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Abstract—The need for full-chip dynamic thermal simulation
for effective run-time thermal management of multi-core
processors has been growing in recent years due to the rising
demand for high performance computing. In addition to
simulation efficiency and accuracy, a high resolution is desirable
in order to accurately predict crucial hot spots in the chip. This
work investigates a simulation technique derived from proper
orthogonal decomposition (POD) for full-chip dynamic thermal
simulation of a multi-core processor. The POD projects a heat
transfer problem onto a mathematical space constituted by a finite
set of basis functions (or POD modes) that are generated (or
trained) by thermal solution data collected from direct numerical
simulation (DNS). Accuracy and efficiency of the POD simulation
technique influenced by quality of thermal data are examined
thoroughly, especially in the areas with high thermal gradients.
The results show that, if the POD modes are trained by good-
quality data, the POD simulation offers an accurate prediction of
the dynamic thermal distribution in the multi-core processor with
an extremely small degree of freedom (DoF). A reduction in
computational time over four orders of magnitude, compared to
the DNS, can be achieved for full-chip dynamic thermal simulation
with a resolution as fine as the DNS. The study has also
demonstrated that the POD approach can be used to rigorously
verify the accuracy of solutions offered by DNS tools. A practical
approach is proposed to further enhance the accuracy and
efficiency of the proposed full-chip thermal simulation technique.

Index Terms—data driven, full-chip thermal simulation, model
order reduction, proper orthogonal decomposition, multi-core
processors.

I. INTRODUCTION

or more than half a century, integrated circuits (ICs) and
computing performance have been improved by
shrinking the feature size of semiconductor devices.

With more transistors integrated in a chip, ICs have become
more functional and complex. However, near the end of
Moore’s law, it is difficult to continue improving chip
performance via device miniaturization due to physical
limitations and large heat dissipation caused by higher device
density [1]. In addition, due to the long interconnect latency in
the planar structure, 3D IC technology [2]-[4] has been
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introduced to further increase the device density and enhance
the chip performance and functionality. Although this offers
significant improvement on the IC performance with a lower
cost, temperature escalation and excessive hot-spot formation
have become a more severe issue with such a high degree of
integration [5]-[7].

To continue improving computing performance, many-core
CPUs on a chip [8]-[12] have been introduced to facilitate
parallel computing. To satisfy the demand for the recent growth
of cloud computing and big data applications, general purpose
GPUs (GPGPUs) with massively parallel processing power
enabled by hundreds or thousands of cores have been widely
used in scientific computing, social network, movie streaming,
online shopping, etc. in computer servers and data centers
around the globe [13]-[16]. As the processors are becoming
larger to handle the massive amount of data, the heating issues
have been enhanced, leading to more serious high temperature
and hot-spot formation. This not only impairs CPU/GPGPU
performance and wastes computing energy but also reduces
their lifetime caused by thermal stress and electromigration
[17]-[22].

Due to the severe heating issues in 3D ICs, CPUs and GPUs,
effective thermal management is thus desperately needed to
reduce temperature, suppress hot spots, improve performance
and reliability and save energy. This can be achieved more
effectively, e.g., via thermal-aware task scheduling [23]-[29]
that requires efficient and accurate thermal simulations at the
chip level with a reasonable resolution for 3D ICs, CPUs and
GPGPUs. Several thermal simulation methods have been
developed at different levels of efficiency and accuracy. The
rigorous approaches that provide an accurate thermal profile
with a high resolution, are the direct numerical simulations
(DNSs), based on the finite difference (FD), finite element (FE)
or finite volume (FV) method. There are many DNS
commercial and open-source tools available for such an
application, including ANSYS [30], COMSOL [31], FEniCS
[32], FREEFEM [33], etc. These however demand extensive
computational resources due to a very large degree of freedom
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(DoF) needed in the simulation and are thus prohibitive for
chip-level thermal simulation of ICs or CPUs/GPGPUs.

In recent years, the Green’s function approach has gained its
popularity for the chip-level thermal simulation [34]-[35] due
to its simplicity and computational efficiency compared to the
DNSs. The Green’s function is a spatial impulse response of a
system and usually calculated in response to a unit point heat
source at the center of a large chip. The thermal solution is then
solved by convolution of the impulse response with the power
distribution in the chip. The conventional Green’s function is
thus difficult to include boundary conditions (BCs) of a finite
domain [34], [35], especially when heat sources are close to the
chip corners or edges [36], [37]. It is also difficult to apply the
approach to transient thermal simulation. In addition, the
Green’s function approach is applied to a single thin layer
where the power sources are generated [34]-[37] and thus only
offers a 2D thermal profile in the heating layer. An approach
was investigated to include the 3D temperature profile in a chip
using multilayer Green’s functions [38]; it is however limited
to steady state simulation. Different techniques at the expense
of the computational cost with some assumptions have been
developed to correct the corner and edge effects [39] for
transient thermal simulation [39], [40].

When fast thermal simulations are needed for large-scale
chips, lumped RC thermal circuits are usually used [41]-[48].
For example, HotSpot [41]-[43], the most frequently used RC
thermal simulator, has been widely applied to chip-level
thermal simulations [41]-[48]. However, accuracy of the block
model in HotSpot (hereafter named HotSpot-Block) suffers
from the large RC elements, especially with high aspect ratios
(ARs). The large elements not only overlook some hot spots,
whose physical sizes are considerably smaller than the element,
but also offer incorrect heat flux between elements estimated by
their node (average element) temperatures. To compensate the
dynamic distributed heat transfer incorrectly calculated in the
RC thermal circuit, a scaling factor (SF) less than one on all
thermal capacitances is used [42], which however still leads to
a 200% error in HotSpot-Block thermal simulations of some
floorplans, compared with FEM analysis [49]. To address this
issue, the Grid model of HotSpot (hereafter named HotSpot-
Grid) was developed [41] by allowing small RC elements to
improve the accuracy, where an SF value with a default value
less than one is still included to adjust the accuracy. With the
improved Grid model, large deviations from ANSYS results
have still been observed [40], [50], perhaps caused by the RC-
circuit approximation and/or the inappropriate SF value. The SF
value should be dependent on the size and AR of each
individual lumped element and how fast the dynamic power
sources vary in time. However, if very small elements are
implemented in HotSpot-Grid, it is equivalent to an FD method
and the SF should be one. In this case, it is similar to DNSs that
demand intensive computational time.

