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ABSTRACT

We present the first 3D hydrodynamics simulations of the excitation and propagation of internal gravity waves (IGWs) in the
radiative interiors of low-mass stars on the red giant branch (RGB). We use the prmsTaR explicit gas dynamics code to simulate
a portion of the convective envelope and all the radiative zone down to the hydrogen-burning shell of a 1.2 M upper RGB star.
We perform simulations for different grid resolutions (768%, 1536°, and 2880?), a range of driving luminosities, and two different
stratifications (corresponding to the bump luminosity and the tip of the RGB). Our RGB tip simulations can be directly performed
at the nominal luminosity, circumventing the need for extrapolations to lower luminosities. A rich, continuous spectrum of IGWs
is observed, with a significant amount of total power contained at high wavenumbers. By following the time evolution of a passive
dye in the stable layers, we find that IGW mixing in our simulations is weaker than predicted by a simple analytical prescription
based on shear mixing and not efficient enough to explain the missing RGB extra mixing. However, we may be underestimating
the efficiency of IGW mixing given that our simulations include a limited portion of the convective envelope. Quadrupling its
radial extent compared to our fiducial set-up increases convective velocities by up to a factor 2 and IGW velocities by up to
a factor 4. We also report the formation of a ~ 0.2 Hp penetration zone and evidence that IGWs are excited by plumes that

overshoot into the stable layers.
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1 INTRODUCTION

When exiting the main sequence and entering the red giant branch
(RGB), the outer layers of low-mass stars expand, cool down, and as
a result become more opaque to radiation. This triggers convection
in their envelopes, which brings up to the surface the products of
H fusion. After this ‘first dredge-up’, no further changes to the
atmospheric abundances of RGB stars are predicted by canonical
stellar evolution theory, since the outer convective envelope remains
isolated from the H-burning shell by a radiative zone that blocks the
transport of species from the H-burning region to the surface.

But spectroscopic observations tell a different story. After the H-
burning shell has crossed the composition discontinuity left at the
maximal extent of the convective envelope during the first dredge-up
(the so-called bump luminosity), the surface composition of nearly
all low-mass RGB stars starts changing again. The '3C and "N
abundances increase, while the '>C and "Li abundances decrease
(Gilroy 1989; Pilachowski, Sneden & Booth 1993; Charbonnel 1994;
Gratton et al. 2000; Mikolaitis et al. 2010; Valenti, Origlia & Rich
2011). Those abundance changes are the signpost of H fusion and
imply that species can be transported across the radiative zone that
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separates the H-burning shell from the convective envelope (e.g.
Karakas & Lattanzio 2014).

The search for the extra mixing process responsible for this
transport has been the subject of intense theoretical efforts for
decades (Sweigart & Mengel 1979; Smith & Tout 1992; Wasser-
burg, Boothroyd & Sackmann 1995; Denissenkov & Tout 2000;
Denissenkov & VandenBerg 2003; Chanamé, Pinsonneault & Tern-
drup 2005; Palacios et al. 2006; Busso et al. 2007; Denissenkov,
Pinsonneault & MacGregor 2009; Charbonnel & Lagarde 2010).
The most commonly invoked mechanism is thermohaline mixing (or
fingering convection). This instability is triggered in RGB stars due to
3He burning in the outskirts of the H-burning shell, which produces
a depression in the mean molecular weight profile u (Eggleton,
Dearborn & Lattanzio 2006; Charbonnel & Zahn 2007; Cantiello
& Langer 2010). The efficiency of this mixing mechanism crucially
depends on the aspect ratio of the ‘fingers’ formed as a result of the
profile inversion. The aspect ratios needed to produce enough mixing
far exceed those predicted by numerical simulations, where more
blob-like structures are observed (Denissenkov 2010; Denissenkov &
Merryfield 2011; Traxler, Garaud & Stellmach 2011; Brown, Garaud
& Stellmach 2013). This suggests that thermohaline mixing alone is
not sufficient to explain the observed extra mixing and the quest for
additional mixing mechanisms is still ongoing.

Internal gravity waves (IGWs) are suspected to be an efficient
species transport mechanism in the radiative zones of stellar interiors
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(Press 1981; Garcia Lopez & Spruit 1991; Schatzman 1996; Denis-
senkov & Tout 2003; Talon & Charbonnel 2005; Schwab 2020).
IGWs are caused by density perturbations in a stably stratified fluid
and have buoyancy as a restoring force. In stellar interiors, they
are stochastically excited by convective motions at the convective—
radiative interface. Therefore, one can expect IGWs to be generated
at the lower boundary of the convective envelope of RGB stars and
to propagate inside the radiative zone that separates the H-burning
shell from the convective envelope. This could provide an additional
mixing mechanism for RGB stars.

In addition to transporting species, IGWs may also transport
angular momentum (Ringot 1998; Kumar, Talon & Zahn 1999;
Talon, Kumar & Zahn 2002; Rogers et al. 2013; Pincon et al. 2017).
Asteroseismological observations have revealed that the cores of
RGB stars spin much faster than their envelopes (Beck et al. 2012;
Deheuvels et al. 2012, 2014; Beck et al. 2014), but also much slower
than if there was no additional angular momentum transport mech-
anism coupling the core to the envelope (Eggenberger, Montalban
& Miglio 2012; Marques et al. 2013; Cantiello et al. 2014). Current
evolutionary models fail to predict this (relatively) slow rotation: an
additional process that extracts angular momentum from the core is
needed. IGWs (and mixed modes, Belkacem et al. 2015) have been
considered as a solution to this problem (Fuller et al. 2014).

Due to the complex interplay between convective motions and
the excitation and propagation of IGWs, detailed hydrodynamics
simulations are required to accurately determine the properties of
IGWs in stellar interiors and ultimately assess their impact on
stellar evolution. Analytical approaches are also possible (Kumar
et al. 1999; Montalban & Schatzman 2000; Lecoanet & Quataert
2013), but they inevitably rely on a number of assumptions (e.g.
the wave excitation mechanism, the shape of the power spectrum).
Multidimensional hydrodynamics simulations of IGWs excitation
and propagation have been performed for main-sequence stars
(Dintrans et al. 2005; Rogers & Glatzmaier 2005; Brun, Miesch &
Toomre 2011; Rogers et al. 2013; Alvan, Brun & Mathis 2014; Alvan
et al. 2015; Edelmann et al. 2019; Horst et al. 2020; Ratnasingam,
Edelmann & Rogers 2020; Le Saux et al. 2022; Thompson et al.
2023; Herwig et al. 2023), but to our knowledge no results currently
exist for RGB stars. In this work, we present the first hydrodynamics
simulations of IGW excitation and propagation in RGB stars. We use
the ppMsTAR gas dynamics code to perform three-dimensional, full-
sphere, high-resolution simulations of two different phases in the evo-
lution of a 1.2 Mg, star on the RGB. Based on these simulations, we
present a first estimate of the mixing enabled by IGWs in RGB stars.

In Section 2, we describe the MEsa models that we use as base
states for our hydrodynamics simulations and explain how the latter
are set up in ppMsTAR. We then discuss the overall properties of
our simulations in Section 3, where we present high-resolution
renderings of our simulations as well as radial profiles and power
spectra. Mixing by IGWs is investigated in Section 4 using two
different approaches. Section 5 is devoted to the influence of the
size of the convective envelope on our results and Section 6 to the
properties of the convective boundary. Finally, our conclusions are
stated in Section 7.

2 METHODS

2.1 MEsa models

We use mEsa version 7624 (Paxtonetal. 2011,2013,2015) to generate
the initial states of our hydrodynamics simulations. We calculated
the evolution of a 1.2 Mg, star from the pre-main sequence to the tip
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Figure 1. Hertzsprung—Russell diagram of our 1.2 Mg MEsa model from the
zero-age main sequence to the tip of the RGB. The two phases simulated in
this work are marked with red circles.
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Figure 2. Kippenhahn diagram of our 1.2 Mg MEsa model on the RGB. H
burning takes place in a shell represented by the thin blue line. The narrow
region above this H-burning shell is the radiative zone where IGWs are excited
by convective motions in the convective envelope above (in grey). The two
RGB phases examined in this work are marked by the vertical dashed lines.
In both cases, a small solid line indicates the actual mass included in our 3D
simulations.

of the RGB. We assume an initial metallicity of [Fe/H] = —0.3, and
the mixing length theory (MLT) is used, with mixing length €1
= 2Hp (where Hp is the pressure scale height). Fig. 1 displays the
evolution of our model from the zero-age main sequence to the tip
of the RGB in the theoretical Hertzsprung—Russell diagram. Two
circles identify the two phases simulated in 3D in this work. The
first one is just after the bump luminosity at log L/Ls = 2.00 (this is
our ‘bump set-up’), and the second one is very close to the tip of the
RGB at log L/L = 3.33 (this is our ‘tip set-up’).

