
ON A CONJECTURE OF BITOUN AND SCHEDLER

MIRCEA MUSTAŢĂ AND SEBASTIÁN OLANO

Abstract. Suppose that X is a smooth complex algebraic variety of dimension ≥ 3 and
f defines a hypersurface Z in X, with a unique singular point P . Bitoun and Schedler
conjectured that the D-module generated by 1

f
has length equal to gP (Z) + 2, where gP (Z)

is the reduced genus of Z at P . We prove that this length is always ≥ gP (Z) + 2 and
equality holds if and only if 1

f
lies in the D-module generated by I0(f) 1

f
, where I0(f) is the

multiplier ideal J (f1−ε), with 0 < ε � 1. In particular, we see that the conjecture holds
if the pair (X,Z) is log canonical. We can also recover, with an easy proof, the result of
Bitoun and Schedler saying that the conjecture holds for weighted homogeneous isolated
singularities. On the other hand, we give an example (a polynomial in 3 variables with an
ordinary singular point of multiplicity 4) for which the conjecture does not hold.

1. Introduction

Let X be a smooth, irreducible, complex algebraic variety of dimension n ≥ 3, and Z an
irreducible and reduced hypersurface in X defined by f ∈ OX(X). We assume that P ∈ Z is
a point such that Z r {P} is smooth. Recall that the localization OX(∗Z) := OX [1/f ] has
a natural structure of left DX -module, where DX is the sheaf of differential operators on X.
In fact, OX(∗Z) is a holonomic DX -module; as such, it has finite length in the category of
DX -modules (and the same property holds for all its DX -submodules).

Bitoun and Schedler proposed in [BS18] a conjecture describing the length `
(
DX · 1

f

)
of

the submodule DX · 1
f ⊆ OX(∗Z) in terms of an invariant of (Z,P ), the reduced genus. If

ϕ : Z ′ → Z is a log resolution of (Z,P ) that is an isomorphism over Z r {P} and if E =
ϕ−1(P )red, then the reduced genus of (Z,P ) is gP (Z) := hn−2(E,OE) = h0(E,ωE). With
this notation, Bitoun and Schedler conjectured that `

(
DX · 1

f

)
= gP (Z) + 2 and they proved

the conjecture in the case when f ∈ C[x1, . . . , xn] is a weighted homogeneous polynomial.

Recall now that for every λ > 0, one can associate to f the multiplier ideal J (fλ) of
exponent λ (see [Laz04, Chapter 9] for an introduction to multiplier ideals). We put I0(Z) =
J (f1−ε), where 0 < ε� 1. The following is our main result:

Theorem 1.1. With the above notation, we always have

`
(
DX · 1

f

)
≥ gP (Z) + 2.

Moreover, equality holds if and only if 1
f lies in the DX-submodule of OX(∗Z) generated by

I0(Z) 1
f .

Note that I0(Z) = OX if and only if the pair (X,Z) is log canonical, hence we obtain
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Corollary 1.2. With the above notation, if the pair (X,Z) is log canonical, then `
(
DX · 1

f

)
=

gP (Z) + 2.

We note that OX(∗Z) underlies a mixed Hodge module in the sense of Saito’s theory
[Sai90]. In particular, it carries a Hodge filtration F•OX(∗Z) such that FkOX(∗Z) = 0 for
k < 0 and F0OX(∗Z) = I0(Z) 1

f . In general, it is known that this Hodge filtration is contained

in the pole order filtration, that is, we have

FkOX(∗Z) ⊆ PkOX(∗Z) := OX 1
fk+1 for all k ≥ 0,

with equality if Z is smooth (these results have been proved by Saito in [Sai93] and [Sai09]).
With this terminology, Theorem 1.1 says that the conjecture of Bitoun and Schedler holds
for Z if and only if P0OX(∗Z) and F0OX(∗Z) generate the same DX -submodule of OX(∗Z).
For weighted homogeneous isolated singularities, we prove the following stronger result (see
Section 4 for the definition of weighted homogeneous singularities):

Theorem 1.3. If X is a smooth, irreducible, complex algebraic variety of dimension n ≥ 2
and Z is a hypersurface in X defined by f ∈ OX(X), which has weighted homogeneous
isolated singularities, then for every k ≥ 0, FkOX(∗Z) and PkOX(∗Z) generate the same
DX-submodule of OX(∗Z).

In particular, by taking n ≥ 3 and k = 0 and using also Theorem 1.1, we recover the
main result in [BS18], saying that the conjecture holds for weighted homogeneous isolated
singularities.

On the other hand, we give a counterexample to the Bitoun-Schedler conjecture: we show
that it fails for f = x4 + y4 + z4 + xy2z2, by proving that the property in Theorem 1.1 does
not hold in this case (see Proposition 5.1). In order to show this, we exploit the fact that
this is a semi-quasi-homogeneous singularity and use the description of the Hodge filtration
on OX(∗Z) from [Sai09, Theorem 0.9].

