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Abstract

Let (A,L ,�n) be a dimension g abelian variety together with a level n theta structure
over a field k of odd characteristic. We thus denote by (θ�L

i )(Z/nZ)g ∈ �(A,L ) the
associated standard basis. For a positive integer � relatively prime to n and the
characteristic of k , we study change of level algorithms which allow one to compute

level �n theta functions (θ
�L �

i (x))i∈(Z/�nZ)g from the knowledge of level n theta

functions (θ�L
i (x))(Z/nZ)g or vice versa. The classical duplication formulas are an

example of change of level algorithm to go from level n to level 2n. The main result of
this paper states that there exists an algorithm to go from level n to level �n in O(ng�2g)
operations in k . We derive an algorithm to compute an isogeny f : A → B from the
knowledge of (A,L ,�n) and K ⊂ A[�] isotropic for the Weil pairing which computes
f (x) for x ∈ A(k) in O((n�)g) operations in k . We remark that this isogeny computation
algorithm is of quasi-linear complexity in the size of K .
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1 Introduction
1.1 Fast change of level

LetA = C
g/�be adimension g complex abelian variety.Ananalytic projective embedding

of A can be defined provided that we have enough analytic functions on quasi-periodic
C
g with respect to �. Let n ∈ N; if � = Z

g + �Z
g where � ∈ Hg (C) is a Siegel period

matrix, we define following [18, Chap. II, §1, Def. 1.2] the �-quasi-periodic functions of
level n as the vector space Rn

� over C of analytic functions f on C
g such that

f (z + λ) = f (z), f (z + �λ) = exp(−π intλ�λ − 2π intzλ)f (z), (1)

for all z ∈ C
g , λ ∈ Z

g . LetZ(n) = (Z/nZ)g . It can be shown that the dimension of Rn
� is ng ,

and a standard basis of it is provided by the classical theta functions with characteristics
θ

[
0

b/n

]
(z,�/n) for b ∈ Z(n).

Now, if � and n are two positive integers, by a change of the level algorithm, we mean an
algorithm to compute the elements of the standard basis of Rn

� from the knowledge of the
standard basis of R�n

� (going down in level) and the other way around (going up in level).
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The vector spaces Rn
� can be interpreted as the space of sections �(A,L n

0 ) whereL0 is
a principal line bundle on A. The standard basis of �(A,L n

0 ) given by the theta functions
is determined by the canonical (symmetric) theta structure (see Definition 2.6) associated
to �. This point of view generalizes for an abelian variety over any field k . Let (A,L ) be a
dimension g abelian variety over a field k together with an ample line bundleL such that
L = L n

0 with L0 as a principal line bundle. Then a theta structure �L determines a
standard basis which we denote by (θ�L

i )i∈Z(n) ∈ �(A,L ). IfL is very ample (e.g. n ≥ 3
by a theorem of Lefschetz), �L defines a unique projective embedding A → P

Z(n) given
on points by x �→ (θ�L

i (x)). The projective point (θ�L
i (0A))i∈Z(n) is called the theta null

point of (A,L ,�n).
In the literature, change of level algorithms often take the form of a formula giving an

expression of (θ�L �

i (x))i∈Z(�n) as a function of (θ�L
i (x))i∈Z(n) or vice versa. Change-of-

level formulas are central in the theory of theta functions. In fact, multiplication formulas
[16, p. 330] from which one can immediately deduce Riemann formulas can be seen as
a formula to go from level n to level 2n. Using Koizumi formulas [11], the authors of [4]
deduce a formula to go down from level �n to level n. In this paper, we are interested in
the computational efficiency of change-of-level algorithms measured as the number of
field operations required to obtain the result. In this regard, we prove the following two
theorems. The first theorem, proved in Theorem 4.4, is for going from level n up to level
�n:

Theorem 1.1 Let n, � be relatively prime integers with n even. Let (A,L ,�L ) be a dimen-
sion g abelian variety together with a level n symmetric theta structure defined over k.
Assume that k is of characteristic zero or prime to �n.
We have the following:

• Given a basis of A[�] and the corresponding symplectic decomposition for the Weil
pairing A[�] = A1[�] ⊕ A2[�], there is a canonical symmetric theta structure �L � of
level �n on (A,L �).

• Let x be a point of A, such that from the knowledge of (θ�L
i (x))i∈Z(n) defined over k(x),

one can compute (θ�L �

i (x))i∈Z(�n) with O(ng�2g ) operations in k(x).

In particular, we can compute the theta null point of level �n in O(ng�2g ) operations in k.

We also have a change-of-level algorithm to go from level �n down to level n.

Corollary 1.2 Let n be an even integer and � an integer relatively prime to n. Let
(A,L �,�L � ) be a dimension g abelian variety together with a level �n symmetric theta
structure. We suppose that k, the field of definition of (A,L ,�L � ), is of characteristic zero
or prime to �n.
We have the following:

• �L � induces a unique symmetric theta structure of level n for (A,L );
• Let x be a point of A defined over k(x) given by (θ�L �

i (x))i∈Z(�n). One can compute
(θ�L

i (�x))i∈Z(n) in O(ng�g ) operations in k(x).

In particular, one can compute the theta null point of level n from the knowledge of the
theta null point of level �n in O(ng�g ) operations in k.
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To obtain this result, proved in Theorem 5.1, the idea is to first use Theorem 1.1 to go
from level n� to level n�2, and then descend along the isogeny [�] usingMumford’s isogeny
theorem [16, Sect. 1, Theorem 4] to land in level n (see also Example 2.17). Note that if
� = m2, we can descend along [m] directly, which only costs O((nm)g ) field operations to
compute (θ�L

i (mx))i∈Z(n), hence O((nm)g ) field operations to compute (θ�L
i (�x))i∈Z(n).

In [4], the authors used Koizumi’s formulas, given by an integral matrix F such that
tFF = �Idr , to descend levels. These take O(�gr/2) field operations, where r = 1 if � is a
square, r = 2 if � is a sum of two squares, and r = 4 otherwise. This dependence on r of
the complexity of Koizumi’s formulas comes from the size of the kernel of F : Ar → Ar

which is �gr . As a consequence, Theorem 1.2 achieves a better complexity than Koizumi’s
formulas in the case in which � is not a sum of two squares.
As an application,we can improve the complexity of the isogeny computation algorithms

[4,14]. Let f : A → B be an isogeny with kernel K ⊂ A[�] isotropic for the Weil pairing.
In order to compute f , starting from (A,L ,�L ), an abelian variety together with a level
n symmetric theta structure, we have to equip B with a level n symmetric theta structure
and compute the isogeny in the coordinates provides by these theta structures. There are
two strategies:

• ascend to level �n on A using Theorem 1.1 and then use Mumford’s theorem to
compute the isogeny from A with a theta structure of level �n to B with a theta
structure of level n; and

• use the contragradient isogeny f̂ : B → A to endowBwith a level �n theta structure by
invertingMumford’s isogeny theorem using [13] (see also Sect. 4.1) and use Theorem
1.2 to descend from level �n on B to level n.

Both strategies give a quasi-linear time isogeny algorithm:

Theorem 1.3 Let (A,L ,�L ) be an abelian variety together with a level n symmetric
theta structure over k, n even.
Let � be an odd integer prime to n, and we suppose that �n is prime to the characteristic

of k, or that k is of characteristic zero. Let K ⊂ A[�] be a totally isotropic subgroup for the
Weil pairing defined over k, and let f : A → B = A/K be an isogeny.
Then f induces a line bundle M together with �M a level n symmetric theta struc-

ture for (B,M ). Moreover, for a point x of A with field of definition k(x) and given by
(θ�L

i (x))i∈Z(n) and suitable equations for K , we can compute (θ�M
i (f (x)))i∈Z(n) in time

O((n�)g ) operations in k(x).

Here, we say thatK is totally isotropicwhenever there exists a symplectic decomposition
A[�] = K ⊕ K ′; in particular, K is then maximal isotropic. (The converse is not true; for
instance, A[�] is maximal isotropic in A[�2] for the Weil pairing e�2 , but is not totally
isotropic.) In Remark 4.8, we explain the tweaks to make for the algorithms above when
� is no longer prime to n. This algorithm improves the isogeny algorithms of [4,13]: these
followed the second approach with the slower descent of level algorithm from Koizumi’s
formula. Compared to Theorem 1.1, in Theorem 1.3, we only have to compute the action
of the level subgroup K̃ above K rather than the full �n theta structure, which explains
the resulting complexity. We refer to Corollary 4.6 for the proof, and we give examples of
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isogeny computations in genus 1 and 2 in Examples 4.9 and 4.10. A similar approach is
used in [5] but is limited to isogenies between Jacobians.
In Sect. 6, we outline how to extend these algorithms when the abelian varietyA has real

multiplication. For descending levels and computing cyclic isogenies, Koizumi’s formula
was extended to this case in [6]. But a drawback of this approach is that the isogeny F given
by Koizumi’s formula does not preserve the product theta structure, and hence required
a very costly disentangling which makes the algorithm almost impractical. This drawback
does not exist with the new approach. We stress however that our new approach has not
yet been implemented for cyclic isogenies, so we leave the practical complexity for future
work. There are still many hurdles to overcome: see Remark 6.6.
We note that apart from isogeny computations, being able to change level allows us to

give the equivalent of Thomae formula for theta functions of higher level. These could also
be used to computemodular forms (expressed as polynomials of theta functions of suitable
levels), but, unfortunately, our method only gives the projective theta constants, not the
affine (modular) ones. So for now, we can only apply our results to modular functions. See
Sect. 1.3 for more details.

1.2 Outline

For simplicity, we work over the base field C. Since our resulting algorithms are given
by polynomial equations, by standard lifting and rigidity arguments, they apply over an
algebraically closed field of characteristic p too as long as everything is étale, that is, as long
as p is prime to �n. Indeed, the moduli stack of abelian varieties with a symmetric level �n
structure is smooth over Z[ 1

�n ], so we can lift them to characteristic zero (this works even
for non-ordinary abelian varieties). Alternatively, it is not hard to useMumford’s algebraic
theory [16] to give direct proofs; we refer to [21, Sect. 2.10] for this. Concerning the field
of definition in Theorem 1.3, we explain in Remark 4.7 how to adapt the methods of [14]
to compute the isogeny f using computations in the field of definition of K .
In Sect. 2, we review the theory of theta functions. Let A be an abelian variety and H a

polarisation of A. We define the “universal theta group” G(H ) associated to H , and the
theta groupG(L ) (a subgroup ofG(H ))) associated to a line bundleL whose polarisation
is H . The group G(H ) acts on analytic functions, and this gives an action of G(L ) on
sections of L . The group G(H ) may be seen as the theta group of all isogenous abelian
varieties with polarisation given byH glued together. In Proposition 2.11, we give a simple
recipe to recover the basis of theta functions from just one section u ofL and the action
of G(L ). As an application, we recover Mumford’s isogeny theorem and explain how to
compute theta functions of isogenous abelian varieties in Proposition 2.15.
In Sect. 3, we explain how we may compute the action of a larger group G′ than G(L )

on sections ofL , namely, G′ = {g ∈ G(H ) | g� ∈ G(L )}. A caveat is that sections are no
longer sent to sections. So algebraically, the action involves some non-canonical choices.
In Sect. 4.1, as an application, we show how to use this extended action to go up in level

along an isogeny, i.e., given an isogeny f : A′ → A, recover the theta basis for f ∗L . Then
in Sect. 4.2, given a decomposition � = ∑

a2i , we construct a section u ofL
� from sections

of L , and we use the action of G′ determined previously on these sections to compute
the action of G(�H ) on u, and hence of G(L �) on u. Here, the action does give sections,
so the choices we made earlier all give the same final result. Applying Proposition 2.11



D. Lubicz and D. Robert Res. Number Theory (2023) 9:7 Page 5 of 28 7

then gives our basis of theta functions of level �n on A. The full algorithm is described in
Theorem 4.4 and its application to isogenies in Corollary 4.6.
In Sect. 5, we explain how to descend in level. Finally, in Sect. 6, we outline how to

extend our algorithms to the case of real multiplication.