Fig. 2 shows the Kippenhahn diagram of our MEsa model along
the RGB. The convective envelope is in grey and the H-burning shell
is displayed as a thin blue line; the narrow region in between is
the radiative zone where IGWs propagate. The two dashed vertical
lines indicate the models that correspond to our bump and tip set-
ups and the thick solid lines show the portion of those models that
we actually simulate in 3D. It would be prohibitively expensive to
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Figure 3. Brunt—Viisild frequency N as a function of radius for our two RGB
set-ups. The MEsa profiles (solid black lines) are compared to the N profiles

used as base states of our ppMsTAR simulations (red dashed lines). The vertical
dotted line indicates the location of the inner simulation boundary.

simulate the whole star and choices have to be made regarding which
regions to include. For both set-ups, we omit the inner R < 40 Mm,
which corresponds to truncating our set-ups just above the H-burning
shell. The equation of state currently included in ppMSTAR does not
account for the degeneracy pressure that becomes prominent in the
dense inner core, and in any case this region is not strictly needed
to study IGWs in the radiative zone above. Furthermore, recent 2D
hydrodynamics simulations of a Sun-like star show that the location
of the inner simulation boundary has a negligible effect on the IGWs
(Vlaykov et al. 2022); a similar behaviour can be expected for the
RGB. The mass contained inside this inner 40 Mm is taken into
account when computing the gravitational acceleration in our 3D
simulations. For the upper boundary, we adopt a maximum radius of
Riax = 900 Mm for our fiducial simulations, which represents only
8 per cent of the stellar radius for the bump set-up and 1 per cent
for the tip set-up. This is enough to include all the radiative zone
and a portion of the convective envelope. However, we recognize
that artificially blocking the flow at 900 Mm (ppMSTAR uses reflective
boundary conditions) alters the convective motions in the envelope
by impeding the development of large-scale convective modes. But
extending our simulation sphere further out would degrade the grid
resolution in the radiative zone where the IGWs propagate, and we
thus settled on R < 900 Mm as a compromise between those two
effects. We will explore how including a larger envelope affects our
results in Section 5.

To initialize the 3D hydrodynamics simulations, we only require
(1) the mass contained within the inner simulation radius (i.e. within
R < 40Mm), (2) the pressure at the inner simulation radius, and
(3) the entropy profile up to the outer simulation radius. From
those quantities, the initial pressure (P), density (p), temperature
(T), and mass (M,) stratifications can be recovered by integrating
the hydrostatic equilibrium equation from the inner boundary. Note
that there is no composition gradient in our RGB set-ups, including
across the convective boundary, meaning that only one fluid with
the appropriate u is needed in our 3D simulations. As in Herwig
et al. (2023), we smooth the MEsa entropy profile to remove small-
scale noise and we force a constant entropy in the convective
envelope. Fig. 3 compares the Brunt—Viisiléd frequency N obtained
by this procedure to the original MEsa profile. Only at the convective
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Table 1. Summary of simulations used in this paper.

ID Set-up L/L, grid Rpax (Mm) t (h) # dumps
X17 bump 10* 7683 900 797 308
X18 bump 1033 7683 900 789 305
X14 bump 103 7683 900 1058 419
X22 bump 103 15363 900 831 480
X21 bump  10%° 7683 900 1552 600
X15 bump 102 7683 900 935 723
X16 bump 10 7683 900 1497 579
X24 tip 1 7683 900 1695 1280
X25 tip 1 15363 1800 1352 510
X26 tip 1 1536° 900 682 515
X30 tip 1 2880° 1100 552 700
X32f tip 1 7683 900 850 642
X33f tip 1 1536° 900 633 478

Note.TNo radiation diffusion (K = 0)

boundary (when N — 0) is there a small discrepancy between both
profiles due to our smoothing procedure.

2.2 ppMsTAR simulations

We use the ppMsTAR explicit gas dynamics code (Woodward, Herwig
& Lin 2015; Jones et al. 2017; Andrassy et al. 2020; Mao et al. in
preparation; Woodward et al. in preparation; Herwig et al. 2023)
to perform our 3D hydrodynamics simulations. As described in
Mao et al. (in preparation), a more realistic equation of state that
includes both the ideal gas pressure and the radiation pressure is now
implemented in ppmsTAR. Contributions from electron degeneracy
pressure and Coulomb interactions remain negligible in the regions
we simulate (R > 40 Mm). In addition, radiation diffusion is now
also included (Mao et al. 2023). The Rosseland mean opacity is
calculated using polynomial fits that are generated before each run
by fitting OPAL opacity tables (Iglesias & Rogers 1996) within
the restricted p—7 domain relevant to each set-up. Here, those fits
depend only on p and 7 since the composition is uniform throughout
the simulated region. We opted for this approach instead of a direct
interpolation of the OPAL tables in the interest of code execution
speed.

Convection is driven by cooling down (i.e. removing heat) from the
uppermost 50 Mm. The rate at which heat is removed corresponds
to the luminosity that we are simulating (which is not necessarily
the same as the nominal stellar luminosity as discussed in the next
paragraph). In addition, we inject heat at the same rate in the first
20Mm above the inner boundary of our simulations. This is to
compensate the loss of heat at the upper boundary with the aim of
keeping the thermal content of the star constant over the simulation.
This driving strategy closely imitates energy transport in the real star.
Heat is produced close to the centre in the H-burning shell, which
is what our heating term at the inner simulation boundary mimics.
Similarly, convection carries heat all the way to the surface in a real
star, which is what our cooling term at the outer simulation boundary
simulates.

The explicit scheme used by ppMsSTAR sets a lower limit on the
Mach numbers that can be simulated. A very low Mach number
flow would demand prohibitively small grid cells. Consequently, for
our bump set-up, we cannot perform the simulations at the nominal
luminosity L,. Our fiducial bump simulations use L = 1000 L, to
drive the convection zone. To extrapolate our results to nominal
heating, we perform a series of simulations with different luminosity
boost factors as indicated in Table 1. Note that the radiative diffusivity

€202 8unf g0 Uo Jasn Blosauul 10 Alsiaaiun Aq 840021 2/90/ L/Z/ZZS/21one/seluw/woo dno olwapeose//:sdiy Woll papeojumo(]


art/stad1115_f3.eps

® Mean |U] in the convective zone 2
'
10 F - ETRE o7
/,/
//.
L
//
<
—_ e
Tu) /’//
£ -
< L
~ '
— ,’
=)
-®
.
e
/”
/”
L
.
-
L~
10°F9 1
10! 102 103 10%
Heating factor
® |U]| 200 Mm below the convective boundary _o]
e TG 7
_-e
/.”
1071} /./’ J
7
(%] ’/”
s
-2 J
10 °
10! 10? 103 104

Heating factor

Figure 4. Root mean square velocity in the convection zone (top panel) and
in the stable layers 200 Mm = 1 Hp below the convective boundary (bottom
panel) as a function of the boost factor applied to the luminosity. In each
case except X17, the vorticity is averaged over the last 100 dumps. For X17,
earlier dumps (100-120, # =260 to 310 h) are used to prevent selecting dumps
where the convective boundary has moved below R = 400 Mm and the flow
velocity is tainted by the numerical artefacts in the innermost regions of the
simulation. Those runs are all for the RGB bump set-up and a 7683 grid.

K is also increased by the same factor so that the energy transported
by radiation scales as the driving luminosity (in order to conserve
energy).

The tip set-up is different. Due to its higher luminosity and
different stratification, the Mach numbers in its convection zone
(Ma =~ 0.010-0.015) are high enough that the star can be simulated
at nominal luminosity. This is also true for the IGWs in the stable
layers. This gives our RGB tip simulations an exceptional degree of
fidelity, providing solutions of the full conservation equations in 3D
and over the 477 sphere, at the actual stellar luminosity, and including
radiation diffusion with realistic opacities. To our knowledge, these
are the first stellar interior hydrodynamic simulations of this kind.
The one approximation we are making is that only a small portion
of the envelope is included. This can admittedly have a large impact
both on the convective and IGW motions (e.g. Vlaykov et al. 2022).
We return to this question in Section 5.

To demonstrate that the tip set-up can reliably be simulated at
nominal heating, we show in Fig. 4 how, for the bump set-up, the
rms velocity in the convective envelope and in the stable layers scales

IGWs in RGB stars 1709

as a function of the boost factor applied to the heating luminosity.
The convective velocities follow a well-defined L3 scaling relation,
as established in previous 3D hydrodynamics simulations (Porter
& Woodward 2000; Miiller et al. 2016; Jones et al. 2017; Baraffe
et al. 2021; Herwig et al. 2023). In the stable layers, we observe
the same L' dependence down to at least L = 10> L, (this differs
from the results of Herwig et al. 2023, a point to which we return in
Section 4.1.2). This suggests that there are no numerical convergence
issues at those luminosities. The smallest velocity that still adheres
to the scaling law is |U| ~ 0.1km/s (L = 10>3 L, in the bottom
panel of Fig. 4), which corresponds to a Mach number of ~20.0003.
As shown in Fig. A1, the Mach numbers of our RGB tip simulations
are above that threshold for R = 300 Mm. This indicates that our
nominal-heating RGB tip simulations can be trusted everywhere
except in the innermost portion of the radiative interior. Finally, note
that this analysis (Fig. 4) was performed with the lowest resolution
grid (768%) used in this work. This is therefore a pessimistic
assessment of convergence errors as the scaling laws are expected
to hold down to lower luminosities and smaller velocities when the
grid resolution is increased (e.g. fig. 32 of Herwig et al. 2023).

Our simulations are performed on Cartesian grids of 768%, 1536°,
or 28807 and run on average for r >~ 1000 h of star time, as indicated
in Table 1. With a characteristic convective turnover time-scale of
1 d, the simulations are long enough to determine the flow properties
after eliminating the initial transient phase of a few hundred hours
(Fig. 5). We note however that our simulations are not long enough to
achieve a thermal equilibrium state. Since the gas dynamics in the 3D
simulations is different than what is assumed in the initial 1D MLT-
based MEsa stratifications, our set-ups are inevitably out of thermal
equilibrium. This results in the gradual migration of the convective
boundary. Furthermore, in all our simulations except X30, our choice
of external boundary condition also leads to a spurious migration of
the Schwarzschild boundary (see Section 4.2). For those reasons, the
convective boundary does not remain at its original location shown in
Fig. 3. Finding configurations that are in equilibrium when simulated
with 3D hydrodynamics is an interesting endeavour in itself, but one
that is outside the scope of this work.