For effective thermal management of large-scale chips, the
major challenge is to predict high thermal gradients and hot
spots as efficient as the RC thermal circuits with an accuracy
close to DNS. To capture small-size hot spots, as has been

studied recently on millimeter- or sub-millimeter-scale hot
spots in DNSs of multi-core and 3D IC chips [51]-[53], a high
resolution is needed. In this study, we investigate a technique
for full-chip dynamic thermal simulation that is able to meet all
the aforementioned challenges, including the efficiency,
accuracy and high resolution. The technique is derived from a
projection-based data-driven algorithm, proper orthogonal
decomposition (POD) [54], [55], that has been applied to many
areas of research [56]-[62]. The early concept was briefly
presented at [63]. By projecting a physical domain onto a
functional space described by a finite set of basis functions (or
POD modes), the POD simulation technique is able to achieve
desired efficiency and accuracy with a very small DoF if the
modes are trained by good-quality data.

In this work, a quad-core CPU, AMD ATHLON II X4 610e
[64], [65], is selected to demonstrate the POD full-chip thermal
simulation technique. To develop the POD simulation method,
thermal solution data of the processor are needed for the POD
mode generation/training. The data are collected from two DNS
tools, including a rigorous FEM implemented in FEniCS [32]
and the popular thermal simulator HotSpot-Grid [41], [43] with
very small RC elements and SF = 1. The POD models built upon
FEniCS-FEM and HotSpot-Grid are named FEniCS-POD and
HotSpot-POD, respectively. The effectiveness of the POD
thermal simulation method is investigated in terms of the DoF
in POD simulations and quality of thermal data collected from
each of these two DNS approaches. The accuracy of the DNS
tools is also examined by the POD method.

II. POD FUNDAMENTALS

Unlike many projection-based methods with pre-selected
basis functions, such as Fourier transform, Legendre
polynomials, Bessel functions, etc., the POD modes are learned
from the solution data of a domain Ω, where each POD mode is
optimized by maximizing its mean square inner product of the
thermal solution with the mode [54], [55]. This process
maximizing the projection onto each mode leads to an
eigenvalue problem,

 〈⃗,
 ⊗ ⃗′,
〉⃗′
⃗ = ⃗
, 1
 Ω

where  is the eigenvalue representing the mean squared
temperature captured by its eigenfunction , and the brackets 〈〉
denote an averaging process over the temporal sampled data
subjected to dynamic variations of power sources and BCs. For
steady problems, this process averages the sampled data over
different power levels and BCs. Instead of solving (1) directly.
the method of snapshots [57], [66], [67] is adopted to solve  and
in (1) more efficiently, where the dimension of the problem is
reduced to the number of samples (or snapshots), NS. With the
generated POD modes, temperature ⃗,
 can be represented by a linear combination of the modes ,

⃗,
 =
⃗
, 2
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Because       represents the mean squared temperature
captured by the ith mode over the data in generation of the POD
modes, the theoretical least square (LS) error over the entire
simulation domain for the M-mode POD model is given by

HI HI

C EF= = G   K  . 10

 J

Numerically, the LS error with respect to the DNS is given as

HI HI

Fig. 1. Floorplan of AMD ATHLON II X4 610e with dimensions of 14mm×
12mm×0.65mm in x, y and z. Paths A and B indicate the temperature plotting
paths, and the red rectangles (0.4375mm´0.375mm) specify the locations of the
applied high power density in later demonstrations.

where  are the weighting coefficients and M is the number of

modes (M £ NS) or the DoF selected to represent the solution.
To derive a POD model, the heat transfer equation is

projected onto a functional space using the Galerkin projection,
 ⃗
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#  ∇ ∙ &∇’ Ω  (

=  ⃗
)  ⃗,
Ω +  ⃗
,+&∇ ∙ - . , 3
 ( /

where & is the thermal conductivity, ! the density, " the specific

heat, )  ⃗,
 the power density and -  the outward differential surface element
vector on the surface. Using (2), (3) leads to an M-dimensional
ordinary differential equations (ODEs) for  ,

1,      
#   2, = )  , 3 = 1 to 6 , 4

with 1, as the element of the POD thermal capacitance matrix,

1, =  ! "  Ω, 5
 (

2, as the elements of the POD thermal conductance matrix and )
the ith-mode POD power vector. In this study, adiabatic and

convective BCs are applied on the chip surfaces. For an
adiabatic BC, the heat flux on the surface in (3) vanishes, and

2, =  &∇ ∙ ∇Ω, )  =  )  ⃗,
 Ω . 6
 (                                                                            (

As to the convective BC, the heat flux normal to the boundary
surface is given by

+& 
 
= ℎ +

, 7

where  is the ambient temperature and h is the heat transfer
coefficient that is a function of the airflow rate near the
boundary. Using (2) for T in (3) and (7),

2, =  &∇ ∙ ∇Ω #   ℎ  ? , 8
 ( @

and )  is given by

)  =  ⃗
)  ⃗,
Ω #   ⃗
ℎ - . 9
 ( /

With the predefined shape of power density, the above integrals

can be pre-evaluated and saved in a technology database for thermal
simulation of the chip.



M =

M

D

ed use limited to: CLARKSON UNIVERSITY LIBRARY. Down oaded on April 17,2023 at 21:44:49 UTC from IEEE Xplore. Restrictions apply.

C N O  = G  CP⃗,
Ω K  Q ,⃗
 +  RP Ω , 11
      (      (

where C⃗,
 is the temperature difference between the DNS and
POD model at the ith time step. The ideal error in
(10) is valid only if high data quality is
guaranteed. Due to the numerical approximation
and computer precision, C N O  is usually larger than
C EF=.

In summary, two projections are performed to
arrive at this rigorous methodology. The first one
maximizes the projection of thermal data onto the
modes, which leads to (1), such that the trained
modes contain essential information on variations
of heat excitations and BCs embedded in the data.
Thus, the POD modes are able to represent the
thermal solution in (2), using a very small number of
modes, if the weighting coefficients aj are evaluated
properly. To do so, the second (Galerkin) projection
is applied in (3) to offer a clear guideline for the POD
modes to comply with physical principles imposed
by the dynamic heat transfer equation, which results
in the ODEs for aj given in (4). The coefficients of (4)
and the sources on the right-hand side of (4) are then
evaluated from the POD modes, the gradients of the

modes, the projection of the power onto the modes and the
projection of the boundary conditions onto the modes, as given
in (5)-(9), which empowers aj solved from (4), together with the
modes, to obey the physical principles, accounting for all
parametric variations in the collected data via POD modes.