1.3 Open problem

A drawback of Proposition 2.11 for constructing theta functions is that it only works
projectively; i.e., our basis of theta functions is definedup to a constant. But theta constants
are also modular forms (of weight 1/2), so given a period matrix �, there is a canonical
affine basis of the theta function (the basis θ

[ 0
i/n

]
(z,�/n)). Algebraically, to a basis of

differential forms w1, . . . , wg on A, corresponds a canonical theta constant (up to a sign)
depending only on w1 ∧ · · · ∧wg . Keeping this basis when going up, or pushing it forward
through an isogeny, this also defines canonical theta coordinates of level �n. We leave
as an open problem working out exactly how to get the correct coordinates as modular
forms. In other words, how to determine the unknown constant C appearing in Theorem
4.4, Corollary 4.6 and Theorem 5.1. For the older isogeny algorithm of [4,13], getting this
correct constant was done in [10], which was used to compute modular forms.
As mentioned in the Introduction, the importance of this problem lies in the following:

by [9], every modular form of a certain level N is integral over a suitable ring of theta
constants. Hence, being able to evaluate theta constants of arbitrary level would allow one
to evaluate algebraically modular forms of any level (provided we are able to express its
minimal polynomial over the theta constants and then select the correct root). Unfortu-
nately, as long as we are not able to get the correct constant, we can only use the results
of this paper to evaluate modular functions of level N , and not modular forms.

2 Constructing theta functions
Inorder tofix thenotations,webriefly reviewcomplex abelian varieties and theta functions
and refer to [1,18,19] for more details. Our presentation follows closely that of [1, Chap.
6] with slight changes in the definition of theta structure and symmetric theta structure
for the sake of simplicity. Let A = V /� be a complex abelian variety, where V = C

g , and
� is a Z lattice in V of rank 2g . We denote by π : V → A the canonical projection.

2.1 Line bundles

Projective coordinates on A are given by analytic functions u : V → Cwhich are periodic
with respect to � up to some automorphic factors: u(z + λ) = aL (z, λ)−1u(z) for z ∈ V ,
λ ∈ �. The factors aL (z, λ) verify the cocycle condition aL (z, λ1+λ2) = aL (z, λ1)aL (z+
λ1, λ2), z ∈ V , λ1, λ2 ∈ �. Equivalently, the automorphic factor aL defines a line bundle
L onA as the quotient of the trivial line bundle on V ×C over V by the action of� given
by λ.(v, t) �→ (v + λ, aL (z, λ)t).
The possible automorphic factors are classified by the Appel–Humbert theorem. Up to

changing the automorphic factor by a suitable coboundary (this simply changes the corre-
sponding linebundleby an isomorphism),wehaveaL (z, λ) = χL (λ)eπ/2HL (λ,λ)eπHL (z,λ),
where HL is an Hermitian form on V associated toL . The Hermitian form HL is such
that if EL = �HL (where � stands for the imaginary part), EL (�,�) ⊂ Z, and χL is a
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semi-character for HL [1, Theorem 2.2.3]. We recall that a semi-character for HL is a
map χ : � → C1, satisfying χ (λ + λ′) = χ (λ)χ (λ′)eiπEL (λ,λ′) for all λ, λ′ ∈ �.
One can recoverHL fromEL , so wewill call either a Riemann formofL . The Riemann

form of L characterises its algebraic equivalence class. The map L �→ (χL , HL ) is a
bijective correspondence between isomorphism classes of line bundles and their associ-
ated semi-characters and Riemann forms.
The algebraic equivalence class HL of a line bundle L is called a polarisation on

A. The data of the polarisation associated to L is equivalent to that of the morphism
φL : A → Âk , x �→ τ ∗

xL .L −1 whose analytic form is z �→ HL (z, ·). We recall thatL is
ample if and only if either φL is an isogeny orHL is definite positive. The symplectic form
EL allows one to define the Weil pairing on K (L ) by eL (x̄1, x̄2) = e−2π iEL (x1 ,x2), where
x̄i = xi mod � for i = 1, 2. We denote by K (L ) = L φL the kernel of the polarisation,
so we have K (L ) � �(L )/�, where �(L ) = �⊥eL is the eL orthogonal of �. We say
thatL is of type n if EL is of type n on �, in which case K (L ) � (Z/nZ)2g ; equivalently,
L = L n

0 is the nth power of a principal line bundle (associated to the Hermitian form
HL0 = HL /n).
Assume that we have a symplectic decomposition � = �1 ⊕ �2 of � for a Riemann

form EL . We will denote such a decomposition by σ = (σ1, σ2) where σi is the projector
onto �i. Using σ , we can define a canonical semi-character by χ (λ) = eπ iE(σ1(λ),σ2(λ))

[1, Lemma 3.1.1], which by Appel–Humbert theorem gives a canonical symmetric line
bundleL σ , often denoted herein byL for simplicity.

Remark 2.1 For reasons explained in Sect. 3, we will mostly consider the case when the
level n is even. In this case, all the symplectic decompositions σ of � give χL σ = 1;
hence, the line bundle associated by the Appel–Humber theorem to the canonical semi-
character does not depend on the choice of a symplectic decomposition of �. This means
thatL is the unique (totally) symmetric line bundle in the algebraic class given by H , i.e.
the unique line bundle in this algebraic equivalence class such that L = L n

0 with L0
principal symmetric.

2.2 The theta group

In this section, we introduce the theta group and study two important properties of that
group that we will use, namely

• the structure of extensions of V by C∗ and the existence of sections above V ; and
• the action of the theta group on sections ofL .

Following [1, Chap. 6], we denote by G(L ) = {[α, w] | α ∈ C
∗, w ∈ V } the group with

composition law [α1, w1].[α2, w2] = [α1α2eπHL (w2 ,w1), w1 + w2]. We can interpret G(L )
as the automorphism group of the trivial line bundle π∗L � V × C above translations
on V . Note that G(L ) only depends on HL , so we may also use the notation G(HL ) (or
G(H ) if H is a general Riemann form).
The group G(L ) is non-commutative. If z1, z2 ∈ V , g1 = [α1, z1] and g2 = [α2, z2] two

elements ofG(L ) above z1 and z2, we also recover theWeil pairing eL as the commutator
pairing: g1g2g−1

1 g−1
2 = [e−2iπEL (z1,z2), 0]. It is clear that G(L ) is a central extension of V

by C∗. In order to study its sections above V , we need the following definition:
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Definition 2.2 Let H be a Riemann form on V . Let σ : V = V1 ⊕ V2 be a symplectic
decomposition of V for E. Let � be a lattice of V , so we say that � is compatible with σ

if � = � ∩ V1 ⊕ � ∩ V2. We note that � is compatible with σ if and only if �⊥ is.

A symplectic decomposition σ on � induces a symplectic decomposition σ ⊗R : V →
V1 ⊕V2 on V which is compatible with �. This allows one to extend aL σ to all of V ×V
via aL σ (v, λ) = eπ iE(σ1(λ),σ2(λ))eπ/2H (λ,λ)eπH (v,λ), for all (v, λ) ∈ V ×V . This extension does
not satisfy the cocycle condition and thus is not an automorphy factor.

Lemma 2.3 Let H be a Riemann form on V . Let σ : V = V1 ⊕ V2 be a symplectic
decomposition of V for E = �H. Let �′ be a lattice in V compatible with σ .
Then �′ is isotropic for E (i.e. E(�′,�′) ⊂ Z) if and only if aL σ satisfies the cocycle

condition on V × �′, if and only if there is a group section s�′ : �′ → G(L ).
In this case, the map

sσ : �′ → G(L )

sσ (λ) = [aL σ (0, λ), λ] = [eπ iEL (σ1(λ),σ2(λ))eπ/2HL (λ,λ), λ].

is an explicit group section.

Proof Writing the cocycle condition for aL σ orV ×�′, it is easy to see that it is equivalent
to �′ being isotropic for E. If there is a group section �′ → G(L ), then the commuta-
tor interpretation of the Weil pairing shows that �′ has to be isotropic, since s(�′) is
commutative.
Finally, if �′ is isotropic, it remains to check that sσ is a group section. We have

seen that aL σ verifies the cocycle condition. We then have [aL σ (0, λ + λ′), λ + λ′] =
[aL σ (0, λ′)aL σ (λ′, λ), λ + λ′] = [aL σ (0, λ)aL σ (0, λ′)aL σ (λ′, λ)/aL σ (0, λ), λ + λ′] =
[aL σ (0, λ), λ][aL σ (0, λ′), λ′]. ��
The groupG(L ) acts on analytic functions u inV via [Î±, w]◦ (Id×u) = (Id× [Î±, w] ·

u) ◦ t−w , where t−w(z) = z − w; namely, we have

[α, w] · u(z) = αeπHL (z−w,w)u(z − w). (2)

Let σ : V = V1 ⊕ V2 be a symplectic decomposition of V and suppose that � is
compatible with σ . By Lemma 2.3, we have a group section sσ : � → G(L ). We may
extend it to a set section on the whole of V via sσ (v) = [aL σ (0, v), v].
We have the following:

Lemma 2.4 [1, Theorem 6.1.3] The automorphism group G(L ) ofL is equal to G(L ) =
Z(s(�))/s(�), whereZ(s(�))denotes the commutator of s(�) inG(HL ). Theactionof Equa-
tion 2 induces an action of G(L ) on �(A,L ).
Explicitly, for λ ∈ �(L ) and u ∈ �(A,L ), we have

sσ (λ) · u(z) = aL (z − λ, λ)u(z − λ). (3)

Proof AsL is the quotient of the trivial bundle over V by the action of sσ (�), it is clear
that sσ (�) acts trivially on �(A,L ) (in fact, by definition, �(A,L ) are exactly the analytic
functions on V fixed by this subgroup). In particular, the action (2) restricted to elements
of Z(s(�)) sends sections of L to other sections, and hence induces an action of G(L )
on �(A,L ). Equation 3 is a simple computation. ��
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2.3 Theta structures

In this section, we introduce the notion of theta structure. Let (A = V /�,L ) be a
polarised abelian variety. Let σ be a symplectic decomposition of V , and we suppose that
� is compatible with σ and that L = L σ . Note that by taking the quotient of �(L )
by �, σ induces a decomposition K (L ) = K1(L ) ⊕ K2(L ) for eL . Let �′ be such that
� ⊂ �′ ⊂ �(L ) and let K = �′/�. Then �′ is compatible with σ if and only if the
symplectic decomposition of K (L ) above induces a symplectic decomposition of K for
the Weil pairing eL : K = K1 ⊕ K2 with Ki = Ki(L ) ∩ K .
Given such a compatible �′, using Lemmas 2.3 and 2.4, sσ (�′) induces a canonical

section K̃ of K intoG(L ). Applying this to �′ = �1(L )⊕ �2 and to �′ = �1 ⊕ �2(L ),
we get canonical sections s1 and s2 ofK1(L ) andK2(L ) (ormore generally of any isotropic
K = K1 ⊕ K2 ⊂ K1(L ) ⊕ K2(L )) into G(L ). We stress that these canonical sections
depend on a choice of the symplectic decomposition σ of V ; a choice of a symplectic
decomposition of K (L ) is not sufficient to determine the sections si. We have proved the
following:

Proposition 2.5 Let (A = V /�,L ) be an abelian variety together with an ample line
bundle. A choice of σ , a symplectic decomposition of � for EL , determines a symplectic
decomposition K (L ) = K1(L ) ⊕ K2(L ) and sections si : Ki(L ) → G(L ).

