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The Price of Competition: Effect Size
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High Dimensions
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Abstract— In high-dimensional sparse regression, would
increasing the signal-to-noise ratio while fixing the sparsity level
always lead to better model selection? For high-dimensional
sparse regression problems, surprisingly, in this paper we answer
this question in the negative in the regime of linear sparsity for
the Lasso method, relying on a new concept we term effect size
heterogeneity. Roughly speaking, a regression coefficient vector
has high effect size heterogeneity if its nonzero entries have
significantly different magnitudes. From the viewpoint of this
new measure, we prove that the false and true positive rates
achieve the optimal trade-off uniformly along the Lasso path
when this measure is maximal in a certain sense, and the worst
trade-off is achieved when it is minimal in the sense that all
nonzero effect sizes are roughly equal. Moreover, we demonstrate
that the first false selection occurs much earlier when effect size
heterogeneity is minimal than when it is maximal. The underlying
cause of these two phenomena is, metaphorically speaking, the
“competition” among variables with effect sizes of the same
magnitude in entering the model. Taken together, our findings
suggest that effect size heterogeneity shall serve as an important
complementary measure to the sparsity of regression coefficients
in the analysis of high-dimensional regression problems. Our
proofs use techniques from approximate message passing theory
as well as a novel technique for estimating the rank of the first
false variable.

Index Terms— Approximate message passing, false discovery
rate, high-dimensional sparse regression, model selection, signal-
to-noise ratio.

I. INTRODUCTION

W
E CONSIDER high-dimensional sparse regression

problems in which we observe an n-dimensional

response vector y that is generated by a linear model

y = Xβ + z, (I.1)

where X is an n × p design matrix of features, β ∈ R
p

denotes an unknown vector of regression coefficients, and
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Fig. 1. The TPP–FDP trade-off along the entire Lasso path, with three
different sets of regression coefficients. Note that the TPP–FDP trade-off is
equivalent to the receiver operating characteristic curve. The sparsity of β
is fixed to k = 200 (throughout this paper, we use k to denote the sparsity
level) and the 200 true effects are plotted in the logarithmic scale in the
three panels. For example, in the “Strong effect sizes w/ little heterogeneity”
setting, β1 = · · · = β200 = 103 , and β201 = · · · = β1000 = 0. The
design matrix X ∈ R

n×p has independent N (0, 1/n) entries, where n =
p = 1000, and the noise term z has independent N (0, σ2) entries with
σ = 0.01. The bottom-right panel shows the plot of FDP as a function of
TPP, averaged over 100 independent runs. For completeness, we remark that
effect size heterogeneity influences model selection in a more complex manner
at a higher noise level (see Figure 10).

z ∈ R
n is a noise term. In the big data era, this model has

been increasingly applied to high-dimensional settings where

the number of variables p is comparable to or even much

larger than the number of observational units n. While this

reality poses challenges to the regression problem, in many

scientific problems there are good reasons to suspect that

truly relevant variables account for a small fraction of all the

observed variables or, equivalently, β is sparse in the sense that

many of its components are zero or nearly zero. Indeed, a very

impressive body of theoretical work shows that the difficulty

of variable selection in the high-dimensional setting relies

crucially on how sparse the regression coefficients are [1], [2].

This paper, however, asks whether there are other measures

concerning the regression coefficients that have a practi-

cal impact on variable selection for the linear model (I.1).

To address this question, we present a simulation study in

Figure 1. Notably, the sparsity—or, put differently, the number

of nonzero components—of the regression coefficients β is

fixed to 200 across three experimental settings, but with vary-
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ing magnitudes of the 200 true effect sizes. The method we

use for variable selection is the Lasso [3], which is perhaps the

most popular model selector in the high-dimensional setting.

Given a penalty parameter λ > 0, this method finds the

solution to the convex optimization program

β̂(λ) = argmin
b∈Rp

1

2
ky − Xbk2 + λkbk1, (I.2)

where k · k and k · k1 denote the `2 and the `1 norms,

respectively. A variable j is selected by this method at λ

if β̂j(λ) 6= 0, and a false selection occurs if it is a noise

variable in the sense that βj = 0. Formally, we use the false

discovery proportion (FDP) and true positive proportion (TPP)

as measures of the type I error and power, respectively,

to assess the quality of the selected model {1 ≤ j ≤ p :
β̂j(λ) 6= 0}:

FDPλ =
#{j : βj = 0 and β̂j(λ) 6= 0}

#{j : β̂j(λ) 6= 0}
, (I.3)

TPPλ =
#{j : βj 6= 0 and β̂j(λ) 6= 0}

#{j : βj 6= 0} . (I.4)

As is clear, we wish to select a model with a small FDP and

large TPP.

Despite weaker effect sizes, strikingly, Figure 1 shows that

the Lasso can achieve better model selection in terms of

the TPP–FDP trade-off and, in particular, this counterintuitive

behavior holds uniformly along the entire Lasso path or, equiv-

alently, over all values of λ. Existing theory often analyzes

how the worst-case performance of the Lasso and other related

procedures depends on the regression coefficients through the

sparsity of the regression coefficients (see, for example, [4]).

However, the sparsity level is fixed across the experimental

settings of Figure 1. In light of this, therefore, one would

expect that the strong signals and weak signals would yield the

best and worst model selection results, respectively. Figure 1

shows that this is not necessarily the case.

Thus, a finer-grained structural analysis of the effect sizes

is needed to better understand the Lasso in some settings.

In this paper, we address this important question by proposing

a concept that we term effect size heterogeneity concern-

ing the regression coefficients in high dimensions. Roughly

speaking, a regression coefficient vector has higher effect size

heterogeneity than another vector (of the same sparsity) if the

nonzero entries of the former are more heterogeneous than

those of the latter in terms of magnitude. As a complement

to sparsity, effect size heterogeneity will be shown to have a

significant impact on how the Lasso performs in terms of the

false and true positive rates trade-off: while the sparsity level

of the regression coefficients is fixed, the higher the effect

size heterogeneity is, the better the Lasso performs. Turning

back to Figure 1, we note that the strong effect sizes are

the least heterogeneous in magnitude, and the weak effect

sizes are the most heterogeneous. Therefore, the comparisons

made in Figure 1 match well the implication of effect size

heterogeneity.

Concretely, the main thrust of this paper lies in the develop-

ment of two complementary perspectives to precisely quantify

Fig. 2. The Lasso Crescent diagram specified by the parameters n/p = 1
and k/p = 0.2, following the setting in Figure 1. The lower/upper smooth
curve is asymptotically achieved with maximal/minimal effect size hetero-
geneity (ESH) in the regime of infinite signal-to-noise ratio. The explicit
expressions of the curves are given in Section II. Our Theorem 1 implies that
nowhere on the Lasso path we can find any (TPP, FDP) pairs in the region
below the Lasso Crescent (also see [5]). In the noiseless setting, moreover, this
impossibility result continues to hold in the region above the Lasso Crescent
(Theorem 2), which is labeled “Unachievable (Noiseless).”.

the impact of effect size heterogeneity. First, following the

setup of Figure 1, we consider the full possible range of

the asymptotic trade-off between the TPP and FDP along the

Lasso path, while varying the level of effect size heterogeneity.

Assuming a random design with independent Gaussian entries

and working in the regime of linear sparsity—meaning that the

fraction of true effect sizes tends to a constant—we formally

show that the full possible range is enclosed by two smooth

curves in the (TPP, FDP) plane, which we referred to as the

Lasso Crescent. Figure 2 presents an instance of the Lasso

Crescent. More precisely, having excluded the impact of noise

by taking z = 0 in the linear model (I.1), the lower curve

is asymptotically achieved when effect size heterogeneity is

maximal in the sense that all true effect sizes are widely

different from each other, while the upper curve is asymp-

totically achieved when the heterogeneity is minimal in the

sense that all true effects are of the same size. In general,

the (TPP, FDP) pairs computed from the entire Lasso path

must be asymptotically sandwiched between the two curves

in the noiseless setting or, equivalently, in the regime of the

infinite signal-to-noise ratio. The gap between the two curves

is fundamental in the sense that it persists no matter how strong

the effects are.