The POD methodology derived from the above procedure is
thus sensitive to the consistency between these two projections.
For example, as shown in (3), the heat transfer equation is
projected along the POD modes that are trained by thermal data
generated from DNS. If the data from DNS is not consistent
with the heat transfer equation, the projected equation in (4) will
not accurately represent the heat transfer equation. Therefore,
the comparison of thermal predictions between the developed
POD model and its DNS tool will provide a reliable indication
of the accuracy of the DNS. This study not only demonstrates
the accuracy and efficiency of the POD approach for full-chip
thermal simulation but also verifies the concept of utilizing the
POD method to validate the accuracy of DNS tools.

III. THERMAL DATA COLLECTION AND MODE GENERATION

The floorplan of the selected quad-core CPU, AMD
ATHLON II X4 610e [64], [65], is displayed in Fig. 1 with
physical locations of functional units, including 4 cores, 4 L2
caches, one northbridge, 3 I/O and one DDR3. DNS tools,
FEniCS-FEM and HotSpot-Grid are used in this work to collect
thermal data. In any comparison between these two DNS tools,
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Fig. 2. Temperature estimated by HotSpot-Grid and FEniCS-FEM in the CPU.
(a) Temporal evolution at the intersection of Paths A and B. Temperature
distributions at t = 4.2 ms along (b) Path A and (c) Path B.

the dynamic power map, BCs and numerical settings in the
simulations are identical. To make the comparison meaningful
with HotSpot, the material properties of the selected CPU in all
DNSs are adopted from HotSpot [43]; these include 100
W/(m∙K), 751.1 J/(kg∙K) and 2330 kg/m3      for thermal
conductivity, specific heat and density, respectively. All
surfaces of the chip are adiabatic except the bottom of the
substrate, where a heat transfer coefficient is applied with an
ambient of 45℃ [25], [42], [68]-[70]. Similar to HotSpot [43],
the substrate heat transfer coefficient is calculated to be 2.41
W/(cm2∙K) from the thermal resistances of the heat spreader,
thermal interface material layer and heat sink based on the cross
section, thickness and material property of each layer with a
further assumption of unform temperature on each of these
layers. Due to the mesh (element) restriction in HotSpot-Grid
[43], a uniform mesh is employed. Since very small lumped RC
elements are used in HotSpot-Grid, SF is taken to be 1. In each
demonstration, two sets of POD modes are generated by
thermal data collected from the DNSs, one from FEniCS-FEM
and the other from HotSpot-Grid.

To collect thermal data, a uniform power source is applied to
each unit on the heating layer with a thickness of 0.15mm, and
a mesh of 128×128×13 in x, y and z with reasonable ARs (Dx/Dy
» 1.17, and Dy/Dz » 1.88) is implemented in both DNSs of the
CPU. The heating layer refers to the thin layer of devices and
interconnects on top of the chip, where the power is dissipated.
Similarly to [42], the dynamic power is averaged over 48,000
CPU cycles at 3.5 GHz and DNS is performed with each time
step of 8,000 clock cycles and a total power near 50W. The
dynamic power applied to each unit is randomly generated. To
apply a more realistic power profile, the power density
distribution given in Table I is adopted from the power map
generated by the hmmer and soplex benchmarks running in
Cores 1 and 3, respectively, in [65]. The percentage of the total
chip power consumed by each unit and the area of each unit are
also listed in Table I.

TABLE I
POWER PERCENTAGE AND DENSITY (108W/m3) [65]

Fig. 3. Eigenvalue spectrums of the thermal data collected from FEniCS-FEM
and HotSpot-Grid. A close-up look of the spectrums for the first 25 modes is
included in the inset.

Fig. 4. POD modes along Path A for the (a) first, (b) second, (c) third and (d)
fourth modes.

Fig. 5. POD modes along Path B for the (a) first, (b) second, (c) third and (d)
fourth modes.

Temperature evolution at the intersection of Paths A and B
indicated in Fig. 1 is given in the Fig. 2(a). HotSpot-Grid
predicts a faster evolution and a 4%-5% higher temperature
than FEniCS-FEM for t > 2ms. The temperature profile at
4.2ms along Path A is illustrated in Fig. 2(b) with higher
temperature in Core 1 and Northbridge but lower temperature
in Core 2 due to the power density distribution shown in Table
I. The profile at 4.2ms along Path B is shown in Fig. 2(c). The
difference between these two approaches shown in Figs. 2(b)
and 2(c) is also near 4%-5% in Core 1 along Paths A and B.

These dynamic thermal data collected from each of the
FEniCS-FEM and HotSpot-Grid simulations are applied to
generate their POD modes and eigenvalues from (1) using the
method of snapshots [57], [66], [67]. Fig. 3 shows that the
eigenvalues of the data collected from these two DNSs are
nearly identical for the first 20 modes even though a difference
of the DNS results near 4%-5% is observed. It is shown that the
third and fourth eigenvalues drop more than three and four
orders of magnitude, respectively, from the first mode. This
indicates that the essential thermal information in this case is
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Fig. 6 Temperatures obtained from FEniCS-POD and FEniCS-FEM in Case 1.
(a) Dynamic temperature at the intersection of Paths A and B, and the
temperature distributions along (b) Path A (c) Path B at t = 4.2ms.

accounted for in the first three or four modes. Thus, the POD
model derived from these data with three or four modes should
offer an accurate thermal prediction if good quality of data from
the DNSs is guaranteed. The computing accuracy is limited by
16 decimal digits implemented in both DNSs, and the
eigenvalue based on FEniCS-FEM’s data becomes nearly
invariant after dropping 16 orders of magnitude from its first
mode. However, the eigenvalue from HotSpot-Grid’s data
decreases by only 12-13 orders from the first mode before
becoming flat, which indicates its numerical inaccuracy beyond
12 digits perhaps due to the lumped-element approximation.