This motivates the following definition, slightly adapted from that of [16] and [1, Chap.
6.6]:

Definition 2.6 Let (A = V /�,L ) be an abelian variety of dimension g together with
an ample line bundle. Let K (L ) be the kernel of the polarisation defined by L . A theta
structure �L for (A,L ) is the data of

• K (L ) = K1(L ) ⊕ K2(L ), a symplectic decomposition of K (L ) for eL ; and
• for i = 1, 2, sections s�L

i : Ki(L ) → G(L ).

Via s�L
i for i = 1, 2, we thus get an action ofKi(L ) on�(A,L ). For i = 1, 2, if P ∈ Ki(L ),

we will denote by P · u the action s�L
i (P) · u of s�L

i (P) ∈ G(L ) on u.
In the following, if σ : � = �1 ⊕ �2 is a symplectic decomposition of �, we denote

by �σ
L the associated canonical theta structure following Proposition 2.5. We say that

�L is symmetric if there exists a symplectic decomposition σ : � = �1 ⊕ �2 such that
L = L σ and �L = �σ

L .

Remark 2.7 Webriefly explain the link between our definition of a symmetric theta struc-
ture and theusual oneof [16] or [1,Chap. 6.9]. Let δ−1 be the groupautomorphismofG(L )
defined by δ−1([Î±, w]) = [Î±,−w]. Following [16], we say that an element g of G(L ) is
symmetric if Î ′−1g = g−1. One can check that the sections s�L

i for i = 1, 2 deduced from
the symplectic decomposition σ have value in symmetric elements of G(L ), and hence
symmetric elements of G(L ). So a symmetric theta structure following Definition 2.6 is
symmetric in the sense of [16].
Changing the symplectic decomposition of � will thus only change our sections by a

sign on each element. Furthermore, symplectic decompositions σ of � give the same
symmetric theta structure on G(L ) whenever they induce the same symplectic decom-
position on K (L 2) � 1

2�(L )/�. Finally, if λ ∈ �′ is of odd order modulo �, then sσ (λ)
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is uniquely defined as the unique symmetric lift of order �, and hence does not depend
on σ .

Definition 2.8 Let (A = V /�,L ,�L ) be an abelian variety with a symmetric theta
structure on L . We say that a symmetric theta structure �L � on L � is compatible
with �L if there exists a symplectic decomposition σ of � such that �L = �σ

L and
�L � = �σ

L � .

The importance of theta structures lies in part in the following result (see [16, Sect. 1,
Theorem 2]):

Theorem 2.9 (Maschke–Mumford) The vector space �(A,L ) is the unique projective
irreducible representation of G(L ).

Corollary 2.10 Supposewe have chosen a theta structure�L for (A,L ). There is a unique
basis (θ�L

i )i∈K2(L ) (up to a common projective factor μ) of sections ofL such that θ�L
0 is

invariant under the action of s�L
1 (K1(L )), and if i ∈ K2(L ), θ�L

i = s�L
2 (i) · θ

�L
0 . This

basis is called the basis of theta functions of level n ifL is of type n.
The action of s�L

i (Ki(L )) for i = 1, 2 on this basis is given by j1 · θ
�L
i = eL (j1, i)θi if

j1 ∈ K1(L ), and j2 · θ
�L
i = θ

�L
i+j2 if j2 ∈ K2(L ).

Proof Since �(A,L ) is irreducible, it is isomorphic to the unique irreducible Heisenberg
representation of G(L ) as described in [16, p. 297], from which we deduce the existence
of the basis (θ�L

i ). The computation of the action of si(Ki(L )) for i = 1, 2 on the family
(θ�L

j )j∈K2(L ) is immediate from its definition. ��
We thus immediately get the following recipe to construct the basis of theta functions

of level n associated to a theta structure �L :

Proposition 2.11 Let �L be a theta structure for (A,L ). Let u be any section of
�(A,L ) such that if u = ∑

λiθ
�L
i , λ0 �= 0. Then, up to a constant, we have θ

�L
0 =∑

j∈K1(L ) s
�L
1 (j) · u, and for i ∈ K2(L ), θ�L

i = s2(i) · θ
�L
0 .

We remark that using Mumford’s algebraic theory of theta functions, the above propo-
sition is valid for any theta structure of level n prime to the characteristic of the base
field.

Remark 2.12 If u is such that λ0 = 0, we can still reconstruct our theta basis as follows:
assume that λi �= 0. Then, since �(A,L ) decomposes into a sum of one-dimensional
eigenspaces for the action of G(L ): �(A,L ) = ⊕χ∈K1(L )∨�(A,L )χ , and θ

�L
i is a gen-

erator of �(A,L )χ for the character χ = eL (i, ·), we recover θ
�L
i as the trace of u under

K1(L ) twisted by this character: θ�L
i = ∑

j∈K1(L ) eL (i, j)s(j) · u = ∑
j∈K1(L ) s(i + j) · u

(alternatively, one could take the trace applied to s(−i) · u). Then θ
�L
i′ = s(i − i′) · θ

�L
i .

Example 2.13 Let σ : � = �1 ⊕�2 be a symplectic decomposition and let (θ�σ
L

i )i∈K2(L )
be the associated basis of theta functions. Then, permuting this decomposition σ ′ : � =
�2 ⊕ �1 gives another basis (θ

�σ ′
L

i ), indexed by i ∈ K1(L ).

Applying Proposition 2.11, we get that (up to a constant) θ�σ ′
L

0 = ∑
j∈K2(L ) θ

�σ
L

j , and if

i ∈ K1(L ), θ�σ ′
L

i = i · θ
�σ ′
L

0 = ∑
j∈K2(L ) eL (i, j)θ�σ

L
j .
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2.4 Theta groups and isogenies

Let A = VA/�A, B = VB/�B be dimension g abelian varieties. Let f : A → B be an
isogeny and let F : VA → VB be the analytic representation of f . Let M be a line bundle
on B with polarisation HM, then L = f ∗M has associated polarisation HL = F∗HM.
We have a map F : G(L ) → G(M), [α, w] �→ [α, F (w)], which is compatible with the
action on sections: if u is an analytic function on VB, then

[α, w] · F∗u = F∗([α, F (w)] · u). (4)

Fixσ = (σ1, σ2) as a symplectic decompositionof�Awith respect toHL and letK (L ) =
K1(L )⊕K2(L ) be the symplectic decomposition of K (L ) deduced from σ . Assume that
�′ = F−1(Î >B) ⊂ �(L ) is compatible with σ . This means that there exists a symplectic
decomposition of K = L f , K = K1 ⊕ K2 such that Ki = K ∩ Ki(L ). Then pushing σ

through F , we obtain a symplectic decomposition of�B that we denote by F∗(σ ⊗R)|�B =
F∗(σ ⊗ R|�′ ). Concretely, F∗(σi ⊗ R) = F ◦ (σi ⊗ R) ◦ F−1. If M is the line bundle
corresponding to the canonical automorphic factor aM associated to F∗(σ ⊗ R), and L

is the line bundle corresponding to σ , then we check that aM(F (v), F (λ)) = aL (v, λ),
and hence f ∗M = L . Using Lemma 2.3, we have sections s�A , s�B and s�′ , respectively,
on �A, �B and �′ which verify s�′ (Î �′) = s�B (F (Î �′)). Taking the quotient modulo
s�′ (�A), we get a canonical section s̄ : K → G(L ). Since G(M) = Z(s�B (�B))/s�B (�B),
we get that G(M) � Z(s(K ))/s(K ).

Definition 2.14 Let (A = VA/�A,L ,�L ) and (B = VB/�B,M,�M) be abelian vari-
eties together with symmetric theta structures, and let f : A → B be an isogeny with ana-
lytic representation F . We say that �L and �M are compatible (along F ) if there exists
symplectic decompositions σA and σB such that F∗(σA ⊗R) = σB ⊗R andHL = F∗HM,
L = L σA ,M = MσB , �L = �

σA
L , �M = �

σB
M.

Using Proposition 2.11, we get the following proposition which immediately provides
an algorithm to construct theta coordinates on (B,M), provided that we have a section
u ∈ �(A,L ) on which we know the action of G(L ):

Proposition 2.15 Let σ be a symplectic decomposition of � from which we deduce a
decomposition of K (L ) = K1(L )⊕K2(L ). Let K be a finite subgroup of A isotropic for the
Weil pairing and compatiblewithσ , that is, K = K1⊕K2whereKi = K∩Ki(L ) for i = 1, 2.
Let f : (A,L ) → (B = A/K,M) be the corresponding isogeny with analytic representation
F and such that f ∗M = L . Given the symmetric theta structure �L = �σ

L onL , there
is a unique compatible symmetric theta structure �M on M: in other words, �M only
depends on �L and not on the decomposition σ used to define �L .
Let u be a non-trivial section of �(A,L ). Up to a constant, we have F∗θ�σ

M
0 =∑

j∈K⊥eL
1 ⊕K2

s(j) · u (assuming this trace is non-zero), and for i ∈ K
⊥eL
2 , F∗θ�σ

M
f (i) =

s(i) · θ
�σ
M

0 .

Proof From the discussion above, M is the quotient of L by the action defined by the
section K̃ ⊂ G(L ) of K = K1 ⊕K2 given by K̃ = s1(K1)s2(K2) (since K is isotropic, these
two subgroups commute, so their product defines a lift).
Using [16, Sect. 1, Proposition 2], we haveK (M) � K

⊥eL
1 /K1⊕K

⊥eL
2 /K2. For i = 1, 2,

let Ki(M) = K
⊥eL
i /Ki and let s�

σ
L

i : Ki(M) → G(L ) (resp. s�
σ
M

i : Ki(M) → G(M))
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be the sections defining the theta structure �σ
L (resp. �σ

M). Then we have s�
σ
M

i (P) =
F (s�

σ
L

i (P′)) for P′ ∈ K
⊥eL
i such that P = f (P′). This shows that �σ

M is unique. Taking
a trace of u under K̃ , we get a section of M since �(B,M) = �(A,L )s(K ). We can then
apply Proposition 2.11 to this trace to obtain the result. ��
If the trace of u under K

⊥eL
1 ⊕ K2 is zero, then since u is non-trivial and �(A,L ) is

irreducible, there always exists an element in g ∈ G(L ) such that the trace of g · u will be
non-zero. It is only in this case that we need the full action of G(L ). In general, we only
need to be able to compute the action of Z(s(K )) to recover �M.

Remark 2.16 As an aside of the preceding proof, if #K is odd, then by Remark 2.7, K̃ , and
henceM, does not depend on σ .

Example 2.17 Applying Proposition 2.15 to u = θ
�L
0 , we recover Mumford’s isogeny

theorem (compare with [1, Theorem 6.8.2]):
for i ∈ K

⊥eL
2 , F∗θ�M

f (i) = ∑
j∈K2 θ

�L
i+j .

Indeed, by definition K1(L ) acts trivially on θ
�L
0 , and if j ∈ K2(L ), j · θ

�L
0 = θ

�L
j .

So we have equality up to a constant C not depending on i. But by Example 2.18, in this
case, this constant C is equal to 1.

Example 2.18 Given σ : � = �1 ⊕ �2 is a symplectic decomposition of �, up to an
automorphism of V = C

g , we can assume that �2 = Z
g . Then �1 = �Z

g where �

is a g × g matrix with complex coefficients called a period matrix of A. The data of a
period matrix is equivalent to the data of �, a principal Riemann form H0 with matrix
representation �(�−1) on V and a symplectic decomposition of � = �Z

g ⊕ Z
g for H0.

