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Abstract: It is generally accepted that the limit on the stable rotation of neutron stars is set by

gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational

waves that carry angular momentum away from them. The instability modes are moderated by the

shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f -mode

instability plays a historically predominant role. In this work, we determine the instability periods of

this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2,

ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that

predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic

mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the

local baryon number density. Our results show that the f -mode instability associated with m = 2 sets

the limit of stable rotation for cold neutron stars (T . 1010 K) with masses between 1 M⊙ and 2 M⊙.

This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler

periods of these stars). For cold hypothetical mass-twin compact stars with masses between 1.96 M⊙

and 2.10 M⊙, the m = 2 instability sets in at rotational stellar periods between 0.8 and 1 millisecond

(i.e., ∼25% to ∼30% above the Kepler period).

Keywords: neutron stars; equation of state; compact stars; gravitational radiation-reaction

driven instabilities

1. Introduction

Neutron stars are compact stellar objects formed when massive stars explode in so-called
supernova explosions [1]. They possess very dense cores with densities up to ∼ 1015 g/cm3

and canonical masses of around 1.4 M⊙ [2,3]. However, these objects can reach masses
larger than 2 M⊙ and approach what is known as the Tolman-Oppenheimer-Volkoff (TOV)
mass limit, an upper bound mass limit for cold, non-rotating neutron stars, analogous to
the Chandrasekhar limit for white dwarfs. The typical radii of neutron stars are between 10
to 15 km. Neutron stars are frequently observed in the radio wavelength as pulsars. Pulsars
are rapidly rotating neutron stars that emit electromagnetic radiation from their poles. The
rotation frequencies of so-called fast pulsars are several hundred revolutions per second.
Pulsars can emit radiation from large wavelengths like radio waves to small wavelengths
like high-energy gamma rays, depending on their rate of rotation. Rotating neutron stars
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are referred to as pulsars. They can spin very rapidly, often making many hundred rotations
per second. Many neutron stars form radio pulsars, emitting radio waves that appear from
the Earth to pulse on and off like a lighthouse beacon as the star rotates at very high speeds.
Neutron stars in X-ray binaries accrete material from a companion star and flare to life
with tremendous bursts of X-rays [2]. Neutron stars can occur isolated or be part of binary
stellar systems. One such configuration of stars is the Hulse-Taylor binary stellar system
that consists of a neutron star and a pulsar [4,5]. Due to the emission of gravitational
waves, the system loses energy and the orbits change exactly as predicted by Einstein’s
general theory of relativity [5]. Einstein’s field equation is given by Gµ

ν = 8πGTµ
ν, where

Gµ
ν = Rµ

ν − 1/2δµ
νR denotes the Einstein tensor, Tµ

ν is the energy-momentum tensor
of the stellar matter, and G is the gravitational constant. The quantity Rµ

ν is the Ricci
curvature tensor and R is the scalar curvature.

The thermodynamic variables that describe neutron star matter are energy density
ε, baryonic density n and pressure P at a given temperature T or entropy. To achieve
hydrostatic stellar stability, the matter of neutron stars must have a neutral electric charge.
Another important condition on the matter is β-equilibrium, which guarantees that the
matter is in the lowest possible energy state where there are no net particle reactions.
The equation of state (EoS) of neutron star matter can be expressed as P(ε, T), where
ε = ε(n, T) and P = P(n, T) acquire parametric forms. The EoS enters Einstein’s field
equation through the energy-momentum tensor Tµ

ν = (ε + P)uµuν + δµ
νP, where uµ and

uν denote four velocities. Despite many years of research, the composition of matter in
the core of a neutron star is known only very vaguely. In the simplest conception, the
matter consists of neutrons and a smaller number of protons whose charge is balanced by
electrons and muons. However, because of the enormously high densities in the core, the
neutron chemical potential may well exceed the in-medium masses of hyperons and even
of the ∆(1232) baryon, in which case neutron stars would contain significant populations of
hyperons and even of ∆(1232) particles [6]. Theoretical studies have also shown that quark
matter, made of up, down, and strange quarks could be present in the cores of neutron
stars (see [7] and references therein). Interestingly, successive first-order phase transitions
to new states of matter can give rise to new branches of compact stars which are separated
from the branch of conventional neutron stars by regions of instability [8]. One such branch
comprises the mass twin stars studied in Ref. [9]. In this paper, we shall study rotational
instabilities of mass twin stars and compare them with those of conventional neutron stars,
which may help to distinguish both types of stars from each other observationally.

An absolute limit on rapid stellar rotation is set by the Kepler Frequency, at which
mass shedding from the equator sets in, which destabilized the star. More stringent
limits on rapid rotation are believed to be set by gravitational-radiation reaction (GRR)
driven instabilities (in particular by f -modes or by r-modes), which lead to loss of angular
momentum via the emission of gravitational radiation from a rotating star, if the star spins
at the critical frequency at which these modes are excited [10–13]. This situation is shown
schematically in Figure 1. We investigate the GRR driven f -modes [11,14,15]. The f -mode
instability is expected to compete with the r-mode instability [12,13], which could set an
even tighter limit on rapid stable rotation than the f -mode. Here we focus on the f -modes
since they are currently better understood theoretically than the r-modes.
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Figure 1. Representation of an m = 4 perturbation of a rotating neutron star. Ω denotes the star’s
rotational frequency, ωm is the frequency of the counter-rotating perturbation (after Lindblom [16]).

A comprehensive overview of rotational instabilities in rotating neutron stars can be
found in the papers by [13,17]. It is noteworthy to mention that as yet no fully general
relativistic calculations of the pulsation modes of rapidly rotating compact stars exist. In the
absence of such studies, we look to follow the standard strategy [13] adopted to estimate
the instability of timescales [11,18], which assumes that the true mode solution is well
represented by the solution to the non-dissipative perturbation equations. These solutions
are then used to evaluate the effects of different dissipation mechanisms (bulk and viscosity)
and add their contributions to the rate of change of the mode energy according to

dE

dt
= −2

E

τ
, (1)

where τ is the timescale of the dissipative process and dE/dt is determined by the equa-
tions for the evolution of a viscous fluid coupled to gravitational radiation [11,14,19].
The instability modes are taken to have the time dependence (m = 2, 3, 4, . . .)