Finally, since a previous version of this paper was made public, there has been further work
on the Bitoun-Schedler conjecture: Saito gave in [Sai22] an interpretation of `

(
DX · 1

f

)
(and,

more generally, of `(DX · f−α) for α ∈ Q) in terms of the Brieskorn lattice of f . Building
on this, he gave a series of counterexamples to the conjecture, extending the one described
above.

Outline and acknowledgment. The paper is organized as follows: in Section 2 we discuss
the reduced genus of an isolated singularity and give a formula for this invariant in terms of
the multiplier ideal I0(Z) and the adjoint ideal. We use this in Section 3 to prove Theorem 1.1.
In Section 4 we discuss weighted homogeneous singularities and prove Theorem 1.3. Finally,
in Section 5 we give the counterexample to the Bitoun-Schedler conjecture.

We are indebted to Uli Walther who explained to us how to approach the Macaulay 2
computation that first showed us that we had a counterexample to the conjecture. We thank
Thomas Bitoun for his comments on a preliminary version of this note. We are also grateful to
the anonymous referees for suggesting changes that improved the presentation of the paper.

2. A formula for the reduced genus

We begin by recalling some definitions concerning log resolutions and certain invariants of
singularities that we will be using. For details, we refer to [Laz04, Chapter 9].
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Given a complex algebraic variety Z (always assumed to be reduced and irreducible) and
a proper closed subscheme Z ′ ↪→ Z such that Z r Supp(Z ′) is smooth, a log resolution of

(Z,Z ′) is a proper morphism ϕ : Z̃ → Z that is an isomorphism over ZrSupp(Z ′), such that

Z̃ is smooth and ϕ−1(Z ′) is an effective divisor with simple normal crossings. In particular,
if W is a proper closed subset of Z, viewed as a reduced closed subscheme, and if Z rW is
smooth, then we may consider log resolutions of (Z,W ). Log resolutions as above exist by
Hironaka’s fundamental theorem. Moreover, if X is a smooth variety and Z is a hypersurface
in X, then we may take a log resolution of (X,Z) that is an isomorphism over X r Zsing,
where Zsing is the singular locus of Z.

Recall now that if X is a smooth variety, D is an effective divisor on X, and π : X̃ → X
is a log resolution of (X,D) with F = π∗(D), then for every λ ∈ Q>0, the multiplier ideal
J (X,λD) is defined by

J (X,λD) = π∗OX̃
(
K
X̃/X

− bλF c
)
.

Here K
X̃/X

is the relative canonical divisor, the effective exceptional divisor locally defined

by the determinant of the Jacobian matrix of π, and for a Q-divisor G =
∑

i aiGi, the round-
down bGc is given by

∑
ibaicGi, where buc is the largest integer that is ≤ u. We also put

I0(D) := J
(
X, (1− ε)D

)
, for 0 < ε� 1. Note that if E = Fred, then

I0(D) = π∗OX̃(K
X̃/X

− F + E).

The pair (X,D) is log canonical if and only if I0(D) = OX .

Recall also that if D is irreducible and reduced, and π : X̃ → X is a log resolution of (X,D)
as above, then the adjoint ideal adj(D) is defined by

adj(D) = π∗OX̃(K
X̃/X

− F + D̃),

where D̃ is the strict transform of D on X̃. Note that the inclusion adj(D) ⊆ I0(D) always

holds since E−D̃ is effective. We have adj(D) = OX if and only if D has rational singularities
(see [Laz04, Proposition 9.3.48]).

We next recall the notion of reduced genus of a variety with isolated singularities. Suppose
that Z is a complex algebraic variety of dimension n − 1 ≥ 2. We assume that P ∈ Z is

a point such that Z r {P} is smooth. Let ϕ : Z̃ → Z be a log resolution of (Z,P ), with
E = ϕ−1(P )red. In this case, the reduced genus gP (Z) is hn−2(E,OE). Note that E is a
proper scheme over C, hence gP (Z) < ∞. By Serre duality, we have gP (Z) = h0(E,ωE)

and since E is a divisor on the smooth variety Z̃, the dualizing sheaf ωE is isomorphic to
ω
Z̃

(E)|E .

Lemma 2.1. With the above notation, for every i ≥ 0, the invariant hi(E,OE) is independent
of the choice of log resolution. In particular, this is the case for gP (Z).

Proof. Since any two log resolutions of (Z,P ) can be dominated by a third one, it follows

that it is enough to show that if π : Ỹ → Y is a proper morphism, with both Ỹ and Y
smooth, E is a reduced effective simple normal crossing divisor on Y which is proper over
C, and π is an isomorphism over Y r E, and F = π∗(E)red has simple normal crossings,
then hi(F,OF ) = hi(E,OE) for all i. By Serre duality, this is equivalent to showing that
hi(F, ωF ) = hi(E,ωE) for all i.
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Consider the short exact sequence on Ỹ :

(1) 0→ ω
Ỹ
→ ω

Ỹ
(F )→ ωF → 0.