While the TPP–FDP trade-off essentially examines the

“bulk” of the Lasso solution path, the second perspective

we take extends to the “edge”: when does the first noise

variable enter the model along the Lasso path? More precisely,

we decrease λ from ∞ to 0 and find the first “time” a false

selection occurs. To indicate the difficulty of consistent model

selection, formally, we consider the rank of the first noise

variable or, put concretely, one plus the number of the true

variables before the Lasso selects the first noise variable. Intu-

itively, a large rank is desirable. As with the first perspective,

assuming a Gaussian random design and regression coeffi-

cients with linear sparsity, we prove that the rank of the first

false selection is bounded above by (1+o(1))n/(2 log p). This

upper bound, which approximately equals 72 in the setting

of Figure 1, holds no matter how strong the effect sizes are.

Interestingly, this upper bound is exactly achieved when effect
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size heterogeneity is maximal and the noise level tends to zero.

On the other hand, [6] has obtained a sharp prediction of the

rank of the first false variable in the case of minimal effect size

heterogeneity, which, together with our new result, shows that

the first noise variable occurs much earlier with minimal effect

size heterogeneity than with maximal effect size heterogeneity.

Although not entirely related, the two perspectives consistently

demonstrate that effect size heterogeneity is an important and

useful concept for understanding the performance of the Lasso.

The fact that effect size heterogeneity matters, as shown

above, is due to the bias introduced by the shrinkage nature

of the Lasso. This bias in turn makes the residuals absorb

many of the true effects that act as what we may want to call

“shrinkage noise”. Metaphorically, variables yet to be selected

tend to “compete” with each other in entering the Lasso path

and contribute to the shrinkage noise. The “competition” is

particularly intensive among variables having about the same

effect sizes, which is the case when effect size heterogeneity

is low. As a price, the shrinkage noise gets inflated and

some noise variables may be selected early due to their

high correlations with the shrinkage noise. This is why false

selections occur with a good chance and early. In contrast,

when the heterogeneity is high, the largest true effect yet to

be selected tends to have a significant correlation with the

residuals, thereby having a better chance to be selected sooner.

To appreciate this heuristic explanation, it is instructive to

note that the least-squares estimator, if available, does not

exhibit this price-of-competition phenomenon, as it is unbiased

for the regression coefficients.1 An alternative but less direct

way to appreciate effect size heterogeneity is to relate it to

the restricted eigenvalue condition [2]. Roughly speaking, this

condition is concerned with a vector of regression coefficients

such that its `1 norm is largely contributed by a few com-

ponents, and such approximate sparse regression coefficients

can be well estimated by the Lasso and the Dantzig selector

under certain designs [2], [7]. From the viewpoint of this

condition, therefore, regression coefficients with high effect

size heterogeneity can be thought of as having a smaller

effective sparsity level, which is favored by the Lasso.

As a final remark, the price-of-competition phenomenon

does not appear if the sparsity is sub-linear in the ambient

dimension p, which is often assumed in the copious body of

literature on high-dimensional regression. In this regime of

sparsity, effect size heterogeneity has a vanishing impact on

the performance of the Lasso if the signal-to-noise ratio is

sufficiently strong or the beta-min condition is satisfied. Our

paper also departs from this line of literature from a technical

standpoint. Indeed, the proofs of the results in this paper make

heavy use of approximate message passing (AMP) theory

[8]–[10], with nontrivial extensions.

A. Organization

The remainder of this paper is organized as follows.

In Section II, we formalize the Lasso Crescent diagram by

presenting our theoretical results that predict the TPP–FDP

1If the effect sizes are sufficiently strong, variable selection using the t
values of the least-squares estimator can lead to full power without any type
I errors.

trade-off with respect to effect size heterogeneity. Section III

extends the investigation of effect size heterogeneity to the

problem of the first false variable along the Lasso path.

Section IV is devoted to proving the results in Section II,

whereas technical details of the proofs are deferred to the

appendix. In Section V, we provide numerical studies to

demonstrate the impact of effect size heterogeneity in general

settings. We conclude the paper in Section VI with a few

directions for future research.

II. THE LASSO CRESCENT

In this section, we derive the full possible range of the

asymptotic trade-off between the TPP and FDP along the

Lasso path, with a focus on its dependence on effect size het-

erogeneity. Specifically, our results can be pictorially presented

by the Lasso Crescent as in Figure 2, hence the title of this

section. The proofs are deferred to Section IV.

Throughout this section, and indeed the entire paper,

we assume the following working hypotheses to specify the

linear model (I.1). For ease of reading, we use boldface letters

to denote vectors and matrices.

Gaussian Design Matrix: We consider a sequence of designs

X ∈ R
nl×pl consisting of i.i.d. N (0, 1/nl) entries so that each

column has an approximate unit `2 norm. As the index l → ∞,

we assume pl, nl → ∞ with nl/pl → δ for a constant δ > 0.

The index l is often omitted for the sake of simplicity.

Regression Coefficients: Let the regression coefficients

β1, . . . , βp be i.i.d. copies of a random variable Π that satisfies

E Π2 < ∞. Of particular interest to this paper is an �-sparse

prior Π in the sense that P(Π 6= 0) = � for a constant

0 < � < 1. Thus, the realized β1, . . . , βp are in the linear

sparsity regime since the sparsity is approximately equal to �p.

Noise: The noise term z consists of i.i.d. elements drawn

from N (0, σ2), where the noise level σ ≥ 0 is fixed.

For completeness, X, β, and z are jointly independent.

These assumptions are used in the literature on AMP theory

and its applications (see, for example, [9]–[13]) and, more

recently, have been commonly made in the high-dimensional

regression literature [14]–[17]. On top of that, we adopt some

adjustments made by [5] that slightly simplify the assumptions

on β and z. Regarding the assumption on the noise, it is

worth noting that we do not exclude the case σ = 0, which

corresponds to noiseless observations. For some of the results

in this section, the price-of-competition phenomenon manifests

itself most clearly in the noiseless setting.

A. Most Heterogeneous Effect Sizes

Our first main theorem considers regression coefficients that

are drawn from the following prior distribution:
Definition 2.1: For M > 0 and an integer m > 0, we call

Π∆ =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 w.p. 1 − �

M w.p. �
m

M2 w.p. �
m

· · · · · ·
Mm w.p. �

m

(II.1)

the (�, m, M)-heterogeneous prior.
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For notational convenience, we suppress the dependence of

Π∆ on �, m, M . This prior is �-sparse in the sense of the

working hypotheses. As is clear, larger values of m, M would

render the prior more heterogeneous. Indeed, this paper is

primarily concerned with the case where both M, m → ∞.

This corresponds to the regime where the signal-to-noise

ratio tends to infinity and, in addition, the true effect sizes

are increasingly different. To be complete, the (�, m, M)-
heterogeneous prior is only a specific example that attains

increasing heterogeneity. See Remark 2.2 for more examples.

Following (I.3), FDPλ(Π) and TPPλ(Π) denote the (ran-

dom) false discovery proportion and true positive proportion,

respectively, of the Lasso estimate at λ when the regression

coefficients in (I.1) are i.i.d. draws from a prior Π. For ease of

reading, we say a pair (TPP, FDP) outperforms another pair

(TPP′, FDP′) if TPP > TPP′ and FDP < FDP′. As noted

earlier, all theoretical results in this paper are obtained under

the working hypotheses. For conciseness, the statements of our

theorems shall not mention this fact anymore.