LetH = nH0 andL be the line bundle associated to the symplectic decomposition given
by � in the algebraic class defined by H .
Recall the definition of the analytic theta functions with the following characteristics:

θ
[ a
b
]
(z,�) =

∑
n∈Zg

eπ i
t (n+a)�(n+a)+2π it (n+a)(z+b), for a, b ∈ Q

g .

We have K2(L ) = 1
nZ

g/Zg � (Z/nZ)g . Under this isomorphism, the classical basis of
level n theta functions is given by θi(z,�) = θ

[ 0
i/n

]
(z,�/n) (see [18, Chap. II, Proposition

1.3]). These functions are automorphic with respect to the classical factor of automorphy
from Eq. 1 rather than the canonical one from Sect. 2.1. These two automorphic factors
differ by a coboundary, and by using this coboundary one can translate the above theory
to classical theta functions.
Mumford’s isogeny theorem from Example 2.17 applied to the isogenyA = C

g/(�Z
g ⊕

Z
g ) → B = C

g/(�
�
Z
g ⊕Z

g ) becomes the following tautological equation between classical
theta functions of level �n on A and classical theta functions of level n on B: for b ∈ Z

g :

θ
[

0
b/n

]
(z,

�/�

n
) = θ

[
0

�b/�n

]
(z,�/�n).

3 Affine lifts and Riemann relations
Let (A,L ,�L ) be an abelian variety together with a line bundle and a symmetric theta
structure of even level n.We have seen that�L defines an embedding ι�L : A → P

K2(L ),
P �→ (θ�L

i (P))i∈K2(L ). In this section, we gather some useful definitions and results from
[12,14] to obtain the main ingredients of our algorithms.
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Definition 3.1 We call any preimage P̃ ∈ A
K2(L ) of P for the canonical projection

A
K2(L ) → P

K2(L ) an affine lift. If P̃ is an affine lift of P and i ∈ K2(L ), we denote
by (P̃)i or θi(P̃) the ith coordinate of P̃, so P̃ = (θi(P̃))i∈K2(L ).
Let ∗ : C∗ × A

K2(L ) → A
K2(L ) be the action

(
λ, P̃

) �→ (
λ(P̃)i

)
i∈K2(L ).

If P is a point of A = V /�, we denote by zP ∈ V any element whose equivalence class
modulo � is P. The element zP defines an analytic affine lift P̃ = (θ�L

i (zP))i∈K2(L ) of
P. The action of G(L ) on analytic functions extends to vectors of analytic functions by
acting coordinate by coordinate, which induces an action of G(L ) on vectors of sections
ofL , and thus an action of G(L ) on P̃.
We can construct the affine translation by points zP ∈ V on theta functions explicitly

via the use of Riemann relations. In this section, in order to ease the notations, we omit
the theta structure symbol when we name theta functions: for i ∈ K2(L ), θi = θ

�L
i .

Definition 3.2 If V is a commutative group, we say that the elements v1, v2, v3, v4;w1, w2,
w3, w4 are in Riemann position whenever there exists u ∈ V such that wi = vi + u and
v1 + v2 + v3 + v4 = −2u.

Theorem 3.3 (Riemann’s relations) Let z1, z2, z3, z4; z′
1, z

′
2, z

′
3, z

′
4 ∈ V and i1, i2, i3, i4; i′1,

i′2, i′3, i′4 ∈ K2(L ) be in Riemann position. Let T = K2(L )[2] � (Z/2Z)g . Then for any
character χ on T , we have

(∑
t∈T

χ (t)θi1+t (z1)θi2+t (z2)
) (∑

t∈T
χ (t)θi3+t (z3)θi4+t (z4)

)

=
(∑
t∈T

χ (t)θi′1+t (z′
1)θi′2+t (z′

2)
) (∑

t∈T
χ (t)θi′3+t (z′

3)θi′4+t (z′
4)

)
.

We can use Riemann’s relations as follows. Let zi, z′
i ∈ V for i = 1, . . . , 4 be in Riemann

position. Assume that we know the affine points P̃i = (θj(zi))j∈K2(L ) for i = 2, 3, 4, and
P̃′
i = (θj(z′

i))j∈K2(L ) for i = 1, . . . , 4. We can recover P̃1 = (θj(z1))j∈K2(L ), i.e. the affine
theta coordinates of z1, by first computing the projective theta coordinates of P1 using
the addition on A, taking an arbitrary affine lift P̃1 and computing the projective factor
λ1 such that λ1 ∗ P̃1, P̃2, . . . satisfy Riemann’s relations (so we only need to use one such
relation).
Of course, in practice, the arithmetic on A itself is usually derived from Riemann’s rela-

tions. We just present a few examples, and we refer to [15] for more details. In particular,
when n = 2, we need to assume that the even theta null points are non-zero, whichmeans
by a result of Koizumi–Mumford–Kempf that the line bundleL is projectively normal.

Example 3.4 Let r be an integer. Given the affine theta coordinates of 0, z1, z2, …, zr ∈ V
0̃A = (θu(0))u∈K2(L ), P̃i = (θu(zi))u∈K2(L ) and also of each zi + zj , i �= j, P̃ij = (θu(zi +
zj))u∈K2(L ), we can recover the affine theta coordinates ofm1z1 +m2z2 +· · ·+mrzr using
Riemann relations. We denote the resulting affine lift bymult_add(m1, . . . , mr , P̃i, P̃ij , 0̃A).
As a particular case, we can compute the affine theta coordinates of �z1 + z2 given

the affine theta coordinates of 0, z1, z2 and z1 − z2 (via an easy change of variable),
and so of �z1 given the affine theta coordinates of 0 and z1. We denote these by
diff_mult(�, P̃1, P̃2, ˜P1 − P2, 0̃A) and mult(�, P̃1, 0̃A), respectively. These can be computed
in O(log �) field operations using a double and add algorithm.
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Another particular case is the computation of the affine theta coordinates of z1 + z2 +
z3 given that z1, z2, z3, z1 + z2, z1 + z3, z2 + z3. With the notations above, we call this
threeway_add(P̃1, P̃2, P̃3, P̃23, P̃13, P̃12, 0̃A). Then, conversely, mult_add can be constructed
from threeway_add and diff_mult.
Finally, recall that θi(zP) = θ−i(zP), so we define (−P̃)i = P̃−i.

We want to compute the action of suitable affine lifts given by zP ∈ V of the points
of � torsion P ∈ A[�]. Let σ : � = �1 ⊕ �2 be a symplectic decomposition. Then the
lattice �′′ = ��1 ⊕ 1

�
�2 is isotropic for EL ; hence, by Lemma 2.3, we get a group section

s�′′ : �′′ → G(L ). We will compute the action of elements of s�′′ (�′′
2) on the theta basis

of level n, (θ�σ
L

i )i∈K2(L ). Since the θ
�σ
L

i are invariants by s�′′ (�), the action of λ′′ ∈ �′′
2

only depends on its classmodulo�2, so only depends on the � torsion point P ∈ �′′
2/�2 �

K2(L �)[�]. In the following, we denote this action by s�′′ : K2(L �)[�] → Aut(�(A,L )).
A similar method will apply for the action of (the lifts of) the points in K1(L �)[�], for
instance, using Example 2.13.
By Equation 2, the action by s�′′ (P) for P ∈ K2(L �)[�] is given by the translation by

� torsion points, corrected by some scalar factor, and hence it is natural to use Riemann
relations to compute it. In fact, Riemann relations are compatible with these corrective
factors:

Lemma 3.5 Assume that z1, z2, z3, z4; z′
1, z

′
2, z

′
3, z

′
4 inV are inRiemannposition, andmore-

over that P1, P2, P3, P4;P′
1, P

′
2, P

′
3, P

′
4 in K2(L �)[�] are in Riemann position. Then the points

s�′′ (Pi) · θ
�σ
L

j (zi) satisfy Riemann’s relations.

Proof If z1, z2, z3, z4; z′
1, z

′
2, z

′
3, z

′
4 are in Riemann position, and g1 = [a1, v1], g2 = [a2, v2],

…in G(L ) too (by which we mean the vi are in Riemann position and �ai = �a′
i), then

since the (θ�σ
L

j (zi))j∈K2(L ) satisfy Riemann relations by Theorem 3.3, we check by an

easy (but a bit lengthy) computation that the (gi · θ
�σ
L

j (zi))j∈K2(L ) also satisfy Riemann
relations. We apply this to gi = s�′′ (zPi ), g ′

i = s�′′ (zP′
i
), where zPi , zP′

i
∈ V are such that

zPi = Pi mod �2 and zP′
i
= P′

i mod �2. ��
This leads us to the following definition:

Definition 3.6 If K is a subgroup of K (L �) isotropic for the Weil pairing, we say that
K̃ = {P̃}P∈K is an excellent lift of K if the points in K̃ satisfy all Riemann relations from
Theorem 3.3 that involve only points in K̃ .

We specify what this definition means for a point and its multiples computed by the
help of Riemann equations.

Definition 3.7 Let P be a point of � torsion with � odd and prime to n. Write � = 2�′ +1.
We say that an affine lift P̃ is an excellent point of � torsion if mult(�′ + 1, P̃, 0̃A) =
−mult(�′, P̃, 0̃A).

It is easy to check that if P̃ is an excellent point of � torsion, then μ ∗ P̃ is also if and only if
μ� = 1. It is clear moreover, since mult is computed with Riemann equations, that if K̃ is
an excellent lift of K , all P̃ ∈ K̃ are excellent points of � torsion. Furthermore, given K̃ , if
P1, . . . , Pg is a basis of K , we only need to be given P̃i and P̃ij , the lifts above Pi and Pi +Pj ,
respectively, to recover the others viamult_add.
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In fact, this subset of the Riemann relations involving points ofK is enough to construct
an excellent lift of K , and even recover the section of K in G(L ) provided by s�′′ . Before
stating the theorem, we give a word of warning: the section s�′′ does not extend to the
whole of �; for instance, changing λ′′ by an element of �1 (modulo ��1) will change
s�′′ (λ′′). In particular, changing the symplectic decomposition σ of�will change this s�′′ ,
even if it does not change the induced symplectic decomposition on A[�]. This will be
exploited in the following theorem where in order to keep track of the dependence of the
sections s�′′ and the induced action s�′′ with respect to the symplectic decomposition σ ,
we will denote them respectively by s�′′ ,σ and s�′′ ,σ .

Theorem 3.8 Let (A,L ,�σ
L ) be an abelian variety together with a symmetric theta struc-

ture of level even defined by a symplectic decomposition σ . Let K = K2(L �)[�] and let
P1, . . . , Pg be a basis of K . Fix once and for all an affine lift 0̃A of 0A. Choose P̃i and P̃ij
as excellent lifts of Pi and Pi + Pj (for i �= j), respectively. We can then use mult_add to
compute an affine lift P̃ above any point P in K . Then K̃ = {P̃}P∈K is an excellent lift of
K . Furthermore, up to changing the symplectic decomposition σ of� (more precisely, up to
changing �2 only), for all P ∈ K and P̃ is exactly s�′′ ,σ (P).̃0A.