Note that Rjπ∗ωỸ = 0 for all j ≥ 1 by Grauert-Riemenschneider vanishing and Rjπ∗ωỸ (F ) =
0 for j ≥ 1 by the Relative Vanishing theorem (see [Laz04, Theorem 9.4.1]). By taking the
long exact sequence for direct images associated to (1), we conclude that

(2) Rjπ∗ωF = 0 for all j ≥ 1

and both rows in the following commutative diagram

0 // π∗ωỸ
//

α

��

π∗ωỸ (F ) //

β

��

π∗ωF //

γ

��

0

0 // ωY // ωY (E) // ωE // 0

are exact. Note that α is an isomorphism since X is smooth: ω
Ỹ
' π∗ωY (K

Ỹ /Y
) and

π∗OỸ (K
Ỹ /Y

) = OY since the divisor K
Ỹ /Y

is effective and exceptional. The morphism β is

an isomorphism too, due to the fact that E has simple normal crossings: in terms of multiplier
ideals, this says that J

(
Y, (1 − ε)E

)
= OX for 0 < ε � 1, which holds since the pair (Y,E)

is log canonical. We thus conclude that γ is an isomorphism as well. By taking cohomology,
we conclude that

H i(E,ωE) ' H i(E, π∗ωF ) ' H i(F, ωF ),

where the second isomorphism follows from the Leray spectral sequence and the vanishings
in (2). This completes the proof of the lemma. �

In particular, we recover the following well-known

Corollary 2.2. If Z is smooth, P ∈ Z, and π : Z̃ → Z is a log resolution of (Z,P ) with
f−1(P )red = E, then hi(E,OE) = 0 for all i > 0.

Proof. By the lemma, the assertion is independent of the choice of log resolution. Since Z is
smooth, we may take π to be the blow-up of Z at P . In this case E is a projective space and
the assertion in the corollary is clear. �

We next give a formula for the reduced genus in the case of hypersurface singularities.

Proposition 2.3. Let X be a smooth variety of dimension n ≥ 3 and Z ⊂ X a reduced and
irreducible hypersurface. If P ∈ Z is a point such that Z r {P} is smooth, then

gP (Z) = dimC

(
I0(Z)/adj(Z)

)
.

Proof. After possibly replacing X by an affine open neighborhood of P , we may and will

assume that X is affine. Let π : X̃ → X be a log resolution of (X,Z) that is an isomorphism

over X r {P}. We put F = π∗(Z) and E = Fred. We also write E = Z̃ + T , where Z̃ is
the strict transform of Z and T is the reduced exceptional divisor. Note that the induced

morphism Z̃ → Z is a log resolution of (Z,P ), with reduced exceptional divisor T ∩ Z̃, hence

gP (Z) = hn−2(T ∩ Z̃,O
T∩Z̃).

On X̃ we have the short exact sequence

(3) 0→ O
X̃

(K
X̃/X

− F + Z̃)→ O
X̃

(K
X̃/X

− F + E)→ O
X̃

(K
X̃/X

− F + E)|T → 0.
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Note that

R1π∗OX̃(K
X̃/X

− F + Z̃) = 0.

Indeed, this follows using the projection formula if we show that R1π∗ωX̃(Z̃) = 0. This
follows by taking the long exact sequence for higher direct images corresponding to the short
exact sequence

0→ ω
X̃
→ ω

X̃
(Z̃)→ ω

Z̃
→ 0,

using the fact that R1π∗ωX̃ = 0 and R1π∗ωZ̃ = 0 by Grauert-Riemenschneider vanishing.

By taking the long exact sequence for higher direct images corresponding to (3), we thus
get a short exact sequence

(4) 0→ adj(Z)→ I0(Z)→ π∗
(
O
X̃

(K
X̃/X

− F + E)|T
)
→ 0.

Since T lies above P , it follows that π∗(ωX)|T ' OT and O
X̃

(F )|T ' OT . Moreover, the
adjunction formula implies that

ω
X̃

(E)|T ' ωT (Z̃|T ).

We thus conclude that

π∗
(
O
X̃

(K
X̃/X

− F + E)|T
)
' H0

(
T, ωT (Z̃|T )

)
,

where the right-hand side is viewed as a skyscraper sheaf supported on P . Using the exact
sequence (4) and Serre duality we thus conclude that

(5) dimC

(
I0(Z)/adj(Z)

)
= h0

(
T, ωT (Z̃|T )

)
= hn−1(T,OT (−Z̃|T )

)
.

The short exact sequence on T :

0→ OT
(
− Z̃|T

)
→ OT → OT∩Z̃ → 0

gives an exact sequence

Hn−2(T,OT )→ Hn−2(T ∩ Z̃,O
T∩Z̃)→ Hn−1

(
T,OT (−Z̃|T )

)
→ Hn−1(T,OT ).

Since n ≥ 3, we have

Hn−2(T,OT ) = 0 = Hn−1(T,OT )

by Corollary 2.2, hence the above exact sequence and (5) give

gP (Z) = hn−2(T ∩ Z̃,O
T∩Z̃) = hn−1

(
T,OT (−Z̃|T )

)
= dimC

(
I0(Z)/adj(Z)

)
.