Theorem 1: Let C > c > 0 be fixed. For any �-sparse

prior Π, if both m and M are sufficiently large in the

(�, m, M)-heterogeneous prior Π∆, then the following con-

clusions are true:

(a) The event

⋃

c<λ,λ′<C

{
(TPPλ′(Π), FDPλ′(Π)) outperforms

(TPPλ(Π∆), FDPλ(Π∆))

}

happens with probability tending to zero as n, p → ∞.

(b) For any constant ν > 0, no matter how we choose

λ̂′(y, X) ≥ c adaptively as long as it always satis-

fies TPP �λ′(Π) > ν, with probability approaching one

there exists λ̂ > 0 such that
(
TPP�λ(Π∆), FDP�λ(Π∆)

)

outperforms
(
TPP �λ′(Π), FDP �λ′(Π)

)
.

Remark 2.2: The priors for which the theorem holds can

be extended in the following way. Consider a sequence of

priors Π∆ satisfying Π∆ = 0 with probability 1 − � and

Π∆ = Mi 6= 0 with probability �γi for i = 1, . . . , m such that

γ1+· · ·+γm = 1, maxi γi → 0, and min1≤i≤m |Mi/Mi−1| →
∞ (set M0 = 1). Alternatively, the nonzero component of

the prior can be drawn from a continuous random variable

with cumulative distribution function of form
logM x

m for

1 ≤ x ≤ Mm. While the theorem statement is restricted to

(�, m, M)-heterogeneous priors for brevity, its proof considers

the general case.

This theorem demonstrates the optimality of heterogeneous

and strong effects in terms of the trade-off between the TPP

and FDP. Importantly, this optimality is uniform in the sense

that it holds along the entire Lasso path, no matter how strong

the true effects coming from Π are. To be sure, the event as a

union in (a) is taken over any (TPP, FDP) pair from the prior Π
and any pair from the prior Π∆. Although each conclusion

alone is not a consequence of the other, as we will see from

the proof in Section IV, the two conclusions are built on top of

the fact that the pairs (TPPλ, FDPλ) with varying λ converge

uniformly to a deterministic smooth curve for both Π and Π∆.

This fact allows us to obtain the following byproduct:

Proposition 2.3: Under the assumptions of Theorem 1, for

any sufficiently small constant ν > 0, the following statement

holds with probability tending to one: for any λ, λ′ > c such

that
∣∣TPPλ(Π∆) − TPPλ′(Π)

∣∣ < ν and TPPλ′(Π) > 0.001,

we have

FDPλ(Π∆) < FDPλ′(Π).
This result makes it self-evident why the prior Π∆ is a most

favorable for the entire Lasso path, though literally, we should

interpret this favorability in the limit m, M → ∞. More

precisely, this result implies that given a required power level,

the smallest possible FDP is achieved when the effects are

increasingly heterogeneous and strong. Of note, the number

0.001 above can be replaced by any small positive constant,

and it does not impede the interpretability of the theorem since

we are generally not interested in a model that includes only

a tiny fraction of true variables.

An interesting yet unaddressed question is to find an expres-

sion of the asymptotic minimum of FDP given TPPλ(Π∆) = u
in the limit m, M → ∞. Call this function q∆(u; δ, �). From

our results, one can easily see that q∆ is nothing but the lower

envelope of instance-specific TPP–FDP trade-off curves over

all �-sparse priors. To see this, first note that one can prove

that as n, p → ∞, the pairs (TPPλ(Π), FDPλ(Π)) over all

λ converge to a smooth curve, which is denoted by qΠ(u)
(see Section IV). Recognizing that Π∆ is also �-sparse and

assuming limm,M→∞ qΠ∆

exists, we must have

q∆(u) := lim
m,M→∞

qΠ∆

(u) ≥ inf
Π:�-sparse

qΠ(u). (II.2)

On the other hand, it follows from Theorem 1 and in particular

Proposition 2.3 that

qΠ(u) ≥ lim
m,M→∞

(
qΠ∆

(u) + o(1)
)

= q∆(u)

for any �-sparse prior Π. This display, together with (II.2),

gives

q∆(u) = inf
Π:�-sparse

qΠ(u). (II.3)

Interestingly, the right-hand side of (II.3) has been tackled

in [5], leading to a precise expression. To describe this expres-

sion, let t∆(u) be the largest positive root of the following

equation in t,

2(1 − �)
[
(1 + t2)Φ(−t) − tφ(t)

]
+ �(1 + t2) − δ

� [(1 + t2)(1 − 2Φ(−t)) + 2tφ(t)]

=
1 − u

1 − 2Φ(−t)
, (II.4)

where Φ(·) and φ(·) denote the cumulative distribution func-

tion and probability density function of the standard normal

distribution, respectively. Theorem 2.1 in [5] shows that

inf
Π:�-sparse

qΠ(u) =
2(1 − �)Φ(−t∆(u))

2(1 − �)Φ(−t∆(u)) + �u
. (II.5)

Taken together, (II.3) and (II.5) yield

q∆(u) =
2(1 − �)Φ(−t∆(u))

2(1 − �)Φ(−t∆(u)) + �u
. (II.6)
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Remark 2.4: If u = 0, treat ∞ as a root of the equation

and set 0/0 = 0 in (II.5). As such, q∆ satisfies q∆(0) = 0.

If δ < 1 and � is larger than a threshold determined by

δ, the function q∆ is defined only for u between 0 and a

certain number strictly smaller than 1. This is where the

celebrated Donoho–Tanner phase transition occurs [18] (also

see Section B.2). Throughout this paper, however, we focus on

the regime that is below the Donoho–Tanner phase transition—

that is, the case where δ ≥ 1, or δ < 1 and � is small so that

the range of u is the unit interval [0, 1]. In contrast, above the

phase transition, the mapping from the TPP to FDP might not

be unique (see Figure 3.1 in [19] and [20]).

In summary, we have the following corollary, which

addresses the aforementioned question.

Corollary 2.5: Under the assumptions of Theorem 1,

we have

lim
m,M→∞

lim
n,p→∞

sup
λ>c

∣∣FDPλ(Π∆) − q∆
(
TPPλ(Π∆)

)∣∣ = 0,

where limn,p→∞ is taken in probability. Moreover, for any

�-sparse prior Π, we have

FDPλ(Π) ≥ q∆ (TPPλ(Π)) − 0.001

for all λ > c with probability tending to one.

Remark 2.6: As λ → ∞, both TPPλ(Π∆) and FDPλ(Π∆)
tend to 0. Hence, there is no need to impose an upper bound on

λ when taking the supremum supλ>c. The second conclusion

of Corollary 2.5 follows from Proposition 2.3 in conjunction

with the continuity of q∆. As earlier, 0.001 can be replaced

by any positive constant.

The second conclusion of Corollary 2.5 is part of

Theorem 2.1 in [5] and demonstrates that true variables and

irrelevant variables are always interspersed along the Lasso

path. In particular, this is true when the regularization para-

meter λ tends to 0. In this case, indeed, the Lasso would

select a significant fraction of false variables with vanish-

ing but nonzero estimated coefficients. This fact necessitates

a form of calibration of the Lasso estimates for variable

selection [19], [20].

The significance of Theorem 1 and Corollary 2.5, how-

ever, extends beyond earlier results. Precisely, [5] derived the

expression (II.5) by constructing a different signal prior Π
for each power level u. Indeed, the nonzero component of

the prior constructed in [5] has two different magnitudes with

weights depending on u, as opposed to an increasing number

of different magnitudes as in the (�, m, M)-heterogeneous

prior. The increasing level of heterogeneity allows us to give

a one-shot construction of most heterogeneous priors at all

power levels.