Proof A slightly less refined version is proved in [14, Theorem 3.4.] using the functional
equation of theta functions. Using the theory from Sect. 2, we can give a self-contained
proof.
First, given an excellent lift K̃ , then multiplying every element of K̃ by a projec-

tive factor μ0 still yields an excellent lift, so we may renormalise things such that
0̃A = (θ�σ

L
i (0))i∈K2(L ). Of course, K̃ = {s�′′ ,σ (P).̃0A}P∈K is an excellent lift of K by

Lemma 3.5 applied to the elements 0, 0, 0, 0; 0, 0, 0, 0 ∈ V in Riemann position.
Conversely, we construct K̃ as in the theorem and for all P ∈ K and σ a decomposition

of � we let P̃σ = s�′′ ,σ (P). Then we have P̃ = μP ∗ P̃σ , for μP an �th root of unity. It is
enough to prove that we can always change the symplectic decomposition σ of � to σ ′ so
that P̃σ

i = μi ∗ P̃σ ′
i and P̃σ

ij = μij ∗ P̃σ ′
ij whereμi andμij are arbitrary �th roots of unity.We

can then choose μi,μij such that, after this change of decomposition, we have P̃i = P̃σ ′
i ,

P̃ij = P̃σ ′
ij , and hence P̃ = P̃σ ′ for all P ∈ K .

First, note that by Remark 2.1, as the level of �L is even, changing the symplectic
decomposition does not change the line bundle L associated to this decomposition.
Now, given (e1, . . . , eg , f1, . . . , fg ) a symplectic basis of � with respect to σ , and fixing i ∈
{1, . . . , g}, we change the decomposition such that the newbasis is given by f ′

i = fi+2kin�ei
(the other ones unchanged) for ki ∈ {0, . . . , � − 1}. We let σ ′ be the new symplectic
decomposition. The new symplectic basis still gives the same symplectic decomposition

of A[2n], and hence we have θ
�σ
L

i = θ
�σ ′
L

i for all i ∈ K2(L ) by Remark 2.7. Using
the definition of the sections s�′′ ,σ and s�′′ ,σ ′ of Lemma 2.3, we compute s�′′ ,σ ′ ( f

′
i
�
) =

e−2�iEL ( fi
�
,kinei)s�′′ ,σ ( fi� )s�′′ ,σ (2kinei). Since n is prime to �, and s�′′ ,σ (2kinei) acts trivially

on 0̃A, we have s�′′ ,σ ′ ( f
′
i
�
) · 0̃A = ζ ki ∗ s�′′ ,σ ( fi� ) · 0̃A for ζ = e2π iz/� a primary �th root

of unity. In other words, by choosing ki �= 0 and kj = 0 for j �= i, we can adjust P̃σ ′
i

without touching the others (except the P̃σ ′
ij , j �= i). Likewise, fixing i �= j, taking a new

decomposition such that f ′
i = fi + 2kijn�ej , f ′

j = fj + 2kijn�ei will change only P̃σ ′
ij by ζ 2kij ;

hence we may change it by an arbitrary �th root of unity without affecting any others. ��
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Remark 3.9 We give an algebraic interpretation of our choice of affine lifts, which will be
useful for Sect. 4.1. Let �′ = ��1 ⊕ �2; this lattice defines an abelian variety A′ = V /�′,
and the projection modulo � ⊃ �′ gives an isogeny f : A′ → A. The contragredient
isogeny f̃ : A → A′ is given analytically by z �→ �z; its kernel isK = K2(L �)[�] � 1

�
�2/�.

We have (�′)⊥ = �1 ⊕ 1
�
�2; so if L ′ = f ∗L , our lattice �′′ = ��1 ⊕ 1

�
�2 is exactly

equal to �′
1 ⊕ �′(L ′)2.

Now, 1
�
�2/�2 � K2(L ′) can be interpreted as a symplectic complement to the kernel

K ′ � �1/��1 = f̃ (A[�]) ⊂ A′[�] of f . In other words, 1
�
�2 modulo � determines the

kernel of f̃ , but for our action, we need to look at modulo �′ where it further determines
a symplectic complement ofL f .

If K is an isotropic subgroup of A[�] and we fix an excellent lift K̃ of K , we may extend
the definition by saying that ˜x + K = { ˜x + P | P ∈ K } is an excellent lift of x with respect
to K̃ and x̃ if these points respect all Riemann relations involving only points of K̃ and of

˜x + K .

Definition 3.10 With the notations of Definition 3.7, let P̃ be an excellent lift of an �

torsion point P ∈ A[�]. Let x ∈ A and fix an affine lift x̃. We say that ˜x + P is an excellent
lift with respect to P̃ and x̃ if the affine point ˜x + �P computed via diff_multadd is equal
to x̃.

If ˜x + P is an excellent lift of x+P, then the other ones are given byμ∗ ˜x + P withμ� = 1.
By the following Theorem, wemay construct an excellent lift ˜x + K of x with respect to K̃
by first constructing excellent lifts ˜x + Pi for Pi a basis of K , and then obtaining all other
points by multiway additions.

Theorem 3.11 With the notations of Theorem 3.8, fix an excellent lift K̃ of K . Let x be a
point in A which is not in A[�], and z ∈ V be such that x = z mod �. Fix an affine lift x̃
of x, fix excellent lifts ˜x + Pi for (Pi)i=1,...,g a basis of K , and compute the other affine lifts
˜x + P for P ∈ K via mult_add.
Then we may always change z by another representative modulo � (more precisely,

by an element z + λ with λ ∈ �1), such that there exists a constant μ that satisfies
˜x + P = μ ∗ (P · (θ�σ

L
i (z))i∈K2(L )) for all P ∈ K. In other words, we recover (up to the

constant μ that only depends on the choice of x̃) exactly the action of K on (θ�σ
L

i (z)).

Proof First, if x̃ = (θ�σ
L

i (z))i∈K2(L ) and ˜x + P = P · x̃ for P ∈ K , then the points ˜x + P
form an excellent lift of x with respect to x̃ and K̃ by Lemma 3.5 applied to the elements
z, z, 0, 0; 0, 0, z, z ∈ V in Riemann position.
As in the proof of Theorem 3.8, in general, we have for i = 1, . . . , g , ˜x + Pi = μi ∗ (Pi ·

θ
�σ
L

j (z))j∈K2(L ) for μi an �th root of unity. So it is enough to show that we can find λ ∈ �

such that for all i = 1, . . . , g , (Pi ·θ�σ
L

j (z))j∈K2(L ) = μμ−1
i ∗ (Pi ·θ�σ

L
j (z+λ))j∈K2(L ) where

μ is a constant independent of i.
For this, denote the canonical projection by π : V → A.
The pairing eL being perfect, we know that for i = 1, . . . , g , there exists λi ∈ �1 such

that eL (π (λi), Pi) = μ−1
i , and eL (π (λi), Pj) = 1 for j �= i. Set λ = ∑g

i=1 λi and z′ = z+λ.
It is clear that z′ = x mod �. Moreover, using Equation (3), we compute for i = 1, . . . , g
and j ∈ K2(L ):
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s�′′ (π (−λ))
(
s�′′ (Pi) · θ

�σ
L

j

)
(z) = aL (z + λ, λ)

(
s�′′ (Pi) · θ

�σ
L

j

)
(z′). (5)

Since we have s�′′ (π (−λ))s�′′ (Pi) = eL (π (−λ), Pi)s�′′ (Pi)s�′′ (π (−λ)) = μis�′′ (Pi)
s�′′ (π (−λ)), and since θ

�σ
L

j (z) is invariant under s�′′ (π (−λ)), we also have

s�′′ (π (−λ))
(
s�′′ (Pi) · θ

�σ
L

j

)
(z) = μi(s�′′ (Pi) · θ

�σ
L

j (z)). (6)

From (5) and (6), we get for all i = 1, . . . , g :

aL (z + λ, λ)μ−1
i ∗ (Pi · θ

�σ
L

j (z′))j∈K2(L ) = (Pi · θ
�σ
L

j (z))j∈K2(L ). (7)

Using (5) with Pi = 0, we also have aL (z+ λ, λ) ∗ (θ�σ
L

j (z′))j∈K2(L ) = (θ�σ
L

j (z))j∈K2(L ).
On the other hand, multiplying x̃ by a factorμ changes ˜x + P by the same factorμ too. So
if we renormalise x̃ such that it corresponds exactly to (θ�σ

L
j (z′))j∈K2(L ), then our updated

˜x + Pi are exactly equal to (s�′′ (Pi) · θ
�σ
L

j (z′))j∈K2(L ), with no constants involved. ��

Remark 3.12 If the field of definition is not algebraically closed, and if P is a point of �

torsion, taking an excellent lift P̃ of P involves computing a �th root μP , which may live
in an extension of our base field. In practice, we never need μP : all our algorithms will be
independent of the choices made to compute excellent lifts, and hence will only involve
the value μ�

P , which is rational. The same holds to compute an excellent lift ˜x + P.

Algorithm 1: Algorithm to compute an excellent lift of a point.
input :
• The theta null point 0̃A of (A,L ,�L ) an abelian variety with a symmetric level n theta

structure;

• A point P in K and a lift x̃ of a point x in A

output: Excellent lifts P̃ of P and ˜x + P of x + P with respect to P̃

1 Fix P̃1 and ˜x + P1 arbitrary lifts of P and x + P;
2 Write � = 2�′ + 1 and determine λ such thatmult(�′ + 1, λ ∗ P̃1, 0̃A) = −mult(�′, λ ∗ P̃1, 0̃A);
3 Set P̃ = λ ∗ P̃1;
4 Determine μ such that diff_mult(�,μ ∗ ˜x + P1, P̃, x̃, 0̃A) = x̃;
5 Set ˜x + P = μ ∗ ˜x + P1;
6 return P̃, ˜x + P;

Algorithm 2: Algorithm to compute an excellent lift of the kernel
input :
• The theta null point 0̃A of (A,L ,�L ) an abelian variety with a symmetric level n theta

structure;

• A kernel K and a lift x̃ of a point x in A.

output: Excellent lifts K̃ of K and ˜x + K of x + K with respect to K̃

1 Fix a basis (P1, . . . , Pg ) of K ;
2 Compute excellent lifts P̃i, ˜Pi + Pj , ˜x + Pi for i �= j ∈ {1, . . . , g} using Algorithm 1 ;
3 Use mult_add to compute the other lifts K̃ and ˜x + K ;
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4 Ascending level
In this section, our goal is twofold:

1. compute the theta functions of level n�, i.e. the theta functions of G(L �);
2. compute the theta functions of level n on B = A/K where K is totally isotropic.

Of course, if we know how to do (1), we can apply Mumford’s isogeny theorem to get (2).
From Propositions 2.11 and 2.15, we see that we need to

1. Construct a section u ofL �;
2. Make explicit the action of G(L �) on this u.

Since we will construct u from theta functions of level n, where the action of G(L )
is explicit, we only need to understand the action of (the sections) of K1(L �)[�] and
K2(L �)[�]. These are given by (symmetric) elements of order � in G(L �). If g ∈ G(L �)
is such an element and is represented by [α, zP] ∈ G(L �), the action on u from Equation
2 shows that we need to be able to compute the translation u(z − zP). Here, zP will be an
affine point of � torsion, i.e. a point in V such that P = zP mod � is a point of � torsion.
The multiplicative factor αeπ�H (z−zP ,zP ) can be seen as a corrective factor such that [α, zP]
is of order � in G(L �). In fact, if we use the classical factor of automorphy instead, this
action is exactly the action by translation whenever zP ∈ 1

�
Z
g .