The first four POD modes built upon the two DNS
approaches along Paths A and B are shown in Figs. 4 and 5,
respectively, since the contribution to the thermal solution
beyond four modes is negligible according to their eigenvalue
spectrums. The first mode represents the mean of the thermal
data. The small first-mode difference between FEniCS-POD
and HotSpot-POD suggests that HotSpot-Grid and FEniCS-
FEM capture nearly the same average dynamic thermal
behavior. The difference between the thermal solutions from
these DNS tools is disclosed in the second to the 4th mode. This
leads to different dynamic power of the higher modes in the
POD space given in (6) and (9), as well as the conductance
elements in (6) and (8). The large difference in the higher modes
between these two approaches is thus expected to induce an
evident deviation in the prediction. It should be noted that the
eigenvalue spectrum is a good indication of the number of
modes needed to reach a good solution only if the data quality
is good. With inadequate data quality, the generated POD
modes do not represent the heat transfer equation accurately in
the POD space.

IV. DEMONSTRATION

Dynamic thermal simulations of the selected CPU are carried
out using FEniCS-POD and HotSpot-POD. Each simulation is
verified against its DNS tool. Four test cases are included in this
study and the major numerical settings are listed in Table II.
Settings in Case 1 are identical to those for illustration of data
collection and POD mode generation in Sec. III except for the
random power map. Other cases are selected to further validate
the findings based on the results from Case 1. A thinner chip
(242mm) with a heating layer of 55.8mm is used in Cases 2-4
than that in Case 1 (650mm) to minimize the computational
time. Among these 4 cases, Case 1 carries the coarsest mesh,

Fig. 7. Temperatures obtained from HotSpot-POD and HotSpot-Grid in Case
1. (a) Dynamic temperature at the intersection of Paths A and B, and the
temperature distributions along (b) Path A (c) Path B at t = 4.2ms.

Fig. 8. LS errors in the heating layer and entire chip derived from HotSpot-
POD and FEniCS-POD in Case 1. The theoretical errors are also included.

and Case 2 the finest. Unlike Case 1 with uniform dynamic
power in each unit, Cases 2-4 include narrow spatial high power
density (see their locations in Fig. 1) to induce high thermal
gradients and small-diameter hot spots.

TABLE II
TEST CASES: MAJOR NUMERICAL SETTINGS

A. Demonstration with a Coarser Mesh

In Case 1 with a similar dynamic power distribution in Table
I, a dynamic power map is applied with a different random
sequence for each unit from that used in the training of POD
modes. Dynamic temperature and its spatial distribution in the
selected quad-core CPU obtained from FEniCS-POD and
HotSpot-POD are illustrated in Figs. 6 and 7, respectively,
compared with the results from their DNS approaches.

Dynamic temperature in Fig. 6(a) predicted by FEniCS-POD
with just three modes in Core 1 concurs very well with FEniCS-
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Fig. 9.     / U along Path A for the first four modes of HotSpot-POD and FEniCS-POD, together with the absolute value of the difference between these two
approaches given by the black line.

Fig. 10.     / T along Path B for the first four modes of HotSpot-POD and FEniCS-POD, together with the absolute value of the difference between these two
approaches given by the thin black line.

FEM. Along Paths A and B, the thermal distributions at 4.2ms
shown in Figs. 6(b) and 6(c) derived from FEniCS-POD with
three or more modes agree very well with FEniCS-FEM except
the region around 6mm < x < 7.5mm with a 2.5%-3%
discrepancy. Consistently with the eigenvalue spectrum in Fig.
3, with three or more modes FEniCS-POD’s prediction
converges to a temporal and spatial thermal solution very close
to that offered by FEniCS-FEM. Contrarily to FEniCS-POD,
when using three or more modes, Figs. 7(a)-7(b) show that
HotSpot-POD leads to a thermal solution with a 11%-13%
deviation from that provided by HotSpot-Grid. This is
inconsistent with the eigenvalue spectrum for HotSpot-Grid’s
data given in Fig. 3 and thus indicates that HotSpot-Grid does
not offer the thermal solution as accurate as FEniCS-FEM in
this case.

The LS percentage error errnum in (11) for both POD models
w.r.t the solution predicted by each of their DNSs is displayed
in Fig. 8, compared to errtheo in (10). With two or more modes,
errnum of HotSpot-POD is considerably greater than errtheo and
stays near 10% in the entire chip and near 8.5% in the heating
layer. FEniCS-POD however leads to an error in the heating
layer near 1.5% with three modes and fluctuates around 1.29%-
1.4% with four or more modes. In the entire chip, the error
fluctuates around 3.4%-3.5% with three to eight modes and
stays below 4.4% with nine or more modes. In the thick lower-
temperature substrate, the LS error is larger. Within the heating

layer, its LS error closely follows errtheo for the first two modes
and becomes nearly constant beyond three modes due to the
computer precision. The results in Fig. 8 reconfirm that
FEniCS-FEM offers a more accurate solution than HotSpot-
Grid and provides better-quality thermal data for the POD mode
training.

Only a small discrepancy of 4%-5% is observed in Figs. 2(a)-
2(c) between the two DNS tools, and yet HotSpot-POD reaches
a relatively large LS error in Fig. 8. A closer look at the first
POD modes of these 2 POD models in Figs. 4 and 5 and their
POD results with just one mode in Figs. 6 and 7 raise an
interesting question. The first POD modes shown in Figs. 4 and
5 for FEniCS-POD and HotSpot-POD are very close. Then,
why is there a temperature difference of 14%-17% (w.r.t. the
ambient) in Core 1 between the one-mode predictions (with M =
1 in (4), where only  is involved) offered by FEniCS-POD (Fig.
6) and HotSpot-POD (Fig. 7)? To understand this,
gradients of POD modes built upon the 2 DNS tools, together
with their differences, are illustrated in Figs. 9 and 10 along
Paths A in x and B in y. Since FEniCS-FEM offers very good
data quality that leads to a very accurate POD thermal
prediction, results from HotSpot-POD is compared against
FEniCS-POD. Apparently, the slope of the first mode of
HotSpot-POD deviates significantly from that of FEniCS-POD
at the locations of high thermal gradients (see Figs. 6 and 7.)
even though their first modes shown in Figs. 4 and 5 look close.
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Fig. 11. Eigenvalue spectrums of data collected from HotSpot-Grid and
FEniCS-FEM with the (a) coarser mesh (Case 3) and (b) finer mesh (Case 2).