B. Least Heterogeneous Effect Sizes

We now turn to the opposite question: which effect sizes

lead to the worst trade-off between the TPP and FDP along

the Lasso path? Inspired by the interpretation of effect size

heterogeneity, it is natural to consider the following signal

prior as a candidate:

Definition 2.7: For M > 0, we call

Π∇ =

{
0 w.p. 1 − �

M w.p. �
(II.7)

the (�, M)-homogeneous prior.

This prior would render all true effect sizes equal, thereby

being least heterogeneous or most homogeneous among all

�-sparse priors. The following theorem confirms our intuition

that this homogeneous prior is least favorable for the Lasso

as the resulting effect sizes give the least optimal trade-off

between false positives and power.

Theorem 2: Let C > c > 0 be fixed. In the noiseless setting

— that is, z = 0 — for any �-sparse prior Π that is non-

constant conditional on Π 6= 0, the following conclusions are

true for the (�, M)-homogeneous prior Π∇:

(a) The event

⋃

c<λ,λ′<C

{
(TPPλ(Π∇), FDPλ(Π∇)) outperforms

(TPPλ′(Π), FDPλ′(Π))

}

happens with probability tending to zero as n, p → ∞.

(b) For any constant ν > 0, no matter how we choose

λ̂′(y, X) ≥ c adaptively as long as it always satis-

fies TPP �λ′(Π) > ν, with probability tending to one

there exists λ̂ > 0 such that
(
TPP �λ′(Π), FDP �λ′(Π)

)

outperforms
(
TPP�λ(Π∇), FDP�λ(Π∇)

)
.

This theorem is similar, but in the opposite sense, to

Theorem 1. One distinction between the two theorems is that

Theorem 2 assumes the noiseless setting, as opposed to the

noisy setting considered in Theorem 1. The noiseless setting

is equivalent to an infinite value of the signal-to-noise ratio,

which allows us to better isolate the impact of effect size

heterogeneity from that of the noise term. That said, this

theorem remains true in the presence of noise by setting a

sufficiently large magnitude M for the true effect sizes.

Just as Proposition 2.3 does, the following result follows

from the proof of Theorem 2 presented in Section IV.

Proposition 2.8: Under the assumptions of Theorem 2, for

any sufficiently small constant ν > 0, the following statement

holds with probability tending to one: if λ, λ′ > c satisfy

TPPλ′(Π) > 0.001 and
∣∣TPPλ(Π∇) − TPPλ′(Π)

∣∣ < ν, then

FDPλ(Π∇) > FDPλ′(Π).
As is clear, this result demonstrates that the prior Π∇ is

least favorable for the entire Lasso path in the noiseless case.

Roughly speaking, this proposition shows that if the two Lasso

problems agree on the value of the TPP along their paths,

then the (�, M)-homogeneous prior Π∇ must yield a higher

FDP. As with Proposition 2.3, 0.001 can be replaced by any

positive constant. On a related note, the prior (II.7) is known to

be least favorable for certain estimation problems both in the

noiseless and noisy settings [21] (see also Lemma 4.4.1 and

Corollary 4.4.3 in [22]). An interesting direction for future

research is to study the relationship between estimation and

variable selection with regard to the least favorability of the

prior distribution.
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The sharp distinction between Propositions 2.3 and 2.8

must be attributed to the priors Π∆ and Π∇. The cause is,

loosely speaking, due to the “competition” among variables

with about the same effect sizes in entering the Lasso model.

However, we find it easier to elucidate the underlying cause

when studying the rank of the first false variable and thus defer

the detailed discussion to Section III.

We now proceed to specify the curve on which

(TPPλ(Π∇), FDPλ(Π∇)) lies in the limit. For a fixed α, let

ς = ς(α) denote the largest root of the equation

δ = 2(1 − �)[(1 + α2)Φ(−α) − αφ(α)] − �(2α + ς)φ(ς)

+ �ςφ(2α + ς) + �(1 + α2)[Φ(ς) + Φ(−2α − ς)]

+ �(ς + α)2[Φ(−ς) + Φ(−2α − ς)],

and let t∇ = t∇(u; δ, �) be the largest root of the following

equation in α:

Φ(ς(α)) + Φ(−2α − ς(α)) = u.

With all of these in place, define

q∇(u; δ, �) =
2(1 − �)Φ(−t∇(u))

2(1 − �)Φ(−t∇(u)) + �u
. (II.8)

The derivation of the expression is given in Lemma 1.16 in

Section B.2. The following result shows that this function

describes the limiting trade-off between the TPP and FDP in

the case of minimal effect size heterogeneity:

Corollary 2.9: Under the assumptions of Theorem 2,

we have

lim
n,p→∞

sup
λ>c

∣∣FDPλ(Π∇) − q∇
(
TPPλ(Π∇)

)∣∣ = 0.

Moreover, for any �-sparse prior Π, we have

FDPλ(Π) ≤ q∇ (TPPλ(Π)) + 0.001

for all λ > c with probability tending to one.

As with Theorem 2, Corollary 2.9 holds for any M > 0
because of the noiseless setting.

Taken together, Corollaries 2.5 and 2.9 give the following

result:
Theorem 3: Let c > 0 be any small constant. In the

noiseless setting, for any �-sparse prior Π, we have

q∆ (TPPλ(Π)) − 0.001 ≤ FDPλ(Π) ≤ q∇ (TPPλ(Π)) + 0.001

for all λ > c with probability tending to one.

The two curves q∆ and q∇ enclose a crescent-shaped

region, which we call the Lasso Crescent. This theorem shows

any (TPP, FDP) pairs along the entire Lasso path would

essentially lie in the corresponding Lasso Crescent that is

specified by the shape n/p of the design and the sparsity

ratio k/p of the effect sizes, and this region is tight. Figure 3

presents two instances of the Lasso Crescent, with simulations

showing good agreement between the predicted and observed

behaviors.2

2
R and Matlab code to calculate q∆ and q∇ is available at

https://github.com/huawang-wharton/effectsizeheterogeneity.

Fig. 3. Illustration of the interpretation of the Lasso Crescent via Theorem 3.
The design of size n × p has i.i.d. N (0, 1/n) entries and the noise level is
set to 0. Specifically, we use n = p = 1000, and sparsity k = 200 in
the left panel, and n = 800, p = 1200, k = 200 in the right panel.
The “high effect size heterogeneity (ESH)” setting: the 200 coefficients take
4 different values; The “moderate ESH” setting: the first 100 coefficients are
set to 100 and the second 100 coefficients are set to 50; The “low ESH”
setting: the 200 coefficients are set to 100. The dashed lines are averaged
over 200 independent runs of the Lasso path. The two boundaries q∆ and
q∇ are in solid black lines.

III. THE FIRST FALSE SELECTION

In this section, we examine the impact of effect size

heterogeneity on model selection by the Lasso from a dif-

ferent perspective: when is the first false variable selected?

Intuitively, the later the first false variable occurs, the better

the method performs. Using a mix of new and old results,

this section will show that the first false variable occurs much

earlier when effect size heterogeneity is minimal than when it

is maximal.

Denote the rank of the first falsely selected variable by

T := #{j : β̂j(λ
∗ − 0) 6= 0} = #{j : β̂j(λ

∗) 6= 0} + 1.

Above, λ∗ is the first time along the Lasso path that a false

variable is about to be selected:

λ∗ = sup{λ : there exists 1 ≤ i ≤ p, β̂i(λ) 6= 0, βi = 0},
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and λ∗−0 informally represents a value that is infinitesimally

smaller than λ∗. In words, T is equal to one plus the number

of true variables before the first false variable.