�

Remark 2.4. If Z is a hypersurface in a smooth variety X of dimension ≥ 3 and Z has
an isolated singularity at P , then in a neighborhood of P , Z is reduced and irreducible.
Therefore, after replacing X by a suitable neighborhood of P , we may always assume that Z
is reduced and irreducible.
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3. The proof of the main result

Let X be a smooth complex algebraic variety. We denote by DX the sheaf of differential
operators on X. For basic facts in the theory of DX -modules, we refer to [HTT08].

Let Z be a hypersurface in X defined by a nonzero f ∈ OX(X). If j : U = X r Z ↪→ X
is the inclusion, then the localization OX(Z) := j∗OU = OX [1/f ] has a natural structure
of DX -module. In fact, it is a holonomic DX -module (see [HTT08, Theorem 3.2.3]). A
basic fact is that every holonomic DX -module has finite length; moreover, a DX -submodule
or quotient module of a holonomic DX -module has the same property (for these facts, see
[HTT08, Theorem 3.1.2]). Therefore we may consider the length `

(
DX · 1

f

)
of the submodule

of OX(∗Z) generated by 1
f .

Note that inside DX · 1
f we have the irreducible DX -submodule OX , hence

`
(
DX · 1

f

)
= `
(
DX · 1

f /OX
)

+ 1.

The quotient DX · 1
f /OX is a DX -submodule of the quotient OX(∗Z)/OX , which is the local

cohomology sheaf H1
Z(OX). We write

[
1
f

]
for the class of 1

f in H1
Z(OX).

Suppose from now on that Z is reduced and irreducible. It is known that inside H1
Z(OX)

there is an irreducible DX -module, the intersection cohomology DX -module of Z, that was
introduced by Brylinski and Kashiwara [BK81, Proposition 8.5]. We denote it by Mf . This
corresponds to the intersection cohomology complex of Z via the Riemann-Hilbert correspon-
dence. If V = X r Zsing, where Zsing is the singular locus of Z, then

(6) Mf |V = H1
V ∩Z(OV ).

In particular, this implies that the intersection of Mf with OX ·
[

1
f

]
is nonzero. Since Mf is

an irreducible DX -module, it follows that Mf ⊆ DX ·
[

1
f

]
. If we denote the quotient by Nf ,

using again the irreducibility of Mf , we conclude that

(7) `
(
DX · 1

f

)
= `(Nf ) + 2.

In fact, the modules OX(∗Z), H1
Z(OX), and Mf have more structure: they underlie mixed

Hodge modules in the sense of Saito’s theory [Sai90]. In particular, they carry a Hodge fil-
tration F•, which is an increasing filtration by coherent OX -submodules, which is compatible
with the filtration on DX by order of differential operators. Any morphism of mixed Hodge
modules is strict with respect to the Hodge filtration: in particular, the Hodge filtration on
H1
Z(OX) is the quotient filtration induced from that on OX(∗Z) and the Hodge filtration on

Mf is the submodule filtration induced by that on H1
Z(OX).

It is known that FpOX(∗Z) = 0 for p < 0 and F0OX(∗Z) = I0(Z) 1
f (see [Sai09, Theo-

rem 0.4]). We thus have

(8) F0H1
Z(OX) = I0(Z) ·

[
1
f

]
⊆ DX ·

[
1
f

]
.

In general, we have

FkOX(∗Z) ⊆ PkOX(∗Z) := OX
1

fk+1
for all k ≥ 0,

with equality if Z is smooth (see [Sai93, Proposition 0.9]).
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On the other hand, we have

(9) F0Mf = adj(Z) ·
[

1
f

]
by [Ola22, Theorem A] (see also [BS05, Proposition 3.5], [Bud03, Section 3.3], and [Sai09,
Theorem 0.6]). We can now prove our main result.

Proof of Theorem 1.1. Since Z r {P} is smooth, it follows from (6) that Nf is supported on
{P}. We deduce using Kashiwara’s equivalence (see [HTT08, Theorem 1.6.1]) that Nf '
(i+O{P})⊕r, for some r, where i : {P} ↪→ X is the inclusion. In this case we have `(Nf ) = r.
Moreover, r can be described as r = dimCN

′
f , where N ′f = {u ∈ Nf | mPu = 0}, with mP

being the ideal defining P .

Note that we have an inclusion

(10)
(
F0H1

Z(OX) ∩ DX ·
[

1
f

])
/F0Mf ↪→ Nf .

Via (8) and (9), the left-hand side is isomorphic as an OX -module to I0(Z)/adj(Z). Note
that this OX -module is annihilated by mP : this follows easily from the definition of the two
ideals (see the short exact sequence (4) in the proof of Proposition 2.3). We thus have an
embedding

I0(Z)/adj(Z) ↪→ N ′f ,

which gives

`(Nf ) = r = dimC(N ′f ) ≥ dimC

(
I0(Z)/adj(Z)

)
= gP (Z),

where the last equality follows from Proposition 2.3. Using (7), we obtain `
(
DX · 1

f

)
≥

gP (Z) + 2. Moreover, this is an equality if and only if I0(Z)/adj(Z) = N ′f .

