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Abstract
Depending on the dynamics of a binary neutron star merger, the collision may
result in a differentially rotating compact object. Differentially rotating stars
can sustain a total mass considerably higher than that of a uniformly rotat-
ing star, giving rise to “hypermassive” objects like hypermassive neutron stars.
These stars are likely to exhibit extreme structural deformation along the radial
axis due to their high masses. Both the increased mass and structural deforma-
tions supported by differential rotation allow the compact remnant to remain
stable in otherwise unstable configurations on short, dynamical timescales.
In this work, we numerically simulate differentially rotating neutron stars to
explore an increase in mass and structural deformation for three relativistic
mean-field equations of state models. Results are used to predict outcomes for
recent gravitational wave observations of binary neutron star mergers.
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1 INTRODUCTION

Neutron stars are the densest observed stellar objects,
reaching supranuclear densities in their cores—up to an
order of magnitude greater than nuclear saturation den-
sity. Because particles inside the star are squished together
under immense pressure, the regions between the core
and the crust of a neutron star are assumed to exist in a
superfluid, frictionless state. Differential rotation occurs
when these fluid-like regions that are adjacent at one
point in time do not maintain that configuration; a star
experiencing differential rotation will therefore have a

rotational frequency that changes along the radial axis.
Stars are most likely to experience a unique type of rota-
tion, referred to as differential rotation, in extreme stel-
lar events like binary star mergers. When a neutron star
binary coalesces, the two stars are most likely irrotational
just prior to merging (Galeazzi et al. 2012; Shapiro 2000).
The collision would result in a substantial velocity dis-
continuity at the surface of contact, so the remnant star
(a hypermassive neutron star, HMNS) left after the col-
lision has a high likelihood of experiencing some degree
of differential rotation. Neutron stars stabilized by dif-
ferential rotation can sustain a total mass considerably
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higher than that of a uniformly rotating star (Baiotti
et al. 2008). These hypermassive neutron stars may also
exhibit extreme deformation along the radial axis in the
stabilization process. Rapid rotation and deformation of
the star would result in a loss of angular momentum,
which may provide an observable precursor before col-
lapse (Cook et al. 1994). Both the increasedmass and struc-
tural deformations supported by differential rotation allow
the compact remnant to remain stable in otherwise unsta-
ble configurations on short, dynamical timescales. This is
shown in the fully relativistic binary coalescence calcula-
tion of Shibata and Uryū (2000) where the stabilization
on dynamic timescales (many milliseconds) of a compact
remnant by differential rotation can lead to a delay in both
the remnant’s collapse and subsequent gravitational wave
signal.

While the maximum mass and stabilization of dif-
ferentially rotating neutron stars have been explored in
the past (Morrison et al. 2004; Shapiro 2000), the astro-
physics community has seen a stark revival of interest in
the topic in the last few years. The renewed interest is
largely due to a 2017 event where the Advanced Virgo and
the two Advanced LIGO detectors observed a transient
gravitational wave (GW) signal produced by the coales-
cence of a binary neutron star system (Abbott et al. 2017;
Franceschetti et al. 2022). This event, GW170817, and
the short gamma-ray burst that followed, GRB 180817A,
marked the first observation of a neutron star binary
merger event and a historicmilestone formulti-messenger
astronomy. One question remained after the event: what
happened to the remnant left after the merger? The total
mass of the merged remnant object was determined to
be Mtot= 2.74+0.04−0.01M⊙, which is significantly larger than
that of PSR J0952-0607, the heaviest well-observed neu-
tron star mass M = 2.35 ± 0.17M⊙. Beyond observation,
the remnant’s mass exceeds the maximum mass pre-
dicted by many popular equations of state models, lead-
ing researchers to believe the object eventually collapsed
into a black hole. One hypothesis to explain the delayed
collapse is the formation of a hypermassive neutron star
(HMNS) supported on a short timescale by differen-
tial rotation. This hypothesis has been previously sup-
ported by full general relativistic simulations of both equal
and unequal mass binaries for several equation of state
(EOS) models.

We construct differentially rotating neutron stars for
three different EOS models and tabulate their maximum
allowed masses as a function of the degree of differential
rotation. These mass values are used to predict the out-
come of different binary neutron star merger events in
Section 3.1. The structural deformation resulting from an
increase inmasswith rapid differential rotation is explored
in Section 3.2.