The problem of the rank of the first false selection has been

considered by [6] in the case where all nonzero regression

coefficients are equal. This corresponds to minimal effect

size heterogeneity. While we continue employing the working

hypotheses as earlier, in this section the regression coefficients

β are assumed to be deterministic.

Proposition 3.1: [6, Theorem 2] Under the working

hypotheses, let βj = M for 1 ≤ j ≤ k and βj = 0 for

k + 1 ≤ j ≤ p, where k/p → � and M → ∞ as n, p → ∞.

Then, the rank T of the first false variable selected by the

Lasso satisfies

log T = (1 + oP(1))

√
2δ log p

�
,

where oP(1) tends to 0 in probability.

This result also applies to forward stepwise regression and

least angle regression [23]. Note that this proposition considers

the regime where the signal-to-noise ratio M/σ → ∞ as

σ is fixed. If M/σ is bounded, one has log T ≤ (1 +

oP(1))
√

2δ log p
� [6, Theorem 1]. Indeed, the original theorem

predicts that

log T ≤ (1 + oP(1))
(√

2n(log p)/k − n/(2k)

+ log
(
n/(2p logp)

))
,

which is reduced to the upper bound above since n/p → δ
and k/p → � under our working hypotheses.

Turning to most heterogeneous effect sizes, we have the

result below.

Proposition 3.2: Under the working hypotheses, let βj =
Mk+1−j for 1 ≤ j ≤ k and βj = 0 for k + 1 ≤ j ≤ p,

where k/p → �. If M is sufficiently large, then there exists λ
depending on n such that

#
{

j : β̂j(λ) 6= 0, βj 6= 0
}

= (1 + oP(1))
n

2 log p
,

and #
{

j : β̂j(λ) 6= 0, βj = 0
}

= 0

as n, p → ∞.

The proof of this proposition is given in the appendix.

Regarding how large M should be, precisely, this proposition

holds if M satisfies M ≥ na as n → ∞ for any constant

a > 1
2 . It is also worth mentioning that the proof is adapted

from the proof of Theorem 1 in [24]. The effect sizes in

Proposition 3.2 are essentially the same as an (�, m, M)-
heterogeneous prior (II.1) with m → ∞.

Proposition 3.2 asserts that all (1 + oP(1)) n
2 log p selected

variables are true at some point along the Lasso path. If the

Lasso does not kick out any selected variables before that

point,3 this result implies that T ≥ (1 + oP(1)) n
2 log p .

3It is well-known that along the Lasso path, a selected variable can
be dropped out as λ decreases [23]. However, we did not observe this
phenomenon before the first (1 + oP(1)) n

2 log p
variables are selected in all

of our simulations.

Recognizing the fact that

e(1+oP(1))
√

2δ log p
ε � (1 + oP(1))

n

2 log p
,

most heterogeneous effect sizes are more favorable than least

heterogeneous effect sizes for the Lasso not only in terms of

the TPP–FDP trade-off as shown in the previous section, but

also in terms of the rank of the first false variable.

Unlike Theorem 1 and Theorem 2, the two propositions

here are silent on whether their bounds can be extended to

general �p-sparse effect sizes. The following theorem gives

a partial affirmative answer to this question, which broadly

applies to all regression coefficients with sparsity no more

than �p, as opposed to the exact sparsity level �p.

Theorem 4: Under the working hypotheses, for arbitrary

regression coefficients β with sparsity satisfying k ≤ �p, the

rank T of the first false variable selected by the Lasso satisfies

T ≤ (1 + oP(1))
n

2 log p

as n, p → ∞.

Together with Proposition 3.2, this theorem indicates that

maximal effect size heterogeneity is most favorable for the

Lasso in terms of the rank of the first false variable. Impor-

tantly, the sharp bound (1 + oP(1)) n
2 log p is the maximum

number of true variables before a false selection for essentially

all sparsity levels, no matter how strong and how heteroge-

neous the effect sizes are. This novel result is a contribution of

independent interest to high-dimensional statistics. The proof

is given in Section III-A and does not involve any elements

from AMP theory.

In regard to Proposition 3.1, however, it is tempting to ask

whether minimal effect size heterogeneity is least favorable

from the same standpoint; that is, whether or not

log T ≥ (1 + oP(1))

√
2δ log p

�

for any �p-sparse regression coefficients in the noiseless case.

We leave this question for future work.

In passing, we briefly explain how and why effect size

heterogeneity has a significant impact on model selection by

the Lasso, shedding light on the price-of-competition phe-

nomenon. To ease the elaboration, we assume the noiseless

setting (z = 0) and denote by S the set of all true variables.

Consider the Lasso solution β̂(λ) at some λ where no false

selection occurs (that is, the support Ŝ of β̂ is a subset of S).

Our explanation relies crucially on the fact that a variable

Xj (j /∈ Ŝ) is likely to be the next selected variable if its

inner product with the residual, X	
j (y − Xβ̂), is the largest

in magnitude. Note that (denote by XQ the matrix that is

formed by the columns corresponding to Q for a subset Q of

{1, . . . , p})

X	
j (y − Xβ̂) =X	

j (y − X �Sβ̂�S)

=X	
j XS\�SβS\�S + X	

j X �S(β �S − β̂�S).

Now, we argue that the largest X	
j XS\�SβS\�S in absolute

value in the case of high effect size heterogeneity is likely

to be from a true variable Xj (j ∈ S \ Ŝ) and, conversely,
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it is likely to be from an irrelevant variable Xj (j /∈ S) if

effect size heterogeneity is low. Informally, regarding Ŝ as

deterministic, then X	
j XS\�SβS\�S is approximately normally

distributed with variance kXS\�SβS\�Sk2/n ≈ kβS\�Sk2/n and

mean {
0 if j /∈ S

βj if j ∈ S \ Ŝ.

In the setting of Proposition 3.2 where true effect sizes

are widely different from each other, the standard deviation

kβS\�Sk/√n is much smaller than supj∈S\�S βj . Consequently,

the unselected variable with the largest effect size supj∈S\�S βj

tends to stand out, with essentially no “competition” among all

unselected variables, thereby being the next selected variable.

In the setting of Proposition 3.1, however, the standard devia-

tion kβS\�Sk/√n is comparable to the largest unselected effect

sizes, which are in fact of the same size. Another way to put

this is that the overall effect is evenly distributed across true

variables, and the resulted competition renders any variable

dwarfed by the noise. Accordingly, some noise variable Xj

is very likely to have a larger inner product X	
j (y − Xβ̂)

in magnitude than any unselected true variable does. As such,

a false selection is likely to occur very early when effect size

heterogeneity is low.

A. Proof of Theorem 4

Let ν > 0 be any small constant and denote by Aν the

event that the rank of the first false variable

T ≥ (1 + ν)
n

2 log p
.

The proof follows if one can show P(Aν) → 0 for all ν > 0 as

n, p → ∞. Recall that S denotes the support supp(β). If the

sparsity |S| = k < (1 + ν) n
2 log p − 1 = (1 + ν + o(1)) n

2 log p ,

the event Aν is an empty set because T is always no greater

than |S| + 1 < (1 + ν) n
2 log p , leading to P(Aν) = 0.