The slope difference between these two approaches evidently
increases in the higher modes near high thermal gradients, as
indicated in Figs. 9 and 10. This suggests that, even though the
2 DNS tools capture similar averaged thermal behavior over
their own data (revealed by the first mode), HotSpot-Grid is not
able to evaluate high thermal gradients accurately due to its
lumped-element approximation.

The coefficients 2, defined in (6) and (8) strongly depend on
∇ and ∇ and differ significantly between these 2 POD models,
as shown in Table III, where the 2, ratios of HotSpot-POD to
FEnicS-POD are included. The ratios reveal the discrepancy
of the POD mode gradients between these 2 DNS tools. As
illustrated in Figs. 9 and 10, the mode gradients are strongly
influenced by the accuracy of thermal gradients estimated
in the DNS tools. The discrepancy in Table III thus offers a
good indication of the poor numerical accuracy of the high
thermal gradients estimated from HotSpot-Grid. For the
diagonal ratios, differences of 2.5%-15% are observed for the
first four modes. When using the one-mode model,  in (4) at
each time step tends reach a steady-state value of )
/2,, and thus HotSpot-POD with a smaller 2, leads to a higher
dynamic temperature than FEniCS-POD, as shown in Fig. 7
compared to Fig. 6.

TABLE III
2, RATIO FOR FIRST 4×4 ELEMENTS: CASE 1, COARSER MESH

Investigation on Case 1 illustrates that the accuracy of the
POD approach can be achieved only if the quality of thermal
data in POD mode training is adequate. Results also imply that
the inaccurate prediction by HotSpot-POD stems from the poor
thermal data induced by high thermal gradients. To verify this
finding and further demonstrate the capability of the POD
method, several other test cases in Table II with different grid
sizes and localized high power density are examined below.

B. Impact of Data Quality

Before applying the POD simulation method to the entire
CPU with localized high power density and higher resolution,
impacts of the mesh coarseness on both DNS methods and their
POD models are investigated in a smaller domain of Core 1
given in Cases 2 and 3 of Table II. The Core-1 dimensions are
4.78mm×3.45mm×242mm with a total power of 11.6W. In
addition to a uniform lower power density, a higher power
density is applied to each of the small red squares in Core 1
indicated in Fig. 1. In Cases 2 and 3, the dynamic power density
averaged over 60,000 CPU cycles at 3.2 GHz is applied in both
DNSs with each time step over 10,000 clock cycles. Thermal
simulations of two different meshes for Core 1, finer in Case 2
and coarse in Case 3 given in Table II, are performed in both
HotSpot-Grid and FEniCS-FEM to collect thermal data. Both
high and low levels of dynamic power density are assigned
randomly at each time step. The power density in the small red
squares is about 10 to 13 times higher than that in the
surrounding area. The mesh in both x and y for Case 2 is 4 times
finer than for Case 3 (see Table II) with the same grid size in z.
The eigenvalue spectrums of the thermal data are illustrated in
Fig. 11, where no noticeable difference is observed for these
two DNS tools in the first ten modes.

In the POD simulations, random sequences for lower and
higher power levels differently from those used in data
collection are applied. Using the coarser mesh, the LS error of
FEniCS-POD with three or four modes shown in Fig. 12(a) is
3.36% or 3.6% in the entire chip and 1.39% or 1.48% in the
heating layer. While using the finer mesh, the LS error with 3
or four modes is significantly reduced to 1.46% or 1.32% in the
entire chip and 0.52% or 0.43% in the heating layer, as shown
in Fig. 12(b). The improvement is expected due to a better
numerical solution in the areas with high thermal gradients
induced by high power density spots. In contrast, HotSpot-POD
actually leads to a slight increase in the LS error while reducing
the grid size, which is rather unexpected. Figs. 12(a) and 12(b)
show that the error increases from 13.4% with the coarser mesh
to16.1% with the finer mesh using two or more modes in the
entire chip, and from 7.21% to 8.5% using three or more modes
in the heating layer. More information is presented below to
understand the confusing outcome from HotSpot-POD.

Dynamic evolution of a peak temperature and temperature
profiles along Paths A and B predicted by FEniCS-POD and
FEniCS-FEM are illustrated in Fig. 13 for Cases 2 and 3.
Thermal results from FEniCS-FEM with these 2 different
meshes are very close except for the small difference between
the temperature peaks. it is however clearly shown that the
agreement between FEniCS-POD and FEniCS-FEM is
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modes. Differently from Figs. 4(a) and 5(a), where the first
modes for HotSpot-POD and FEniCS-POD are close in Case 1,
a large difference is observed between the first modes of
HotSpot-POD and FEniCS-POD in Figs. 15(a), 15(e), 16(a) and
16(e). Some discrepancies are also observed in the 2nd and 4th
modes. Larger discrepancies are actually observed in the finer
mesh case, which indicates that the accuracy of solution from
HotSpot-Grid actually degrades when a finer mesh is used
(Case 2) to collect the thermal data. By careful comparison
between the temperature profiles from HotSpot-Grid (Fig. 14)
and FEniCS-FEM (Fig. 13), we also find that the difference of
the predictions between HotSpot-Grid and FEniCS-FEM is
around 4%-6% for the coarser mesh but as large as 10%-14%
for the finer mesh.

TABLE IV
2, RATIO FOR FIRST 4×4 ELEMENTS: CASE 2, FINER MESH

Fig. 12. LS errors of FEniCS-POD and HotSpot-POD with the (a) coarser
mesh (Case 3) and (b) finer mesh (Case 2).

noticeably improved, when the grid size reduces, near the
boundaries and in the region between 2 temperature peaks.