The time-steps are adjusted as to maintain a Courant number of
0.85. In the case of our 7683-grid simulations, this corresponds to
At = 3.2 s for the bump set-up and 2.6 s for the tip set-up (At is half
that when using a 1536° grid with the same Rp,y). A detailed output
of the simulations (or dump) is produced every 2.6 h for the bump
set-up and every 1.3 h for the fiducial tip set-up. The content of those
dumps is detailed in Herwig et al. (2023).

ppMSTAR’s use of Cartesian coordinates optimizes numerical ac-
curacy for a general fluid flow problem. It gives rise to a simple
and highly effective design in which the computation proceeds
in symmetrized sequences of 1D passes in the three coordinate
directions (i.e. directional operator splitting). One consequence of
our coordinate choice is that the application of boundary conditions
becomes more difficult. Boundary conditions are currently imple-
mented at specific radii (here, an inner boundary at 40 Mm and an
outer boundary at Ry.x), placed well away from the main region of
interest to minimize potential numerical artefacts. We approximate
these bounding spheres by the nearest set of cubical grid cell faces,
which implies that these spheres are ragged at the scale of the
grid. We impose a reflecting boundary condition at the bounding
spheres using ghost cells that mirror the cells across the bounding
surfaces. This is done in each 1D pass, and in each such pass the
bounding surface is perpendicular to the direction of the pass, but
it is not perpendicular to the gravitational acceleration vector. For
convenience, we therefore smoothly turn off gravity beginning a few
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Figure 5. Time evolution of the spherically averaged radial velocity ampli-
tude for runs X14, X22, X24, and X26 (see Table 1). The top panel shows
|U,| 0.5 Hp above the convective boundary and the bottom panel shows the
same quantity 0.5 Hp below the convective boundary (Hp =~ 200 Mm at the
convective boundary).

grid cell widths in radius before the bounding sphere is reached,
allowing us to implement a simple boundary condition in each 1D
pass. The downside of this approach is the introduction of a very thin
layer next to the boundary where gravitational acceleration smoothly
drops to zero. This approach has so far caused no noticeable problems
(e.g. Woodward et al. 2015; Jones et al. 2017; Andrassy et al. 2020;
Blouin et al. 2023; Herwig et al. 2023), but the current context is
trickier because the reflection of IGWs at the inner boundary could
matter. We find that over the course of the computation, fluid motions
are initiated and grow in the thin layer next to the inner boundary.
However, these do not come near to the observed IGW motions
that are set in motion by the convective envelope (as we will see in
Section 3.4, radiative damping dissipates the IGWs well before they
reach the inner boundary), and they should not affect the computed
results in the regions of interest.

3 MAIN PROPERTIES OF THE FLOW

3.1 Centre-plane slice renderings

To visualize the important features of our simulations, Figs 6 and
7 show renderings of the tangential velocity magnitude |U,|, radial
velocity U,, and vorticity magnitude |V x U| for dump 390 (r =
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672 h) of X22 (L = 1000L,, 1536> grid). Those renderings display
a centre-plane slice of the full 3D simulation sphere. In all three
renderings, the convective envelope is easily distinguished from the
radiative zone. The former is characterized by large velocities and
is highly turbulent as revealed by the fine-scale structures in the
vorticity rendering. In contrast, the radiative zone shows slower,
more organized, wave-like flows. As we will see in Section 3.3, the
almost circular structures visible in the |U;| and vorticity renderings
correspond to the superposition of several IGWs with different spatial
and temporal frequencies.

While the behaviour of our simulations is most easily visualized
in the movies available at https://www.ppmstar.org, those static
renderings nevertheless offer important insights. The rendering of the
radial velocity component reveals that the convective envelope hosts
several convective cells, with alternating downdrafts and updrafts
(shown as an alternation of blue and red—orange colours) as we
rotate around the sphere. This is reminiscent of the flow patterns
observed in ppusTAR simulations of He-shell flash convection in
rapidly accreting white dwarfs (Stephens et al. 2021) and of O-
burning shells in massive stars (Jones et al. 2017; Andrassy et al.
2020). However, this is very different from the behaviour found in our
recent simulations of core convection in non-rotating massive main-
sequence stars, where a single dipole mode dominates the convective
flow (Herwig et al. 2023). This also differs from the results of Brun &
Palacios (2009), whose anelastic 3D simulations of the envelope of
slowly rotating RGB stars are also dominated by a large dipole mode,
as previously established by Porter, Woodward & Jacobs (2000).
We attribute this difference to the artificial boundary imposed on
the flow at 900 Mm. The largest scale mode that develops in the
convection zone is limited by the vertical extent of the convection
zone, and therefore a large dipole mode is prevented from forming
in our simulations. We investigate this question in Section 5.

The tangential velocity rendering displays a few high-|U,| (dark
red) structures inside the convection zone that follow the contour of
the convective boundary. Those structures are caused by the inward
moving flows that collide with the convective—radiative interface.
Unable to continue inwards, those flows are forced to turn and
continue in a perpendicular direction, thereby creating high-|U,|
structures. For example, the downdraft seen just a few degrees east
from north in the U, rendering of Fig. 6 creates a high-|U,| double-
wedge structure where it hits the convective boundary. This behaviour
is entirely analogous to the one described in Herwig et al. (2023) for
core convection in massive main-sequence stars. In Section 6, we
will see that it is where those flows impact (or overshoot past) the
convective boundary that waves are excited in the radiative zone.
The |U,|, U,, and |V x U] renderings of the RGB tip simulations are
qualitatively similar to those shown for the bump set-up in Figs 6
and 7. We omit them for conciseness, but they are available, along
with high-resolution movies, at https://www.ppmstar.org.

3.2 Radial profiles

Now that the overall morphology of the flow has been established, we
investigate its properties more quantitatively. Fig. 8 displays radial
profiles of |U,| and |U,| for both the bump and tip set-ups (see also
Fig. A1, which displays the same quantities but this time in terms of
Mach numbers). We omit the 40 Mm < R < 200 Mm region in this
and subsequent radial profile figures as the behaviour of the flow in
this region is tainted by artefacts introduced by the inner boundary
conditions of our simulations (Section 2.2). The results of both the
768% and 1536° simulations are shown and the agreement between
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Figure 6. Centre-plane slice rendering of run X22 (bump set-up, 1536 grid) at dump 390 (r = 672 h). Left: magnitude of the tangential velocity component
|U;| (i.e. perpendicular to the radial direction), with dark blue, turquoise, yellow, red, and dark red representing a sequence of increasing velocities. Right:
radial velocity U,, with blue colours representing inward-moving flows and red—orange colours outward-moving flows. Those renderings were generated to
qualitatively visualize the important features of our simulations. The inner 120 Mm were masked to remove the artefacts introduced by the inner simulation

boundary. High-resolution movies are available at https://www.ppmstar.org.

Figure 7. Centre-plane slice rendering of the vorticity magnitude (same
colour sequence as for |U;| in Fig. 6) for run X22 at dump 390 (¢t = 672 h).
The inner 120 Mm were masked to remove the artefacts introduced by the
inner simulation boundary.

both grid resolutions is excellent. Above 300 Mm, the difference
never exceeds 20 per cent. Larger discrepancies are apparent at R
< 300 Mm for the tip set-up. This can be at least partially explained
by the fact that a smaller grid cell size is required to satisfactorily

resolve the slower flow at small radii (consistent with our discussion
of Fig. 4), but as we will see numerical heat diffusion also plays a
role.

In the convective envelope, the radial and tangential velocity
components have similar magnitudes, except near the convective
boundary where |U;| > |U,|. This is the result of the turning of the
flow when downdrafts collide against the convective boundary, as
described in the previous section and illustrated in Fig. 6. Inside the
radiative zone, the tangential component of the velocity remains two
to eight times larger than the radial component. This qualitatively
matches the expected behaviour for a flow dominated by IGWs,
since these waves have higher amplitudes in the tangential direction.

Fig. 9 shows radial profiles of the vorticity magnitude, |V x U,
for both set-ups and two grid resolutions. As expected, the vorticity
is much higher in the turbulent convective envelope than in the stable
layers dominated by wave-like flows. In the convective envelope,
doubling the resolution results in a ~ 50 per cent increase of the
vorticity. A similar increase was also observed in the convective
cores of our recent PPMSTAR simulations of massive main-sequence
stars (fig. 29 of Herwig et al. 2023). This is due to the fact that the
turbulent cascade in the convective envelope extends to the smallest
scales resolved by the simulation grid. As will be shown in Fig.
A2 (see Section 3.3), doubling the resolution allows this cascade to
extend to smaller spatial scales and therefore increases the vorticity.
This behaviour is to be contrasted with what is observed in the stable
layers. For the bump set-up, the vorticity profiles obtained at 768 and
15367 are in excellent agreement. This indicates good convergence
with respect to the grid resolution: there are no smaller scale motions
to be resolved. The tip set-up behaves somewhat differently as we
find progressively larger discrepancies between both grid resolutions
below 400 Mm.
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Figure 8. Rms radial and tangential velocity for the bump (top panel, X14
and X22) and tip set-ups (bottom panel, X24 and X26) at = 672 h (same
time as in Fig. 6). Profiles calculated from runs on a 768> grid are shown as
solid lines; those from 1536> grids are shown as dashed lines. The vertical
dotted lines indicate the location of the convective boundaries, determined
by finding the location of the maximum U, gradient as in Jones et al. (2017).
Note that the X14 and X22 simulations shown on the top panel were driven
with 1000 x the nominal luminosity (see Table 1).