Since Nf ' (i+O{P})⊕r, it follows that Nf is generated as a DX -module by N ′f . Moreover,

an OX -submodule N ′′f ⊆ N ′f generates Nf over DX if and only if N ′′f = N ′f . We thus conclude

that `
(
DX · 1

f

)
= gP (Z)+2 if and only if Nf is generated over DX by the image of I0(Z) ·

[
1
f

]
.

In order to complete the proof of the theorem, it is enough to show that this holds if and
only if DX · 1

f ⊆ OX(∗Z) is generated over DX by I0(Z) 1
f . The “if” part is clear, since

Nf is the quotient of DX · 1
f first by OX , and then by Mf . The “only if” part holds since

Mf ⊆ DX · I0(Z) 1
f (since Mf is irreducible, it is contained in the DX -submodule generated

by any nonzero subsheaf, such as adj(Z) 1
f ) and OX ⊆ I0(Z) 1

f (this follows from the fact that

(f) = J (Z) ⊆ I0(Z)). This completes the proof of the theorem. �

We can now deduce the assertion in the log canonical case.

Proof of Corollary 1.2. If (X,Z) is log canonical, then I0(Z) = OX , hence it is clear that 1
f

lies in DX · I0(Z) 1
f . The assertion then follows from Theorem 1.1. �

4. The case of weighted homogeneous singularities

In this section we treat the case of weighted homogeneous singularities and prove Theo-
rem 1.3. Let X be a smooth complex algebraic variety and Z a hypersurface on X defined by
f ∈ OX(X). Recall that f is weighted homogeneous at P ∈ Z if there is a regular system of
parameters x1, . . . , xn in OX,P and w1, . . . , wn ∈ Q>0 such that the image of f in OX,P can be
written as

∑
u cux

u, where the sum is over the set of those u = (u1, . . . , un) ∈ Zn≥0 such that
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i=1 uiwi = 1 (where we put xu = xu11 · · ·xunn ). We say that f has weighted homogeneous

singularities if it is weighted homogeneous at every point P ∈ Z.

Remark 4.1. Note that since we work in the algebraic setting, in the above definition we
require our local coordinates to be algebraic. If we only ask that these are holomorphic
local coordinates, then the condition is equivalent, by a famous result of K. Saito [Sai71,
Main Theorem] to the fact that f lies in its Jacobian ideal (whose definition is recalled before
Lemma 5.3 below); in this case one says that f is quasi-homogeneous.

Proof of Theorem 1.3. Since FkOX(∗Z) ⊆ PkOX(∗Z), we only need to show that 1
fk+1 ∈

DX ·FkOX(∗Z). This clearly holds outside of the singular locus of Z, hence we only need to
focus on the singular points. Since Z has isolated singularities, after covering X by suitable
open subsets, we may and will assume that we have P ∈ Z such that Z r {P} is smooth.

The key ingredient is Saito’s description for the Hodge filtration on OX(∗Z) in the case of
weighted homogeneous isolated singularities. We use the notation introduced at the beginning
of this section. After possibly replacing X with an open neighborhood of P , we may assume
that x1, . . . , xn ∈ OX(X) and they give an algebraic system of coordinates on X (that is,
dx1, . . . , dxn trivialize the cotangent bundle). We denote by ∂x1 , . . . , ∂xn the corresponding
derivations on OX .

For every u ∈ Z≥0, we put ρ(u) :=
∑n

i=1(ui + 1)wi. With this notation, it is shown in
[Sai09, Theorem 0.7] that

xu

fk+1
∈ FkOX(∗Z) if ρ(u) ≥ k + 1.

In particular, this formula shows that if mP = (x1, . . . , xn) is the ideal defining P , then

m`
P ·

1

fk+1
⊆ FkOX(∗Z) for `� 0

(of course, this also follows directly from the fact that Zr{P} is smooth). We see that we get

the assertion in the theorem if we can show that for every u ∈ Zn≥0, if x
u+ei

fk+1 ∈ DX ·FkOX(∗Z)

for 1 ≤ i ≤ n, then also xu

fk+1 ∈ DX · FkOX(∗Z) (here we denote by e1, . . . , en the standard

basis of Zn).

We may assume that ρ(u) < k + 1, since otherwise xu

fk+1 ∈ FkOX(∗Z) by Saito’s result.

Since xu+ei
fk+1 ∈ DX · FkOX(∗Z) for every i, it follows that also

n∑
i=1

wi∂xi · x
u+ei

fk+1 ∈ DX · FkOX(∗Z).

Our assumption on f implies
∑n

i=1wixi∂xi(f) = f by Euler’s formula, hence

n∑
i=1

wi∂xi · x
u+ei

fk+1 =

n∑
i=1

wi(ui + 1)
xu

fk+1
− (k+ 1)

xu

fk+2
·
n∑
i=1

wixi∂xi(f) =
(
ρ(u)− (k+ 1)

) xu

fk+1
.