∝ exp[iωm(Ω)t + imφ − t/τm(Ω)] , (2)

where ωm is the frequency of the mode that depends on the rotation frequency Ω of the
star, φ denotes the azimuthal angle, and τm is the time scale of the mode that determines
its growth or damping. The problem of determining the maximum stable frequency of a
compact star is then reduced to finding the root of [11,16]

0 =
1

τ(Ω)
≡

1
τGR(Ω)

+
1

τη(Ω)
+

1
τζ(Ω)

, (3)

where τGR(Ω), τη(Ω), and τζ(Ω) are the dissipation time scales related to the gravitational-
radiation reaction instability that drives the instability modes, and are related to the shear
(η) and bulk (ζ) viscosities that damp the modes. The critical frequencies obtained from
Equation (3) depend on m and constitute the maximum rotational frequency (the smallest
rotational period) of the stable compact star.

Our paper is organized as follows. In Section 2 we introduce the models for the
EoS used in this work. The models can be divided into two different categories, namely
relativistic field-theoretical models and a polytropic model which leads to the existence of
mass-twin stars. The parameters of the models are provided in Section 3. Section 4 deals
with the general relativistic stellar structure equations that follow Einstein’s field equation.
The equations that are to be solved to determine the GRR-driven instabilities in rotating
compact stars are reviewed in Section 5. The role of the shear and bulk viscosity for these
instabilities are discussed in Section 6. A discussion along with a brief summary of the
results is provided in Section 7.
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2. Equation of State of Dense Neutron Star Matter

2.1. Choice of Lagrangian

Hadronic neutron star matter is modeled using the relativistic nuclear field theory that
describes the baryon-baryon interaction through the exchange of mesons. The equations
of the theory are solved in the framework of the standard relativistic mean-field (RMF)
model. The standard RMF model describes the matter in the core of a neutron star as
a relativistic quantum gas consisting of leptons (λ ∈ {e−, µ−}) and different types of
baryons like nucleons, hyperons and the spin- 3

2 delta isobar quartet (B ∈ {n, p, Λ, Ξ, Σ, ∆})
that interact via the exchange of scalar and vector mesons (M ∈ {σ, ω, ρ}). The Lagrangian
for interacting baryons is given by [15,20–22]

LB = ∑
B

ψ̄B[γµ(i∂
µ − gωB(n)ω

µ −
1
2

gρB(n)τ · ρ
µ)− (mB − gσB(n)σ)]ψB (4)

where the scalar meson (σ) describes the attraction between baryons, the vector meson (ω)
describes the repulsion between baryons and the isovector meson (ρ) describes the baryon-
baryon interactions in isospin asymmetric systems. Also, gωB(n), gρB(n) and gσB(n) are the
meson-baryon coupling constants, ψB is the baryon field operator, n is the baryon number
density, and τ = (τ1, τ2, τ3) are the Pauli isospin matrices. The meson Lagrangian is given
by [15,20,21,23,24]

LM =
1
2
(∂µσ∂µσ − m2

σσ2)−
1
4

FµνFµν +
1
2

m2
ωωµωµ +

1
2

m2
ρρµ · ρ

µ −
1
4

Gµν · Gµν , (5)

where Fµν = ∂µων − ∂νωµ and Gµν = ∂µρν − ∂νρµ denote the field tensors of ω and
ρ mesons, respectively. Additional nonlinear scalar self-interactions that contribute to a
Lagrangian, allowing the standard RMF model to reproduce empirical values for the nuclear
incompressibility (K0) and effective nucleon mass (m∗/mN) at n0 have been considered in
the literature [25,26],

LNLσ = −
1
3

bσmN [gσN(n)σ]
3 −

1
4

cσ[gσN(n)σ]
4 , (6)

where bσ and cσ are constants fixed by the symmetric nuclear matter (SNM) parametrization.
The parametrization determines the meson-nucleon coupling constants in the RMF model
that reproduce properties of isospin SNM at the nuclear saturation density (n0), which is
given by

giN(n) = giN(n0), i ∈ {σ, ω, ρ} . (7)

In order to soften the high-density EoS to satisfy the nuclear matter constraints and
reproduce empirical values for the slope of the asymmetry energy (L0) at n0, the following
nonlinear vector self-interactions and cross-interaction have also been suggested in the
literature [27–30]

LNLω =
1
4

gω4(g2
ωNωµωµ) , (8)

Lσωρ =
1
2

g2
ρNρν · ρ

ν(gσρg2
σNσ2 + gωρg2

ωNωµωµ) , (9)

where gω4 , gσρ and gωρ are coupling constants fixed by the SNM parametrization. These terms
are not considered in this paper. The leptons present in the core of the neutron star along
with the hadronic matter contribute due to the condition of the chemical equilibrium of
neutron star matter, so the Lagrangian for non-interacting leptons is given by [15]

LL = ∑
λ

ψ̄λ(iγµ∂µ − mλ)ψλ . (10)
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The total standard RMF Lagrangian considered in this paper is thus given by [15,20–22,31]

LRMF = LB + LM + LNLσ + LL . (11)

2.2. Dyson Equation and Baryon Self-Energies

The baryon and meson field equations are derived by evaluating the Euler-Lagrange
equation for the particle fields ψB, ψλ, σ, ω, and ρ in LRMF [15,20,21]. For ψB the result is
the inhomogeneous Dirac equation given by

(iγµ∂µ − mB)ψB(x) =
{
−gσBσ(x) + gωBγµωµ(x) + gρBγµ

τ · ρµ(x)
}

ψB(x) . (12)

The equation of motion for the σ-meson field follows as

(∂µ∂µ + m2
σ)σ(x) = ∑

B

gσBψ̄B(x)ψB(x)− mNbN gσN(gσNσ(x))2 − cN gσN(gσNσ(x))3 , (13)

which constitutes an inhomogeneous Klein-Gordon equation. The equations of motion for
the ω and ρ fields read

∂µFµν(x) + m2
ωων(x) = ∑

B

gωBψ̄B(x)γνψB(x) , (14)

∂µGµν(x) + m2
ρρν(x) = ∑

B

gρBψ̄B(x)τγνψB(x) , (15)

which both constitute homogeneous Proca equations. Next, we introduce the equations
obeyed by the propagators ∆0σ, ∆0ω , and ∆0ρ of free σ, ω, and ρ meson, respectively. They
are given by [15]

(∂µ∂µ + m2
σ)D0σ(x, x′) = δ4(x − x′) , (16)