2 NUMERICAL MODEL

2.1 Equilibriummodel for differential
rotation

Rotating neutron star calculations are performed in
the framework of general relativity and depend on the
matter’s nuclear equation of state. Modeling rotating neu-
tron stars ismade complicated than spherically symmetric,
non-rotating stars for a few reasons: rotation deforms neu-
tron stars, stabilizes themagainst collapse, and drags along
the local inertial frames inside and outside of them so
that they co-rotate with the stars (Mellinger Jr et al. 2017).
These rotational featuresmust be included in the construc-
tion of the metric, which has the form

ds2 = −e𝛾−𝜌dt2 + e2𝛼
(
dr2 + r2d𝜃

)

+ e𝛾−𝜌r2sin2𝜃(d𝜙 − 𝜔dt)2, (1)

where 𝛾 , 𝜌, 𝛼, and 𝜔 are metric functions dependent
on the radial coordinate r and polar angle 𝜃, and 𝜔

describes frame dragging due to rotation. These functions
also implicitly depend on the star’s angular velocity Ω.
The metric functions are computed from Einstein’s field
equation

R𝜅𝜎 − 1
2
Rg𝜅𝜎 = 8𝜋T𝜅𝜎

, (2)

where R𝜅𝜎 is the Ricci tensor, R is the curvature scalar,
and g𝜅𝜎 is the metric tensor. T𝜅𝜎 is the energy-momentum
tensor given by

T𝜅𝜎 = (𝜀 + P)u𝜅u𝜎 + g𝜅𝜎P, (3)

where 𝜀 andP are supplied by the equation of state. Solving
for the gravitational field equations is as follows. Three of
the four metric potentials 𝜌, 𝛾 , and 𝜔, are expressed using
Green’s functions (see Appendix A in Cook et al. (1994) for
full derivation). The fourth gravitational field 𝛼 reduces to
a linear ordinary differential equation.

Once the metric functions are solved for, they are
used to solve the equation of hydrostatic equilibrium for a
barotropic fluid:

h(P) − hp =
1
2
[
𝛾p + 𝜌p − 𝛾 − 𝜌 − ln

(
1 − v2

)
+ F(Ω)

]
(4)

where h(P) is the enthalpy as a function of pressure, 𝛾p, and
𝜌p are the values of the metric potentials at the pole. The
quantity v is defined as

v = (Ω − 𝜔)r sin 𝜃e−𝜌, (5)

and the last term, F(Ω), defines the rotational law for
the matter. Following the form in Cook et al. (1992),
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Cook et al. (1994), and Komatsu et al. (1989) we set this
function to

F(Ω) = A2 (Ωc − Ω) , (6)

where Ωc is the central value for the angular velocity. The
parameterA is a constant scaling factor of the degree of dif-
ferential rotation and is used to determine the length scale
over which the frequency changes (Morrison et al. 2004).
Note that uniform rotation is achieved in the limit
dΩ = 0, or as A−1 → 0. The particular rotation law is
advantageous to adopt for two reasons. The first is that
this form is widely used throughout literature, so using the
same rotation law ensures our work can be compared with
others. The second is previous work suggests the above
law provides a reasonable parameterization of differential
rotation profiles expected in binary neutron star merger
remnants, of which observational data is rapidly growing
(Morrison et al. 2004).

Simplifying Equation (4) and including the rotation
law gives

(Ωc − Ω) = 1
A2

[
(Ω − 𝜔)s2

(
1 − 𝜇

2) e−2𝜌

(1 − s)2 − (Ω − 𝜔)2 s2
(
1 − 𝜇2

)
e−2𝜌

]

,

(7)
where the rotational frequency Ω can be isolated and
solved numerically using a root-finding algorithm. The
other non-defined parameters, s and𝜇, represent the radial
and polar coordinates. The gravitational and matter fields
are solved on a discrete grid with a computational domain
in r and 𝜃 space. Following Cook et al. (1992), we redefine
these coordinates to s and 𝜇 as

r = re
( s
1 − s

)
, (8)

where re is the equatorial radius and

𝜇 = cos 𝜃. (9)

Calculations are done on the computational domain
0 ≤ s ≤ 1 and 0 ≤ 𝜇 ≤ 1. Once a set of self-consistent solu-
tions to these equations is obtained, physical quantities
like mass, angular momentum, and rotational kinetic
energy are outputted.