Now, we turn to the more challenging case where

k ≥ (1 + ν) n
2 log p − 1 and the remainder of the proof aims to

show P(Aν) → 0. Consider the solution β̃(λ) to the restricted

Lasso problem

β̃(λ) := argmin
b∈Rk

1

2
ky − XSbk2 + λkbk1. (III.1)

Let

λ = sup

{
λ : kβ̃(λ)k0 ≥ (1 + ν)

n

2 log p
− 1

}

be the first time that the restricted Lasso selects (1+ν) n
2 log p−

1 variables and denote by Ŝ the support of β̃(λ − 0) (here

λ − 0 is infinitesimally smaller than λ). In particular, this set

must satisfy

(1 + ν)
n

2 log p
− 1 ≤ |Ŝ| ≤ (1 + ν)

n

2 log p
. (III.2)

On the event Aν , the support of the full Lasso solution is

a subset of S. Therefore, β̃(λ) defined in (III.1) is also the

solution to the full Lasso problem at λ:

β̃(λ) = argmin
b∈Rp

1

2
ky − Xbk2 + λkbk1.

Note that β̃(λ) may be k-dimensional as in (III.1) or

p-dimensional by setting the remaining p − k entries to zero,

depending on the context. Writing β̃ as a shorthand for β̃(λ),

as a consequence, we have

∣∣∣X	
j (y − XSβ̃)

∣∣∣ ≤ λ for all

j /∈ S on the event Aν , thereby certifying

P(Aν) ≤ P

(∣∣∣X	
j (y − XS β̃)

∣∣∣ ≤ λ for all j /∈ S
)

.

To prove P(Aν) → 0, therefore, it suffices to show that

max
j /∈S

∣∣∣X	
j (y − XSβ̃)

∣∣∣ > λ (III.3)

with probability tending to one. Making use of the indepen-

dence between Xj and y − XSβ̃, X	
j (y − XSβ̃)’s are

p−k i.i.d. normal random variables with mean 0 and variance

ky − XSβ̃k2/n, conditional on y − XSβ̃. This gives

max
j /∈S

∣∣∣X	
j (y−XSβ̃)

∣∣∣=(1+oP(1))
ky−XSβ̃k√

n

√
2 log(p−k)

≥(1+oP(1))
kX �S(X	�S X �S)−1X	�S (y−XSβ̃)k√

n

√
2 log(p−k),

(III.4)

where the inequality follows since X �S(X	�S X �S)−1X	�S is a

projection. For the moment, take the inequality

kX �S(X	�S X �S)−1X	�S (y − XSβ̃)k ≥ (1 + c)λ

√
n

2 log p

(III.5)

as given for some constant c > 0 possibly depending on ν,

with probability tending to one. Combining (III.4) and (III.5)

yields

max
j /∈S

∣∣∣X	
j (y − XS β̃)

∣∣∣ ≥ (1 + oP(1))
√

2 log(p − k)
(1 + c)λ√

2 log p

= (1 + c + oP(1))λ

√
log(p − k)

log p

≥ (1 + c + oP(1))λ

√
log(p − �p)

log p

= (1 + c + oP(1))λ

with probability tending to one, which ensures (III.3).

We proceed to complete the proof of this theorem by

verifying (III.5). The Karush–Kuhn–Tucker condition for the

Lasso asserts that

X	�S (y − XSβ̃) = λ sgn(β̃ �S) ∈ λ{1,−1}|�S|,
from which we get

∥∥∥X	�S (y − XSβ̃)
∥∥∥ = λ

√
|Ŝ|.

A classical result in random matrix theory (see Lemma 1.1

in the appendix) shows that the singular values of

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 09,2023 at 01:55:46 UTC from IEEE Xplore.  Restrictions apply. 



5276 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

X �S(X	�S X �S)−1 are all bounded below by 1√
1+θ

with proba-

bility 1 − 1/p2, where

θ = C

√
(1 + ν) n

2 log p log(p/((1 + ν) n
2 log p ))

n
�
√

log log p

log p

(III.6)

for an absolute constant C. This allows us to get

kX �S(X	�S X �S)−1X	�S (y − XSβ̃)k

≥ 1√
1 + θ

kX	�S (y − XSβ̃)k

=

√
|Ŝ|

1 + θ
· λ (III.7)

with probability tending to one. Recognizing that θ < ν/2 for

sufficiently large p and plugging (III.6) and (III.2) into (III.7),

we obtain

kX �S(X	�S X �S)−1X	�S (y−XSβ̃)k ≥
√

(1 + ν) n
2 log p − 1

1 + ν/2
· λ

= (1 + c)λ

√
n

2 log p

with probability approaching one, where c =
√

1+ν
1+ν/2 −

1 > 0. This proves (III.5), thereby completing the proof of

Theorem 4.

IV. PROOFS FOR THE LASSO CRESCENT

To prove Theorems 1 and 2, we start by introducing AMP

theory at a minimal level. In the case of the Lasso, loosely

speaking, tools from AMP theory enable the characterization

of the asymptotic joint distribution of the Lasso estimate

β̂(λ) and the true regression coefficients β under the work-

ing hypotheses [8]–[10]. The distribution is determined by

several parameters that can be solved from two equations

(see (IV.1) below). It is important to note, however, that

this body of literature only allows for the analysis of the

Lasso at a fixed value of λ. As such, these tools are not

directly applicable to the full Lasso path that this paper

deals with.

To overcome this difficulty, we leverage a recent exten-

sion on AMP theory that allows us to work on the Lasso

problem uniformly over its penalty parameter [5]. Under the

working hypotheses, let τ > 0 and α > α0 be the unique

solution to

τ2 = σ2 +
1

δ
E(ηατ (Π + τW ) − Π)2

λ =

(
1 − 1

δ
P(|Π + τW | > ατ)

)
ατ, (IV.1)

where ηc(x) := sgn(x)·max{|x|−c, 0} is the soft-thresholding

function, W is a standard normal random variable that is

independent of Π, and α0 = 0 if δ > 1 and otherwise is the

unique root of (1+ t2)Φ(−t)− tφ(t) = δ
2 in t ≥ 0. Let Π? be

distributed the same as Π conditional on Π 6= 0, and define

the two deterministic functions

tpp∞λ (Π) = P(|Π? + τW | > ατ)

fdp∞λ (Π) =
2(1 − �)Φ(−α)

2(1 − �)Φ(−α) + �P(|Π? + τW | > ατ)
.

(IV.2)

Above, Π? remains independent of W . For convenience,

we use
P−→ to denote convergence in probability. With the

notation in place, now we state a lemma that our proofs

rely on.

Lemma 4.1 ([25, Lemma A.2]): Fix 0 < c < C. Under the

working hypotheses, we have

sup
c<λ<C

|TPPλ(Π) − tpp∞
λ (Π)| P−→ 0,

and sup
c<λ<C

|FDPλ(Π) − fdp∞λ (Π)| P−→ 0. (IV.3)

Lemma 4.1 offers all the elements the present paper

needs from AMP theory. In addition to the use of

this lemma, notably, our proofs of Theorems 1 and 2

involve several technical novelties that we shall highlight in

Sections IV-A and IV-B. Relating to the literature, the con-

vergence of TPPλ(Π) and FDPλ(Π) for a single λ has been

established earlier in [10], [26].

We use qΠ(·) to represent the λ-parameterized curve

(tpp∞λ , fdp∞λ ) in the sense that

fdp∞λ (Π) = qΠ(tpp∞
λ (Π)).

Formally, Lemma 1.11 in Section B.1 demonstrates that

the instance-specific trade-off curve qΠ is continuously dif-

ferentiable and strictly increasing. Relating to Section II,

Corollary 2.5 implies that, taking the (�, m, M)-heterogeneous

prior Π∆, qΠ∆

converges to q∆ as m, M → ∞. Likewise,

from Corollary 2.9 it follows that qΠ∇

(·) is identical to q∇(·)
in the noiseless setting.

A. The Upper Boundary

Our first aim is to prove Theorem 2 along with

Proposition 2.8. The proof is built on top of the following

important lemma, which considers a non-constant Π?.

Lemma 4.2: Let Π be any �-sparse prior that is non-constant

conditional on Π 6= 0. In the noiseless setting σ = 0, we have

qΠ(u) < q∇(u)

for all 0 < u < 1.