(∂λ∂λδµ
ν − ∂µ∂ν + m2

ωδµ
ν)
(

gµκ +
∂µ∂κ

m2
ω

)
D0ω(x, x′) = gνκ δ4(x − x′) , (17)

(∂λ∂λδµ
ν − ∂µ∂ν + m2

ρδµ
ν)
(

gµκ +
∂µ∂κ

m2
ρ,r

)
D0ρ(x, x′; r, r′) = gνκ δ4(x − x′) δrr′ , (18)

where r (= 1, 2, 3) accounts for the electric charge carried by a ρ meson. With the help of
Equations (16) through (18), the meson field Equations (13) through (15) can be written
as [15]

σ(x) = ∑
B

gσB

∫
d4x′D0σ(x, x′) ψ̄B(x′)ψB(x′) , (19)

ωµ(x) = ∑
B

gωB

∫
d4x′

(
gµν +

∂µ∂ν

m2
ω

)
D0ω(x, x′) ψ̄B(x′)γνψB(x′) , (20)

ρr
µ(x) = ∑

r′
∑
B

gρB

∫
d4x′

(
gµν +

∂µ∂ν

m2
ρ,r

)
D0ρ(x, x′; r, r′) ψ̄B(x′)τr′γνψB(x′) . (21)

The Dyson equation of the baryon two-point Green function, g1(p), can then be
written as

(
γµ pµ − mB

)
gB

1 (p) = −1 + ΣB(p) gB
1 (p) , (22)

where the baryon self-energy ΣB(p) is given by [15]

ΣB(p) = i ∑
B′

∫
d4q

(2π)4 eiηq0
{

gσB D0σ(0) gσB′ +
(
γµgωB

)
D0ω

µν (0)
(
γνgωB′

)

+
(
γµτrgρB

)
D

0ρ
µν(0; r, r′)

(
γντr′ gρB′

)}
gB′

1 (q) . (23)
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Using the spectral representation of the 2-point Green function [15], one obtains for
the self-energy of σ-mesons the expression

ΣB
σ =

gσB

m2
σ

∑
B′

gσB′ nS
B′ , (24)

where nS
B′ ≡ 〈ψ̄B′ψB′〉 denotes the baryon scalar density which is given by

nS
B =

2JB + 1
2π2

∫ kB

0
dk k2 m∗

B√
m∗2

B + k2
(25)

= ∑
B

2JB + 1
2π2

(
m∗

B

2

)[
kB E∗

B − m∗2
B ln

(
E∗

B + kB

m∗
B

)]
. (26)

The quantity m∗
B in Equations (25) and (26) denotes the effective (in-medium) mass of

a baryon given by
m∗

B = mB − ΣB
σ , (27)

and E∗
B in those equations stands for the effective single-particle energy of a baryon

E∗
B(k) =

√
m∗2

B + k2 , (28)

evaluated at the Fermi surface, i.e., E∗
B =

√
m∗2

B + k2
B, where kB is the baryon Fermi

momentum of a baryon. The quantity JB is the spin degeneracy factor of a baryon.
Next, we turn to the self energies of ω and ρ mesons in Equation (23). They are

given by

ΣB
ω =

gωB

m2
ω

∑
B′

gωB′ nB′ , (29)

ΣB
ρ =

gρB

m2
ρ

∑
B′

gρB′ I3B′ nB′ , (30)

where I3B′ is the 3-component of isospin. The quantity nB′ ≡ 〈ψ†
B′ψB′〉 stands for the baryon

number density given by

nB = (2JB + 1)
∫

d3k

(2π)3 Θ(kB − k) , (31)

which leads to

nB =
2JB + 1

6π2 k3
B , (32)

where kB is the Fermi momentum of a baryon of type B.
The self energies shown in Equations (24), (29) and (30) are to be computed under the

condition that neutron star matter is electrically charge neutral, and in chemical equilibrium.
The first condition leads to

∑
B

nB qB + ∑
λ

nλ qλ = 0 , (33)

where qB and qλ are the baryon number and electric charge in units of elementary charge,
respectively. The condition of chemical equilibrium reads

µB = µn − qB µe , (34)

which expresses the chemical potential µB of a baryon in terms of the independent chem-
ical potentials of neutrons, µn, and electrons µe. The latter is given by µe = Ee, where
Ee =

√
m2

e + k2
e is the energy-momentum relation of free, relativistic electrons.
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The densities shown in Equations (25) and (32) are for compact star matter at zero
temperature. In the case of the matter at finite temperature, these densities are given by [32]

ns
B = (2JB + 1)

∫
d3k

(2π)3 [ fB−(k)− fB+(k)]
m∗

B

E∗
B(k)

(35)

and

nB = (2JB + 1)
∫

d3k

(2π)3 [ fB−(k)− fB+(k)] , (36)

where the quantity f±B denotes the Fermi-Dirac distribution function,

f±B (k) =
1

e∓(E∗
B(k)−µ∗

B)/T + 1
. (37)

The effective baryon chemical potential, µ∗
B, in Equation (37) is defines as

µ∗
B = µB − ΣB

ω − ΣB
ρ I03 =

√
m∗2

B + k2
B (38)

and µB is given by

µB = ΣB
ω + ΣB

ρ I03 +
√

m∗2
B + k2

B . (39)

The total baryon number, n, of neutron star matter is given by

n = ∑
B

nB . (40)

2.3. Equation of State in Standard RMF Theory

The RMF energy density (ε) and pressure (P) are determined from the energy-momentum
tensor which is given in terms of the RMF Lagrangian,

Tµν = gµνL+ ∑
B

∂L

∂(∂µψB)
∂νψB, (41)

where ψB represents all baryons present in the neutron star matter. Spacetime is flat on
the length scale of particle interactions inside a neutron star (∼1 fm), so the flat space
Minkowski metric can be used. This leads to the following expressions for the energy
density ε = 〈T00〉 to [15,22,32,33]

εRMF = ∑
B

2JB + 1
2π2

∫ kB

0
dk k2

√
k2 + m∗2

B + ∑
λ

1
π2

∫ kλ

0
dk k2

√
k2 + m2

λ

+
1
2 ∑

B

(
ΣB

σ nS
B

)
+

1
2 ∑

B

(
ΣB

ω nB

)
+

1
2 ∑

B

(
ΣB

ρ I3B nB

)
−LNLσ(Σ

N
σ ) ,

(42)

where ΣB
σ , ΣB

ω, and ΣB
ρ are the baryon self-energies given in Equations (24), (29), and (30),

respectively. The expression for the total pressure PRMF = 1
3 ∑

3
i=1〈T

ii〉 has the form [15,22,32,33]

PRMF =
1
3 ∑

B

2JB + 1
2π2

∫ kB

0

k4 dk√
k2 + m∗2

B

+
1
3 ∑

λ

1
π2

∫ kλ

0

k4 dk√
k2 + m2

λ

−
1
2 ∑

B

(
ΣB

σ nS
B

)
+

1
2 ∑

B

(
ΣB

ω nB

)
+

1
2 ∑

B

(
ΣB

ρ I3B nB

)
+ LNLσ(Σ

N
σ ) .