4.1 Ascending level along an isogeny

As a warm-up, given an isogeny f : A′ = V /�′ → A = V /� such that its kernel K ′ is
a maximal isotropic subgroup of A′[�], we explain how to compute theta coordinates on
A′ from the knowledge of theta coordinates on A. This was already explained in [13], but
Proposition 2.11 allows us to give a shorter proof.
We suppose thatA is endowedwith a polarisation given by a Riemann formHA of type n,

and we choose a symplectic decomposition σ : V = V1 ⊕V2 with respect toHA such that
� is compatible with σ following Definition 2.2. We have seen in Sect. 2.1 that σ defines
a canonical line bundleL on A and a symmetric theta structure �σ

L by Proposition 2.5.
Let F be the analytic representation of f ; then σ ′ : V = F−1(V1)⊕F−1(V2) is a symplectic
decomposition of V for F∗(HA), and �′ is compatible with σ ′. Thus, the decomposition
σ ′ defines a line bundleL ′ on A′ such thatL ′ = f ∗(L ) and a symmetric theta structure
�σ ′

L ′ .
In order to compute the canonical basis defined by �σ ′

L ′ , we need to obtain a section of
L ′ and to explainhowG(L ′) acts on it.Weconsideru a sectionofL , andu′ = f ∗u = u◦f .
By the compatibility of the action (see Equation (4)), if g ′ = [α′, w′] ∈ G(L ′) is such that
f (w′) ∈ K (L ), then the action of g ′ on u′ is given by the action of F (g ′) on u. For instance,
if u = θ0 ∈ �(A,L ), then for i ∈ A′

1[n] acts trivially on i · u′ = u′, while the action of
i ∈ A′

2[n] is given by i · u′ = F∗θf (i).
It remains to explain how A′[�] acts on u′. Take a decomposition A′[�] = A′

1[�]⊕A′
2[�]

withK ′ = L f = A′
1[�], thenA

′
1[�] acts trivially on u′ since u′ = f ∗(u). Thus, we only need

to compute the action of P ∈ A′
2[�]. Changing if necessary the symplectic decomposition

σ of�, we may assume that�′ = ��1 ⊕�2, F = Id. Then this action is exactly the action
of the points in 1

�
�2/�2 that we computed in Sect. 3 (see Remark 3.9).
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Note that we may always change the symplectic decomposition of � and �′ in order
to make them compatible, without changing the theta structure of level n on A (resp. �n
on A′) if the following algebraic conditions are satisfied (see Remark 2.7): let A′[2�n] =
A′
1[2�n]⊕A′

2[2�n] be the symplectic decomposition inducing the theta structure of level �n
on A′. Then we require that L f = 2nA′

1[2�n], and that the decomposition A[2n] =
f (A′

1[2�n]) ⊕ f (�A′
2[2�n]) induces the theta structure of level n on A.

When � is prime to n, this amounts simply to saying that the decomposition of A′[2n] is
sent to the decomposition ofA[2n] via f . In particular,A′

i[n] is fixed andA
′
1[�] = K ′ = L f

is fixed, so the only choice left is on the symplectic complement A′
2[�] of K ′.

From the proofs of Theorems 3.8 and 3.11 and Remark 3.9, we immediately get

Theorem 4.1 Let (A,L ,�L ) be an abelian variety together with a level n symmetric
theta structure. Let K be a maximal isotropic kernel of A[�], � prime to n, let A′ = A/K,
and let f : A′ → A be the contragredient isogeny. Let L ′ = f ∗L . Let x ∈ A and fix a lift
x̃. Fix an excellent lift K̃ of K , and ˜x + K of x, as in Theorems 3.8 and 3.11. Then

1. There exists a symmetric theta structure �L ′ on (A′,L ′) such that, up to a constant,
for i ∈ K2(L ′), if i = i1 + i2 with i1 ∈ K2(L ′)[n] and i2 ∈ K2(L ′)[�], θ�L ′

i (0) =
θ

�L
f (i) ( ˜f (i2)). Furthermore, all �g(g+1)/2 theta constants given by such (compatible)
theta structures arise from a choice of an excellent lift of K .

2. If x′ is the point such that, up to a constant depending only on x, θ
�L ′
i1+i2 (x

′) =
θ

�L
i1 ( ˜x + f (i2)), then x′ is a preimage of x by f , and all �g preimages of x arise from a
different choice of excellent lift ˜x + K.

Remark 4.2 Note that since the constant in Example 2.17 is 1, we can determine the
implicit constants in the above theorem explicitly. Namely, if the chosen affine lift 0̃Ak

corresponds to the affine theta null point θL
i (0) up to a projective factor α, that is, 0̃Ak =

α · θL
i (0), then in Theorem 4.1, we get θ

�L
f (i) ( ˜f (i2)) = αθ

�L ′
i (0). Likewise, if the choice

of affine lift x̃ satisfies x̃ = μ · θL
i (z) for a representative z of x = z mod �, then if

z′ = F−1(z), θ�L ′
i1+i2 (z

′) = αμθ
�L
i1 ( ˜x + f (i2)).

4.2 Ascending level on the same variety

We assume we are given an abelian variety (A = V /�,L ,�L ) with a symmetric theta
structure of even level n defined by a symplectic decomposition σ : � = �⊕�2.Wewant
to construct the symmetric theta structure of level �n on (A,L �) provided by σ following
Proposition 2.5. For simplicity we assume that � is prime to n. We will apply the tools of
Sect. 2.
Let ai ∈ N for i = 1, . . . , r be such that � = ∑r

i=1 a2i . Let ui ∈ �(A,L ) for i = 1, . . . , r;
then, asL is symmetric, ui ◦ [ai] (where [ai] : A → A is the isogeny defined on points by
P �→ aiP) is a section ofL a2i , and hence u = ∏

ui is a section ofL
∑

a2i = L �. We want
to make explicit the action of G(L �) on u; we can then apply Proposition 2.11 to recover
the theta basis of level �n onL �. There is a morphism E� : G(L ) → G(L �), [Î±, w] �→
[Î±�, w]. As � is isotropic for EL and EL � and is compatible with σ , Lemma 2.3 gives
sections s�,L : � → G(L ) and s�,L � : � → G(L �). One can verify that E� is compatible
with s�,L and s�,L � in the following way: E�(s�,L (λ)) = s�,L � (λ) for all λ ∈ �.
We check that the action of G(L �) is compatible with products of sections, and com-

bining with the compatibility of the action with isogenies (see Sect. 2.4), we get
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Lemma 4.3 Let �′ = 1
�
�1 ⊕ �2, or �′ = �1 ⊕ 1

�
�2.

For m ∈ N
∗, we denote by s�′ ,L m : �′ → G(L m) the set section defined by s�′ ,L m (λ) =

[aL m (0, λ), λ]. For λ ∈ �′, we have

s�′ ,L � (λ) ·
∏

ui(aiz) =
∏

s
�′ ,L a2i

(λ) · ui(aiz) =
∏

a∗
i
(
s�′ ,L (aiλ) · ui(z)

)
.

Proof We use compatibility of the action with the product, followed by the compatibility
of the action by the isogeny [ai] (see Equation 4), whose analytic representation is exactly
z �→ aiz.
One caveat here is that while s�′ ,L � defines a section of �′ into G(L �) which does

not depend on the symplectic decomposition of A[�] (because � is odd), s�′ ,L is only a
group section on �, and the value of s�′ ,L (λ) depends crucially on the full symplectic
decomposition of �. Indeed, we saw in Theorem 3.8 that we had several possible choices.
But when taking the product, these choices cancel out. We can verify this: if s�′ ,L (λ) =

[Î±, w], another choice amounts to multiplying the first coordinate Î± by an �th root of
unity ζ , and translating the second coordinate by an element of �. Then we can check
that this changes s�′ ,L (aiλ) by a factor ζ a2i on its first coordinate; hence, the final product
of the actions is changed by ζ

∑
a2i = ζ � = 1. ��

Let (A,L ,�L ) be an abelian variety together with a level n symmetric theta structure.
Then Lemma 4.3 gives us a way to compute the actions of s�′ ,L � . Namely, if P ∈ A[�] is
such that P = λ mod � for λ ∈ �′ and z ∈ V is such that x = z mod � for x ∈ A,
inducing excellent lifts P̃ and ˜x + P, we get that a∗

i s�′ ,L (aiλ) · θ
�L
j = a∗

i ( ˜x + aiP)j =
( ˜aix + aiP)j = (ai( ˜x + P))j . Here, one needs to be careful that we are working with affine
theta coordinates, so the point ˜ai(x + P) = ai( ˜x + P) has to be computed as an affine
point, using Riemann relations (or as usual, using the projective arithmetic on A and
determining the correct projective factor through Riemann relations).
Applying Proposition 2.11 to ui = θ

�L
0 (we leave to the reader the obvious generalisa-

tion to ui = θ
�L
ji ), we get

Theorem 4.4 Let (A,L ,�L ) be an abelian variety together with a level n symmetric
theta structure. Assume that � is prime to n, and let A[�] = A1[�] ⊕ A2[�] be a symplectic
decomposition. There is a unique symmetric level �n theta structure �L � compatible with
�L following Definition 2.8 and this decomposition. Write � = ∑r

i=1 a2i with ai ∈ N. Fix
excellent lifts ˜Ai[�] of the maximal isotropic subgroups Ai[�]. For x ∈ A, fix an affine lift x̃,
excellent lifts ˜x + P with respect to x̃ and P̃ for P ∈ A1[�], and then excellent lifts ˜x + P + Q
with respect to ˜x + P and Q̃ for Q ∈ A2[�]. Compute ai( ˜x + P + Q) using mult.
Let z ∈ V be such that x = z mod �, and let μ be such that θ

�L
i (z) = μx̃. We have,

up to a constant C depending only on the choice of 0̃Ak , the following:

θ
�L �

0 (z) = Cμ�
∑

P̃∈ ˜A1[�]

r∏
i=1

(ai( ˜x + P))0,

and if i ∈ A2[�], writing J = Q + j with Q ∈ A2[�] and j ∈ A2[n],

θ
�L �

J (z) = Cμ�
∑

P̃∈ ˜A1[�]

r∏
i=1

(ai( ˜x + P + Q))aij .
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Proof The unicity of �L � comes from Remark 2.7 and the fact that � is odd and prime to
n: for i = 1, 2, the section s�L �

i (see Definition 2.6) above Ai[n] is given by E� ◦ s�L
i , and

above Ai[�] as the unique symmetric group in G(L �) (the unicity is because � is odd).
By Theorem 3.8, up to changing the lattice decomposition of� (twice, once for�2, then

for �1), we can assume that we have correct lifts of A1[�] and A2[�]. Let z ∈ V be such
that x = z mod �, by Theorem 3.11, upon changing z first by an element of�1 and then
by an element of �2 we may assume that there exists μ such that (θ�L

i (z)) = μ ∗ x̃, and
P · (θ�L

i (z)) = μ∗ ( ˜x + P) andQ ·P · (θ�L
i (z)) = μ∗ ( ˜x + P + Q). Other analytic lifts are

givenby z+λ forλ ∈ �. If (θ�L
i (z+λ)) = μ∗(θL

i (z)), then (θ�L �

i (z+λ)) = μ�∗(θ�L �

i (z));
hence, the LHS is homogeneous of degree � with respect to μ. Since ai(μx̃) = μa2i aix̃,
the RHS is also homogeneous of degree � with respect to μ. Hence, we may suppose that
μ = 1, whence the result follows by Lemma 4.3. ��

From the theorem, we immediately deduce the Algorithm 3 to go up in level. Going
through the trace and taking into account that the scalar multiplications by the ai cost
O(log �), we thus get a complexity of O(ng�g log �) for Theorem 1.1. We can gain a factor
log � as follow: rather than generating all the points P̃ from a basis P̃1, . . . , P̃g of A1[�],
we first embed this basis (and the sums ˜Pi + Pj) into Ar via P �→ (ai · P), and then we
compute the differential additions on these embeddings directly. This allows one to only
compute the scalar multiplications onO(g2) points rather thanO(�g ). We thus obtain the
complexity result of Theorem 1.1.