3.3 Power spectra

To characterize the spatial structure of the flow, we show in Fig.
10 the power spectra of |U| at different radii for runs X22 and X26
(15367 grid, bump and tip set-ups, respectively). In those figures, the
power is decomposed into spherical harmonics, each represented by
their angular degree (or spherical wavenumber) £.' The three largest
radii are in the convection zone, the four smallest are in the stable
layers, and R = 500 Mm is in the convection zone for X22 and in
the radiative zone for X26 (the convective boundary is at R, ~ 470
Mm for X22 and at R. >~ 580 Mm for X26). The maximum ¢
value shown in those spectra is set by the highest degree spherical
harmonics that can be resolved given the angular resolution of the
Cartesian simulation grid when projected on a sphere at a given
radius. Note that the spectra are calculated from the filtered briquette

I'The angular degree ¢ is related to the horizontal wavenumber k;, by k; =

VITFD/R.
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Figure 9. Magnitude of the vorticity for the bump (green) and tip (brown)
set-ups and for runs on 7683 (solid lines) and 1536° (dashed lines) grids.
The vorticity profiles are averaged overs dumps 400 to 420. The simulations
shown here are X14, X22, X24, and X26. Note that the bump simulations
displayed here were driven with 1000 x the nominal luminosity.

data output (Stephens et al. 2021), for which the grid size in each
direction is four times smaller than the computational grid. In the
convection zone, we recover the expected Kolmogorov spectrum at
small spatial scales. The spectra depart from the Kolmogorov £~
scaling at ¢ < 4, which reflects the fact that the £ = 1 and 2 modes are
not able to fully develop in the relatively small envelope included in
our simulations (but would presumably be dominating the power in
the larger convective envelope of a real RGB star, Porter et al. 2000;
Brun & Palacios 2009). Note that we find the same results if we use
a coarser grid resolution, as shown in Fig. A2. The only difference
is that in the high-¢ limit the spectrum departs from the £ scaling
at lower ¢ since smaller scale turbulence is not resolved, consistent
with our discussion of Fig. 9 in Section 3.2.

In this section, it will become clear from the properties of the
flow, and in particular from the frequencies containing most of the
power, that the stable layers are dominated by IGW motions. This
IGW-dominated region has a very different spectrum compared to the
unstable layers. First, the total power decreases rapidly as we move
away from the convective boundary. This signals a strong damping of
the IGWs (also visible in Figs 8-9), which we attribute to radiative
diffusion in Section 3.4. Secondly, for both set-ups, the spectrum
resembles a broken power law with a flat portion up to £ >~ 10-40,
followed by a very sharp (~£~7) decline at higher wavenumbers.
As with the convective layers, the general shape of the spectrum is
insensitive to the grid resolution (Fig. A2). From this observation, we
can infer that the shift in the ¢ value where the spectrum goes from
flat to rapidly decreasing is not simply due to a change in the effective
angular grid resolution with R. As they travel towards the centre of
the star, the high-¢ waves are more readily damped than their low-
¢ counterparts. This IGW spectrum has both important similarities
and differences with previous hydrodynamics simulations. The steep
power law at large ¢ is reminiscent of the Alvan et al. (2014)
simulations of IGWs in the Sun (where the resonant cavity is similar
to that considered here, with IGWs propagating in a radiative zone
surrounded by a convective envelope) and of the massive main-
sequence star simulations of Rogers et al. (2013). The former find
a steep ~—5 to —7 power law (see their fig. 15) and the latter find
a similarly steep ~—4 to —6 power law at large ¢ (see their fig. 6).
However, a major difference is that both Alvan et al. (2014) and

€202 8unf g0 Uo Jasn Blosauul 10 Alsiaaiun Aq 840021 2/90/ L/Z/ZZS/21one/seluw/woo dno olwapeose//:sdiy Woll papeojumo(]


art/stad1115_f8.eps
art/stad1115_f9.eps

6L ]
10 Bump setup

10°
104 L
103
102

10!

|U| power (m2s24~1)

10°F 250Mm  —— 500Mm
—k- 300Mm  —#- 600Mm

350 Mm 700 Mm
- 400Mm 800 Mm

-2 . .
10 1 10 100

1071t

6[ ]
10 Tip setup

105 J
104
103
102

10t F

|U| power (m2s24~1)

10°

107!

1072 -

Figure 10. Power spectrum of |U| at different radii for X22 (bump set-up,
1536° grid) and X26 (tip set-up, 1536 grid). The power is binned as a
function of the spherical harmonics angular degree £. The four largest radii
are in the convective envelope and the four smallest are in the radiative zone.
The spectra were computed by averaging over the last 100 dumps of the
simulations. Note that the sole purpose of the symbols on the lines is to help
distinguish the curves from one another.

Rogers et al. (2013) find a spectrum that is monotonically decreasing
with respect to £, whereas we obtain a flat spectrum at low £.

We note that the comparison of the IGW spectra of Fig. 10 to
those presented in Rogers et al. (2013) and Alvan et al. (2014) is not
rigorous as in those works the IGW spectrum is separated into its
spatial and temporal dependencies,

E(L.v) = f(D)gv). (€]

In Fig. 10, the dependence on the temporal frequency v was
ignored but nevertheless affects the power spectra since the spherical
wavenumber ¢ is coupled to v through a dispersion relation. To
independently study the dependencies on ¢ and v, Rogers et al.
(2013) and Alvan et al. (2014) decompose their spectra into the form
given by equation (1) using singular value decomposition. Naturally,
the spectrum cannot be entirely separated as in equation (1), and in
our case we found that the singular value decomposition led to a
poor representation of the full spectrum. We therefore opted not to
use singular value decomposition to present our IGW spectra. The
same considerations apply to the temporal frequency power spectra
presented below.
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Figure 11. Identical to Fig. 10, but this time only the radial velocity
component is considered in the calculation of the power spectra.

In Fig. 10, we showed the spectra of the total power, that is,
due to displacements both in the radial and horizontal directions.
It is instructive to compare those spectra to spectra computed by
considering only the radial velocity component (Fig. 11). The most
important difference is that instead of being flat at low ¢, the U, IGW
spectra instead increase up to £ ~ 10—40. This behaviour is expected.
For IGWs, the ratio U,/U;, increases with frequency (see Herwig et al.
2023) as the waves approach the Brunt—Viisild frequency and the
vertical motions become more important compared to the horizontal
motions. This can explain the positive slope observed in Fig. 11. A
similar trend is also observed in the IGW spectra of our massive
main-sequence stars simulations (fig. 19 of Herwig et al. 2023) and
in recent 3D simulations of late-type F stars (Breton, Brun & Garcia
2022, fig. 8).

In Fig. 12, we now show the power spectra for the same radii
as in Figs 10 and 11, but this time in the temporal frequency
space. The spectra are truncated at v = 80 pHz (bump set-up) and
v = 104 uHz (tip set-up), which correspond to the Nyquist cut-off
frequencies given the time interval that separates each dump in our
simulations (i.e. higher frequency modes cannot be resolved). To be
clear, higher frequencies are resolved in the simulations themselves,
but the detailed outputs that allow us to reconstruct the power spectra
are written to disc only every ~2000 time-steps. In the stable layers,
the spectra are relatively flat, although for the tip set-up there is
a noticeable decrease of the power at high frequencies. This high-
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Figure 12. Frequency power spectrum at different radii for X22 (bump set-
up, 15367 grid) and X26 (tip set-up, 1536> grid). The spectra were computed
by considering the last 100 dumps of the simulations.

frequency quenching is more pronounced close to the convective
boundary. This is consistent with these waves being IGWs. IGWs
can only propagate when their frequencies are smaller than the local
Brunt—Viisild frequency. Here, the relative amount of power at high
frequencies grows as we move inwards and N increases (Fig. 3).

It is instructive to compare the frequencies that contain most of
the IGW power to the convective frequency v. at the bottom of
the envelope. The convective turnover time-scale is not a precisely
defined quantity, but as the convective cells occupy the maximum
space available to them in the envelope, we can estimate it by
taking the thickness of the envelope (=~ 400 Mm for X22 and
300 Mm for X26) and dividing it by the average convective velocity
(JU| ~5kms™" for X22 and 3kms~! for X26). This yields a
convective turnover time-scale of 22h (v, >~ 13 pHz) for the bump
set-up and 28 h (v, >~ 10 uHz) for the tip set-up. Fig. 12 shows that
a large fraction of the IGW power is contained at frequencies that
exceed v.. This result is consistent with the fact that the power
spectra in the convective envelope are flat (Fig. 12). If there is
no correlation between the convective turnover time-scale and the
convective spectrum, then we also expect to observe no correlation
between the convective turnover time-scale and the IGW spectrum.

Comparing our wave spectra to asteroseismological observations
of RGB stars would be interesting, but this exercise is complicated
by the fact that the IGWs propagating in the radiative interior are
coupled with pressure modes in the envelope (those are known
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Figure 13. Power spectra of U, at R = 700 Mm (top panel) and R = 400
Mm (bottom panel) as a function of the angular degree ¢ and the temporal
frequency for X24 (tip set-up, 768> grid). The spectra were obtained by
considering the last 600 dumps of the simulation. Note the different colour
scale between the two panels.

as ‘mixed’ modes, Aerts, Christensen-Dalsgaard & Kurtz 2010;
Hekker & Christensen-Dalsgaard 2017). Because of this and given
the truncation of the envelope in our simulations, we cannot make
a direct comparison between the frequencies of the mixed modes
detected in upper RGB stars and the frequency spectra of Fig. 12.
Nevertheless, we note that the frequency at maximum oscillation
power for mixed modes ina 1.2 Mg RGB star at the bump luminosity,
Vmax =~ 40 pHz (fig. 1 of Khan et al. 2018), is within the range of
frequencies where IGWs are excited in our simulations (Fig. 12).
To conclude our analysis of the wave spectra, we show in Fig.
13 power spectra of the radial velocity component as a function of
both the angular degree and the frequency for an RGB tip simulation
(X24). We use our longest simulation for this analysis in order to
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attain a finer frequency sampling in the Fourier decomposition. The
power spectrum in the convective envelope (top panel) differs greatly
from the spectrum obtained in the stable layers >~ 0.8 Hp below
the convective boundary (bottom panel). In the convection zone,
the power spectrum is very smooth and has no specific features, as
expected for turbulence. In the IGW-dominated region, we see a more
distinctive power distribution, with no power at high frequencies (due
to the quenching of IGWs with frequencies exceeding N) and in the
low-frequency, high-¢ region of the diagram. The most striking aspect
of this wave spectrum is it blurriness. In contrast, hydrodynamics
simulations of IGWs in stellar radiative interiors usually yield spectra
where the power is predominantly contained in a set of discrete, well-
defined ridges in the £ — v space (Rogers et al. 2013; Alvan et al.
2014, 2015; Horst et al. 2020; Thompson et al. 2023), with each ridge
corresponding to a specific radial order of standing IGW modes (or g
modes). The absence of such ridges in Fig. 13 suggests that standing
modes are not formed in our simulations or, in other words, that the
mode lifetime is very short.

