az is isotropic for E ; hence, by Lemma 2.3, we get a group section
sar i A — B(Z). We will compute the action of elements of s,7(A7) on the theta basis

(O ®
of level n, (6, )ick,(#)- Since the 6,

% are invariants by sp»(A), the action of . € A7
only depends on its class modulo A3, so only depends on the £ torsion point P € A7 /Ay >~
K>(Z%)[£]. In the following, we denote this action by 55~ : Ko(.Z4)[£] — Aut(I'(4, £)).
A similar method will apply for the action of (the lifts of) the points in Ki(.Z*)[¢], for
instance, using Example 2.13.

By Equation 2, the action by 557 (P) for P € Ky(Z e is given by the translation by
£ torsion points, corrected by some scalar factor, and hence it is natural to use Riemann
relations to compute it. In fact, Riemann relations are compatible with these corrective

factors:

Lemma 3.5 Assumethatzy, z3, 23, 24; 2, 25, 24, 2) in V are in Riemann position, and more-
over that P1, Py, P3, Py; P}, P}, P}, Py in Ko (L ©)[€] are in Riemann position. Then the points

_ ) , . , ,
sy (Py) - Qj ? (z;) satisfy Riemann’s relations.

Proof 1f z1, 22, 23, 24; 2}, 25, 25, 7, are in Riemann position, and g1 = [a1, v1], & = [a2, v2],
...in B(.Z) too (by which we mean the v; are in Riemann position and Ia; = I1a}), then

since the (Qj@‘f (zi))jex, () satisty Riemann relations by Theorem 3.3, we check by an

@U
easy (but a bit lengthy) computation that the (g; - Qj Z (zi))jex, () also satisfy Riemann
relations. We apply this to g; = sx»(zp,), g = sar(zp:), where zp,, zp; € V are such that
zp, = P; mod Ajandzp =P mod As. O

This leads us to the following definition:

Definition 3.6 If K is a subgroup of K(.£*) isotropic for the Weil pairing, we say that
K = {P}pek is an excellent lift of K if the points in K satisfy all Riemann relations from
Theorem 3.3 that involve only points in K.

We specify what this definition means for a point and its multiples computed by the
help of Riemann equations.

Definition 3.7 Let P be a point of £ torsion with £ odd and prime to n. Write £ = 2¢' + 1.
We say that an affine lift P is an excellent point of £ torsion if mult(¢’ + 1, P, GA) =
—mult(¢, P, 0,).

It is easy to check that if P is an excellent point of £ torsion, then s P is also if and only if
M’Z = 1. It is clear moreover, since mult is computed with Riemann equations, that if K is
an excellent lift of K, all P € K are excellent points of £ torsion. Furthermore, given K, if
Py, ..., Py isabasis of K, we only need to be given P; and 131-]', the lifts above P; and P; + P;,
respectively, to recover the others via mult_add.
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In fact, this subset of the Riemann relations involving points of K is enough to construct
an excellent lift of K, and even recover the section of K in G(.¥) provided by 5. Before
stating the theorem, we give a word of warning: the section s5» does not extend to the
whole of A; for instance, changing 1” by an element of A; (modulo £A;) will change
sa7(A"). In particular, changing the symplectic decomposition o of A will change this s,
even if it does not change the induced symplectic decomposition on A[¢]. This will be
exploited in the following theorem where in order to keep track of the dependence of the
sections s, and the induced action s~ with respect to the symplectic decomposition o,
we will denote them respectively by sy~ , and 5p7 4.

Theorem 3.8 Let (A, 2, ©%, ) be an abelian variety together with a symmetric theta struc-
ture of level even defined by a symplectic decomposition o. Let K = Ko(Z*)[€] and let
Py, ..., Pg be a basis of K. Fix once and for all an affine lift 04 of 04. Choose P; and P;;
as excellent lifts of P; and P; + P; (for i # j), respectively. We can then use mult_add to
compute an affine lift P above any point P in K. Then K = {P}pcx is an excellent lift of
K. Furthermore, up to changing the symplectic decomposition o of A (more precisely, up to
changing A, only), for all P € K and P is exactly SAMo (P).04.

Proof A slightly less refined version is proved in [14, Theorem 3.4.] using the functional
equation of theta functions. Using the theory from Sect. 2, we can give a self-contained
proof.

First, given an excellent lift K, then multiplying every element of K by a projec-
tive factor po still yields an excellent lift, so we may renormalise things such that
aA = (91'@;
Lemma 3.5 applied to the elements 0, 0,0,0;0,0,0,0 € V in Riemann position.

(0)ieky(z)- Of course, K = {§A//,G(P),6A}p61( is an excellent lift of K by

Conversely, we construct K as in the theorem and for all P € K and ¢ a decomposition
of A we let P” =5, ,(P). Then we have P = up * P°, for jup an £th root of unity. It is
enough to prove that we can always change the symplectic decomposition o of A to ¢’ so
that 13;’ = W; *P;’/ and P;‘ = jj *13;., where (1; and p;; are arbitrary £th roots of unity. We
can then choose w;, it such that, after this change of decomposition, we have P; = Plf’/,
13,-; = I:"g/, and hence P = P forall P € K.