(43)
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2.4. Density-Dependent RMF Models

Density-dependent RMF (DDRMF) models are an extension of the standard RMF
model approach that accounts for meson-baryon coupling constants which are dependent
on the local baryon number density n [23,24,34],

giB(n) = giB(n0) fi(x) , (44)

where i ∈ {σ, ω, ρ}, x = n/n0, and fi(x) provides the functional form for the density
dependence. The quantity n0 = 0.149 fm−3 denotes the baryon number density of nuclear
matter at saturation density. The most commonly utilized ansatz for fi(x) are given by

fi(x) = ai
1 + bi(x + di)

2

1 + ci(x + di)2 (45)

for i ∈ {σ, ω}, and to
fρ = exp[−aρ(x − 1)] (46)

for the ρ meson. The density dependence of the meson-baryon couplings eliminate the
need for the additional scalar nonlinear self-interactions in Equation (6) [22–24,33,35–37].
The Lagrangian of the model can thus formally written as

LDDRMF = LRMF −LNLσ . (47)

The novel term entering the DDRMF model is the so-called rearrangement contribution
R̃ [35],

R̃ = ∑
B

(
1

gωB

∂gωB

∂n
nBΣB

ω +
1

gρB

∂gρB

∂n
I3BnBΣB

ω −
1

gσB

∂gσB

∂n
nS

BΣB
σ

)
. (48)

The rearrangement term modifies the expressions of the chemical potential as shown
below [22,23,33],

µB = ΣB
ω + ΣB

ρ I03 +
√

m∗2
B + k2

B + R̃ . (49)

The expressions for the energy density and pressure are derived from the standard
RMF by the removal of the nonlinear self-interactions and the contribution of the rearrange-
ment energy. They are given by [22,33],

εDDRMF = εRMF + LNLσ , (50)

PDDRMF = PRMF −LNLσ + nR̃ , (51)

where εRMF and PRMF are given by Equations (42) and (43), respectively.
In this paper, we use two parametrizations named GM1L and DD2 [22,36] for the RMF

models. The equations of state of these parametrizations are shown in Figure 2, together
with the polytropic model ACB4 that will be discussed in Section 2.5. The ACB4 EoS differs
from DD2 and GM1L, in that, it contains a phase transition that leads to an additional stable
configuration of massive objects called mass-twin stars. GM1L is an RMF model where only
the ρ meson coupling depends on density. In contrast to this, the couplings of all meson (σ,
ω, ρ) are treated as density-dependent. GM1L is also different from a standard RMF model
because it is parametrized to fix the slope of the asymmetry energy, L0, at n0 [33]. The value
of this slope has become constrained in recent years and may have a significant effect on
neutron star composition and properties [38–44]. The isovector meson-baryon coupling
constant of the GM1L model becomes density-dependent in the same way as the DDRMF
approach given by Equation (25), which is convenient because L0 can then be tailored by
adjusting the coefficient ap without affecting the other saturation properties and does not
impair the preexisting core parametrization [45].
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Figure 2. Pressure versus energy of the DD2, GM1L_b, GM1L_c, GM1L_f, and ACB4 models for the
EoS. (ε0 = 140 MeV/fm3 denotes the saturation density of SNM).

2.5. A Polytropic Model for the EoS of Ultradense Matter

The ACB4 model exhibits a fundamentally different approach to a neutron star’s EoS
than that of DD2 and GM1L, which are RMF-derived models. The ACB4 model consists of
a piece-wise (i = 1, 2, 3, 4) polytropic representation of a neutron star’s EoS at super-nuclear
densities [9,46]

P(n) = ki(n/n0)
Γi , ni < n < ni+1, i = 1 . . . 4 , (52)

where Γi is the polytropic index in each of the density regions labeled by i = 1 . . . 4. The
quantity Γi represents a stiff nucleonic EoS [47], the second polytrope corresponds to a
first-order phase transition where pressure is constant in this region, Pc = κ2 (Γ2 = 0),
and polytropes 3 and 4 represent regions that lie above the phase transition with that
correspond to high-density matter, like stiff quark matter [9]. The pressure, energy density,
and number density of the model are given by [48],

P(n) = n2 d(ε(n)/n)

dn
, (53)

ε(n)/n =
∫

dn
P(n)

n2 =
1

n
Γi
0

∫
dnκnΓi−2 =

1

n
Γi
0

κnΓi−1

Γi − 1
+ C , (54)

µ(n) =
P(n) + ε(n)

n

1

n
Γi
0

κΓi

Γi − 1
nΓi−1 + m0 , (55)

where integration constant C is fixed by the condition that ε(n → 0) = m0n. The above
expressions are inverted to obtain the equations for number density and pressure as a
function of chemical potential, µ,

n(µ) =

(
n

Γi
0 (µ − m0)

Γi − 1
κΓi

)1/(Γi−1)

, (56)
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P(µ) = κ

(
n

Γi
0 (µ − m0)

Γi − 1
κΓi

)Γi/(Γi−1)

. (57)

This ACB4 EoS predicts a new family (branch) of stable compact stars, known as mass-
twin stars, at densities that are higher than those of neutron stars, which will be discussed
in more detail Section 4.1. The new branch has its origin in the phase transition highlighted
in Figure 3. This type of phase transition is not present in the relativistic mean-field models
of Section 2.3 which, therefore, do not lead to mass-twin stars. The parameters of the ACB4
model are shown in Table 1 [46].

0 2 4 6 8 10 12 14
Central Energy Density / 0

10 2

10 1

100

101

102

103

P 
(M

eV
 fm

3 )

Figure 3. The EoS of the ACB4 model exhibits a phase transition, which is highlighted by the cyan
region starting from 2ε0 and ends at 4.5ε0.