Taking this lemma as given for the moment, we prove part

(a) of Theorem 2.

Proof of Theorem 2(a): We start by pointing out the

following fact: there exists a constant υ > 0 such that for

all c < λ, λ′ < C, the two inequalities

tpp∞λ (Π∇) > tpp∞λ′ (Π) − υ and fdp∞λ (Π∇) < fdp∞λ′ (Π) + υ

(IV.4)

cannot hold simultaneously.

Assuming this fact for the moment, it is a stone’s

throw away to prove Theorem 2. Lemma 4.1 ensures that,
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with probability tending to one as n, p → ∞, the four

terms
∣∣TPPλ(Π∇) − tpp∞λ (Π∇)

∣∣,
∣∣FDPλ(Π∇) − fdp∞λ (Π∇)

∣∣,
|TPPλ′(Π) − tpp∞

λ′ (Π)|, and |FDPλ′(Π) − fdp∞λ′ (Π)| are all

smaller than υ/2 for all c < λ, λ′ < C. In this event,

TPPλ(Π∇) > TPPλ′(Π)

implies

tpp∞λ (Π∇) > tpp∞λ′ (Π) − υ

and, likewise, FDPλ(Π∇) < FDPλ′(Π) implies fdp∞λ (Π∇) <
fdp∞λ′ (Π) + υ. Recognizing that the two inequalities in (IV.4)

cannot both hold, therefore, in this event the following inequal-

ities

TPPλ(Π∇) > TPPλ′(Π) and FDPλ(Π∇) < FDPλ′(Π)

cannot hold simultaneously for all c < λ, λ′ < C.

In words,
(
TPPλ(Π∇), FDPλ(Π∇)

)
does not outperform

(TPPλ′(Π), FDPλ′(Π)), and this applies to all c < λ, λ′ < C
with probability tending to one.

We conclude the proof by verifying (IV.4). To this end,

first find 0 < u1 < u2 < 1 such that the asymptotic powers

tpp∞λ (Π∇), tpp∞λ′ (Π) are always between u1 and u2 for c < λ,

λ′ < C. Next, set

υ′ := inf
u1≤u≤u2

(
q∇(u) − qΠ(u)

)
. (IV.5)

From Lemma 4.2, we must have υ′ > 0. Since q∇ is a

continuous function on the closed interval [0, 1], its uniform

continuity gives

∣∣q∇(u) − q∇(u′)
∣∣ <

υ′

2
(IV.6)

as long as |u − u′| ≤ υ′′ for some υ′′ > 0.

As the final step, we show that (IV.4) cannot hold simul-

taneously by taking υ = min{υ′/2, υ′′}. To see this, suppose

we already have tpp∞λ (Π∇) > tpp∞λ′ (Π) − υ, from which we

get

fdp∞λ (Π∇) = q∇(tpp∞λ (Π∇))

≥ q∇
(
tpp∞λ (Π∇) + υ

)
− υ′

2

> q∇ (tpp∞λ′ (Π)) − υ′

2
.

Above, the first inequality follows from (IV.6). We proceed by

leveraging (IV.5) and obtain

fdp∞λ (Π∇) > q∇ (tpp∞λ′ (Π)) − υ′

2

≥ qΠ (tpp∞
λ′ (Π)) + υ′ − υ′

2

= qΠ (tpp∞
λ′ (Π)) +

υ′

2
.

Finally, note that

qΠ (tpp∞λ′ (Π)) +
υ′

2
≥ qΠ (tpp∞λ′ (Π)) + υ = fdp∞λ′ (Π) + υ.

Taken together, these calculations reveal that the condition

tpp∞λ (Π∇) > tpp∞λ′ (Π)−υ implies fdp∞λ (Π∇) > fdp∞λ′ (Π)+υ.

As such, the two inequalities in (IV.4) cannot hold at the same

time. This completes the proof. �
The same reasoning in the proof above can be used to prove

part (b) of Theorem 2 and Proposition 2.8. More precisely, the

first step is to establish the desired result for the deterministic

functions tpp∞λ and fdp∞λ using Lemma 4.2, followed by

the second step that shows the uniform convergence using

Lemma 4.1. In particular, part (b) of Theorem 2 relies on the

strictly increasing property of q∇. Moreover, note that a lower

bound on TPPλ′(Π) can be translated into an upper bound on

λ′ [25, Lemma D.1].

Before turning to the proof of Lemma 4.2, we propose the

following preparatory lemma.

Lemma 4.3 ([5, Lemma C.1]): For any fixed α > 0, define

a function y = f(x) in the parametric form

x(t) = P(|t + W > α|)
y(t) = E(ηα(t + W ) − t)2

for t ≥ 0, where W is a standard normal random variable.

Then f is strictly concave.

Proof of Lemma 4.2: We parameterize the curve

(tpp∞λ , fdp∞λ ) using α > α0. Explicitly, treating α as the free

parameter instead of λ, we can solve τ from the AMP equation

(IV.1). Define

fd∞α (Π) = 2(1 − �)Φ(−α)

td∞
α (Π) = � P(|Π? + τW | > ατ).

This allows us to express the asymptotic power and FDP as

functions of α:

tpp∞α (Π) =
td∞α (Π)

�

fdp∞α (Π) =
fd∞

α (Π)

fd∞α (Π) + td∞α (Π)
.

To prove Lemma 4.2, for each α > α0, it is sufficient to

find a certain value of M such that

fd∞α (Π) = fd∞α (Π∇) and td∞α (Π) > td∞
α (Π∇), (IV.7)

where Π∇ is the (�, M)-homogeneous prior (II.7). To see this

fact, suppose on the contrary that

qΠ(u) ≥ q∇(u) (IV.8)

for some 0 < u < 1. Let α satisfy tpp∞α (Π) = u. From (IV.7)

we obtain

u = tpp∞α (Π) =
td∞α (Π)

�
>

td∞
α (Π∇)

�
= tpp∞α (Π∇) := u∇

(IV.9)

and

fdp∞α (Π) =
fd∞α (Π)

fd∞α (Π) + td∞
α (Π)

<
fd∞α (Π∇)

fd∞α (Π∇) + td∞
α (Π∇)

= fdp∞α (Π∇),

which gives

qΠ(u) = fdp∞α (Π) < fdp∞α (Π∇) = q∇(u∇).
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This inequality combined with (IV.8) gives

q∇(u) < q∇(u∇),

which, together with the fact that q∇ is an increasing function,

leads to u < u∇. This is a contradiction to (IV.9). Therefore,

(IV.8) cannot hold for any 0 < u < 1.

The remainder of the proof aims to establish (IV.7) by

constructing a certain prior Π∇. Explicitly, it suffices to show

td∞
α (Π) > td∞α (Π∇) (IV.10)

because the equality in (IV.7) holds regardless of the choice

of Π∇. To construct Π∇, we first write td∞
α (Π) as

td∞
α (Π) = �

∫
P(|t + W | > α)dπ(t), (IV.11)

where dπ(t) denotes the measure of Π?/τ . Since

P(|t + W | > α) is a strictly increasing function of t,
there must exist t′ > 0 such that

td∞
α (Π) = � P(|t′ + W | > α). (IV.12)

Following (II.7), we let Π∇ = t′τ with probability � and

Π∇ = 0 otherwise.

Now, let τ∇ denote the solution to (IV.1) given α and Π∇.

That is (note that σ = 0),

(1 − �) E ηα(W )2 + � E

(
ηα

(
t′τ

τ∇ + W

)
− t′τ

τ∇

)2

= δ.

Our next step is to show

τ∇ > τ.