First, note that by Remark 2.1, as the level of ® ¢ is even, changing the symplectic
decomposition does not change the line bundle .# associated to this decomposition.
Now, given (ey, .. ., e f1, - - ., fg) a symplectic basis of A with respect to o, and fixing i €
{1,..., g}, wechange the decomposition such that the new basis is given by f = f;+2k;nle;
(the other ones unchanged) for k; € {0,...,¢ — 1}. We let ¢’ be the new symplectic
decomposition. The new symplectic basis still gives the same symplectic decomposition

of A[2#n], and hence we have Oig'g = 9?'” for all i € K»(%) by Remark 2.7. Using

the definition of the sections sp7, and sy, of Lemma 2.3, we compute sAn,c,/(j%) =
e 2MEy (j%’ki”ef)sAu,U (f%)sAu,(T (2k;ne;). Since n is prime to ¢, and sp~ , (2k;ne;) acts trivially
on 04, we have sA//,[,/(f%) 04 = cki sA//,g(j%) . 04 for ¢ = e¥iz/t primary £th root
of unity. In other words, by choosing k; # 0 and k; = 0 for j # i, we can adjust Pf,
without touching the others (except the Pg/, j # i). Likewise, fixing i # j, taking a new
decomposition such that f| = f; 4 2k;nle;, _};./ = f; + 2k;inle; will change only 13;/’./ by ¢ 2i;
hence we may change it by an arbitrary £th root of unity without affecting any others. O
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Remark 3.9 We give an algebraic interpretation of our choice of affine lifts, which will be
useful for Sect. 4.1. Let A" = €A1 @ Ay; this lattice defines an abelian variety A’ = V /A,
and the projection modulo A D A’ gives an isogeny f : A’ — A. The contragredient
isogenyf : A — A’is given analytically by z > £z;its kernel is K = K»(.Z%)[¢] ~ %AQ/A.
We have (A')L = A1 @ %Az; so if &' = f*.%, our lattice A" = LA] @ %Ag is exactly
equal to A} @ A'(ZL),.

Now, %Ag /Ao >~ K3(Z") can be interpreted as a symplectic complement to the kernel
K’ ~ A1JtA1 = f(A[£]) C A'[€] of f. In other words, %Az modulo A determines the
kernel of f, but for our action, we need to look at modulo A’ where it further determines
a symplectic complement of .Zf.

If K is an isotropic subgroup of A[£] and we fix an excellent lift K of K, we may extend
the definition by saying that x + K = {xF P | P € K} is an excellent lift of x with respect
to K and # if these points respect all Riemann relations involving only points of K and of
x+ K.

Definition 3.10 With the notations of Definition 3.7, let P be an excellent lift of an ¢
torsion point P € A[€]. Let x € A and fix an affine lift . We say that x + P is an excellent
lift with respect to P and # if the affine point x + £P computed via diff_multadd is equal
to X.

If x + P is an excellent lift of x + P, then the other ones are given by u * x+ Pwithut = 1.
By the following Theorem, we may construct an excellent lift x + K of x with respect to K
by first constructing excellent lifts x + P; for P; a basis of K, and then obtaining all other

points by multiway additions.

Theorem 3.11 With the notations of Theorem 3.8, fix an excellent lift K of K. Let x be a
point in A which is not in A[€], and z € V be such that x = z mod A. Fix an affine lift %
of x, fix excellent lifts x + P; for (P)i=1,...,g a basis of K, and compute the other affine lifts
x+P for P € K via mult_add.

Then we may always change z by another representative modulo A (more precisely,
by an element z + h with . € A1), such that there exists a constant | that satisfies
x+P = w* (P - (91.@2’ (2)icky(2)) for all P € K. In other words, we recover (up to the

constant | that only depends on the choice of X) exactly the action of K on (Gf)z (2)).

e’ —~ —~
Proof First, if x = (0, “ (2))icky(z) and x + P = P - % for P € K, then the points x + P
form an excellent lift of x with respect to & and K by Lemma 3.5 applied to the elements
220,0;0,0,z z € V in Riemann position.
As in the proof of Theorem 3.8, in general, we have fori =1,...,g, % £p; = Wi * (P; -
0% . o
Hj “ (2)) ek () for w; an £th root of unity. So it is enough to show that we can find € A

suchthatforalli=1,...,g,(P; .9j®af (@))jera(2) = /L[Li_l * (P; '9/‘@?2 (z+A))jek,(#) where
W is a constant independent of i.

For this, denote the canonical projectionby 7 : V — A.

The pairing e« being perfect, we know that fori = 1, ..., g, there exists 1; € Aj such
thatey ((A;), P;) = /Ll-_l, and ey (m(A;), Pj) = 1forj #i.Set A = Z‘le riandz =z +A.
It is clear that z/ = x mod A.Moreover, using Equation (3), we compute fori =1,...,g
andj € Ky(Z):
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0%

Sar (=) (54 077 ) @) = az (e + 2,2 (5ar(P) - 677 ) (@), (5)

Since we have Sp/(m(=M))spr(Pi) = ez (m(=A), P)sar(P)san(m(=A) = pisp»(Pi)

o

®
Sar(mw(=1)), and since 6; Z (2) is invariant under s, (7 (—21)), we also have

®°

“ (2)). (6)

S (=) (sa0(P) 67 ) (2) = il (Pr) - 0

From (5) and (6), we get foralli =1,...,g:

_ o7 o,
ay(z+ ;" * (P - 0,7 (@)jexyiz) = Pi - 0, 7 (@)jery(2)- 7)

o

Using (5) with P; = 0, we also have a.z ( + 2, 1) % (6 * ()jexyiz) = (6; 7 (@))jexy(2)-
On the other hand, multiplying % by a factor u changes x+P by the same factor p too. So

C)
if we renormalise & such that it corresponds exactly to (‘9/' Z (7 )jek,(#), then our updated

. e°
x + P; are exactly equal to (5o~ (P;) - Gj Z (z’))ngz( #), with no constants involved. O

Remark 3.12 1f the field of definition is not algebraically closed, and if P is a point of ¢
torsion, taking an excellent lift P of P involves computing a £th root wp, which may live
in an extension of our base field. In practice, we never need jp: all our algorithms will be
independent of the choices made to compute excellent lifts, and hence will only involve
the value ,uf,, which is rational. The same holds to compute an excellent lift x:P.