Table 1. The parameters of the ACB4 model [9,46].

i Γi
κi ni m0,i

(MeV/fm3) (fm−3) (MeV)

1 4.921 2.1680 0.1650 939.56
2 0.0 63.178 0.3174 939.56
3 4.000 0.5075 0.5344 1031.2
4 2.800 3.2401 0.7500 958.55

3. The Model Parameters of the RMF Models

The values of the density-dependent parameters (aM, bM, cM, dM), meson masses
(mσ, mω, mρ) and the meson-nucleon coupling constants (gσN(n0), gωN(n0), gρN(n0)) are
adjusted to the charge and diffraction radii, spin-orbit splittings, the neutron skin thickness
of finite nuclei and the bulk properties of symmetric nuclear matter (SNM) at n0 [23,49,50].
The bulk properties of SNM at n0 include the energy per nucleon, E0, effective nucleon
mass m∗

N/mN , nuclear incompressibility K0, nucleon potential UN , symmetry energy J0
and its derivative L0. The values of these quantities for the nuclear parametrizations DD2
and GM1L are compiled in Table 2.
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Table 2. Properties of nuclear matter at nuclear saturation density for DD2 and GM1L [36].

Saturation Properties Units DD2 Model GM1L Model

E0 MeV −16.02 −16.30
K0 MeV 242.7 300.0

m∗/mN − 0.56 0.70
J MeV 32.8 32.5

L0 MeV 55.3 55.0
n0 fm−3 0.149 0.153

−UN MeV 75.2 65.6

The numerical values shown in Table 2 are obtained with the model parameters listed
in Table 3 [22,36].

Table 3. Parameters of the DD2 and GM1L models for the nuclear EOS used in our work [24,36].

Parameter Units DD2 Model GM1L Model

mσ GeV 0.5462 0.550
mω GeV 0.783 0.783
mρ GeV 0.763 0.770
gσN − 10.687 9.5722
gωN − 13.342 10.618
gρN − 3.6269 8.983
b̃σ − − 0.0029
c̃σ − − −0.0011
aσ − 1.3576 −
bσ − 0.6344 −
cσ − 1.0054 −
dσ − 0.5758 −
aω − 1.3697 −
bω − 0.4964 −
cω − 0.8177 −
dω − 0.6384 −
aρ − 0.5189 0.3898

In Table 4 we show the particle compositions and the coupling schemes that were
chosen to fix the coupling constants of the GM1L model. Models GM1L_b and GM1L_f
include all particles of the baryon octet plus all four electrically charged states of the ∆(1232)
isobar, while model GM1L_c account only for protons and neutrons in chemical equilibrium
with each other. Hypernuclear potential fits (HPf) were used to determine the σ-hyperon
(gσH) coupling constants. The ω-hyperon (gωH) coupling values were chosen on the basis
of a broken SU(3) flavor symmetry [51]. For the ρ meson, we have chosen the same coupling
value as for the ρ-nucleon (gρN) coupling, and the relative coupling strength of the ∆(1232)
isobar varies between 0.8 and 1.2. Values larger than 1.2 are excluded from our coupling
scheme, since the maximum mass of a neutron star calculated for this case falls below the
required 2 M⊙ constraint set by the masses of PSR J1614–2230 and PSR J0343+0432 which
are M = 1.928 ± 0.017 M⊙ [52,53] and M = 2.01 ± 0.04 M⊙ [54], respectively. A detailed
discussion of these coupling scenarios can be found in Refs. [22,33].

Table 4. Particle compositions and coupling constants investigated with the GM1L model.

Model p n Σ Λ Ξ ∆ e− µ− gσH gωH
gρH

gρN

gσ∆

gσN

gω∆

gωN

gρ∆

gρN

GM1L_b • • • • • • • • HPf SU(3) 1 1.2 1.2 1.2
GM1L_c • • − − − − • • − − − − − −
GM1L_f • • • • • • • • HPf SU(3) 1 0.8 0.8 0.8
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4. Stellar Structure Equations

4.1. Non-Rotating Compact Stellar Objects

The treatment of compact stellar objects is relatively straightforward as long as these
objects are spherically symmetric [55,56], which is assumed here. The components of
the element

ds2 = gµνdxµdxν (58)

are then given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2 sin2 θdφ2 , (59)

with the metric functions ν(r) and λ(r) to be determined from Einstein’s field equation (we
use the geometric unit system where G = c = 1),

Rκσ −
1
2

gκσR = 8πTκσ(ε, P(ε)) , (60)

and the conservation of energy-momentum

∇κTκσ = 0 . (61)

The quantity ∇κ in Equation (61) denotes the covariant derivative of the energy-
momentum tensor given by ∇κTκσ = ∂κTκσ + Γκ

κµTµσ + Γσ
κµTκµ. Treating the stellar matter

as a perfect fluid leads for Tµν to

Tµν(ε, P(ε)) = uµuν(ε + P(ε)) + gµνP(ε) . (62)

The four velocities uµ and uν in (62) are give by

uµ ≡
dxµ

dτ
, uν ≡

dxν

dτ
. (63)

The covariant components of the metric tensor in Equation (59) read

gtt = −e2ν, grr = e2λ, gθθ = r2, gφφ = r2 sin2 θ . (64)

Due to the underlying symmetries, the metric functions are only dependent on the
radial distance r measured from the star’s origin.

The Einstein Equation (60) and the conservation of energy-momentum (61) are used
in deriving the Tolman-Oppenheimer-Volkoff (TOV) equation for a spherically symmetric,
non-rotating mass distribution (i.e., a compact star). This equation is given by [15,57,58]

dP

dr
= −

(ε(r) + P(r))(m(r) + 4πr3P(r))

r2
(

1 − 2m(r)
r

) , (65)

where P(r) and ǫ(r) are the pressure and energy density, respectively, of matter at a radial
distance r from the star’s center. The TOV equation is solved by specifying the energy
density at the center of the star, which, via the EoS, fixes the pressure at the center of
the object. The gravitational mass contained in a sphere of radius r is obtained from
dm(r) = 4πr2ε(r), from which the gravitational mass of a star follows as

M = 4π
∫ R

0
dr r2 ε(r) . (66)

The TOV equation is solved for a range of central energy densities that results in a
mass-radius curve that describes a given family of compact stars. As a by-product, the TOV
equation also provides information about the baryon number and energy density profiles
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of compact stars, which are needed to analyze GRR driven instabilities, as will be discussed
in Section 5.