For standing waves to form, two progressive (or travelling) IGWs
have to constructively interfere with each other. Here, this would
require that IGWs excited at the convective boundary and travelling
inwards undergo a reflection somewhere close to the centre of the
star. This reflection would generate outward travelling waves that
could constructively interfere with the inward travelling waves to
create standing modes. The absence of standing modes in Fig. 13
therefore suggests that only inward moving progressive waves exist
in our simulations. This situation is analogous to that described in
Alvan et al. (2015) for a solar-like star, where low-frequency IGWs
are damped before reaching their reflection point near the centre. In
the solar case, the reflection point is located where the Brunt—Vaiisila
frequency N becomes equal to the IGW frequency. Here, N remains
larger than the IGW frequency all the way to the inner simulation
radius, effectively meaning that the waves can only be reflected at
that radius (remember that we use reflective boundary conditions).
But Figs 10 to 12 show that the power contained in the IGWs
is strongly damped as the waves propagate inwards, which most
likely explains the absence of reflected waves (and, by extension, of
standing modes).

3.4 IGW damping

In the previous sections, we have seen how the amplitude of IGWs
drops as they propagate inwards (Figs 8—12). What is the cause of
this decrease? In a simulation without any heat diffusion and without
any non-linear interactions between waves, we expect the luminosity
of each wave (i.e. the kinetic energy transported by wave packets
moving radially at the group velocity U, ,),

LY = 4x R*p(U} + U)Ug., 2)

to remain constant as a function of R. Using the IGW dispersion
relation (e.g. Press 1981), equation (2) can be expressed more
conveniently as

LIGW =471R3,0U2L\/1 — w?/N? 3)

b VI '

where w = 2mv. In Fig. 14, the dashed lines show the decrease
in U, predicted using this equation for four different (¢, v) pairs
representative of the IGWs present in our simulations. The IGW
velocities are predicted to only decrease by a factor ~2 between

the convective boundary and R = 200 Mm, a much more modest
effect than the two orders of magnitude drop observed in Fig. 8. A
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Figure 14. Predicted decrease of the velocity of individual IGWs as they
travel inwards from the convective boundary in the tip set-up. The dashed lines
correspond to the case without radiative diffusion (constant wave luminosity,
equation 3), while the solid lines show the case with radiation diffusion.
The (¢, v) pairs shown here are typical values for the IGWs observed in our
simulations (see Fig. 13).
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Figure 15. Rms radial and tangential velocity for the tip set-up simulations
without radiative diffusion (X32 and X33) at ¢t = 629 h. The solid lines are
for X32 (768 grid) and the dashed lines are for X33 (1536 grid). The vertical
dotted lines indicate the location of the convective boundaries.

non-adiabatic effect must therefore be invoked to explain the wave
amplitude damping observed in our simulations.

If radiative diffusion is considered, the wave velocities are damped
by an additional attenuation factor e, where 7 is analogous to an
optical depth and is given by (Zahn, Talon & Matias 1997)

¢ 32 /R 2 2
. [+ 1)] / KNNT N |dr|’ @)
2 Res w* N2 —w? r3

where K is the thermal diffusivity,

4acT?
K j—

T Bkepp?’

(&)

with a the radiation constant, ¢ the speed of light, « the Rosseland
mean opacity and c, the specific heat at constant pressure, and N7 is
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the thermal component of N,

g 0lnp

Nj=———"
T HpdlnT

(Vaa = V), (0)
where the temperature gradients have their usual meanings. The
solid lines of Fig. 14 show what happens if we include this radiative
damping in our predictions of the IGW velocities. A sharp ~100
x damping is predicted between the convective boundary and R >~
200 Mm, which agrees very well with our simulations (compare to
Fig. 8).

To verify that radiative damping is indeed the mechanism leading
to the IGW velocity decrease, we have performed two additional
nominal-luminosity RGB tip simulations without radiative diffusion
(X32 and X33, respectively, on 768> and 1536° grids). Heating at
the inner boundary is turned off for these runs, since with K = 0 this
extra heat would be spuriously trapped in the radiative cavity. Fig. 15
compares the spherically averaged velocity profiles of X32 and X33.
It is entirely analogous to the bottom panel of Fig. 8: the same grid
resolutions are considered and the same simulation set-up is used.
The only difference is the omission of radiative diffusion. Clearly,
the IGW velocities still undergo a considerable decrease between the
convective boundary and R = 200 Mm even if radiative diffusion is
omitted. Remember that only a factor ~2 decrease is expected in the
purely adiabatic case (dashed lines in Fig. 14). The stronger decline
must be due to a non-adiabatic effect that we attribute here to the
numerical diffusion of entropy, which mimics radiative diffusion.
This interpretation is supported by the fact that the velocities decline
faster when the grid resolution is lower (compare the dashed and solid
lines in Fig. 15), pointing to a numerical effect. Note that we have
also observed numerical heat diffusion in our recent core-convection
simulations (Herwig et al. 2023).

We stress that the observed velocity damping is not due to
numerical viscosity. If it were the case, we would expect to also
see the same significant difference between both grid resolutions
for simulations where radiative diffusion is included, as this effect
operates independently from radiative diffusion. But this is not the
case: the difference between the 768* and 1536° grid resolutions
is much smaller when the simulations include radiative diffusion
(Fig. 8). This observation is naturally explained by numerical heat
diffusion. Numerical heat diffusion is hardly noticeable in Fig.
8 because radiative diffusion has a considerably larger effect. In
contrast, numerical heat diffusion is very important in the case where
K = 0, since it becomes the only mechanism available for entropy
diffusion.

Three important conclusions follow from the analysis presented
in this section. First, numerical heat diffusion operates in our
simulations, but is much weaker than radiative diffusion and can
therefore be ignored. Secondly, radiative damping can naturally
explain most of the decrease of the IGW velocities observed in our
simulations. Thirdly, the spurious behaviour of the flow at the inner
simulation boundary (Section 2.2) can be ignored, since radiative
damping strongly suppresses the IGWs before they reach that radius.

4 MIXING BY IGW

Now that we have established the main properties of the flow, we
turn to the problem of estimating the mixing enabled by IGWs in
the radiative zone. To do so, we first perform an estimate of the
diffusion coefficient D based on the vorticities and a simple analytical
prescription (Section 4.1), and we then attempt to measure D more
directly by studying the time evolution of a passive fluid added to our
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simulations (Section 4.2). As we will see, the second, more robust
method disagrees with the first.

4.1 Estimating the mixing from the vorticity

4.1.1 Theoretical framework

IGWs can cause vertical mixing in the stable layers of stellar interiors
if their horizontal velocity shear is high enough to overcome the
tendency of the fluid to remain stratified. In the adiabatic case (no
heat diffusion), this is expected to take place only if the Richardson
number drops below 1/4,

N2 1

In our RGB stars, Ri > 1/4 throughout the radiative zone (except
within ~ 0.1 H, from the convective boundary) and no vertical
mixing is therefore expected based on this simple criterion. But
in real stars (and in our simulations), radiative diffusion modifies
equation (7) and may allow mixing to take place at larger Ri (Zahn
1974). The diffusion coefficient due to IGW shear proposed by Zahn
(1992) is then given by
D~ K 8

=R ®
where 7 is a dimensionless parameter of order 0.1 (Prat & Ligniéres
2013; Garaud & Kulenthirarajah 2016; Pratet al. 2016). In the present
context, this equation can be written as (section 2.4 of Herwig et al.
2023)

2

pmor K0 o

where we have also assumed that n = 0.1.

4.1.2 IGW vorticity scaling for the bump set-up

In order to estimate D using equation (9), we need the vorticity
profiles |V x U] from our simulations. We have already shown those
quantities in Fig. 9, but only the vorticity profile for the tip set-up
is directly usable. As the RGB bump simulations are driven with a
luminosity that is much higher than the nominal value (see Table 1),
the flow velocities and vorticities are necessarily overestimated.

To extrapolate our RGB bump results to nominal luminosity, we
use our series of 768> simulations with different heating rates. The
mean vorticity measured in the convection zone is shown in the top
panel of Fig. 16, where it can be seen that it follows a L' scaling law
as previously established in the case of core convection in massive
main-sequence stars (Herwig et al. 2023). This is consistent with Fig.
4, which shows that the velocities also scale with L3, as observed
in previous 3D hydrodynamics simulations (see Section 2.2). As
argued by Herwig et al. (2023), the fact that both the velocity and
the vorticity scale with L requires that the spatial spectrum in the
convection zone is independent of the heating factor.