Algorithm 1: Algorithm to compute an excellent lift of a point.

input :
+ The theta null point 04 of (4, .%, © &) an abelian variety with a symmetric level # theta
structure;

» A point P in K and a lift ¥ of a point x in A

output: Excellent lifts P of P and x + P of x + P with respect to P

1 Fix P, and x + P; arbitrary lifts of P and x + P;

2 Write £ = 2¢/ + 1 and determine A such that mult(¢/ + 1, % % Py, 04) = —mult(¢, A % Py, 04);
3 SetP = A xDy;

4 Determine u such that diff_mult(¢, u * xf—i\—/Pb P, % 5,4) = X;

5 Setx + P = W * x:—/Pl;

6 return P, x:—/P;

Algorithm 2: Algorithm to compute an excellent lift of the kernel

input :
+ The theta null point 04 of (4, .%, © &) an abelian variety with a symmetric level # theta
structure;

+ Akernel K and a lift X of a point x in A.

output: Excellent lifts K of K and x + K of x 4+ K with respect to K

1 Fix a basis (Py, ..., Py) of K ;
2 Compute excellent lifts P;, P; + Pj, x + P; fori # j € {1, ..., g} using Algorithm 1 ;
3 Use mult_add to compute the other lifts K and x + K ;
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4 Ascending level
In this section, our goal is twofold:

1. compute the theta functions of level n, i.e. the theta functions of G(.Z*);
2. compute the theta functions of level n on B = A/K where K is totally isotropic.

Of course, if we know how to do (1), we can apply Mumford’s isogeny theorem to get (2).
From Propositions 2.11 and 2.15, we see that we need to

1. Construct a section u of .& l;
2. Make explicit the action of G(.Z*) on this .

Since we will construct # from theta functions of level #, where the action of G(.%)
is explicit, we only need to understand the action of (the sections) of K7(.Z*)[¢] and
Ky(Z%)[£]. These are given by (symmetric) elements of order £ in G(Z*). If g € G(Z*)
is such an element and is represented by [a, zp] € &(Z"), the action on u from Equation
2 shows that we need to be able to compute the translation u(z — zp). Here, zp will be an
affine point of ¢ torsion, i.e. a point in V such that P = zp mod A is a point of £ torsion.

mtH(z—2p.2p) can be seen as a corrective factor such that [o, zp]

The multiplicative factor e
is of order £ in G(XZ), In fact, if we use the classical factor of automorphy instead, this

action is exactly the action by translation whenever zp € %Zg .

4.1 Ascending level along an isogeny

As a warm-up, given an isogeny f : A’ = V/A’ — A = V/A such that its kernel K’ is
a maximal isotropic subgroup of A’[¢], we explain how to compute theta coordinates on
A’ from the knowledge of theta coordinates on A. This was already explained in [13], but
Proposition 2.11 allows us to give a shorter proof.

We suppose that A is endowed with a polarisation given by a Riemann form Hy of type #,
and we choose a symplectic decomposition o : V' = V1 @ V, with respect to Hy4 such that
A is compatible with o following Definition 2.2. We have seen in Sect. 2.1 that o defines
a canonical line bundle .#’ on A and a symmetric theta structure ®%, by Proposition 2.5.
Let F be the analytic representation of f; then o’ : V = F~1(V1) @ F~1(V») is a symplectic
decomposition of V for F*(H4), and A’ is compatible with ¢’. Thus, the decomposition
o’ defines a line bundle .¢” on A’ such that ¥’ = f*(.¥) and a symmetric theta structure
0% ,

In order to compute the canonical basis defined by ©9,,, we need to obtain a section of
Z" and to explain how G(.Z”) acts on it. We consider # asection of £, and ' = f*u = uof.
By the compatibility of the action (see Equation (4)), if g’ = [@/, w'] € G(.£”) is such that
fW') € K(Z), then the action of g’ on #’ is given by the action of F(g’) on u. For instance,
if u =6y € T(4,Z), then for i € A[n] acts trivially on i - ¥’ = u/, while the action of
i € Aj[n]is given by i - u' = F*6p(;).

It remains to explain how A’[¢] acts on u'. Take a decomposition A’[¢] = A/ [¢] @ A, [¢]
withK' = Zf = A [€], then A} [¢] acts trivially on u’ since u’ = f*(u). Thus, we only need
to compute the action of P € A} [¢]. Changing if necessary the symplectic decomposition
o of A, we may assume that A’ = £A1 @ Ay, F = Id. Then this action is exactly the action
of the points in %Az /Ao that we computed in Sect. 3 (see Remark 3.9).
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Note that we may always change the symplectic decomposition of A and A’ in order
to make them compatible, without changing the theta structure of level # on A (resp. ¢n
on A’) if the following algebraic conditions are satisfied (see Remark 2.7): let A’[2¢n] =
Al [2¢n] @A, [2¢n] be the symplectic decomposition inducing the theta structure of level £n
on A’. Then we require that .£f = 2nA}[2¢n], and that the decomposition A[2n1] =
Sf(A][2¢n]) @ f(€A}[2¢n]) induces the theta structure of level # on A.

When ¢ is prime to #, this amounts simply to saying that the decomposition of A'[2n] is
sent to the decomposition of A[2#] viaf. In particular, A}[n] is fixed and A [¢] = K" = Zf
is fixed, so the only choice left is on the symplectic complement A’ [¢] of K.

From the proofs of Theorems 3.8 and 3.11 and Remark 3.9, we immediately get

Theorem 4.1 Let (A, £, © ) be an abelian variety together with a level n symmetric
theta structure. Let K be a maximal isotropic kernel of A[£), £ prime to n, let A’ = A/K,
and letf : A" — A be the contragredient isogeny. Let ' = f*£. Let x € A and fix a lift
#. Fix an excellent lift K of K, and x + K of x, as in Theorems 3.8 and 3.11. Then

1. There exists a symmetric theta structure © o on (A', ') such that, up to a constant,

fori € Ko(L'), if i = iy + ia with iy € Ko(L)n] and iy € Ko(L)[E], 677 (0) =
Gf%)z (f(i2)). Furthermore, all £8€+V/2 theta constants given by such (compatible)
theta structures arise from a choice of an excellent lift of K.