In Figure 4, we show the gravitational masses of compact stars as a function of central
energy density computed for the EoS models described in Sections 2 and 3. By construction,
the ACB4 model for the EoS which comprises a piece wise polytropic representation, leads
to two stable (a neutron star as well as a mass-twin star) branches of compact stars. In
contrast, the relativistic mean-field models for the EoS, GM1L_b, GM1L_c, GM1L_ f , and
DD2, produce only one stable branch of compact (neutron) stars. The neutron stars of the
ACB4 model are up to around four times denser than SNM. The mass-twin stars have
central densities that are between around five to nine times higher than the density of
SNM. The radii of all these stars are shown in Figure 5. As can be seen, the maximum-mass
neutron stars obtained with the mean-field models are in the narrow range between 11.5 km
and 11.8 km. In comparison, the radius of the most massive twin star is around 11 km,
while the radius of the most mass neutron stars of the stellar ACB4 sequence is 13.9 km.
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Figure 4. Mass-central energy density relationships of compact stars for the EoS of this work. The
solid dots mark maximum-mass models.
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Figure 5. The GM1L_b, GM1L_c, GM1L_ f , and DD2 models exhibit one mass peak (solid dots), while
the ACB4 model has two mass peaks due to the two stable stellar branches obtained with this model.
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4.2. Rotating Compact Stellar Objects

It is considerably more complicated to determine the properties of rotating compact ob-
jects compared to their non-rotating counterparts. The rotating object experiences rotational
deformation where there is flattening at the pole and a radial blowup in the equatorial
direction. These complications lead to a dependence on the polar coordinate, θ, and the
radial coordinate, r, in the star’s metric. The star’s rotational stability against gravity allows
it to have more mass than its non-rotating counterpart, affecting the geometry of space-
time and causes the star’s metric to become dependent on the star’s rotational frequency.
The general relativistic effect of the dragging of local inertial frames adds a non-diagonal
term, gtφ, to the metric tensor. These additional aspects lead to a line element that has the
form [15,59]

ds2 = −e2νdt2 + e2ψ(dφ − ωdt)2 + e2µdθ2 + e2λdr2 , (67)

where the quantities ν, ψ, µ, and λ denote the metric functions which are dependent on the
radial coordinate r, the polar angle θ, the star’s angular velocity Ω, and implicitly on the
frame-dragging frequency ω. The quantity ω describes the angular velocity of the local
inertial frames which are dragged along by the rotational motion of a compact object in
general relativity theory, known as Lense-Thirring frame dragging [60–63].

The numerical solution of Einstein’s equations for compact rotating objects is known to
be a cumbersome and complicated task [59,64,65]. An alternative treatment, which is easier
to implement and has proven to be a practical tool for the construction of models of general
relativistic, rapidly rotating neutron stars is Hartle’s perturbative method [66,67]. Within
the latter, a perturbative solution of the rotating stellar structure equations, based on the
Schwarzschild metric, is developed. The method leads to results that are in good agreement
with those obtained by a numerically exact treatment of Einstein’s field equation [68].
This is especially true for the mass increase due to the fast rotation. The values of the
Kepler frequencies resulting from the Hartle method differ between 10 and 15% from the
numerically exact values, depending on which equation of state has been used for the
calculations [68]. We perform our investigations in the framework of this method.

Specifying the conditions for stable rapid rotation is a non-trivial issue in the frame-
work of Einstein’s general relativity [11,15,16]. Gravitational-radiation reaction driven
instabilities within a rapidly rotating star may act as a criterion for an upper bound on
the rotation frequency due to the onset of emission of gravitational waves carrying away
angular momentum from the star. This instability will be discussed in Section 5. A second
criterion is given by the onset of mass shedding from the equator of the rapidly spinning
compact object, which occurs at the Kepler frequency, fK. If a star spins as fast as fK, mass
loss at the equator drives the star out of hydrostatic equilibrium, which leads to a loss of
stability. Since no star can spin more rapidly than at the mass-shedding frequency, fK sets
an absolute bound on rapid rotation [15,59]. The general relativistic expression for the
Kepler frequency is derived by applying the extremal principle to the circular orbit of a
point mass rotating at the star’s equator [15]. From this, the orbital velocity of a comoving
observer rotating at the star’s equator (relative to a locally non-rotating observer with zero
angular momentum in the φ-direction) is found as

V± =
∂ω/∂r

2∂ψ/∂r
eψ−ν ±

√(
∂ω/∂r

2∂ψ/∂r

)2

e2(ψ−ν) +
∂ν/∂r

∂ψ/∂r
. (68)

The general relativistic Kepler frequency is then given by

fK =
1

2π

(
eν−ψ V+ + ω

)
, (69)

where ν, ψ, and ω denote the metric functions and the frame-dragging frequency shown in
the line element (67). The quantity V+ is the equatorial velocity in the rotational “forward”
direction. Equations (68) and (69) are to be computed self-consistently at the star’s equator
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via a recursive numerical method that solves Einstein’s field equation for a given EoS [15,59].
A guess value for fK is given for the first iteration of Einstein’s field equations for the metric
functions and the frame dragging frequency. Sufficiently accurate self-consistent solutions
are typically obtained after 10 to 15 steps of iteration of Einstein’s equations.

In Figure 6 we show the Kepler periods PK (= 1/ fK) obtained from Equation (69) for
compact stars computed with the models of the EoS of this work. The mass-twin stars of the
ACB4 EoS have the smallest rotational periods since these stars have the smallest radii of
all the stellar models. The gray rectangle in the upper part of the figure marks the location
of pulsars assumed to have masses between 1.3 and 1.6 M⊙ and rotation periods greater
than 1.4 ms (720 Hz). The latter corresponds to pulsar PSR J1748-2446ad, which is the most
rapidly spinning neutron star observed to date [69]. As can be seen from this figure, all
pulsars observed to date rotate well above the Kepler periods that follow Einstein’s field
equations for the EoS of this work.
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Figure 6. The Kepler periods for the mass peaks of each model are indicated on the graph. The solid
black dots refer to the maximum mass models. The values of the Kepler frequencies determined with
Hartle’s method are accurate to within 10 to 15%.