Similar comparisons are made in Fig. 14 between HotSpot-
POD and HotSpot-Grid simulations. While reducing the grid
size, the temperature distribution obtained from HotSpot-Grid
changes evidently near the boundaries and near and between the
2 temperature peaks along each direction. However, none of the
meshes offers good quality thermal data to improve its POD
model. Using three or more modes with either mesh, HotSpot-
POD converges to a solution inconsistent with HotSpot-Grid’s
prediction. A closer examination on the POD modes of
HotSpot-POD shown in in Figs. 15 and 16 provides more
concrete information on the inadequate quality of the HotSpot-
Grid data. Since FEniCS-POD offers a very accurate prediction,
the HotSpot-POD modes are compared with the FEniCS-POD

TABLE V
2, RATIO FOR FIRST 4×4 ELEMENTS: CASE 3, COARSER MESH

For the effects of the mode gradients induced by higher
thermal gradients, instead of showing gradient profiles, 2,

ratios of HotSpot-POD to FEniCS-POD are listed in Tables IV
and V for Cases 2 and 3, respectively. The ratios indicate the
numerical accuracy of the thermal gradients estimated from
HotSpot-Grid. The deviation of HotSpot-POD’s 2,     from
FEniCS-POD’s is actually larger in the finer mesh than in the

Fig. 13. Predictions of FEniCS-POD compared to FEniCS-FEM, including dynamic temperature in (a) and (d) at the intersection of Paths A and B, the
temperature distributions at t =5.6ms along Path A in (b) and (e) and along Path B in (c) and (f). Results in (a)-(c) are for the coarser-mesh domain (Case 3) and
in (d)-(f) for the finer-mesh domain (Case 2).
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Fig. 14. Predictions of HotSpot-POD compared to HotSpot-Grid, including dynamic temperature in (a) and (d) at the intersection of Paths A and B, the
temperature distributions at t =5.6ms along Path A in (b) and (e), and Path B in (c) and (f). Results in (a)-(c) are for the coarser-mesh domain (Case 3) and in (d)-
(f) for the finer-mesh domain (Case 2).

Fig. 15. Comparison of the POD modes along Path A, generated from data
collected from FEniCS-FEM and HotSpot-Grid, for (a)-(d) the coarser mesh
(Case 3) and (e)-(h) the finer mesh (Case 2).

coarser mesh, similar to the observation of the POD modes in
Figs. 15 and 16. A deviation as large as 55% or 27% in the finer
mesh case is observed for the first or second mode, respectively.
Results illustrated in Figs. 11-16 and Tables IV and V suggest
that HotSpot-Grid does not improve the numerical accuracy by
reducing the grid size (i.e., the RC element size) in this Core-1
domain perhaps due to the approximation made in the lumped
element approach. One may argue that the inclusion of the SF
serves the purpose of adjusting its accuracy. To offer consistent
solution with more rigorous FEniCS-FEM, one would need to
choose SF > 1 (to increase the RC time constant) in Case 1 since
HotSpot-Grid leads to a faster thermal response. However,
since the temperature derived from HotSpot-Grid evolves more
slowly in Cases 2 and 3 with localized high power density, a
value of SF < 1 is needed.

C. Full-Chip Thermal Simulation with Localized High Power
Densities

In the Case-4 demonstration for the entire quad-core CPU, in
addition to a uniform lower power density applied to each unit,

Fig. 16. Comparison of the POD modes along Path B, generated from data
collected from FEniCS-FEM and HotSpot-Grid, for (a)-(d) the coarser mesh
(Case 3) and (e)-(h) the finer mesh (case 2).

spatial pulses of higher power density with sizes and locations
shown Fig. 1 are applied to Cores 1, 2 and 4. In this case, the
grid sizes in x, y and z are 4, 4 and 2.7 times, respectively,
smaller than those in Case 1. The eigenvalues and POD modes
are again generated by thermal data collected from each of
HotSpot-grid and FEniCS-FEM. In the POD simulations, the
dynamic power map is generated by random numbers different
from those used in the training. In the units with spatial high-
power pulses, the higher power density at each time step is
approximately 10 to 13 times higher than the lower one.

The eigenvalue spectrums shown in Fig. 17(a) based on both
DNS tools are very close for the first 25 modes. The third and
fourth mode eigenvalues drop by three and four orders of
magnitude, respectively, from the first mode. This indicates that
three or four POD modes are able to reach a good accuracy if
the quality of data in the training is adequate. Fig. 17(b) shows
that, even using a finer mesh with a better AR in z in Case 4
than in Case 1, the LS error of HotSpot-POD in the entire CPU
with two or more modes in Case 4 is as large as 15% that is
greater than the error (10%) in Case 1 (see Fig. 8). In the heating

Authorized licens 
© 2022 IEEE. Personal use is permitted, but republication/redistribution

l 
requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.



ed use limited to: CLARKSON UNIVERSITY LIBRARY. Down oaded on April 17,2023 at 21:44:49 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3229598

10
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 17. (a) Eigenvalue spectrum obtained from HotSpot-Grid and FEniCS-
FEM data and (b) LS errors of the POD models compared to their theoretical
errors.

layer their LS errors become closer, 8% in Case 4 and 8.5% in
Case 1. In contrast, the accuracy of FEniCS-POD is clearly
improved when decreasing the grid size. Compared to the
minimum LS error of 3.4% with three or four modes in Case 1
in the entire chip, Case 4 offers an LS error of 2.1% with three
modes and 1.9% with five modes. In the heating layer, more
improvement is observed while using a finer mesh. For
example, comparing the LS error of Case 1 in Fig. 8, the LS
error in Case 4 shown in Fig. 17(b) drops from 1.5% to 0.98%
with three modes, from 1.4% to 0.87% with four modes, from
1.29% to 0.78% with five modes and from 1.4% to 0.71% with
six modes. With a finer mesh, the LS error goes below 0.6%
when more than 15 modes are used.

Thermal solutions from FEniCS-POD and HotSpot-POD are
illustrated in Fig. 18, compared to those from their DNS tools.
Results from FEniCS-POD and FEniCS-FEM displayed in
Figs. 18(d)-18(f) agree very well in time and space even with
many narrow spatial pulses of high power density. As clearly
observed, FEniCS-POD is able to accurately predict the high
thermal gradients and hot spots with sizes below 0.5mm using
just three modes. Although the difference of the thermal
profiles derived from these 2 DNSs is only 4%-5% in the higher
temperature regions, HotSpot-POD arrives at a solution shown
in Figs. 18(a)-18(c) significantly different from that offered by
its DNS tool. The temperature profiles at t = 5.6 ms over the
heating layer of the chip predicted by all the methods are also
displayed in Fig. 19. Similar to Fig. 18, Fig. 19 shows that
agreement between FEniCS-POD and FEniCS is considerably
better than that between HotSPot-POD and HotSpot-Grid.