2. If &' is the point such that, up to a constant depending only on x, Qi?ﬁz'( N =
Gi?f (x 4 f(i2)), then &' is a preimage of x by f, and all €8 preimages of x arise from a

different choice of excellent lift x + K.

Remark 4.2 Note that since the constant in Example 2.17 is 1, we can determine the
implicit constants in the above theorem explicitly. Namely, if the chosen affine lift 6Ak
corresponds to the affine theta null point 9;? (0) up to a projective factor «, that is, 04 P =
o - 67 (0), then in Theorem 4.1, we get 67 (f(i2)) = a6’ (0). Likewise, if the choice
of affine lift X satisfies ¥ = u - 952) (z) for a representative z of x = z mod A, then if
7 =F12), 0,7, (@) = and)? (x+F ().

4.2 Ascending level on the same variety

We assume we are given an abelian variety (A = V /A, .7, © ) with a symmetric theta
structure of even level # defined by a symplectic decompositiono : A = A @ Ay. We want
to construct the symmetric theta structure of level £ on (4, .#) provided by o following
Proposition 2.5. For simplicity we assume that € is prime to n. We will apply the tools of
Sect. 2.

Leta; € Nfori=1,...,r besuch that ¢ = ;:161?. Letu; e T'A, L) fori=1,...,r;
then, as . is symmetric, ; o [a;] (Where [a;] : A — A is the isogeny defined on points by
P+ a;P) is a section of ,,5,””1'2, and hence u = [] u; is a section of P — Pt We want
to make explicit the action of G(.Z*) on u; we can then apply Proposition 2.11 to recover
the theta basis of level £z on .Z*. There is a morphism E; : &(.%) — &(LY), I+, w] —
[I+% w]. As A is isotropic for E and E ‘¢ and is compatible with o, Lemma 2.3 gives
sectionssy, ¢ : A — G(ZL)andsy o0 : A — B(ZL"). One can verify that E, is compatible
with 55 ¢ and s, o in the following way: E¢(sa, ¢ (1)) = s, o () forall A € A.

We check that the action of &(.Z*) is compatible with products of sections, and com-
bining with the compatibility of the action with isogenies (see Sect. 2.4), we get
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Lemma4.3 Let A' = 1A1 @ Ay, or A' = A1 ® Aa.
For m € N*, we denote by sp gm : N — B(L™) the set section defined by sp/, om(A) =
[aym(0, 1), A]. For A € A', we have

snzt () [Twita) = Ts,, La®) - wlaz) = []a} (sn.2 (@) - ().

Proof We use compatibility of the action with the product, followed by the compatibility
of the action by the isogeny [a;] (see Equation 4), whose analytic representation is exactly
Z = a;z.

One caveat here is that while s,, o« defines a section of A’ into G(.£*) which does
not depend on the symplectic decomposition of A[¢] (because £ is odd), sp’  is only a
group section on A, and the value of 55/ » (1) depends crucially on the full symplectic
decomposition of A. Indeed, we saw in Theorem 3.8 that we had several possible choices.

But when taking the product, these choices cancel out. We can verify this: if sy ¢ (1) =
[I+, w], another choice amounts to multiplying the first coordinate /4 by an £th root of
unity ¢, and translating the second coordinate by an element of A. Then we can check
that this changes s5’_¢ (a;1) by a factor {“? on its first coordinate; hence, the final product
of the actions is changed by (Z“? =¢t=1 ]

Let (4, £, © «) be an abelian variety together with a level # symmetric theta structure.
Then Lemma 4.3 gives us a way to compute the actions of s,/ ,¢. Namely, if P € A[£] is
such that P = 1 mod A for A € A" and z € V is such that x = z mod A forx € A,
inducing excellent liff\t/s P and x £ P, we get that a’sp/, ¢ (a;)) - 9],@:/ =af(x +a;P); =
(aix + a;P)j = (a;(x + P));. Here, one needs to be careful that we are working with affine
theta coordinates, so the point aix+P) = ai(x:P) has to be computed as an affine
point, using Riemann relations (or as usual, using the projective arithmetic on A and
determining the correct projective factor through Riemann relations).

Applying Proposition 2.11 to u; = (9(? “ (we leave to the reader the obvious generalisa-
tion to u; = 9;)’5) ), we get

Theorem 4.4 Let (A, £, ©y) be an abelian variety together with a level n symmetric
theta structure. Assume that £ is prime to n, and let A[l] = A1[€] © Az[L] be a symplectic
decomposition. There is a unique symmetric level {n theta structure © . compatible with
© ¢ following Definition 2.8 and this decomposition. Write £ = Y i_, a? with a; € N. Fix
excellent lifts A;[£] of the maximal isotropic subgroups A;[£). For x € A, fix an affine lift &,
excellent lifts x + P with respect to % and P for P € A1[€], and then excellent lifts x + P 4+ Q
with respect to x+ P and Q for Q € As[¢]. Compute a;(x + P + Q) using mult.