Remark 4.5 The ordermatters here; if we normalise ˜x + P + Qwith respect to ˜x + Q and
P̃ instead, we would change its value by a factor μ such that μ� = eL � (P,Q), since eL � is
the commutator pairing onG(L �). A similar idea was used in [12] to compute the pairing
of P and Q.

Algorithm 3: Algorithm to go up from level n to level �n.
input :
• The theta null point 0̃A of (A = V /�,L ,�L ) an abelian variety with a symmetric

level n theta structure;

• for � a positive odd integer, a symplectic decomposition A[�] = A1[�] ⊕ A2[�] given by
the theta coordinates of its basis;

• a decomposition � = ∑r
i=1 a2i ;

• x ∈ A, given by its level n theta-coordinates (θ�L
i (x))i∈K2(L );

• J ∈ K2(L �).

output: the level �n theta coordinate of index J of x ∈ A: θ�L �

J (x).

1 Using Algorithm 2, compute excellent lifts x̃ and ˜x + P for P ∈ A1[�];
2 Write J = Q + j for j ∈ A2[n] and Q ∈ A2[�];
3 Chose any affine lift Q̃ of Q;
4 Using Algorithm 2, compute excellent lifts ˜x + P + Q with respect to ˜x + P and Q̃ for all
P ∈ A1[�];

5 return
∑

P̃∈ ˜A1[�]
∏r

i=1 mult(ai, ˜x + P + Q, 0̃A)aij ;

As a corollary, applyingMumford’s isogeny theorem (or using Proposition 2.15 directly)
we get
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Corollary 4.6 Let (A,L ,�L ) be an abelian variety together with a symmetric level n
theta structure. Let � be prime to n and write � = ∑r

i=1 ai for ai ∈ N. Let K ⊂ A[�] be a
maximal totally isotropic subgroup and f : A → B = A/K be the isogeny. Since � is odd,
there is a unique symmetric level subgroup K̃ of K in G(L �), which induces via f a descent
M of L � on B. Furthermore, by Proposition 2.15, �L induces a unique symmetric level
n theta structure �M on B. Let x ∈ A fix an affine lift x̃, excellent lifts K̃ of K , and ˜x + K
of x with respect to x̃ and K̃ . Let z ∈ V be such that x = z mod � and let μ be such that
θi(z) = μ(x̃)i. Then identifying K2(L ) with K2(M) via f , we have for j ∈ K2(L )

θ
�M
f (j) (f (z)) = Cμ�

∑
P∈x̃

r∏
i=1

(ai( ˜x + P))aij . (8)

Here, the constant C is the same as in Theorem 4.4 (so depends only on the choice of
0̃Ak ), because the constant involved in Mumford’s isogeny theorem from Example 2.17 is
equal to 1.

Algorithm 4: Algorithm to compute an �g isogeny.
input :
• The theta null point 0̃A of (A,L ,�L ) an abelian variety with a symmetric level n theta

structure;

• � a positive odd integer and a decomposition � = ∑r
i=1 a2i ;

• K ⊂ A[�] a rank g isotropic subgroup of A defining an isogeny f : A → B, described by
the theta coordinates of a basis;

• x ∈ A, given by its projective level n coordinates (θ�L
i (x))i∈K2(L ).

output: the projective coordinates of f (x) ∈ A: (θ�M
i (f (x))i∈K2(M).

1 Using Algorithm 2, compute excellent lifts x̃ and K̃ ;
2 for j ∈ K2(M) do
3 Let j0 ∈ K2(L ) be such that j = f (j0);
4 Let θ

�M
j (f (x)) = ∑

P̃∈K̃
∏r

i=1 mult(ai, ˜x + P, 0̃A)aij ;
5 end
6 return (θ�M

j (f (x)))j∈K2(M);

Remark 4.7 From the proof of Lemma 4.3, we do not need to take excellent lifts of K and
x+K globally.We just need excellent lifts P̃ and ˜x + P individually for any P ∈ K . Indeed,
the different choices cancel out in the product inside Equation 8.
When given a basis P1, . . . , Pg of K , it is actually faster to compute excellent lifts of Pi,

Pi + Pj , x + Pi and x + Pi + Pj and compute the rest using differential additions to get a
global lift of K , rather than normalising each point individually.
However, if we have equations for the kernel K , rather than computing ˜x + P for each

P ∈ K , we can compute it for a formal point of K (i.e. work over the étale algebra defining
SpecK ), and then compute the product

∏r
i=1(ai( ˜x + P))i formally modulo the equations.

If we have a univariate parametrisation ofK , the trace acrossK is then given by a resultant,
using the same method as in [14].
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Remark 4.8 We now explain how to relax the assumption that � odd is prime to n. Fix a
symplectic decomposition of � giving our theta null point of level n on A. This induces a
canonical symplectic decomposition of A[�n]. Algebraically, our (symmetric) theta struc-
ture of leveln (resp. �n) is completely determined by the corresponding symplectic decom-
position of A[2n] (resp. A[2n�]), and the theta structures are compatible in the sense of
Definition 2.8 if �Ai[2�n] = Ai[2n].
If � is odd, we only need to fix a symplectic decomposition of A[n�] such that �Ai[�n] =

A[n]. If P is a point of �n torsion, and x̃ an affine point given by the level n theta coordinate,
wemay extend the strategy of Sect. 3 to compute s(P)· x̃ as follows: g := s(P)� is an element
ofG(L ), whence we know its action on x̃ explicitly. So wemay extend the definition of an
excellent lift P̃ and ˜x + P by requiring in this case that if � = 2�′ +1, (�′ +1)P̃ = g ·�′(−P̃),
and ˜x + �P = g · x̃. These define these lifts up to an �th root of unity as before.

FromCorollary 4.6, we getAlgorithm4 to compute an isogeny between abelian varieties.
In practice, an abelian variety together with a symmetric level n theta structure defined
over k is determined by its theta null point which is a projective point in P

ng−1
k defined

over k . The theta null point can be obtained through Thomae-like formulas [3] if A is the
Jacobian of a curve. In general, theta null points are described using the equations of (a
closure of) the moduli space of abelian variety together with a level n theta structure as
defined in [17].
Note that in order to use the results of this paper, we need n to be even. Moreover, as

the ambient space in whichA is embedded has dimension ng −1, and we look for compact
representation of the objects for time and memory efficiency, we want n to be as small
as possible. So in practice, we use n = 2 or n = 4. As all the level 2 theta functions are
even, they do not provide an embedding of A but rather of its associated Kummer variety
K = A/(−1). Although K is not an algebraic group, its set of points still enjoy a pseudo-
group law and pairings which makes it useful for computations and some applications in
cryptography [7,8,15], and it is straightforward to adapt our algorithms to this case.
The examples have been computed using the MAGMA library [2]. They also could be

done with the Sage reimplementation of AVIsogenies [22].

Example 4.9 LetFbe the finite field of size 1511, andE the elliptic curve y2 = x3+1211x+
600 over F. Let P be the 7 torsion point (858η2 + 1045η + 830 : 386η2 + 1245η + 811 : 1)
in the extension field of degree 3 where η3 + 2η + 1500 = 0. We compute a level 4 theta
null point of E using Thomae’s formula (as implemented in [2]): it lives in an extension
of degree 6 of F, and convert P to theta coordinates. Let K be the kernel generated by P;
we check that it is rational over F. We compute an excellent lift K̃ of K by computing an
excellent lift P̃ from P and then using differential addition to recover the other multiples.
We now apply Corollary 4.6 to the decomposition 7 = 1 + 1 + · · · + 1, namely,

θ
E/K
j (0) =

∑

P∈K̃
θj(P̃)�j . (9)

We get the following level 4 theta null point: (853ν5 + 1372ν4 + 424ν3 + 743ν2 + 430ν +
865, 440ν5 + 9ν4 + 663ν3 + 128ν2 + 170ν + 280, 1042ν5 + 298ν4 + 853ν3 + 311ν2 +
632ν+107, 440ν5+9ν4+663ν3+128ν2+170ν+280) where ν6+ν4+106ν3+1278ν2+
1032ν + 11 = 0.
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We now convert back the theta null point of E/K to an equation of E/K (by computing
its Legendre invariant). This gives a curve defined over an extension of degree 6 but whose
j invariant is j(E/K ) = 491; hence, E/K descends to F as expected. Comparing with Vélu’s
formula, we recover the same elliptic curve.

Example 4.10 Let C be the hyperelliptic curve of genus 2 given by the equation y2 =
t254x6 + t223x5 + t255x4 + t318x3 + t668x2 + t543x+ t538 defined over the finite field Fwith
36 elements where t6 + 2t4 + t2 + 2t + 2 = 0. There is a unique rational totally isotropic
(for theWeil pairing) subgroupK in Jac(C)[7].We compute (using [2]) the theta null point
of Jac(C) and convert two generators P,Q of K into theta coordinates. These points P and
Q live in an extension of degree 4 of F. We then normalise them to form excellent affine
lifts P̃, Q̃, along with ˜P + Q. From these lifts we can compute an excellent lift K̃ of K using
differential additions and then compute the isogenous theta null point using a trace like in
Equation 9. We compute the Rosenhain invariants associated to this theta null point and
recover the isogenous curve: y2 = t293x6 +x5 + t225x4 + t189x3 + t87x2 + t424x+ t289. We
check that these two curves have the same zeta function, and hence are indeed isogenous.

5 Descending level
We now want to explain how to do the reverse of Sect. 4, namely, given theta functions
for a (symmetric) theta structure of level �n on L �, compute the theta functions for the
unique induced one of level n onL (recall that we assume n even).
To apply our algorithm of Proposition 2.11, we first need to construct a section v ∈

�(A,L ), and then explain how the theta groupG(L ) acts on it. Unfortunately, we cannot
build an element of �(A,L ) from those of �(A,L �). However, we can try to build an
element of �(A,L �2 ) of the form u = v ◦ [�]. In fact, if we know how (the lift of A[�]) acts
in G(L �2 ), we only need any u ∈ �(A,L �2 ), and take the trace u′ of u under A[�] to get
a section of the form v ◦ [�]. More precisely, we can use Proposition 2.15 applied to the
isogeny [�] to construct the theta functions of level n onL .
But we can use Sect. 4.2 to go from level n� to level n�2. In particular, if � = ∑

a2i and
ui are in �(A,L �), then u = ∏

ui(aix) ∈ �(A,L �2 ). While we cannot directly apply the
results of this section since � is not prime to n� (but see Remark 4.8), to apply Proposition
2.15, we only need to compute the action of (the lift of) the points in A[�] and in A[n]
on u. In our current case, this is actually easier than in Proposition 2.15, since we already
have a theta structure of level �n, we already have the action of these points on the ui, and
hence (by compatibility with product and isogenies) on u.

Theorem 5.1 Let (A = V /�,L �,�L � ) be an abelian variety with a symmetric theta
structure of level n�, with n even and � prime to n, and let �L be the unique structure on
L compatiblewith�L � (Definition 2.8). Let A[�n] = A1[�n]⊕A2[�n] be the corresponding
symplectic decomposition. Write � = ∑r

i=1 a2i . Let x ∈ A and fix an arbitrary affine lift x̃;
let z ∈ V be such that z mod � = x and let μ be such that θ

�L
i (z) = μx̃i.