We find a shallower ~L'"* scaling when we measure the vorticity
200 Mm =~ 1 Hp below the convective boundary (bottom panel of
Fig. 16). Note that the vorticities for the lowest heating factors should
be interpreted with caution as they correspond to very low velocities
(Ma < 107 for L < 100L,), a regime where the validity of our
simulations is questionable. This explains why the L = 10L, point
does not line up with the trend established at higher luminosities (see
also Fig. 4). Note also that this L"* scaling law is not well defined
(e.g. L' would give a similar fit to the data), but we assume L' in
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Figure 16. Mean vorticity in the convection zone (top panel) and in the stable
layers 200 Mm (=~ 1 Hp) below the convective boundary (bottom panel) as
a function of the boost factor applied to the luminosity. The vorticities are
averaged over the same dumps as in Fig. 4. These simulations are all for the
RGB bump set-up and a 768> grid.

what follows. This result strongly differs from the L?3 scaling found
in Herwig et al. (2023). As shown in Section 2.2, we also observe a
different scaling of the IGW velocities (L' here compared to L>3
in the core convection case) and in this respect it is not surprising to
also find a different scaling of the vorticities.

However, unlike Herwig et al. (2023), we do not observe the same
scaling for the velocities and for the vorticities. This implies that
the spatial IGW spectrum changes as a function of heating rate.
Fig. A3 shows the |U| power spectra measured 200 Mm below the
convective boundary (as in Figs 4 and 16) for different heating rates.
It reveals that there is indeed a strong dependence of the power
spectra on the heating rate, with more power at low £ relative to high
¢ when the luminosity is increased. This is qualitatively similar to
the findings of Le Saux et al. (2022, fig. 5), but this comparison is
misleading for at least two reasons. First, the IGW spectra measured
in our simulations (Fig. 13) are very different from those reported
in Le Saux et al. (2022). Their spectra show well-defined IGW
standing modes, but also contain a significant amount of power at
low frequencies and over all wavenumbers. Secondly, the spurious
migration of the convective boundary in our simulations (Section 2.2)
operates more rapidly when the heating rate is increased, meaning
that the spectra shown in Fig. A3 are not all determined at the same
radius since they are measured at a fixed distance from the convective
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Figure 17. Estimate of the diffusion coefficient in the radiative zone due
to IGW mixing based on the Zahn formula (equation 9). Those results are
based on the vorticities measured in X22 and X26. For the bump set-up, the
L' scaling law (Fig. 16) was used to extrapolate the vorticity to nominal
luminosity. For each set-up, a circle marks the location of the convective
boundary and a horizontal arrow indicates the radial extent of half a pressure
scale height. The thin black lines correspond to the best fit to D assuming
the double-exponential convective boundary mixing prescription of equation
(10). The values of the f parameters are given next to each segment.

boundary. Moreover, this implies that the IGWs are not excited at
the same location in the star. Ideally, we should compare the wave
spectra and the IGW vorticities at the same radius and for simulations
where the convective boundary is at the same location. This cannot
be accomplished with our current simulations. Using earlier dumps
for high-L runs where the boundary moves rapidly is not possible
because the boundary migrates before the dynamics has the time to
reach a steady state. We are therefore forced to conclude that the
scaling laws that we have determined for the IGW velocities and
vorticities in the RGB bump set-up are most likely incorrect. In the
absence of any suitable alternative, we will nevertheless use them in
what follows. Fortunately, this problem does not affect our RGB tip
simulations, where no extrapolation to low luminosities is required,
and it does not impact any of the conclusions of this work.

4.1.3 Diffusivity estimates

Equipped with our scaling relation for |V x U] in the radiative zone
of the bump set-up, we can now estimate D by virtue of equation
(9) for both set-ups. Fig. 17 shows the resulting diffusivity profiles.
The magnitude of D in the stable layers is quite significant and
suggests that IGW mixing could alter the evolution of upper RGB
stars. For reference, at the bump luminosity, a diffusion coefficient
of ~ 10° cm? s~ at the base of the envelope is needed to explain the
observed RGB extra mixing (Denissenkov & VandenBerg 2003).
The diffusion coefficient profiles of Fig. 17 follow a distinctive
double-exponential decay near the convective boundary, a conclusion
that does not depend on the uncertain RGB bump vorticity scaling
law. D initially decreases rapidly close to the radiative—convective
interface but then exhibits a shallower decay further inside the
radiative zone. This behaviour is reminiscent of the prescription used
by Battino et al. (2016), and based on the stellar hydrodynamics
simulations of Herwig et al. (2007), to model mixing below the
convective envelopes of thermally pulsating asymptotic giant branch
(AGB) stars during the third dredge-up. With this prescription, D at
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a distance z below the convective boundary is given by

_ [ Doexp [-2z/(f1Hp )] 7=
= {DZ exp [—2(z — 22)/(faHp )] 7> 22, 10
where
Dy = Dyexp [—222/(fiHpo)] » (11)

D, is the diffusion coefficient at the convective boundary, Hp g is
the pressure scale height at the boundary, and fiHp ¢ and f2Hp o
are the overshoot scale heights (Freytag, Ludwig & Steffen 1996;
Herwig 2000). We show in Fig. 17 the values of f; and f, obtained
by fitting equation (10) to the D profiles for the first 150 Mm below
the convective boundary. If the Zahn formula is correct, if n remains
constant from the bump luminosity to the tip of the RGB, and if n
is constant throughout the radiative zone (we return to this point in
Section 4.2), then Fig. 17 implies that the f values change throughout
the RGB evolution and that a single prescription cannot be used to
describe all the upper RGB evolution.

Battino et al. (2016) adjusted the free parameters of equation (10)
in order to reproduce the IGW mixing calculations of Denissenkov
& Tout (2003), based on the IGW mixing prescription of Garcia
Lopez & Spruit (1991). The extra mixing generated with this simple
model was shown to be able to generate a '*C pocket in the
radiative zone of AGB stars that is large enough to obtain s-process
yields that are compatible with observations. While promising, this
mixing prescription has not yet been verified with multidimensional
hydrodynamics simulations of the stable layers below a convective
envelope. In this context, our results shown in Fig. 17 offer additional
support for the double-exponential prescription used in AGB models.
While the radial stratification of a thermally pulsating AGB star
obviously differs from that of an upper RGB star, there are significant
similarities (e.g. comparable luminosities, analogous geometries). It
is therefore encouraging to recover a double-exponential profile in
our simulations, especially since the f values we find are approxi-
mately similar to those assumed by Battino et al. (2016, f; = 0.014
and f5, = 0.25).

4.2 Constraints on the diffusivity from the time evolution of a
tracer fluid

The diffusivity estimates presented in the previous section are far
from robust. Apart from concerns regarding the RGB bump vorticity
scaling law, their validity depends on the correctness of the Zahn
formula (equation 9) and on the assumed 7 value. Here, we attempt
to measure the mixing more directly using a second passive fluid.
ppMsTAR follows species advection using the high-order PPB scheme
(Woodward et al. 2015). In set-ups that include a composition
gradient (e.g. Herwig et al. 2023), a passive dye cannot be directly
inserted in the simulations as PPMSTAR is currently a two-fluid code.
Fortunately, our RGB set-ups have a uniform composition and a
second fluid with the same mean molecular weight as the first fluid
can be added to our base states. This is equivalent to adding a passive
tracer. It has no effect on the flow but allows us to directly measure
species mixing.

We initialize the concentration of this second fluid as a series of
spherical shells with Gaussian radial profiles. The expectation is that
shear-induced IGW mixing will spread those Gaussian profiles in
the stable layers. The diffusion coefficient can then be recovered
by measuring the rate at which the fractional volume of the second
fluid at the peak of each Gaussian (FV,,,) decreases with time. By
applying the diffusion equation to a Gaussian, one can show that the
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diffusion coefficient can be calculated as

dFV e /dt
_ 12
FVmax,O UO ’ ( )

D=—
where dFV ,.x/dt is the rate at which the FV at the peak of a Gaussian
decreases, FV o 1s its initial value, and o is the initial standard
deviation of the Gaussian. Note that equation (12) assumes that
the width of the Gaussian remains constant, which is an excellent
approximation for the relatively short time-scales over which our
simulations are performed.

Previous experience has taught us that the grid resolutions we have
been using so far in this work (768 and 1536°) are insufficient to
measure diffusion coefficients with this technique. In fact, in Herwig
et al. (in preparation) we show that in massive main-sequence stars
the measured D steadily decreases with increasing grid resolution
due to numerical entropy diffusion up to at least 26883. We therefore
jump directly to a very high 2880° resolution for this analysis (run
X30, see Table 1), and any mixing measured at that resolution should
be interpreted as an upper limit given the results of Herwig et al. (in
preparation). The set-up for this new run is identical to that described
above for the tip RGB X26 run, except that (1) FV Gaussians with
0o = 8.3 Mm (corresponding to a full width at half maximum of ~
25 grid cells) are placed 100 Mm apart in the stable layers, (2) the
convective envelope now extends further out to Ry,x = 1100 Mm (we
can afford this extension given the larger 2880° grid resolution), (3)
we have disabled heat conduction at the inner and outer boundaries.
This last change was made after we realized that simultaneously
cooling the top layers and allowing heat to escape through radiative
diffusion at the outer boundary was effectively cooling the star by
more than 1 L,. By omitting radiative diffusion at the boundary, we
can now precisely set the luminosity to 1 L, by cooling the upper
layers at that exact rate. Due to the large computational cost of the
28807 grid, X30 ran for a shorter total duration than other simulations
presented so far (552 h of star time, see Table 1). Nevertheless, as we
will show below, this is sufficient to establish useful constraints on
D.