Let z € V be such that x = z mod A, and let u be such that 61.@5 (z) = ux. We have,
up to a constant C depending only on the choice of 6,4,(, the following:

P A —~
07 @ =Cnt Y []@+P)o
PeA 10 =1
and ifi € Ay[Ll], writing] = Q +j with Q € Ay[€] and j € As[n],

9= 3 [T+ s Qs

PeA e =1



7 Page200f28 D. Lubicz and D. Robert Res. Number Theory (2023) 9:7

Proof The unicity of ® o, comes from Remark 2.7 and the fact that ¢ is odd and prime to
n: for i = 1, 2, the section s?‘z ¢ (see Definition 2.6) above A;[n] is given by E; o S?‘f , and
above A;[£] as the unique symmetric group in G(.Z*) (the unicity is because £ is odd).
By Theorem 3.8, up to changing the lattice decomposition of A (twice, once for A, then
for A1), we can assume that we have correct lifts of A1[¢] and A3[€]. Let z € V be such
thatx =z mod A, by Theorem 3.11, upon changing z first by an element of A1 and then
by an element of A we may assume that there exists u such that (QL.@‘Z (2)) = u x %, and
P. (Qi@)z (2)) = u*(x+P)and Q- P- (9;91 (z)) = u* (x + P + Q). Other analytic lifts are
givenbyz+Afori € A.If(@l.@g (z+1)) = /,L*(Gl‘»z (2)), then (Gf)fe (z+1)) = ul*(GiQZl (2));
hence, the LHS is homogeneous of degree ¢ with respect to p. Since a;(ux) = ,u“z‘zaiic,
the RHS is also homogeneous of degree ¢ with respect to . Hence, we may suppose that

u = 1, whence the result follows by Lemma 4.3. ]

From the theorem, we immediately deduce the Algorithm 3 to go up in level. Going
through the trace and taking into account that the scalar multiplications by the a; cost
O(log £), we thus get a complexity of O(18 ¢8 log ¢) for Theorem 1.1. We can gain a factor
log ¢ as follow: rather than generating all the points P from a basis Py, . . ., Pg of A1[4],
we first embed this basis (and the sums P; + Pj) into A" via P + (a; - P), and then we
compute the differential additions on these embeddings directly. This allows one to only
compute the scalar multiplications on O(g?) points rather than O(£¢). We thus obtain the
complexity result of Theorem 1.1.

Remark 4.5 The order matters here; if we normalise x + P + Q with respect to x + Q and
P instead, we would change its value by a factor  such that ut =e  ¢(P, Q), since e ¢ is
the commutator pairing on G(.Z*). A similar idea was used in [12] to compute the pairing
of P and Q.

Algorithm 3: Algorithm to go up from level # to level £n.

input :
« The theta null point 04 of (A = V/A, %, © &) an abelian variety with a symmetric
level i theta structure;
« for ¢ a positive odd integer, a symplectic decomposition A[¢] = A;[{] ® Ay[£] given by
the theta coordinates of its basis;

+ adecomposition ¢ = Y"!_; a%;
+ x € A, given by its level n theta-coordinates (Qi@'(f (%)) ick,(2)s
o ] e K(2Y).

output: the level £z theta coordinate of index J of x € A: 9]@)3 ¢ (x).

1 Using Algorithm 2, compute excellent lifts ¥ and x+ P for P € Ay [€];

2 Write] = Q+j forj € Ax[n] and Q € Ay [£];

3 Chose any affine lift Q of Q;

4 Using Algorithm 2, compute excellent lifts x + P + Q with respect to x+ P and Q for all
P e At

5 return ZPeA{[Z] [1i—; mult(a; x + P + Q, GA)aij;

As a corollary, applying Mumford’s isogeny theorem (or using Proposition 2.15 directly)

we get
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Corollary 4.6 Let (A, %, ®y) be an abelian variety together with a symmetric level n
theta structure. Let £ be prime to n and write = ) ;_ a; for a; € N. Let K C A[{] be a
maximal totally isotropic subgroup and f : A — B = A/K be the isogeny. Since £ is odd,
there is a unique symmetric level subgroup K of K in G(£"), which induces via f a descent
M of £* on B. Furthermore, by Proposition 2.15, © ¢ induces a unique symmetric level
n theta structure © yq on B. Let x € A fix an affine lift %, excellent lifts K of K, and x + K
of x with respect to % and K. Let z € V be such that x = z mod A and let j1 be such that
0i(z) = pu(%);. Then identifying Ko(L) with Ko(M) via f, we have for j € Ko(L)

-
Oy @) = Cu' Y[ @i+ Pay. (®)
Pekx i=1
Here, the constant C is the same as in Theorem 4.4 (so depends only on the choice of
5,4,{), because the constant involved in Mumford’s isogeny theorem from Example 2.17 is
equal to 1.

Algorithm 4: Algorithm to compute an ¢4 isogeny.

input :
+ The theta null point 04 of (4, .%, © &) an abelian variety with a symmetric level # theta
structure;
2,

+ € apositive odd integer and a decomposition £ = )_/_, a7;

« K C Al¢] arank g isotropic subgroup of A defining an isogeny f : A — B, described by
the theta coordinates of a basis;

+ x € A, given by its projective level n coordinates (OLQ*Z (%)) ick,(2)-

output: the projective coordinates of f(x) € A: (91.8/"1 (F(x))icky(M)-

1 Using Algorithm 2, compute excellent lifts & and K;
2 for j € K2(M) do
3 | Letjo € Ku(Z) be such thatj = f(jo);

1| Let67M(F(x) = Ypeg [Timy mult(as x + P, Oa)ayj
5 end

0
6 return (6, M @)))jerr (M)

Remark 4.7 From the proof of Lemma 4.3, we do not need to take excellent lifts of K and
x+K globally. We just need excellent lifts P and x + P individually for any P € K. Indeed,
the different choices cancel out in the product inside Equation 8.

When given a basis Py, . .., Py of K, it is actually faster to compute excellent lifts of P;,
P; + Pj, x + P; and x + P; + P; and compute the rest using differential additions to get a
global lift of K, rather than normalising each point individually.

However, if we have equations for the kernel K, rather than computing x + P for each
P € K, we can compute it for a formal point of K (i.e. work over the étale algebra defining
SpecK), and then compute the product ]_[le(ai(x/:P))i formally modulo the equations.
If we have a univariate parametrisation of K, the trace across K is then given by a resultant,
using the same method as in [14].
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Remark 4.8 We now explain how to relax the assumption that £ odd is prime to n. Fix a
symplectic decomposition of A giving our theta null point of level # on A. This induces a
canonical symplectic decomposition of A[¢#n]. Algebraically, our (symmetric) theta struc-
ture of level n (resp. £n) is completely determined by the corresponding symplectic decom-
position of A[2n] (resp. A[2n¢]), and the theta structures are compatible in the sense of
Definition 2.8 if £A;[2¢n] = A;[2n].