An iterative method is employed to solve the four field
equations, 𝜌, 𝛾 , 𝜔, and 𝛼, and the integrated equation
of hydrostatic equilibrium, Equation (4). In the itera-
tive scheme, all values are redefined to be unit-less (see
Cook et al. (1992) for the full list of redefined quantities),
allowing the second-derivative terms to be rewritten as
flat-space derivative operators; these flat-space operators
are then inverted in the scheme by using explicit flat-space
Green’s functions. First and second-order derivatives are
approximated with a standard three-point formula. The

discrete grid is 329× 125 (radial × angular), and because
of the coordinate transformation in Equations (8) and (9),
the integration domain is all space (0 ≤ r ≤ ∞). The mod-
ification to include differential rotation uses Equation (6)
as the specified rotation law. Rotational frequency, there-
fore, is updated from a constant to a vector dependent
on the radius, and is obtained by finding a solution to
a set of coupled non-linear equations; for this solution,
we use Newton–Raphson with second-order convergence
(Janicke and Kost 1998).

Given an EOS and a specified value of rotation param-
eter A, the above numerical procedure is used to construct
single star and sequences of models either with constant
central densities or constant baryon numbers.

2.2 Equation of state

The algorithm DRNS requires a tabulated equation of the
state model as an input. The three nuclear EOS models
discussed in this work are variations of the relativistic
mean-field model GM1L constructed at zero temperature.
Each variation, dubbed GM1L_b, GM1L_c, and GM1L_f,
varies in particle composition demonstrated in Table 1.

TABLE 1 Particle composition for different variations of the
GM1L equation of state model. The • indicates the particle is
present, while the − indicates the particle is not accounted for.

Model p n 𝚺 𝚲 𝚵 𝚫 e− 𝝁
−

GM1L_b • • • • • • • •

GM1L_c • • – – – – • •

GM1L_f • • • • • • • •

–

–( )

(
)

d

F IGURE 1 Pressure versus energy density of the three
variations of GM1L used in computation: GM1L_b, GM1L_c, and
GM1L_f
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GM1L_c only accounts for protons and neutrons (with
electrons and muons included for chemical equilibrium).
Models GM1L_b and GM1L_f include all particles of the
baryon octet and all four electrically charged states of the
Δ(1232) isobar. The three variations are shown visually
in Figure 1. The GM1L_c model yields the largest pres-
sure of all three equations of state since hyperons and the
Δ isobar do not contribute in this case. The pressure of
the GM1L_b model exceeds that of GM1L_f, which has
its origin in the larger meson–Δ isobar couplings, that
is, g𝜎Δ = 1.2g𝜎N, g𝜔Δ = 1.2g𝜔N, g𝜌Δ = 1.2g𝜌N, compared to
g𝜎Δ = 0.8g𝜎N, g𝜔Δ = 0.8g𝜔N, g𝜌Δ = 0.8g𝜌N for GM1L_f.

3 RESULTS

We demonstrate results for stellar sequences and indi-
vidual stellar models from DRNS created with the three
EOS models GM1L_b, GM1L_c, and GM1L_f. For stellar
sequences, we compare maximum gravitational mass val-
ues with varying degrees of differential rotation to uniform
and non-rotating results. Additionally, individual stellar
maps are constructed for extreme cases of differential rota-
tion to highlight structural deformation from spherical
symmetry.

3.1 Stellar Sequences: MaximumMass

We construct stellar sequences of differentially rotating,
relativistic neutron stars for three different EOS mod-
els. Because the rotation parameter A repeatedly appears
as A−1 in the equations described in Section 2, we fol-
low the lead of previous work which parameterized
sequences by values of A−1 = 0.3, 0.5, 0.7, and1.0 (Cook
et al. 1992; Galeazzi et al. 2012; Morrison et al. 2004).
Maximum gravitational mass values for varying degrees

TABLE 2 Maximum gravitational mass configurations for
GM1L_b, GM1L_c, and GM1L_f. Tolman-Oppenheimer-Volkoff
(TOV) is zero rotation, UNI is uniform rotation at the Kepler
frequency, and DIF is differential rotation. All masses are given in
units ofM⊙.