Figure 7 shows the gravitational masses of non-rotating as well as rotating compact
stars. The latter rotate at their respective Kepler frequencies fK.

The lines marked 1′–1, 2′–2, 3′–3, and 4′–4 show the evolutionary paths of isolated
pulsars (whose baryon numbers are constant) spinning down from high to low frequencies.
This leads to rotation-driven re-population effects and could even trigger phase transitions
to new types of matter in the stellar cores. For more details, we refer to Ref. [31].
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Figure 7. Mass-central energy density relationship of non-rotating and rotating neutron stars com-
puted with GM1L_b (see text for more details).

5. Gravitational-Radiation Reaction Driven Instabilities

Neutron stars can emit gravitational waves due to the instabilities driven by their
rapid rotation. This gravitational-radiation reaction offers insight into the effects of different
dissipation mechanisms within the star, like viscosity, and insight into the possible speed
limit on this compact object’s rate of rotation dependent on its EoS. Most importantly, the
GRR drives the f -mode instability within these rapidly rotating objects. These modes
propagate in the opposite direction to the star’s rotation and have no radial nodes in the
non-rotating limit of uniformly rotating polytropes [70]. The root of Equation (3) determines
the maximum stable rotational frequency of a compact star. The dissipation timescales in
the equation all depend on m, so they can be written as τGR,m, τη,m and τζ,m.

The dependence of the eigenfrequency ω, which is not to be confused with the frame
dragging frequency, on the star’s angular velocity Ω is expressed in terms of the func-
tion [11]

αm(Ω) =
ω(Ω)− mΩ

ω(0)
. (70)

The αm(Ω) are very slowly varying functions of Ω with am ≈ 1 over the entire range
of velocities [11]. The angular velocity dependence of the damping times are expressed as
dimensionless functions,

γ(Ω) =
ωm(Ω)

ωm(0)

(
τη(0)

τGR(0)
τGR(Ω)

τη(Ω)

)1/(2m+1)

, (71)

ǫm(Ω) =
τζ(0)

τη(0)
τη(0)
τζ(0)

. (72)

These functions are also very slowly varying except for the highest angular velocities
Ω. The functions are difficult to determine, so they are substituted with their corresponding
Maclaurin spheroid functions [11,71], where αm(Ω) and γm(Ω) are calculated by courtesy
of [72].
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The critical rotational stellar frequency at which a given mode becomes unstable is
given by the transformation of Equation (70) using Equations (71) and (72) [11],

ΩGRR ≡ Ωm =
ωm(0)

m

×

{
αm(Ωm) + γm(Ωm)

(
τGR,m(0)
τη,m(0)

τGR,m(0)
τζ,m(0)

ǫm(Ωm)

)1/(2m+1)
}

,
(73)

where

ωm(0) =

√
2m(m − 1)

2m + 1
GM

R3 (74)

is the frequency of the vibrational mode in a non-rotating star. The individual damping
times are given by [11]

1
τζ

=
1

2E

∫
d3x ζ δσ δσ∗ , (75)

1
τη

=
1
E

∫
d3x η δσij δσ∗

ij , (76)

1
τGR

=
ω̂

2E

∞

∑
l=lmin

Nl ω2l+l δDm
l δD∗m

l . (77)

The details for the derivations of the above equations can be found in Chapter 16
in [15]. The timescale for gravitational-radiation reaction τGR,m [73] and the dissipation
timescale τη,m related to the shear viscosity, denoted by η, due to particle collisions in the
dense neutron star core is given by [14]

1
τGR

=
−32πGΩ2m+2

c2m+3
(m − 1)2m

[(2m + 1)!!]2

(
m + 2
m + 1

)2m+2 ∫ R

0
ρr2m+2dr , (78)

1
τη

= (m − 1)(2m + 1)
∫ R

0
η(r)r2mdr

[∫ R

0
ρr2m+2dr

]−1

, (79)

where the expression for the shear viscosity η is given by [74,75]

η(ρ) = 347ρ9/4T−2 . (80)

The dissipation timescale τζ,m related to the bulk viscosity is given by [14]

1
τζ,m

=
1

2E

∫
ζ

δρδρ∗

ρ2 d3x , (81)

where the Eulerian density perturbations δρ are given by [14]

δρ

ρ
= αR2Ω2 dρ

dp

[
2l

2l + 1

√
l

l + 1

( r

R

)l+1
+ δΨ(r)

]
Yl+1l eiωt . (82)

The quantity δΨ(r) in the above equation is proportional to the gravitational potential
and is given by [14]

d2δΨ

dr2 +
2
r

dδΨ

dr
+

[
4πGρ

dρ

dp
−

(l + 1)(l + 2)
r2

]
δΨ = −

8πGl

2l + 1

√
l

l + 1
ρ

dρ

dp

( r

R

)l+1
. (83)
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The lowest order expression for the energy of a given l-mode reads

1
E
= 2α−2Ω−2R2l−2

[∫ R

0
ρr2l+2dr

]−1

, (84)

and the bulk viscosity ζ is given by [76]

ζ(ρ) = 6.0 × 10−59 ρ2 T6 . (85)

Finally, the bulk viscosity timescale for a given stellar mass M, radius R, density profile
ρ and pressure P are obtained from [14]

1
τζ,m

= Ω2R2l+2
[∫ R

0
ρr2l+2dr

]−1

×
∫

ζ

[
dρ

dp

(
2l

2l + 1

√
l

l + 1

( r

R

)l+1
+ δΨ(r)

)
Yl+1le

iωt

]2

d3x . (86)

The GRR frequencies Ωm from Equation (73) are then converted into the GRR-driven
instability periods for cold stars (T ∼ 1010 K) with different masses and radii along with
the harmonic indices l = m = 2, 3, 4, 5. Figure 8 illustrates the GRR periods for each model
and harmonic index compared to each model’s Kepler period.
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Figure 8. The GRR periods computed for DD2 (left panel), ACB4 (middle panel), and GM1L_c
(right panel). The black dashed lines represent the Kepler periods, computed from Equation (69) [77].
All instability modes are excited at rotation periods markedly smaller than the rotation periods of
observed pulsars (indicated by the gray rectangles).