In all test cases, the inaccurate HotSpot-POD prediction is
caused by not only its poor-quality POD modes but also the
inaccurate gradients of the POD modes resulting from
inaccurate numerical calculations of high thermal gradients in
HotSpot-Grid. To reduce the paper length, the profiles of POD
modes and their gradients (such as those shown in Figs. 5, 10,
15 and 16) are omitted. Instead, Table VI lists the 2, ratios of
HotSpot-POD to FEnicS-POD. As discussed above, the ratios
offer a good indication about the accuracy of thermal gradients
calculated in HotSpot-Grid. The discrepancies of 2, between
the data collected from HotSpot-Grid and FEniCS-FEM in Case
4 are as small as 5.69% to 6.96%, for i = 1, 3 and 4, which are
all smaller than those in Case 1. However, 2P,P of HotSpot-POD
in Case 4 with a finer mesh reveals a large deviation of 24.4%
from that of FEniCS-POD, compared to the largest deviation of
15.5% observed for 2V,V in Case 1. Since P ≫ V, as given in Figs.
3 and 17(a), 2P,P has a considerably stronger effect on the
accuracy of the POD model than 2V,V. This explains why
HotSpot-POD does not offer a more accurate prediction in Case
4 with a finer mesh than in Case 1 with a coarse mesh. This

Fig. 18. (a) Dynamic temperature at the intersection of Paths A and B, the temperature distributions at t = 5.6 ms along (b) Path A and (c) Path B, predicted by
HotSpot-POD compared to HotSPot-Grid. (d) Dynamic temperature at the intersection of Paths A and B, the temperature distributions at t = 5.6 ms along (e) Path A
and (f) Path B at t = 5.6 ms, derived from FEniCS -POD compared to FEniCS -FEM.
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higher resolution, compared against Case 1 with a coarser mesh
without high power densities. FEniCS-FEM in Case 4 with a
finer mesh offers more accurate thermal solution data and thus
significantly improves the quality of the POD modes. As shown
in Table VII, a substantial reduction in the LS error is thus
achieved in both the heating layer and the entire chip even
though high thermal gradients and narrow hot spots are induced
in many locations (also see the discussions in Figs. 8 and 17).
For the demonstration of FEniCS-POD in a smaller domain of
Core 1, as shown in Table VIII for Cases 2 and 3 (also see the
discussion for Figs. 12-14), a similar finding is observed.
Namely, a considerably smaller LS error is obtained when using
the finer-mesh POD modes in Case 2.

TABLE VII
LS ERROR OF POD MODELS FOR FULL CHIP SIMULATIONS

Fig. 19. Temperature profiles at t = 5.6 ms predicted by (a) HotSpot-Grid, (b)
HotSpot-POD with three modes, (c) FEniCS and (d) FEniCS-POD with three
modes.

also suggests that even with a considerably finer mesh HotSpot-
Grid does not offer more accurate high thermal gradients.

TABLE VI
2, RATIO FOR FIRST 4×4 ELEMENTS: CASE 4, FINER MESH CPU

Differently from Case 1, temperature predicted by HotSpot-
Grid in Case 4 evolves more slowly than that by FEniCS-FEM.
If the SF is used to improve the HotSpot-Grid accuracy in this
case, a value of SF < 1 would be needed while SF > 1 is needed
in Case 1. The full-chip thermal simulations in Case 4 reconfirm
the inadequate quality of the thermal solution data collected
from HotSpot-Grid. This case also further validates the
effectiveness of the POD simulation method at the chip-level if
it is built upon good-quality data.

V. DISCUSSIONS

The investigation on thermal simulations of a quad-core CPU
has uncovered some interesting aspects on effectiveness of the
POD models associated with the quality of the DNS tools used
to collect data for the POD mode training. The POD LS errors
presented in Sec. IV. are summarized in Tables VII and VIII for
simulations of the entire chip (Cases 1 and 4) and Core 1 (Cases 2
and 3), respectively. For the entire CPU, Case 4 is
demonstrated with localized narrow high power densities and a

TABLE VIII
LS ERROR OF POD MODELS FOR CORE-1 SIMULATIONS

The same applications of HotSpot-POD, built upon thermal
data from HotSpot-Grid, however, reveal considerably larger
LS errors than FEniCS-POD in all test cases, as shown in Tables
VII and VIII. The examinations carried out in this work have
revealed that inaccurate numerical solutions derived from
HotSpot-Grid are caused by its incapability of offering accurate
high thermal gradients probably due to the lumped-element
approximation. As a result, the grid size used in HotSpot-Grid
is not always correlated to its numerical accuracy, as observed
in all the demonstrations. Results have also shown that the
larger LS errors of HotSpot-POD are caused by the poor-quality
POD modes generated from the inadequate thermal gradients
estimated by HotSpot-Grid. In contrast, due to the rigorous
FEM implemented in FEniCS, the accuracy of FEniCS-POD is
enhanced consistently as the mesh size reduces to improve the
numerical accuracy in high thermal gradients.

All the results demonstrated in this study indicate that quality
of the solution data from the DNS tool is the key to improve the
accuracy of the developed POD model. In particular, accurate
gradients of POD modes, reflected by the 2, values in Tables
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III-VI, are needed, and this requires a high numerical accuracy
of high thermal gradients offered by the DNS tool. With an
appropriate DNS tool, the general practice is to reduce the grid
size in high thermal gradient regions to improve numerical
solutions. This however increases the computing time and
memory space needed in the training process that includes
thermal data collection, POD mode generation and calculations
of POD parameters. However, once the training is finished, the
reduction in the DoF is incredibly attractive.

Comparison of the computational time and DoF between
FEniCS-POD and FEniCS-FEM is included in Table IX.
Considering Case 1 with a coarser mesh of 128×128×13 (or
212,992), the lowest resolution in our study, if four POD modes
are used, FEniCS-POD for the entire CPU offers a reduction in
the DoF by more than 53,000 times (or more than 70,000 times
with three modes). This leads to a saving in the computational
time more than 3,600 times (10,700/2.92), compared to
FEniCS-FEM. To obtain the temperature profile, the post
processing in (2) to evaluate ⃗,
 is actually more time consuming than the POD simulation to
solve ⃗ in (4). For most applications, the thermal information is
needed only in a small fraction of the entire chip, particularly in
the regions where hot spots are located and most likely in the top
heating layer of the cores. Unlike the FEM where the entire
domain must be solved, the POD method could selectively
calculate the temperature at some grid points. If only the
temperature in the heating layer is of interest, an improvement in
computing time more than four orders of magnitude can be
achieved (or 10,700/0.77 = 13,896) with four modes. That is,
instead of 3-hour computational time in this case using FEniCS-
FEM C++, the temperature profile in the heating layer of the
quad-core CPU can be obtained from the POD modeling
technique in 0.77 second or for the entire CPU within a few
seconds.