Mass GM1L_b GM1L_c GM1L_f

MTOV 2.025 2.295 1.928

MUNI 2.346 2.630 2.232

MDIF, A−1 = 0.3 2.088 2.572 1.985

MDIF, A−1 = 0.5 2.500 3.205 2.353

MDIF, A−1 = 0.7 2.945 3.719 2.733

MDIF, A−1 = 1.0 3.457 2.399 3.244

(
)

)( –d

F IGURE 2 Mass versus central density relations from
equation of state (EOS) GM1L_b. Solid-colored lines depict varying
values of A−1 compared to a dashed black line depicting
Tolman-Oppenheimer-Volkoff (TOV) results (no rotation).

of differential rotation (MDIF), as well as for uni-
form rotation at the Kepler frequency (MUNI) and for
Tolman-Oppenheimer-Volkoff results (MTOV), are given
for all three EOS models in Table 2 and shown visually for
GM1L_b in Figure 2. We see an increase in mass as A−1

increases in all cases except for GM1L_c; only A−1 = 1.0
does not follow this trend.

Comparing maximum masses from the non-rotating
TOV curves to the maximum masses from differential
rotation curves, GM1L_b shows an increase of 70.7%,
GM1L_c shows an increase of 62%, and GM1L_b shows
an increase of 68.25%. This is a sizable increase compared
to uniform rotation, which increases the maximum mass
set by the Kepler limit by roughly 20% when compared to
the maximum mass in non-rotating simulations (Lyford
et al. 2003).

As stated previously, differential rotation is one of
the mechanisms which stabilizes a remnant star after a
binary neutron star merger. This remnant star may take
on several different forms depending on the dynamics
of the merging system, as well as the stars’ underly-
ing nuclear EOS—a still relatively unknown relationship
(Radice et al. 2020). A good estimate of the fate of the
event comes from the total mass of the two merging stars,
a value which can now be determined with high accu-
racy from new detectors like Advanced LIGO and Virgo. A
neutron star binary can result in the formation of a black
hole (BH), a supermassive neutron star (SNS), or a hyper-
massive neutron star (HMNS). A remnant SNS or HMNS
may be “short-lived,” where the remnant collapses within
10–20ms of themerger, or long-lived, evolving into amore
stable configuration in ≥20ms. For very massive systems,
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the outcome is likely the prompt formation of a black hole.
BH formation is likely if the total rest mass of the system
is greater than MDIF (Morrison et al. 2004), or if the rest
mass of the remnant is greater or equal to Mthr = kthrMTOV

where kthr is a scaling factor = 1.3 to 1.7 dependent on the
underlying system’s EOS (Radice et al. 2020). An HMNS
is likely to form if the system’s rest mass is greater than
the mass limit set by uniform rotation, MUNI, but less than
MDIF. And finally, an SNS is likely to occur if total rest
mass is greater than themass limit set by TOV calculations
(no rotation), MTOV, but less than uniform rotation
MUNI.

While comparing theoretical masses as guidelines for
the possible fates of neutron star binary mergers gives a
good estimate, it is important to note other factors like
finite temperatures and spins might also affect the merger
outcome (Radice et al. 2020). Regardless, it is safe to
assume the underlying EOS greatly influences the fate of
the compact remnant. We compare the maximum masses
for the three versions of GM1L found in Table 2 with the
total mass of three neutron star binary observations. The
first is GW170817, the first neutron star binary merger
detected by gravitationalwave (GW) emission in 2017 from
the Advanced LIGO and Virgo collaboration (B. P. Abbott
et al. 2017). The second is GW190425, the heaviest binary
neutron star system to be detected (B. Abbott et al. 2020).
And the last is the double pulsar binary J0737-3039, one of
the lightest binary systems ever observed (Podsiadlowski
et al. 2005). The compact remnant’s potential form (BH,
SNS, and HMNS) of each binary system is predicted from
each of the three EOS models, shown in Table 3. For
both EOS models GM1L_b and GM1L_c, all three merg-
ers could potentially form an HMNS, which is likely to
collapse into a BH for the higher mass binary systems.
GM1L_f predicts a prompt collapse for both GW obser-
vations; their confidence intervals are shown visually in
Figure 3. Table 3 reinforces that the outcome of a neu-
tron star binary coalescence is sensitive to the underlying
EOS and that the observation of such events is a promis-
ing avenue to place constraints on our knowledge of the
nuclear EOS of neutron star matter.