Fig. 18 shows the evolution of the height of the two Gaussians
closest to the convective boundary (at R = 450 and 550 Mm), where
IGW mixing is expected to be the strongest (Fig. 17). The amplitude
of the Gaussians was recovered by fitting the radial FV profiles
with a Gaussian. Initially, at 7 < 250 h, FV ,, fluctuates a lot. This
is entirely attributable to the initial transient at the beginning of our
simulation and for this reason we discard the # < 300 h portion of the
time series from the rest of our analysis. If strong IGW mixing was
present, we would expect to observe a decrease of FV ,x for ¢ > 300
h. At R = 550 Mm, we do not see any evidence for such decline (top
panel of Fig. 18). The Kendall rank correlation coefficient between
FViax and ¢ is consistent with the null hypothesis where there is
no dependence of FV,,, on ¢ (p-value of 0.057). Similarly, a linear
fit to the data gives a positive but statistically insignificant slope,
dFV 0 /dt = (2.6 £ 1.0) x 107'%s7! (dashed line in Fig. 18). From
this linear fit, we can extract a lower limit on dFV,,,,/dr by taking
the 5o lower limit, dFV . /df > —2.5 x 107195~ (dotted line in
Fig. 18). Using equation (12), we find that this corresponds to
log D (cm?s™') < 8.2. In contrast, a tentative decline of FV . is
visible for the 450 Mm Gaussian due to the lower noise level in
the FV . time series (compare both panels of Fig. 18). We find
a Kendall rank correlation coefficient of 0.48, significantly different
from 0 with a p-value of 10~'3. This time, a linear fit to the data yields
dFVia/dt = —(1.03 £0.11) x 10~'9s~!, which allows a tentative
measurement of log D (cm?s™!) = 7.80 4 0.05. It is possible that
this downward trend is only temporary and that a longer simulation
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Figure 18. Time evolution of the fractional volume of the peak of the tracer
fluid Gaussians inserted at R = 550 Mm (top panel) and at R = 450 Mm
(bottom panel) in run X30. The dashed lines are linear fits for # > 300 h and
the dotted line shows a lower limit on dFV .. /dr (see the text). Note the
different vertical scales for both panels.
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Figure 19. Estimate of the mixing coefficient based on equation (9) and the
vorticities measured in X30 at dump 700 (r = 552 h, solid brown line), and
measurements of the diffusion coefficient based on the analysis of the tracer
fluid Gaussians (squares). The formal error on the D measurement at 450 Mm
is smaller than the size of the symbol.
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would show a stabilization of FV .. As for the Gaussians located at
smaller radii (250 and 350 Mm), we find that they do not maintain
their Gaussian shapes to a sufficiently high level of accuracy to
allow a precise determination of FV .. Part of the problem is that
the fluctuations of FV at smaller radii are much smaller (as can be
inferred from Fig. 18). This means that FV,,x must be determined
with an increasing precision, making even small departures from
perfect Gaussianity problematic. The artefacts introduced by the
inner boundary are also a consideration at those small radii.

InFig. 19, we compare our estimates of D described in the previous
paragraph to D calculated using equation (9) and the vorticities
measured in X30. The latter D estimates differ from that previously
shown in Fig. 17, which can be explained by the higher grid resolution
of X30, the different boundary conditions, and the slightly larger
convective envelope. The main takeaway from Fig. 19 is that we can
rule out IGW mixing on the scale predicted by Zahn’s formula with
n = 0.1. There is a factor 6 discrepancy between both D estimates at
450 Mm and a factor 225 discrepancy at 550 Mm. The n = 0.1 value
we have assumed so far is only a rough order of magnitude estimate
based on existing numerical simulations. A different value of 7 is
certainly possible. For instance, Garaud & Kulenthirarajah (2016)
recommend 1 ~ 0.02, which would improve the agreement between
both estimates in Fig. 19. Furthermore, existing 1 determinations
are still tentative given that they are based on low Reynolds number
numerical simulations (Garaud 2021). Taken at face value, our FV-
based D determinations also suggest that 1 is not constant through
the stable layers: the 450 Mm Gaussian implies n ~ 0.02 and the
550 Mm implies n < 0.004. Previous numerical simulations have
found a dependence between the turbulent Reynolds number and the
value of n (Prat et al. 2016). This may be related to what we observe
here.

In any case, the analysis of the time evolution of the Gaussians
presented in this section represents a much more direct assessment
of the efficiency of IGW mixing, and the results from this analysis
take precedence over those presented in the previous section based
on the application of Zahn’s formula. Given that we find that
D (cm?s™') ~ 10® at most close to the boundary (remember that
the finite grid resolution implies that the measured D at 450 Mm
is formally an upper limit, Herwig et al. in preparation), our
hydrodynamics simulations a priori suggest that IGW mixing is not
an important mixing mechanism in the radiative zones of RGB stars
and that it cannot provide the missing extra mixing required to explain
upper RGB surface compositions. A diffusion coefficient of the order
of 10° cm? s~! throughout the upper RGB would be needed, and here
we do not even reach that value at the RGB tip, where the luminosity
is highest and IGW mixing is expected to be most efficient. That being
said, we will see in Section 5 that this conclusion is not definitive
and that in a real RGB star IGW mixing may be more efficient.

5 EFFECT OF THE ENVELOPE SIZE

To document the effect of including a limited portion of the
convective envelope in our simulations, we performed an additional
run (X25) where we extended our set-up to Ry, = 1800 Mm instead
of our fiducial 900 Mm. We performed this run on a 1536 grid,
meaning that it has the same resolution as X24 (performed on a 768°
grid with Ry,.x = 900 Mm) in the region where both grids overlap.
By comparing X24 and X25, we can therefore assess the impact of
including a larger envelope while controlling for the grid resolution.
Fig. 20 shows a vorticity magnitude rendering of X25. As expected,
larger eddies are able to develop in this extended convective envelope.
Throughout the simulation, the flow is dominated by just a few large
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Figure 20. Centre-plane slice rendering of the vorticity magnitude for run
X25 at dump 430 (+ = 1140 h). As in Fig. 7, |V x U] increases when going
from dark blue to turquoise, yellow, red, and dark red. The inner 120 Mm was
masked to remove artefacts introduced by the inner simulation boundary.

cells (three are clearly visible in Fig. 20), which is to be contrasted
with the many small cells that characterize the rest of our simulations
(Section 3.1). Accordingly, we find that the U, power spectrum in the
convective envelope now exhibits a Kolmogorov £~53 scaling down
to £ = 2 (Fig. A4). Extending the envelope even further out would
presumably allow a single large dipole mode to develop. However,
for a computationally feasible grid size, this would result in a grid
resolution that is too poor to properly characterize IGWs in the
radiative zone. This conundrum could be resolved in the future by
using a nested grid with smaller cells in the central radiative layers
and larger cells in the convective envelope. This capability is not yet
implemented in ppMsTAR. For now, the extended envelope of X25
is enough to document the sensitivity of the IGWs on the size of
the convective envelope; we postpone a proper convergence study to
future work.

How does the development of larger convective cells affect the
properties of the IGW-dominated flow in the radiative zone? Fig.
21 shows that the flow is 1.5-2 times faster in the convection zone
with the extended envelope set-up. Those faster convective motions
in turn excite a more rapid flow below the convective boundary, with
|U,| and |U,| up to ~~4 times faster in the radiative zone when a larger
envelope is used (see also Fig. A4). The vorticities are naturally also
enhanced by up to a factor ~3. Note however that the increase in
vorticity is less pronounced in the outermost radiative layers: |V x
U| grows by only >~ 50 per cent at 0.5 Hp below the convective
boundary. This vorticity enhancement would directly impact our
Zahn diffusion coefficient estimate (equation 9) and increase it by
up to one order of magnitude (the radiative diffusivity K and the
Brunt-Viisiléd frequency N in the stable layers are not affected by
the inclusion of a larger envelope). The enhanced vorticity would
also conceivably affect our constraints on D based on the analysis of
the time evolution of the tracer fluid Gaussians (Section 4.2). Future
work should focus on this aspect of the problem. We are forced to
conclude that our tentative measurement of D in Section 4.2 should
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Figure 21. Rms radial velocity (blue), rms tangential velocity (orange), and
vorticity magnitude (grey) for X24 (small convective envelope, solid lines)
and X25 (large convective envelope, dashed lines) at dump 400. The vertical
dotted line indicates the location of the convective boundary.
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Figure 22. Evolution of the spherically averaged temperature gradient V in
run X30 (solid lines). The intersection of the adiabatic (V ,q, dashed lines) and
radiative (Vaq, dash—dotted lines) temperature gradients is the Schwarzschild
boundary. The convective boundary, defined here as the radius where the
maximum U, gradient is reached, is indicated by a circle. The dotted lines
show the evolution of FV (see the text). The establishment of a penetration
zone beyond the formal Schwarzschild boundary can be observed.

be interpreted as a lower limit, as simulations including the full
envelope would most likely result in more efficient mixing. Hence,
we cannot conclusively rule out the idea that IGW mixing on the
upper RGB is an important mixing mechanism and possibly at least
part of the solution to the extra mixing problem.

6 THE CONVECTIVE BOUNDARY

We now leverage the exceptionally high resolution (2880%) of our
X30 simulation to examine the properties of the convective boundary.
Because radiative diffusion at the outer boundary has been omitted in
X30 (see Section 4.2), heat is removed from the star at the same rate
as it is injected. As a result, the Schwarzschild boundary does not
migrate as in previous runs, therefore enabling a meaningful study
of the boundary region.