Since ρ(u)− (k+ 1) 6= 0, we conclude that xu

fk+1 ∈ DX ·FkOX(∗Z). This completes the proof

of the theorem. �

In particular, by taking k = 0 and n ≥ 3 in Theorem 1.3 and using also Theorem 1.1, we
obtain the following result due to Bitoun and Schedler, see [BS18, Theorem 1.29].
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Corollary 4.2. If X is a smooth complex algebraic variety of dimension n ≥ 3 and Z is a
hypersurface in X defined by f ∈ OX(X), and P ∈ Z is such that Z r {P} is smooth and f
is weighted homogeneous at P , then

`
(
DX · 1

f

)
= gP (Z) + 2.

5. A counterexample

In this section we give a counterexample to the Bitoun-Schedler conjecture. More precisely,
we prove the following

Proposition 5.1. If f = x4 + y4 + z4 + xy2z2 ∈ C[x, y, z] and X is an open neighborhood of
0 in A3 such the hypersurface Z defined by f in X has the property that Z r {0} is smooth,
then `

(
DX · 1

f

)
> g0(Z) + 2.

Remark 5.2. An easy computation shows that the zero-locus of
(
f, ∂f∂x ,

∂f
∂y ,

∂f
∂z

)
in A3 is just

the origin. This implies that we could take X = A3 in the above proposition. However, this
fact is not important for us.

Before giving the proof of the proposition, we need a few preliminary results. Recall that
if f ∈ C[x1, . . . , xn], the Jacobian ideal Jac(f) is the ideal generated by ∂f

∂x1
, . . . , ∂f∂xn .

Lemma 5.3. Let f ∈ C[x1, . . . , xn] be such that f = g+h, where g is homogeneous of degree
d ≥ 3, with an isolated singularity at the origin, and h is homogeneous of degree d + 1. If
h /∈ Jac(g), then f /∈ Jac(f) at 0.

Proof. Clearly, is enough to show that we have f /∈
(
∂f
∂x1

, . . . , ∂f∂xn

)
C[[x1, . . . , xn]]. For P ∈

C[[x1, . . . , xn]], we write P = P0 + P1 + . . ., where Pi is homogeneous of degree i. Since g is

homogeneous, with an isolated singularity at 0, it follows that ∂g
∂x1

, . . . , ∂g
∂xn

form a regular
sequence.

Arguing by contradiction, let us suppose that

(11) f = A(1) ∂f

∂x1
+ . . .+A(n) ∂f

∂xn
, for some A(1), . . . , A(n) ∈ C[[x1, . . . , xn]].

By considering the equality of degree d−1 components, we obtain that A
(1)
0 = · · · = A

(n)
0 = 0,

since ∂g
∂x1

, . . . , ∂g
∂xn

are linearly independent over C. By considering the equality of degree d

components in (11), we get

g = A
(1)
1

∂g

∂x1
+ · · ·+A

(n)
1

∂g

∂xn
.

Note that since ∂g
∂x1

, . . . , ∂g
∂xn

form a regular sequence of homogeneous polynomials of degree

d− 1 ≥ 2, there are no nontrivial linear relations between ∂g
∂x1

, . . . , ∂g
∂xn

. Euler’s relation thus
implies

A
(i)
1 =

xi
d

for 1 ≤ i ≤ n.

Finally, consider the equality of degree d+ 1 components in (11):

h =
n∑
i=1

xi
d
· ∂h
∂xi

+
n∑
i=1

A
(i)
2

∂g

∂xi
=
d+ 1

d
h+

n∑
i=1

A
(i)
2

∂g

∂xi
.
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This gives h ∈ Jac(g) ·C[[x1, . . . , xn]] and since the homomorphism

C[x1, . . . , xn](x1,...,xn) → C[[x1, . . . , xn]]

is faithfully flat, we conclude that h ∈ Jac(g) at 0. Using the fact that both h and Jac(g) are
homogeneous, we obtain h ∈ Jac(g), a contradiction. �

Example 5.4. Let f = x4 + y4 + z4 + xy2z2 ∈ C[x, y, z]. Since it is clear that xy2z2 /∈
(x3, y3, z3), it follows from Lemma 5.3 that f 6∈ Jac(f) at 0; in particular, f is not weighted
homogeneous at 0 (see Remark 4.1).

Remark 5.5. Suppose that f = g + h ∈ C[x1, . . . , xn], with n ≥ 2, g homogeneous of degree
n+1, with an isolated singularity at 0, and h ∈ (x1, . . . , xn)n+2. In this case the hypersurface
Z defined by f has an ordinary singularity at 0: this means that the projectivized tangent
cone of Z at 0 is smooth (in our case, this is the hypersurface defined by g in Pn−1). The

blow-up π : Y → An of An at 0 has the property that π∗Z = Z̃ + (n + 1)E, where Z is the
strict transform of Z and E is the exceptional divisor. The ordinarity condition is equivalent

to the fact that Z̃∩E is smooth, in which case we see that π gives a log resolution of (An, Z) in
a neighborhood of 0 (in particular, 0 is an isolated singularity of Z). Since KY/An = (n−1)E,

an easy (and well-known) computation gives I0(Z) = (x1, . . . , xn) and adj(Z) = (x1, . . . , xn)2

in a neighborhood of 0.