TABLE 3 Possible outcomes (black hole [BH], supermassive
neutron star [SNS], or hypermassive neutron star [HMNS]) of
binary neutron star mergers based on calculations from GM1L_b,
GM1L_c, and GM1L_f (shown as b, c, and f, respectively). All
masses are given inM⊙. See text for more details.

Observation Total Mass b c f

GW170817 2.74+0.04−0.01 HMNS HMNS BH

GW190425 3.4+0.3−0.1 HMNS HMNS BH

J0737-3039 2.59+0.003−0.003 HMNS SNS HMNS

(
)

)( –d

F IGURE 3 Mass versus central density relations from
equation of state (EOS) GM1L_f, comparing differential rotation
with A−1 = 1.0 to uniform rotation and
Tolman-Oppenheimer-Volkoff (TOV) (no rotation) results. The
purple horizontal bar shows the mass confidence interval for the
remnant of GW170817, and the orange horizontal bar shows the
mass confidence interval for the remnant of GW190425. See text for
more details.

3.2 Individual models: structural
deformation

Beyond stellar sequences, we construct energy density
maps to explore how differential rotation impacts the
structure of a neutron star. Rapid uniform rotation is
shown to cause the shape of a star to deviate from
spherical symmetry, where the star flattens at the pole and
widens in the equatorial direction (Weber 2017). Differ-
ential rotation should cause a similar type of structural
deformation, but likely more exaggerated; recent results
from Gondek-Rosiska et al. (2017) depict a torus-like
shape for extreme cases of differential rotation.We present
cross-sections of individual stellar models constructed
from the EOS GM1L_c, comparing deformation for four
values of A−1. As shown in Figure 4, as A−1 increases, the
greater the deviation from a spherical shape. Results are
shown for polar to equatorial radius ratio rp/re = 0.6, with
central densities of 800MeV fm−3.

To achieve a fully toroidal structure, the ratio rp/re
would need to tend to zero. For the three EOS mod-
els tested, described numerical scheme failed to pro-
duce physical results with rp/re ≤ 0.5, meaning the most
extreme configurations calculated were just beginning to
appear “quasi-toroidal,” in which the maximal density
is not the central one, as shown in the bottom right
panel of Figure 4. The constraint on the ratio rp/re ≤
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– –

––

F IGURE 4 Energy density (in MeV fm−3) cross sections of individual stellar models from equation of state (EOS) GM1L_c, comparing
differential rotation with A−1 = 0.3 (top left), 0.5 (top right), 0.7 (bottom left), and 1.0 (bottom right)

arises from numerical instability and not from the under-
lying EOS model, so we expect fully toroidal results in
the future.

4 CONCLUSIONS

In this work, we compare the results of differentially
rotating stellar sequences and individual stellar models
resulting from three EOS models: GM1L_b, GM1L_c, and
GM1L_f. The three EOS models see an average increase
in maximum gravitational mass from TOV results of 67%,
withmasses> 3M⊙ achieved for all threemodels as shown
in Section 3.1. Maximum mass values are then used to
predict the outcome of two binary neutron star merger
events, GW170817 andGW190425, as well as the low-mass
binary system J0737-3039. In Section 3.2, cross-sections of
energy density from individual stellar models with varying
degrees of differential rotation are discussed for GM1L_c.
As shown in Figure 4, increasing differential rotation flat-
tens the star at the pole and widens in the equatorial

direction as with uniform rotation. For the highest value
of the rotation parameter A−1, the cross-section of energy
density indicates the structure of the star tends toward a
quasi-toroidal configuration.

The results presented are limited by a numerical insta-
bility introduced as the polar-to-equatorial radius ratio
tends toward zero; we expect to address this issue in the
future. Additionally, the three EOS models used are all
constructed at zero temperature, but temperature plays
an important role in the outcome of binary neutron star
merger events. Further work will explore the applica-
tion of finite temperature EOS models to the algorithm
DRNS.
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