If ¢ is odd, we only need to fix a symplectic decomposition of A[n¢] such that ¢A;[{n] =
Aln]. If P is a point of £n torsion, and % an affine point given by the level n theta coordinate,
we may extend the strategy of Sect. 3 to compute s(P) - % as follows: g := s(P)* is an element
of G(.¥), whence we know its action on % explicitly. So we may extend the definition of an
excellent lift P and x + P by requiring in this case thatif ¢ = 2¢’ +1, (¢’ +1)P = g - £/(—P),

and x + £P = g - X. These define these lifts up to an £th root of unity as before.

From Corollary 4.6, we get Algorithm 4 to compute an isogeny between abelian varieties.
In practice, an abelian variety together with a symmetric level n theta structure defined
over k is determined by its theta null point which is a projective point in IP’,’(’g_l defined
over k. The theta null point can be obtained through Thomae-like formulas [3] if A is the
Jacobian of a curve. In general, theta null points are described using the equations of (a
closure of) the moduli space of abelian variety together with a level # theta structure as
defined in [17].

Note that in order to use the results of this paper, we need # to be even. Moreover, as
the ambient space in which A is embedded has dimension #¢ — 1, and we look for compact
representation of the objects for time and memory efficiency, we want # to be as small
as possible. So in practice, we use n = 2 or n = 4. As all the level 2 theta functions are
even, they do not provide an embedding of A but rather of its associated Kummer variety
K = A/(—1). Although K is not an algebraic group, its set of points still enjoy a pseudo-
group law and pairings which makes it useful for computations and some applications in
cryptography [7,8,15], and it is straightforward to adapt our algorithms to this case.

The examples have been computed using the MAGMA library [2]. They also could be
done with the Sage reimplementation of AVIsogenies [22].

Example 4.9 LetT be the finite field of size 1511, and E the elliptic curve y* = x34+1211x+
600 over [F. Let P be the 7 torsion point (85872 + 10457 + 830 : 386n% + 1245y + 811 : 1)
in the extension field of degree 3 where 7> + 21 + 1500 = 0. We compute a level 4 theta
null point of E using Thomae’s formula (as implemented in [2]): it lives in an extension
of degree 6 of IF, and convert P to theta coordinates. Let K be the kernel generated by P;
we check that it is rational over F. We compute an excellent lift K of K by computing an
excellent lift P from P and then using differential addition to recover the other multiples.
We now apply Corollary 4.6 to the decomposition 7 =1+ 1+ - - - 4+ 1, namely,

E/K ~
07" 0) =Y 6(P). )
PeKk
We get the following level 4 theta null point: (853v° + 1372v* 4 42403 + 74312 + 430v +
865, 440v° + 9v* + 6633 + 12802 + 170v + 280, 1042v° + 298v* + 85313 + 31112 +

632V +107, 440v° +9v* + 66313 +128v% 4+ 170v +280) where v +v* +106v3 +1278v2 +
1032v 4+ 11 = 0.
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We now convert back the theta null point of E/K to an equation of E/K (by computing
its Legendre invariant). This gives a curve defined over an extension of degree 6 but whose
jinvariantis j(E/K) = 491; hence, E/K descends to F as expected. Comparing with Vélu’s
formula, we recover the same elliptic curve.

Example 4.10 Let C be the hyperelliptic curve of genus 2 given by the equation y* =
125450 4 122355 4 255, 4 31843 4 46682 4 15435 1 538 defined over the finite field F with
3% elements where t° 4+ 2¢* 4 t2 + 2t + 2 = 0. There is a unique rational totally isotropic
(for the Weil pairing) subgroup K in Jac(C)[7]. We compute (using [2]) the theta null point
of Jac(C) and convert two generators P, Q of K into theta coordinates. These points P and
Q live in an extension of degree 4 of . We then normalise them to form excellent affine
lifts P, Q, along with P + Q. From these lifts we can compute an excellent lift K of K using
differential additions and then compute the isogenous theta null point using a trace like in
Equation 9. We compute the Rosenhain invariants associated to this theta null point and
recover the isogenous curve: y> = 29350 4 x° + 1220x% 4 1893 1 #8752 4 ¢824 4 1289 W

check that these two curves have the same zeta function, and hence are indeed isogenous.

5 Descending level

We now want to explain how to do the reverse of Sect. 4, namely, given theta functions
for a (symmetric) theta structure of level £x# on .£*, compute the theta functions for the
unique induced one of level # on .Z (recall that we assume # even).

To apply our algorithm of Proposition 2.11, we first need to construct a section v €
['(4, .Z), and then explain how the theta group G(.Z) acts on it. Unfortunately, we cannot
build an element of I'(4, %) from those of I'(4, #*). However, we can try to build an
element of I'(4, . 62) of the form u = v o [£]. In fact, if we know how (the lift of A[£]) acts
in G(Zﬂ), we only need any u € I'(4, fﬂ), and take the trace u’ of # under A[¢] to get
a section of the form v o [¢]. More precisely, we can use Proposition 2.15 applied to the
isogeny [£] to construct the theta functions of level n on .Z.

But we can use Sect. 4.2 to go from level ¢ to level n¢2. In particular, if £ = Y a% and
u; are in ['(4, Z%), then u = [Tuiaix) € T(4, flz). While we cannot directly apply the
results of this section since £ is not prime to nf (but see Remark 4.8), to apply Proposition
2.15, we only need to compute the action of (the lift of) the points in A[¢] and in A[n]
on u. In our current case, this is actually easier than in Proposition 2.15, since we already
have a theta structure of level £n, we already have the action of these points on the u;, and

hence (by compatibility with product and isogenies) on .