Lemma 5.6. Let f = g + h ∈ C[x1, . . . , xn], where n ≥ 2, with g homogeneous of degree
n+ 1, with an isolated singularity at 0, and h ∈ (x1, . . . , xn)n+2. If f /∈ Jac(f) at 0 and Z is
the hypersurface defined by f , then

1

f
/∈ F1DX ·

(
I0(Z)

1

f

)
at 0.

Proof. By Remark 5.5, we have I0(Z) = (x1, . . . , xn) in a neighborhood of 0. Of course, it is
enough to show that we have

1

f
/∈ F1DX ·

(
(x1, . . . , xn)

1

f

)
in C[[x1, . . . , xn]].

Arguing by contradiction, let us suppose that we can write

1

f
=

n∑
i=1

pi(x)
xi
f

+

n∑
i,j

qi,j(x)
∂

∂xj

(
xi
f

)
, for some pi, qi,j ∈ C[[x1, . . . , xn]].

Equivalently, we have

(12) f

(
1−

n∑
i=1

pi(x)xi −
n∑
i=1

qi,i(x)

)
= −

n∑
i,j

qi,j(x)xi
∂f

∂xj
.

By comparing the homogeneous components of degree n+ 1, we get

g

(
1−

n∑
i=1

qi,i(0)

)
= −

n∑
i,j

qi,j(0)xi
∂g

∂xj
.

If we put ai,j = qi,j(0) and b = 1−
∑

i ai,i, then the above equality becomes

bg = −
n∑
i,j

ai,jxi
∂g

∂xj
.
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Since g is homogeneous of degree n+ 1, using Euler’s formula we obtain

n∑
j=1

lj(x)
∂g

∂xj
= 0,

where lj(x) = b
n+1xj+

∑n
i=1 ai,jxi. Note that ∂g

∂x1
, . . . , ∂g

∂xn
satisfy no nontrivial linear relation:

indeed, they form a regular sequence of homogeneous polynomials of degree n ≥ 2, since g
has an isolated singularity at 0. Therefore lj(x) = 0 for all j. It follows that we have ai,j = 0

for i 6= j and aj,j = − b
n+1 for all j. Since b = 1 −

∑
j aj,j , we conclude that b = n + 1 and

aj,j = −1 for all j. In particular, we have

1−
n∑
i=1

pi(x)xi −
n∑
i=1

qi,i(x) ≡ n+ 1
(
mod (x1, . . . xn)

)
.

Using (12), we conclude that f ∈ Jac(f) ·C[[x1, . . . , xn]]. Since the homomorphism

C[x1, . . . , xn](x1,...,xn) → C[[x1, . . . , xn]]

is faithfully flat, we conclude that f ∈ Jac(f) at 0, a contradiction. �

We can now show that we get a counterexample to the Bitoun-Schedler conjecture.

Proof of Proposition 5.1. Recall that f has an ordinary singularity at 0 (see Remark 5.5). In
particular, the singularity at 0 is isolated and we may choose X as in the statement of the
proposition. We freely use the notation in Section 3. In order to simplify the notation in
what follows, instead of working in H1

Z(OX), we will mostly work in OX(∗Z) = OX [1/f ].
We will make essential use of the Hodge filtration on the mixed Hodge module OX(∗Z) and

on its submodule M̃f , the inverse image of Mf ⊆ H1
Z(OX).

Since OX(∗Z)/M̃f = H1
Z(OX)/Mf is supported on 0 ∈ An, it is of the form i+H, where H

is a mixed Hodge module on the point 0 (that is, a mixed Hodge structure) and i : {0} ↪→ An

is the inclusion. The quotient Nf = DX · 1
f /M̃f is a DX -submodule of i+H, and therefore

is of the form i+H
′ for some vector subspace H ′ ⊆ H. The length of Nf as a DX -module

is equal to dimC(H ′). Note that H ′ is not necessarily a mixed Hodge substructure of H.
However, it is convenient to put

FkNf := Fk(i+H) ∩Nf for all k ≥ 0.

We recall that Fk(i+H) = 0 for k < 0 (since the same property holds for H1
Z(OX)) and

the standard convention is that if we write i+H = H ⊗C C[∂x, ∂y, ∂z], then

Fk(i+H) =
⊕
j

⊕
a+b+c=j

Fk−3−jH ⊗ ∂ax∂by∂cz

(see [Sai09, (1.5.3)]). This implies that

(13) F1(i+H) ∩
(
DX · F0(i+H)

)
⊆ F1DX · F0(i+H).

We have seen in the proof of Theorem 1.1 that F0(i+H) ⊆ Nf and

F0(i+H) = F0H1
Z(OX)/F0Mf =

I0(Z) 1
f

adj(Z) 1
f
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is a subspace of H ′ ⊗ 1 of dimension g0(Z). The strict inequality `
(
DX · 1

f

)
> g0(Z) + 2

is equivalent to having F0(i+H) 6= H ′ ⊗ 1. For this, it is enough to show that there is an
element u ∈ F1Nf r F1DX · F0(i+H): indeed, if F0(i+H) = H ′ ⊗ 1, then it follows from (13)
that

F1Nf ⊆ F1(i+H) ∩ DX · (H ′ ⊗ 1) ⊆ F1DX · F0(i+H).