Then, up to a constant C depending only on the choice of 0̃Ak , for j ∈ A2[n],

θ
�L
�j (�z) = Cμ�

∑
t∈A2[�]

r∏
i=1

(aix̃)ai(j+t),

where aix̃ is computed via mult.
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Proof Let �′ = 1
�
�. By Lemma 2.3, there are group sections s�′ ,L � : �′ → G(L �)

and s�,L : � → G(L ). Consider the group morphism H� : G(L �) → G(L ),
[α, v] �→ [α�, �v], thenH� is compatiblewith the sections s�′,L � and s�,L :H�(s�′ ,L � (λ)) =
s�,L (�λ). Thus, if �L is compatible with �L � , for i = 1, 2, the sections s�L

i : Ai[n] →
G(L ) defining the theta structure�L are completely determined by s�L

i (P) = s�L �

i (P′)
for any point P′ ∈ Ai[n�] with P = �P′. This proves the unicity of �L .
As in Theorem 4.4, both the LHS and RHS are homogeneous of degree �with respect to

μ, so we may renormalise x̃ such that μ = 1. Then we apply Proposition 2.15 combined
with Lemma 4.3 and the results of Sect. 4. We remark that since θ

�L �

0 is invariant by
A1[�n], we only need to sum through t ∈ A2[�]. ��

Remark 5.2 We can use Theorem 5.1 to get an isogeny algorithm as follows: let f : A → B
be the isogeny. Then we have a contragredient isogeny f̃ : B → A, and given x ∈ A, we
can use the results of Sect. 4.1 to compute the theta coordinates of level �n of a preimage
y = f̃ −1(x) on B. Then, applying Theorem 5.1, we get the theta coordinates of level n of �y,
which by definition of the contragredient isogeny is exactly f (x). We let the reader check
that this recovers exactly Corollary 4.6.
We constructed our descent algorithm by first using Theorem 4.4 to go up in level n�2

and then descending to level n via Mumford’s isogeny theorem applied to the isogeny [�].
Conversely, we could recover the ascending algorithm from Theorem 5.1 by first using
Sect. 4.1 applied to [�] to compute the coordinates of level �2n of a point y such that
�y = x, and then apply Theorem 5.1 to get the coordinates of level �n of x.

Remark 5.3 Another way of descending level used in [4] is to consider Koizumi’s formula.
Koizumi uses an isogeny F : Ar → Ar , where F is an integer matrix such that tFF = �Idr .
In particular, the first column of F is given by (a1, . . . , ar) such that � = ∑

a2i .
We can reinterpret our method as a tweak on this idea: we only use the first column of

F to map A into Ar via P �→ (aiP); this is a generalised Segre mapping S. The important
point is that since S∗(L �)∗,r = (L �)

∑
a2i = L �2 , S(A[�]) is isotropic in (Ar, (L �)∗,r); so

we can applyMumford’s isogeny theorem to the kernel S(A[�]). This recovers the formula
of Theorem 5.1.

6 The case of real multiplication
When our abelian variety A has real multiplication by an order O of rank g , then given
a principal polarisation H0, we can consider polarisations of the form βH0 where β is a
totally positive real element.
Recall that if A = V /�, V is canonically isomorphic to the tangent space of A at 0. This

fixes an embedding φ of O into End(V ). We fix a compatible isomorphism ν : O ⊗Z C �
C
g → V .
Given a theta structure of level n onA (with polarisationH = nH0), we want to compute

a theta structure of level βn (with polarisation βH , where βH (z1, z2) = H (βz1, z2) =
H (z1,βz2)). We also want to compute β isogenies: f : (A,L ) → (B,M), i.e. such that if F
is the analytic representation of F andHA,HB is the associated polarisations: f ∗HB = βHA.
We denote byL β the line bundle with polarisation βH induced by this decomposition.
Here, we need to assume that our theta structure is compatible with the real multipli-

cation, i.e. is induced by a symplectic decomposition of �: � = �1 ⊕ �2, such that �i is
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stable under the action of O given by β .λ �→ ν(β)λ for β ∈ O and λ ∈ �. We call this an
RM-symplectic decomposition. Then, for instance, if �′ = �1/β ⊕ �2 and B = V /�′,
F : z �→ z induces a β isogeny (A,L ) → (B,M), where M is the line bundle on B with
polarisation HB = HA induced by the symplectic decomposition of �′.
We generalise Sect. 4.2 as follows: fix a decomposition β = ∑

βi where each βi ∈ O
is totally positive. For each βi, fix a (compatible) βi isogeny fi : (A,L ) → (Bi,Mi) with
analytic representation Fi. Let ui be a section ofMi; then u = ∏

ui ◦ fi is a section ofL .

Example 6.1 If αi is an endomorphism of A, it can be considered as an αiαi isogeny,
where α denotes the Rosati involution under our fixed principal polarisation. Then, if β =∑

αiαi, we can use fi = αi, i.e. endomorphisms rather than isogenies. The decomposition
� = ∑

a2i from Sect. 4 is a special case of this where, furthermore, the αi are integers.

A direct generalisation of Lemma 4.3 yields the following:

Lemma 6.2 Fix an RM-symplectic decomposition� = �1 ⊕�2, and let�′ = 1
β
�1 ⊕�2,

or �′ = �1 ⊕ 1
β
�2. For β ∈ O, we denote by s�′ ,L β : �′ → G(L β ) the set section defined

by s�′ ,L β (λ) = [aL β (0, λ), λ]. For λ ∈ �′, such that we have

s�′ ,L β (λ)·
∏

ui(Fi(z)) =
∏

s�′ ,L βi (λ)ui(Fi(z)) =
∏

F∗
i

(
s�′ ,L (Fi(λ)) · ui(z)

)
.

To apply this Lemma 6.2, we need to assume that we know not only how to compute the
isogenies fi but also their analytic representationsFi.Moreprecisely, given the (affine) theta
coordinates of level n of z: x̃ = (θL

j (z))j∈K2(L ), the algorithm should output the (affine)
theta coordinates of Fi(z): Fi(x̃) = (θMi

j (Fi(z)))j∈K2(Mi). We also need compatibility with
the action: given λ ∈ �1 ⊗Z Q or in �2 ⊗Z Q, the coordinates x̃ of z and the coordinates
of s(λ) · x̃ = s(λ) · (θL

j (z))j∈K2(L ), the algorithm should output Fi(s(λ) · (θL
j (z))j∈K2(L )) =(

s(Fi(λ)) · (θMi
j )j∈K2(Mi)

)
(Fi(z)) (if the former equation is satisfied, the latter is already

automatically satisfied for λ ∈ F−1
i (�B,i)).

We also need to explain how to adapt Theorems 3.8 and 3.11 to obtain an excellent lift
of K = A1[β] when β is of odd norm. Let P1, . . . , Pg be a basis of K such that Pi is of order
mi and #K = ∏

mi. Take an excellent lift of each Pi with respect to the ordermi, that is, if
mi = 2m′

i +1, (m′
i +1)P̃i = −m′

iP̃i, and compute the other lifts usingmult_add. This gives
an excellent lift K̃ of K . A similar method gives an excellent lift ˜x + K of a point x ∈ A.
Then we have the following generalisations of Theorem 4.4, Corollary 4.6 and Theorem

5.1:

Theorem 6.3 Let (A,L ,�L ) be an abelian variety together with a level n symmetric
theta structure. Assume that β is of norm prime to n and let A[β] = A1[β] ⊕ A2[β] be a
symplectic decomposition. This induces a unique symmetric theta structure �L β on L β

compatible with �L .
Let β = ∑

βi and assume we can compute affine βi isogenies Fi : (A,L ) → (B,Mi)
where Fi is the analytic representation of the isogeny fi. Fix excellent lifts ˜Ai[β] of the
maximal isotropic subgroups Ai[β]. For x ∈ A, fix an affine lift x̃, excellent lifts ˜x + P with
respect to x̃ for P ∈ A1[β] induced by ˜A1[β], and then excellent lifts ˜x + P + Q with respect
to ˜x + P forQ ∈ A2[β]. For this theta structure onL β , we have (up to a constant depending
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on 0̃Ak and x̃ only) the following:

θ
�L β

0 (x) =
∑

P̃∈ ˜A1[β]

∏
θ

�Mi
0 (Fi( ˜x + P)),

and if J ∈ A2[nβ], writing J = Q + j with Q ∈ A2[β] and j ∈ A2[n],

θ
�L β

J (x) =
∑

P̃∈K̃1

∏
θ

�Mi
fi(j) (Fi( ˜x + P + Q)).

Proof By Lemma 6.2, s�′ ,L β (λ)·
∏

θ
�Mi
0 (Fi(z)) = ∏

F∗
i

(
s�′ ,L (Fi(λ)) · θ

�Mi
0 (z)

)
. By

assumption, we know how to compute the analytic representation Fi of the isoge-
nies in a manner compatible with the action: if J = Q + j as in the theorem,
F∗
i

(
s�′ ,L (Fi(J ))·θ

�Mi
0 (z)

)
= θfi(j)(Fj(s�′ ,L (Q) · θ

�L
j (z))), and the RHS is equal to

θfi(j)(Fj( ˜z + Q)). ��

Corollary 6.4 Let (A,L ,�L )beanabelian variety togetherwitha level n symmetric theta
structure. Let K ⊂ A[β] be a maximal totally isotropic subgroup and f : A → B = A/K
be the isogeny. Assume that β is of norm prime to n, then there is a unique symmetric level
subgroup K̃ of K in G(L β ), which induces via f a descent M of L β on B. Furthermore,
there is a unique level n theta structure on B, �M, compatible with �L (see Definition
2.8).
Let β = ∑

βi and assume we can compute affine βi isogenies Fi : (A,L ) → (B,Mi). Let
x ∈ A. Fix an affine lift x̃, excellent lifts K̃ of K , and ˜x + K of x with respect to x̃ and K̃ .
Then identifying K2(L ) with K2(M) via f , we have (up to a constant depending only on
0̃Ak and x̃)

θ
�M
f (j) (f (x)) =

∑

P∈K̃

∏
(Fi( ˜x + P))fi(j). (10)

Theorem 6.5 Let (A,L β ,�L β ) be an abelian variety with a symmetric theta structure
of level nβ , with n even and β of norm prime to n and let�L be the unique structure onL
compatible with�L β (Definition 2.8). Let A[βn] = A1[βn]⊕A2[βn] be the corresponding
symplectic decomposition. Write β = ∑r

i=1 βi and assume that we can compute affine βi
isogenies Fi : (A,L β ) → (B,Mi), where Fi is the analytic representation of fi. Let x ∈ A
and fix an arbitrary affine lift x̃.
Then, up to a constant depending only on 0̃Ak and x̃, for j ∈ A2[βn],

θ
�L
βj (βz) =

∑
t∈A2[β]

r∏
i=1

Fi(x̃)fi(j+t).

Remark 6.6 It should be possible to adapt Lemma 6.2 to show that by computing com-
mutator pairings in the spirit of [12], we may tweak the algorithm of Corollary 6.4 to not
only compute the isogeny f but also its analytic representation F in a way compatible with
the action. This would open up a recursive approach to compute β isogenies.
Most of the difficulty resides in bootstrapping the algorithm. In Sect. 4.2, we simply had

to compute the multiplication by [ai], whose affine form (easily checked to be compatible
with the action) is given by x̃ �→ mult(ai, x̃). When k = Fq is a finite field, we may
use the Frobenius πq to compute more general endomorphisms. We then need to find
a decomposition β = ∑

αiαi of endomorphisms (possibly with denominators). This is
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the approach followed in [6]. Alternatively, when g = 2, the real multiplication field is
a quadratic real field Q(

√
d), and the endomorphism

√
d is a d isogeny which can be

computed “affinely” using Corollary 4.6 or [4,14]; see [20] for this case.
In summary, the methods of this Sect. 6 provide a general framework, but fully handling

real multiplication, in particular bootstrapping cyclic isogenies, remains a difficult topic.
We leave the details to future work.

Data availability Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.
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