Theorem 5.1 Let (A = V /A, " © 1) be an abelian variety with a symmetric theta
structure of level nt, with n even and £ prime to n, and let © & be the unique structure on
Z compatible with © ¢ (Definition2.8). Let A[{n] = A1[{n]@Aa[Ln] be the corresponding
symplectic decomposition. Write ¢ =) ;_, aiz. Let x € A and fix an arbitrary affine lift ;
let z € V be such that z mod A = x and let v be such that 91.@5/ (2) = ux;.

Then, up to a constant C depending only on the choice ofaAk,forj € As[n],

’
(O ~
9@./ (ZZ) = C/,L[ Z l_[(ﬂix)ﬂi(/+t)’
teAr (] i=1

where a;% is computed via mult.
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Proof Let A = %A. By Lemma 2.3, there are group sections s, o¢ : A’ — &(ZY)
and sp,y : A — 6(Y). Consider the group morphism H, : &(LH - 6(9),
[o, v] > [@f, £v], then Hy is compatible with the sections Sprpeandsp, ¢ Hy(spr (X)) =

Oz : Ai[n] —

sp,.z (€A). Thus, if © ¢ is compatible with © o, for i = 1, 2, the sections s;
G(Z) defining the theta structure ® & are completely determined by S?“C‘” (P) = S?Y “(P)
for any point P’ € A;[nf] with P = £P’. This proves the unicity of © ».

As in Theorem 4.4, both the LHS and RHS are homogeneous of degree £ with respect to
1, so we may renormalise % such that 4 = 1. Then we apply Proposition 2.15 combined
with Lemma 4.3 and the results of Sect. 4. We remark that since (9(? “* s invariant by

A1[€n], we only need to sum through ¢ € A;y[¢]. O

Remark 5.2 'We can use Theorem 5.1 to get an isogeny algorithm as follows:letf : A — B
be the isogeny. Then we have a contragredient isogeny f : B — A, and given x € A, we
can use the results of Sect. 4.1 to compute the theta coordinates of level £# of a preimage
y = f~1(x) on B. Then, applying Theorem 5.1, we get the theta coordinates of level 1 of £y,
which by definition of the contragredient isogeny is exactly f(x). We let the reader check
that this recovers exactly Corollary 4.6.

We constructed our descent algorithm by first using Theorem 4.4 to go up in level 7¢2
and then descending to level n via Mumford’s isogeny theorem applied to the isogeny [£].
Conversely, we could recover the ascending algorithm from Theorem 5.1 by first using
Sect. 4.1 applied to [£] to compute the coordinates of level ¢£2# of a point y such that
£y = x, and then apply Theorem 5.1 to get the coordinates of level £ of x.

Remark 5.3 Another way of descending level used in [4] is to consider Koizumi’s formula.
Koizumi uses an isogeny F : A" — A", where F is an integer matrix such that ! FF = ¢1d,.
In particular, the first column of F is given by (a1, ..., a,) such that £ = > al.z.

We can reinterpret our method as a tweak on this idea: we only use the first column of
F to map A into A" via P > (a;P); this is a generalised Segre mapping S. The important
point is that since $*(.Z*)"" = (.32”15)2“12 = .le, S(A[¢)) is isotropic in (A7, (ZL¢)*"); so
we can apply Mumford’s isogeny theorem to the kernel S(A[€]). This recovers the formula
of Theorem 5.1.

6 The case of real multiplication

When our abelian variety A has real multiplication by an order O of rank g, then given
a principal polarisation Hy, we can consider polarisations of the form BHy where § is a
totally positive real element.

Recall thatif A = V' /A, V is canonically isomorphic to the tangent space of A at 0. This
fixes an embedding ¢ of O into End(V'). We fix a compatible isomorphism v : O ®z C ~
Cs - V.

Given a theta structure of level n on A (with polarisation H = nH), we want to compute
a theta structure of level Sn (with polarisation SH, where BH(z1,22) = H(Bz1,22) =
H(z1, Bz2)). We also want to compute g isogenies: f : (4, .£) — (B, M), i.e. such that if F
is the analytic representation of F and Hy, Hp is the associated polarisations: f*Hg = SH4.
We denote by .## the line bundle with polarisation SH induced by this decomposition.

Here, we need to assume that our theta structure is compatible with the real multipli-
cation, i.e. is induced by a symplectic decomposition of A: A = A1 @ Ay, such that A; is
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stable under the action of O given by .1 > v(B)A for 8 € O and A € A. We call this an
RM-symplectic decomposition. Then, for instance, if A’ = A1/ ® A and B = V/A/,
F : z > z induces a § isogeny (4, ) — (B, M), where M is the line bundle on B with
polarisation Hg = Hy4 induced by the symplectic decomposition of A’.

We generalise Sect. 4.2 as follows: fix a decomposition 8 = ) B; where each ; € O
is totally positive. For each g;, fix a (compatible) 8; isogeny f; : (4, %) — (B;, M;) with
analytic representation F;. Let u; be a section of M;; then u = [ u; o f; is a section of .Z.

Example 6.1 If «; is an endomorphism of A, it can be considered as an o;«; isogeny,
where o denotes the Rosati involution under our fixed principal polarisation. Then, if 8 =
> wju;, we can use f; = o, i.e. endomorphisms rather than isogenies. The decomposition
L=y a? from Sect. 4 is a special case of this where, furthermore, the ¢; are integers.

A direct generalisation of Lemma 4.3 yields the following:

Lemma 6.2 Fix an RM-symplectic decomposition A = A1 @ Ay, and let ' = %Al @ Aoy,
orAN' =AM P %Az. For B € O, wedenotebys, op: A — B(LP) the set section defined
by spnr o8(A) = [ay8(0, 1), A]. For » € A', such that we have

sazs ). [JwiltFi@) = [ [ s, 20 WuwiFi@) = [ [ EF (sa,2 (Fi) - ui(2)).