Since f has an ordinary singularity at 0, it is semi-quasi-homogeneous in the sense of

[Sai09, Section 5]. This allows us to compute the Hodge filtration on M̃f and OX(∗Z), as
follows. If we give each variable weight 1/4 (so that x4 + y4 + z4 has all terms of weight

1) and if we denote by P≥k+1 (resp. P>k+1) the linear span of the quotients xaybzc

fk+1 with
1
4(a+ b+ c+ 3) ≥ k + 1 (resp. > k + 1), it follows from [Sai09, Theorem 0.9] that for every
p, in some neighborhood of 0 we have

FpOX(∗Z) =

p∑
k=0

Fp−kDX · P≥k+1 and FpM̃f =

p∑
k=0

Fp−kDX · P>k+1.

For p = 0, we recover the formulas computed in a different way in Remark 5.5:

F0OX(∗Z) = I0(Z)
1

f
= (x, y, z)

1

f
and F0M̃f = adj(Z)

1

f
= (x, y, z)2 1

f
.

For the next step in the two filtrations, if we define J1(Z) and K1(Z) by

F1DX ·
(
I0(Z)

1

f

)
= J1(Z)

1

f2
and F1DX ·

(
adj(Z)

1

f

)
= K1(Z)

1

f2
,

we get

(14) F1OX(∗Z) =
(
J1(Z) + (x, y, z)5

) 1

f2
and F1M̃f =

(
K1(Z) + (x, y, z)6

) 1

f2

(actually, one can show that (x, y, z)6 ⊆ K1(Z), but we will not use this fact).

We claim that the image u ∈ OX(∗Z)/M̃f of v = xy2z2

f2
lies in F1Nf r F1DX · F0(i+H).

As we have seen, this is enough to conclude the proof. Note first that v ∈ DX · 1
f : indeed, an

easy computation gives

(15) xy2z2

f2
= −(∂xx+ ∂yy + ∂zz + 1) · 1

f .

Since xy2z2 ∈ (x, y, z)5, it follows from (14) that v ∈ F1OX(∗Z), and we thus conclude that
u ∈ F1Nf . On the other hand, if u ∈ F1DX · F0(i+H), then using the fact that the inclusion

M̃f ↪→ OX(∗Z) is strict with respect to the Hodge filtration and (14), we obtain

v ∈ F1OX(∗Z) ∩
(
F1DX · (x, y, z)

1

f
+ M̃f

)
⊆
(
F1DX · (x, y, z)

1

f

)
+ F1M̃f

= J1(Z)
1

f2
+
(
K1(Z) + (x, y, z)6

) 1

f2
=
(
J1(Z) + (x, y, z)6

) 1

f2
.

This contradicts Lemma below and thus the proof is complete. �

Lemma 5.7. With the notation in the proof of Proposition 5.1, we have xy2z2 /∈ J1(Z) +
(x, y, z)6.



ON A CONJECTURE OF BITOUN AND SCHEDLER 13

Proof. Note first that by Example 5.4, we know that f /∈ Jac(f) at 0. Therefore we may
apply Lemma 5.6 to conclude that f 6∈ J1(Z). On the other hand, the relation (15) implies

f + xy2z2

f2
∈ F1DX ·

(
(x, y, z)

1

f

)
= J1(Z)

1

f2
,

hence f + xy2z2 ∈ J1(Z), so that xy2z2 /∈ J1(Z). Therefore we are done if we show that
(x, y, z)6 ⊆ J1(Z).

Since (x, y, z) 1
f ⊆ J1(Z) 1

f2
, it follows that

(16) xf, yf, zf ∈ J1(Z).

We have already seen that f + xy2z2 ∈ J1(Z), and thus x(f + xy2z2) − xf , y(f + xy2z2) −
yf, z(f + xy2z2)− zf ∈ J1(Z), hence

(17) x2y2z2, xy3z2, xy2z3 ∈ J1(Z).

By considering x∂x
y
f , x∂x

z
f , y∂y

z
f , z∂z

y
f , y∂y

x
f , z∂z

x
f , and using the terms in (17), we obtain

(18) x4y, x4z, y4z, yz4, xy4, xz4 ∈ J1(Z).

By considering z∂y
z
f and y∂z

y
f and using (18), we obtain

(19) y3z2, y2z3 ∈ J1(Z).

By considering ∂x
y
f and ∂x

z
f , together with (19), we get

(20) x3y, x3z ∈ J1(Z)

and by considering the terms in (20) and x∂y
x
f , x∂z

x
f , we obtain

x2y3, x2z3 ∈ J1(Z).

Using again the terms in (16), as well as the ones in (17) and (18), we obtain

x5, y5, z5 ∈ J1(Z).

It is now straightforward to see that by putting together all the above terms, we get (x, y, z)6 ⊆
J1(Z), completing the proof of the lemma. �
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