Fig. 22 tracks the evolution of the spherically averaged temperature
gradients and FV profile in the boundary region (for reference, the
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Intruding
plume

Figure 23. Centre-plane slice rendering in the convective boundary region of the vorticity magnitude (left panel) and radial velocity component (right panel)
for run X30 at dump 690 (+ = 544 h). The colours have the same meanings as in Figs 6 and 7. In each panel, the inner circular arc marks the location of
the spherically averaged convective boundary, defined here as the radius where the maximum U, gradient is reached. The outer circular arc designates the
Schwarzschild boundary. The region between the two circular arcs is the nascent penetration zone. A large plume traversing the penetration zone and intruding
into the stable layers excites IGWs (indicated by two arrows). High-resolution movies are available at https://www.ppmstar.org.

evolution of the Brunt—Viisilid frequency is also given in Fig. AS).
In Section 4.2, we analysed the time evolution of the FV Gaussians
located well into the radiative zone, at R = 450 Mm and R = 550
Mm. X30 also includes an FV Gaussian centred at R = 650 Mm, very
close to the convective boundary. The ingestion of this Gaussian into
the convective envelope provides a useful diagnostic for the extent
of the fully mixed envelope. There are several things to note in Fig.
22:

(i) While the formal Schwarzschild boundary is virtually station-
ary, the dynamic convective boundary (defined, as previously in this
work, as the location of the maximum U, gradient) migrates inward
(circles in Fig. 22);

(ii) The temperature gradient in the region between the
Schwarzschild and convective boundaries departs from the V4 value
expected in the radiative zone and instead gradually approaches the
adiabatic gradient V,q;

(iii) The fully mixed region (i.e. the region where FV is constant)
grows past the Schwarzschild boundary.

All those properties point to the formation of a convective
penetration zone. Formally, a penetration zone is a region where both
entropy and composition are mixed by convective motions beyond
the Schwarzschild boundary (Zahn 1991; Hurlburt et al. 1994;

Brummell, Clune & Toomre 2002; Anders et al. 2022b). Convective
penetration below a convective envelope has been observed in 3D
hydrodynamics simulations of a Sun-like star (Brun et al. 2011) and
of a 5 Mg star at the end of central He burning (Viallet et al. 2013),
two examples where the geometry is similar to that of the RGB
case. While the limited length of our simulation does not allow the
establishment of a fully mixed, stationary penetration zone, it is clear
from Fig. 22 that such a region is in the process of being formed.
The thermal diffusion length-scale VKt over the full simulation
(t =552 h) is =~ 50 Mm, which explains why the penetration zone
had the time to build up but has not yet reached a steady state.

To visualize this nascent penetration zone, we show in Fig. 23 ren-
derings of the vorticity magnitude and radial velocity in the bound-
ary region. The outer white circular arc marks the Schwarzschild
boundary. Turbulent motions visible in the vorticity rendering extend
well beyond this radius and up to the dynamic convective boundary
(identified by the inner white circular arc): this is the convective
penetration zone. In fact, this is very similar to the behaviour observed
by Anders et al. (2022b) in their 3D hydrodynamics simulations
performed in a simplified plane-parallel geometry (compare the left
panel of Fig. 23 to the left panel of their Fig. 1). While the penetration
zone is not fully established, it is still useful to compare its extent
to existing observational constraints. We can infer from Figs 22 and
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Figure 24. Diffusion coefficient measured in the X30 simulation by inverting
the FV profile evolution (black dashed line) and by tracking the FV Gaussian
spreading as described in Section 4.2 (black squares). The grey dashed line is
an MLT estimate of D assuming o = 0.75. The red line is a simple model that
assumes an MLT diffusivity with a variable « (equation 14) in the unstable
layers and a double-exponential decay below the Schwarzschild boundary (f;
=0.06 and f> = 0.9, see the text for details). Two circles mark the locations of
the Schwarzschild and convective boundary (defined as before as the location
where the maximum U, gradient is reached).

23 that after 550 h of simulation time, the penetration zone extends
~ 0.2 Hp beyond the Schwarzschild boundary. Interestingly, it has
been shown that the inclusion of a ~0.25Hp overshooting below the
Schwarzschild boundary can eliminate the discrepancy between the
observed and predicted location of the RGB bump (Cassisi et al.
2011; Fu et al. 2018; Khan et al. 2018).

The renderings of Fig. 23 reveal more than just the formation
of a penetration zone. We also see a large plume moving inward
(remember that blue colours stand for inward motions in our U, ren-
derings) and traversing the spherically averaged dynamic convective
boundary to reach the stable, IGW-dominated interior. This points
to the presence of an overshoot zone beyond the penetration zone,
where the convective motions are too weak to efficiently mix entropy
and composition. This is in line with the schematic picture discussed
by Zahn (1991) and recently illustrated by Anders et al. (2022a, fig. 1;
see also fig. 14 of Hotta 2017). In the vorticity rendering of Fig. 23,
we can even see how the intrusion of this plume in the radiative
region excites IGWs. On each side of the plume, there are structures
that form an angle with respect to the almost circular patterns that
otherwise dominate the vorticity rendering of the stable layers. Those
structures, indicated by two arrows in Fig. 23, are IGWs excited by
the intruding plume (this is most clearly seen in the movie). This
suggests that penetrative plumes are an important wave excitation
mechanism, consistent with our findings of Section 3.3 based on the
IGW power spectra. That being said, it is possible that in a real RGB
star, with a much large convective envelope, the dipolar global flow
morphology prevents the formation of such plumes.

The evolution of the FV profile in Fig. 22 can be used to infer the
diffusion coefficient close to the convective boundary. As in Jones
et al. (2017), we take the FV radial profiles at different times and
invert the 1D diffusion equation to determine the profile D(R) that
can reproduce the observed change. The resulting D(R) is shown as
a black dashed line in Fig. 24. Our diffusion coefficient inversion
technique only works if the gradient of FV is not zero, meaning that
we cannot measure D further out in the envelope than what is shown
in Fig. 24. Note also that this method cannot be applied in the stable
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layers, where diffusion is much slower and the approach used in
Section 4.2 is the best option. In Fig. 24, we show with a grey dashed
line the diffusion coefficient predicted by the MLT formula

1
DMLT: gUO(Hp, (13)

where we have assumed that U corresponds to the total velocity
amplitude in the PPMSTAR simulation and where we have fixed o =
0.75 in order to fit the measured diffusivity (black dashed line) in
the envelope far from the Schwarzschild boundary. As previously
observed in other hydrodynamics simulations, a constant « value
leads to an overestimation of D close to the boundary, a problem that
can be solved by reducing the mixing length near the boundary (Jones
et al. 2017; Herwig et al. 2023). We found that a good prescription
for « is given by

o = min(0.75, 1.8 AR + 0.08), (14)
where
R—R
AR = — 58 (15)
Hp

with Rgp the radius of the Schwarzschild boundary. This yields an
excellent fit to the measured diffusivity in the convection zone (red
line in Fig. 24 for R > Rgg). The simpler prescription suggested by
Jones et al. (2017, Equation 4) and the exponential parametrization
of Herwig et al. (2023, Equation 9) cannot reproduce the measured
diffusivity to a comparable degree of accuracy.

To extend our diffusivity model below the Schwarzschild bound-
ary, we use the double-fprescription of equation (10). We find that this
particular convective boundary mixing model cannot simultaneously
match the measured diffusivity in the penetration zone (black dashed
line for R < Rgsp in Fig. 24) and in the stable layers (square symbols
as in Fig. 19). The best overall match is given by f; = 0.06, f, =
0.9and D, = 1.7 x 10%cm?s™" (z = 105Mm = 0.41Hp o), and is
displayed as a red line for R < Rgp in Fig. 24. This simple diffusivity
model, with a modified mixing length in the unstable layers and a
double-exponential profile below Rgg, can be easily implemented in
1D stellar evolution codes, with the caveats that it underestimates
mixing in the penetration zone and that it may not apply to the rest
of the RGB evolution.

7 CONCLUSION

We have presented the first 3D hydrodynamics simulations of IGW
excitation and propagation in RGB stars. These simulations clearly
show that a rich spectrum of IGWs is generated in the radiative
zones of low-mass upper RGB stars (Section 3). By analysing the
time evolution of a tracer fluid, we measured the mixing enabled
by IGWs in the radiative interior (Section 4). In our simulations,
we find that IGW mixing is too weak to explain the missing RGB
extra mixing, but we cannot rule out that this mixing mechanism is
much more efficient in real RGB stars. In fact, our simulations only
include a limited portion of the convective envelope, and we have
shown how this probably leads to an underestimation of IGW mixing
in the radiative zone (Section 5). This is the most critical aspect of
our simulations to be improved in future work. We have also studied
the properties of the envelope convective boundary (Section 6). We
found evidence for the establishment of a convective penetration zone
and for the excitation of IGWs in the stable layers by plumes that
traverse the penetration zone and encroach into the radiative zone.
We also provided a simple prescription for the diffusion coefficient
in the boundary region.
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Promisingly, we also find that the vorticity profiles measured below
the convective boundary in our RGB simulations yield support to the
idea that IGW mixing may be responsible for the formation of the 1*C
pocket in AGB stars. This should be further studied with dedicated
AGB hydrodynamics simulations.
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APPENDIX A: SUPPLEMENTARY FIGURES

This appendix contains additional figures that are all referenced in
the main text.
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Figure A1. Rms radial and tangential velocity for the bump (top panel, X14
and X22) and tip set-ups (bottom panel, X24 and X26) at t = 672 h (same
time as in Fig. 6) in terms of Mach numbers. Profiles calculated from runs
on a 768> grid are shown as solid lines; those from 1536 grids are shown as
dashed lines. The vertical dotted lines indicate the location of the convective
boundaries, determined by finding the location of the maximum U, gradient
as in Jones et al. (2017). Note that the X14 and X22 simulations shown on
the top panel were driven with 1000 x the nominal luminosity (see Table 1).
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Figure A2. Power spectrum of |U| in the radiative (R = 400Mm) and
convective (R = 700 Mm) zones for our RGB tip simulations at different
grid resolutions (see legend). The spectra were computed by averaging over
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Figure A3. Power spectra of |U| 200 Mm below the convective boundary for
RGB bump simulations with different heating rates (see legend). The same
dumps as in Figs 4 and 16 are used. To facilitate comparison, all spectra were
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