To apply this Lemma 6.2, we need to assume that we know not only how to compute the
isogenies f; but also their analytic representations F;. More precisely, given the (affine) theta
coordinates of level n of z: & = (91:3 (2))jek,(#), the algorithm should output the (affine)
theta coordinates of F;(z): F;(¥) = (QlMi(Fi(z))),»€1<2( M;)- We also need compatibility with
the action: given A € A1 ®z Q or in Ay ®z Q, the coordinates % of z and the coordinates
ofs(A) - & =s(A) - (9}5‘) (2))jeky(2), the algorithm should output F;(s(2) - (9;7 (2)jeir(2)) =
(s(Fi(A)) . (9]/\/"')].e Ko Mi)) (Fi(z)) (if the former equation is satisfied, the latter is already
automatically satisfied for A € F, i_l (ABi))-

We also need to explain how to adapt Theorems 3.8 and 3.11 to obtain an excellent lift
of K = A1[B] when B is of odd norm. Let Py, .. ., Py be a basis of K such that P; is of order
m; and #K = [] m;. Take an excellent lift of each P; with respect to the order m;, that is, if
m; = 2m;+1, (m;+ 1)b; = —m;f’i, and compute the other lifts using mult_add. This gives
an excellent lift K of K. A similar method gives an excellent lift x + K of a point x € A.

Then we have the following generalisations of Theorem 4.4, Corollary 4.6 and Theorem
5.1:

Theorem 6.3 Let (A, .Z, ®y) be an abelian variety together with a level n symmetric
theta structure. Assume that B is of norm prime to n and let A[B] = A1[B] ® Az[B] be a
symplectic decomposition. This induces a unique symmetric theta structure © 45 on L
compatible with © .

Let B = > B; and assume we can compute affine B; isogenies F; : (A, .£) — (B, M;)
where F; is the analytic representation of the isogeny f;. Fix excellent lifts A;[B] of the
maximal isotropic subgroups A;[B]. For x € A, fix an affine lift %, excellent lifts x + P with
respect to % for P € A1[B] induced byAf[,B], and then excellent lifts x + P + Q with respect
to x’—T-’Pfor Q € A[B). For this theta structure on £?, we have (up to a constant depending
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on 6Ak and % only) the following:
= 3 16 “EFr),
PeA(p]
and if] € Ag[np], writing] = Q +j with Q € Ay[Bl and j € Ay [n],
e,
077 @ =3 [100" Fitx+ B+ Q).

PEKl

OM; O,
Proof By Lemma 6.2, sy 5(1).]]6, Mi (Fi(z)) = [1Ff (sAr,g (Fi(0)) - 6, Mi (z)). By
assumption, we know how to compute the analytic representation F; of the isoge-

nies in a manner compatible with the action: if / = Q + j as in the theorem,
Fr (s,\/ (F:()).6, ’(z)) = 05)(Filsa,2(Q) - 677 (2))), and the RHS is equal to
Gﬁ(i)(F;‘(Z +Q)). |

Corollary 6.4 Let (A, Z, ® ) be an abelian variety together with a level n symmetric theta
structure. Let K C A[B] be a maximal totally isotropic subgroup andf : A - B = A/K
be the isogeny. Assume that B is of norm prime to n, then there is a unique symmetric level
subgroup K of K in G(£P), which induces via f a descent M of P on B. Furthermore,
there is a unique level n theta structure on B, ® yy, compatible with ® ¢ (see Definition
2.8).

Let B =Y _ B; and assume we can compute affine B; isogenies F; : (A, ) — (B, M;). Let
x € A. Fix an affine lift %, excellent lifts K of K, and x + K of x with respect to % and K.
Then identifying Ko(ZL) with Ky(M) via f, we have (up to a constant depending only on
6Ak and x)

O ) = 3 [TEEF P (10)

Pek

Theorem 6.5 Let (A, £P, ® ,4) be an abelian variety with a symmetric theta structure
of level nB, with n even and 8 of norm prime to n and let © ¢ be the unique structure on £
compatible with ® 4z (Definition 2.8). Let A[fn] = A1[Bn] ® Az[Bn] be the corresponding
symplectic decomposition. Write B = >_;_, Bi and assume that we can compute affine p;
isogenies F; : (A, £P) — (B, M,), where F; is the analytic representation of f;. Let x € A
and fix an arbitrary affine lift x.

Then, up to a constant depending only on Z)'Ak and %, for j € Aa[Bn],

=2 HF Bfi+o)y

teAs[B] i=1

Remark 6.6 1t should be possible to adapt Lemma 6.2 to show that by computing com-
mutator pairings in the spirit of [12], we may tweak the algorithm of Corollary 6.4 to not
only compute the isogeny f but also its analytic representation F in a way compatible with
the action. This would open up a recursive approach to compute g isogenies.

Most of the difficulty resides in bootstrapping the algorithm. In Sect. 4.2, we simply had
to compute the multiplication by [4;], whose affine form (easily checked to be compatible
with the action) is given by ¥ +— mult(a; X). When k = F, is a finite field, we may
use the Frobenius 7, to compute more general endomorphisms. We then need to find
a decomposition B = Y w;a; of endomorphisms (possibly with denominators). This is
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the approach followed in [6]. Alternatively, when g = 2, the real multiplication field is
a quadratic real field Q(+v/d), and the endomorphism Vdisad isogeny which can be
computed “affinely” using Corollary 4.6 or [4,14]; see [20] for this case.

In summary, the methods of this Sect. 6 provide a general framework, but fully handling
real multiplication, in particular bootstrapping cyclic isogenies, remains a difficult topic.
We leave the details to future work.

Data availability Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.
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