TABLE IX
COMPUTATIONAL TIME AND DOF FOR THE QUAD-CORE CPU

With a finer mesh in Case 4, the computational times for both
FEniCS-POD and FEniCS-FEM are increased, as shown in
Table IX. With a finer mesh, the accuracy of FEniCS-POD is
however significantly improved, as discussed in Fig. 17
compared to Fig. 8. In particular, three modes in Case 4 are able
to offer an LS error smaller than the minimum error observed
in Case 1. Moreover, in Case 4, FEniCS-POD with three or four
modes offers a speedup near 5,700 or 4,300 times to evaluate
temperature in the entire CPU, and 23,000 or 19,000 times in

the heating layer, respectively, compared to FEniCS-FEM. It is
also found in our study that the simulation time needed by
HotSpot-Grid is approximately 50% of what FEniCS-FEM
requires for the same simulation domain and numerical settings.

This investigation also reveals a useful feature for the POD
method. While the LS error significantly reduces as the mesh
resolution increases, the number of modes needed for the LS
error curve to become nearly flattened does not change much.
For example, the LS errors from FEniCS-POD for Core 1 in
Fig. 12(b) for Case 2 (finer mesh) and in Fig. 12(a) for Case 3
(coarser mesh) become nearly invariant with just three or four
modes. As shown in Fig. 17(b) for Case 4 compared to Fig. 8
for Case 1, the LS error from FEniCS-POD for the entire chip
becomes flattened with three or four modes in both Case 1
(coarser mesh) and Case 4 (finer mesh). To further improve the
accuracy of the POD model, one can therefore collect fine-
resolution data to generate good-quality, robust POD modes,
and the computing time for the POD simulation to reach a
higher accuracy would not change much. Although the post
process in (2) can offer the spatial temperature with a resolution
as high as DNS, to significantly minimize the computational
resources, only the thermal profile in a few grid points of high
temperature regions for is needed.

The intensive computational effort needed in the training
process is the major drawback of the proposed POD simulation
method. The approach is however valuable for some crucial
applications. One of the useful applications of the proposed
approach is the real-time thermal-aware management. Once a
CPU or GPU is trained to adapt various dynamic power maps
and BCs, its POD model is able to offer the dynamic thermal
profile in the entire CPU/GPU including all significant hot spots
with a reasonable resolution within seconds. To the best of our
knowledge, there is no other method available to offer such a
task. The proposed approach is particularly valuable for true
run-time thermal-aware task scheduling of CPUs and GPUs due
to the fast-growing demand for high performance computing.

To further improve the POD method and expand its
adoptability, structures for a specific technology group can be
partitioned into smaller building blocks whose trained POD
modes and parameters are then stored in a database. These
stored POD blocks can be assembled to create larger structures,
similar to many technologies whose structures are primarily
constructed by building blocks, such as CPUs/GPUs, photonic
crystals, metamaterials, nanostructures, etc. The approach using
building blocks will also offer more efficient training for
smaller blocks and more effective parallel computing for a
structure with a large number of POD building blocks.

VI. CONCLUSIONS

The POD finds the modes that contain essential information
on thermal behaviors embedded in the dynamic solution data
collected from a DNS tool. This study has illustrated that, if the
collected solution data is not accurate enough, the projection of
the heat transfer equation given in (3) along the generated POD
modes leads to a POD model that offers inconsistent solution
with the heat transfer equation. In addition to offering an
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effective simulation approach for a large-scale simulation
domain, as demonstrated in this work, the POD simulation
method can also be used to rigorously determine the accuracy
of the DNS tool.

The DNS tools in this investigation include a rigorous FEM
implemented in FEniCS [32] and a popular chip-level thermal
simulator, HotSpot-Grid [41], [43]. Several heat source
excitations and different mesh resolutions have been
investigated in the entire or part of the quad-core CPU, AMD
ATHLON II X4 610e. It has been demonstrated that the POD
model built upon FEniCS-FEM offers very accurate predictions
of dynamic thermal distributions in all the test cases with an
extreme small DoF (three to four modes) even in the domains
with many small-size high-temperature hot spots. This leads to a
speedup of approximately four orders of magnitude to predict the
dynamic thermal distribution for the entire CPU, compared to its
DNS tool, FEniCS-FEM. When only the temperature in the
heating layer is needed, a speedup of five orders can be
achieved. In contrast, the POD model built upon HotSpot-Grid
offers an inconsistent dynamic thermal solution with the heat
transfer equation in all cases due to the inadequate-quality
thermal solution data collected from its DNS tool, HotSpot-
Grid, especially in the areas with high thermal gradients.
HotSpot-Grid provides reasonable solutions in most cases (a
deviation of 4%-5% from FEniCS-FEM’s prediction) but leads
to a deviation as large as 16.1% in the entire chip even in Case 2
with the finest resolution. Unlike FEniCS-FEM, the
numerical quality of HotSpot-Grid seems to be uncorrelated to
the mesh resolution for the cases we studied.

It has been shown that the change in the mesh resolution of
the thermal data collected from the DNS for a specific structure
does not influence the DoF needed to reach the minimum LS
error for the POD models. Also, the higher mesh resolution
implemented in the good-quality DNS tool offers a more
accurate POD model. If the efficiency and accuracy are the
major concern for full-chip thermal simulation and if one can
afford more computational effort using a higher resolution
mesh in the training of the POD modes, the following practice
will be useful for the POD simulation method. After the
simulation in the POD space, the post-processing calculation to
obtain the dynamic temperature distribution in real space is
needed only in the areas around the heat sources with higher
power density, such as the cores in our study. Also, instead of
the temperature at every discrete point in the areas with high
temperature or high thermal gradients, only temperature at
selected points needs to be calculated from (2). The training
only needs to be done once and the POD modes and parameters
can be stored in a technology database for full-chip dynamic
thermal analysis. The extremely efficient POD simulation
method with a high accuracy will be very attractive, e.g., for
run-time thermal-aware task scheduling of CPUs or GUPs
whose major concern is to capture high thermal gradients and
hot spots in the chip. To ease the computational time and
memory space needed for the training, an alternative is to
partition the entire chip into smaller domains. This will be
investigated in the near future.
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