The limit on stable rotation for all models is set by the m = 2 mode because it
is excited firstly and occurs at a slower frequency, and thus occurs much earlier, than
the Kepler frequency where the instability due to mass shedding begins. For example,
Figure 8 illustrates that the set of m = 2 PGRR (= 2π/ΩGRR) periods with masses between
M = 1.0 M⊙ and 2.0 M⊙ for DD2 have values starting from 1.285 ms to 0.930 ms. The set
of calculated Kepler periods with masses between M = 1.0 M⊙ and 2.0 M⊙ for DD2 have
values from 1.096 ms to 0.671 ms; the m = 2 f -mode periods for DD2 are ∼20% to ∼40%
higher than the measured Kepler periods.

6. Shear and Bulk Viscosity

The bulk viscosity in neutron star matter is due to pressure and density perturbations
that become slightly out of phase since the weak interaction needs a long timescale to
reestablish local thermodynamic equilibrium [76]. The shear viscosity arises in neutron star
matter due to neutron-neutron scattering, under the condition that the temperature exceeds
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the superfluid transition temperature [74,75]. The bulk viscosity has a greater effect on the
GRR-driven instability periods of hot stars (T & 109 K) than the shear viscosity due to the
bulk viscosity’s dependence on the temperature being T6 compared to the shear viscosity’s
dependence, T−2, as respectively seen in Equations (85) and (80). The bulk viscosity can
regulate the GRR driven instability in rapidly rotating neutron stars, pushing their critical
rotational periods toward smaller values, possibly even as small as the Kepler period as it
dominates over the shear viscosity [15].

There is a notable difference in value among the set of PGRR illustrated in Figure 9
compared to Figure 8. Without the bulk viscosity function contributing to the calculation of
PGRR, the values become higher for the GRR instability periods. The highest PGRR value
for DD2 with bulk viscosity neglected is PGRR = 1.521 ms, which is 18% higher compared
to the highest PGRR value for DD2 with bulk viscosity contributing, PGRR = 1.285 ms. The
value PGRR = 1.521 ms is the GRR instability period that corresponds to the the m = 4 mode
for a 1.0 M⊙ star. There is 39% difference between the m = 4 instability period value and
the measured Kepler period for DD2 that corresponds to a 1.0 M⊙ star, PGRR = 1.096 ms,
compared to the 17% difference between the Kepler period and the m = 2, 1.0 M⊙ star
instability period (PGRR = 1.285 ms).
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Figure 9. The GRR periods for DD2 (left), ACB4 (middle), and GM1L_c (right) without bulk viscosity.
The black dashed line represents the Kepler periods calculated from Equation (69). Since the damping
of the instability modes is less effective if bulk viscosity is ignored, the GRR periods set in at rotation
periods that are larger than the rotation periods shown in Figure 8 and would already be excited for
the ACB4 neutron stars.

7. Discussion

Neutron stars are compact objects that can rapidly rotate and emit radiation due to
such rotation. Not only can these objects emit radio waves as a pulsar, but they can also
emit gravitational waves due to gravitational-radiation reaction driven f -mode instabilities
once the star spins fast enough. As seen by the results, this phenomenon occurs before the
star approaches an unstable rotation rate known as the Kepler frequency, the frequency at
which mass shedding at the star’s equator occurs. The m = 2 mode is excited before the
Kepler frequency of the star is reached and the system emits such gravitational waves that
carry away angular momentum, effectively slowing down the star’s rotation speed. The
f -mode instability limit on rotation is consistent for both relativistic mean field models,
DD2 and GM1L, as well as the piece-wise polytropic ACB4 model.

There are ongoing disputes concerning the constraints on the EoS of these compact
objects. The data from observed gravitational waves and the data from NICER have
discrepancies among them regarding the possible masses and radii a star can have. It is
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expected that as more research has progressed on gravitational waves and neutron star
mergers, and when NICER collects more data from its observations, the constraints between
the two camps will cover a tighter range and ultimately overlap.

Further study on the temperature dependence of the bulk viscosity and shear viscosity
by calculating the EoS of each model with varying temperatures (from 1 MeV to around
50 MeV) to retrieve new GRR driven f -mode instabilities would be beneficial as it would
be a practical replication of real compact stars, considering, in reality, most of them vary
in temperature. It will also give insight on whether these GRR frequencies are a viable
limit for these rapidly rotating objects, or if the contribution of the bulk viscosity on the
neutron star matter will require the Kepler frequency to be the set limit on rotation due
to the star having to spin faster in order to excite one of the modes—the value of PGRR
decreases below the value of the Kepler period.

We note that compact stars with sharp phase transitions in their interiors can have
quasi-normal modes (see, for example, Refs. [78–83] and references therein). These modes
could be clear indicators of the presence of quark matter in the inner cores of compact
objects. Generally, g-modes associated with sharp hadron-quark phase transitions in the
inner cores of cold hybrid stars have frequencies ranging from ∼500 Hz to ∼1.5 kHz, and
have always lower frequencies than the fundamental mode.

The secular instability of a wide variety of low-frequency g-modes, but not including
those due to a hadron-quark phase transition, has been estimated in Ref. [84]. The main
conclusion of this paper is that the secular instability in rotating hybrid stars sets in when
the compact object’s rotation frequency is ∼30% less than the g-mode frequency of the
non-rotating configuration. If this were the case, the g-mode instability might set in at
rotation rates that are lower than those of the f -mode. Despite this, in Ref. [84] it was also
shown that dissipation due to viscosity might completely suppress the instability outside of
an extremely narrow temperature window of ∼ 109 K. In Ref. [85] the secular instability of
g-modes produced by the presence of a hadron-quark mixed phase was studied. The main
result is that the appearance of a mixed phase produces a sharp increase in the frequency of
the g-modes that might prevent the secular instability from setting in. In this sense, more
research related to this subject is needed to better understand this matter.

We note that according to the turning point method of Friedman, Ipser, and Paker [86]
axisymmetric stellar configurations can exist which are secularly unstable. It would be
very interesting to investigate this instability for the stellar models of our work and to
compare the results with the f-mode instability of our study. Such a comparison is planned
for future work.

Finally, though the r-mode instability is not explored in this study, it is expected to
compete with the f -mode instability [12,13]. Determining which of these two modes places
a more stringent limit on the stable rotation periods of neutron stars require substantial
additional study of the very nonlinear equations describing the r-modes.
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DDRMF Density-dependent relativistic mean-field
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GRR Gravitational-radiation reaction
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SNM Symmetric nuclear matter
TOV Tolman-Oppenheimer-Volkoff
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