To this end, we invoke Lemma 4.3 and the strict concavity of

f gives

E

(
ηα

( t′τ

τ
+ W

)
− t′τ

τ

)2

≡ f
(
P(|t′ + W | > α)

)

= f

(∫
P(|t + W | > α)dπ(t)

)

>

∫
f (P(|t + W | > α)) dπ(t)

=

∫
E (ηα (t + W )−t)

2
dπ(t)

= E

(
ηα

(
Π?

τ
+ W

)
− Π?

τ

)2

, (IV.13)

where the second equality follows from the definition of t′ in

(IV.11) and (IV.12), and the inequality is strict because Π? is

not constant. Together with the AMP equation for Π

(1 − �) E ηα(W )2 + � E

(
ηα

(
Π?

τ
+ W

)
− Π?

τ

)2

= δ,

(IV.13) implies

(1 − �) E ηα(W )2 + � E

(
ηα

(
t′τ

τ
+ W

)
− t′τ

τ

)2

> δ

or, equivalently,

(1 − �) E ηα(W )2

+ E

[(
ηα

(
Π∇

τ
+ W

)
− Π∇

τ

)2

; Π∇ 6= 0

]
> δ. (IV.14)

By definition, however, τ∇ must satisfy

(1−�) Eηα(W )2+E

[(
ηα

(
Π∇

τ∇ +W

)
−Π∇

τ∇

)2

; Π∇ 6= 0

]
=δ.

(IV.15)

A comparison between (IV.14) and (IV.15) immediately gives

τ∇ > τ .

Having shown τ∇ > τ , we complete the proof by noting

td∞
α (Π) = � P(|t′ + W | > α)

> � P

(∣∣∣∣
t′τ

τ∇ + W

∣∣∣∣ > α

)

= � P

(∣∣Π∇ + τ∇W
∣∣ > ατ∇

∣∣∣Π∇ 6= 0
)

= td∞α (Π∇).

This verifies (IV.10).

�

B. The Lower Boundary

Now we turn to the proof of Theorem 1. As with the

architecture of the proof of Theorem 2, our strategy is to first

prove the theorem for the deterministic functions tpp∞λ and

fdp∞λ , and then apply Lemma 4.1 to carry over the results to

the random functions TPPλ and FDPλ. Having said this, it is

important to note that the proof presents a novel element to

the literature. Below, we shall highlight the novel part of the

proof of Theorem 1 and leave the rest to the appendix.

As shown in [5], the trade-off curve qΠ of any �-sparse

prior Π obeys

qΠ(u) > q∆(u)

for 0 < u < 1 in both the noiseless and noisy settings,

where the curve q∆ is defined in (II.6). If the (TPP, FDP)
pairs from the (�, m, M)-heterogeneous prior Π∆ form the

curve q∆ asymptotically as n, p → ∞, the proof of

Theorem 1 would follow immediate, just as Theorem 2. For

any values of m and M , however, the λ-parameterized curve

(tpp∞λ (Π∆), fdp∞λ (Π∆)) does not agree with q∆. This is in

contrast to the proof of Theorem 2, where the (TPP, FDP)
pairs from the (�, M)-homogeneous prior (II.7) converge to

the curve q∇ for any value of M 6= 0, thanks to the assumed

noiseless setting.

To tackle this challenge, our strategy is to uniformly approx-

imate q∆ using a more general prior for effect sizes that takes

the form

Π∆(M , γ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 w.p. 1 − �

M1 w.p. �γ1

M2 w.p. �γ2

M3 w.p. �γ3

· · · · · ·
Mm w.p. �γm,

(IV.16)
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Fig. 4. Illustration of Lemma 4.4, showing the convergence to the lower
curve q∆. Left: m = 5 different levels in the prior (IV.16) with γ1 = · · · =
γ5 = 0.2, and the associated trade-off curve touches the lower boundary at
4 points; Right: the case m = 10 and γ1 = · · · = γ10 = 0.1 is added as a
comparison to the left case.

where 0 < M1 < M2 < · · · < Mm and γ1+· · ·+γm = 1 with

γi > 0. Fixing γ = (γ1, . . . , γm) while letting M1 → ∞ and

Mi+1/Mi → ∞ for all i, we have the following lemma:

Lemma 4.4: The curve qΠ∆(M ,γ) converges to a function

that agrees with q∆ at m − 1 points on (0, 1).
For convenience, denote by q∆(γ) the limiting curve of

qΠ∆(M ,γ) as M1 → ∞ and Mi+1/Mi → ∞. Figure 4

provides an illustration of this limiting curve. To see why

q∆(γ) is close to q∆, note that Lemma 4.4 ensures that there

exist 0 < u1 < u2 < · · · < um−1 < 1 such that

q∆(γ)(ui) = q∆(ui)

for i = 1, . . . , m − 1. In fact, the two functions also agree at

u0 := 0 and um := 1. Recognizing that both functions are

increasing, for any ui ≤ u ≤ ui+1 we get

0 ≤ q∆(γ)(u) − q∆(u) ≤ q∆(γ)(ui+1) − q∆(ui)

= q∆(ui+1) − q∆(ui).

Making use of the uniform continuity of q∆, the desired

conclusion follows if we show that the gaps ui+1−ui are small

for all i = 0, . . . , m − 1. The proof of Lemma 4.4, indeed,

reveals that this is true if max γi is sufficiently small. See the

proof of this lemma and the remaining details in Section B.

In passing, we remark that (IV.16) in the special case m = 2
has been considered in [5]. Explicitly, the lower boundary q∆

is formed as the lower envelope of the instance-specific trade-

off curves induced by the �-sparse priors. See the discussion

following (II.3) in Section II.

V. ILLUSTRATIONS

In this section, we present simulation studies to illustrate

the impact of effect size heterogeneity beyond the working

hypotheses, with a focus on how the impact depends on the

design matrix and the noise level.

A. Design Matrix

We perform four simulation studies to examine the impact

of effect size heterogeneity on the Lasso method under various

synthetic design matrices. Overall, the simulation results show

that effect size heterogeneity remains an influential factor in

determining the performance of the Lasso far beyond Gaussian

designs.

Fig. 5. Four sets of effect sizes ranked in increasing order of their effect
size heterogeneity. The corresponding regression coefficients in R

1000 with
sparsity 200 are used in the experiments of Figures 6, 7, and 10.

Fig. 6. The TPP–FDP trade-off along the Lasso path under a correlated
Gaussian design and a Bernoulli design (Study 1). We set n = p = 1000,
k = 200 and σ = 0 in both simulations. Left: Gaussian design matrix, each
row having covariance Σ taking the form Σij = 0.5|i−j| . Right: design

matrix with i.i.d. Bernoulli entries taking the value 1/
√

1000 or −1/
√

1000
with equal probability. The four sets of regression coefficients are described
in Figure 5. The mean FDP is obtained by averaging over 200 replicates.

Study 1. We consider a design matrix of size 1000 × 1000
that has each row independently drawn from N (0,Σ), where

Σij = 0.5|i−j|/1000 and another design matrix of the

same size that has independent Bernoulli entries, which

take the value 1/
√

1000 with probability half and otherwise

−1/
√

1000. The sparsity is fixed to k = 200 while we

consider four scenarios of the 200 true effects corresponding

to low, moderately low, moderately high, and high effect size

heterogeneity (see Figure 5). The results on the TPP–FDP

trade-off are presented in Figure 6

Study 2. In this study, we use a dataset of size 1000× 892
that is simulated from the admixture of the African-American

and European populations, based on the HapMap genotype

data [27] (see more details in [28], [29]). The variables can

only take 0, 1, or 2 according to the genotype of a genetic

marker. To improve the conditioning of the design matrix,

we add i.i.d. N (0, 1/1000) perturbations to all the entries.

Each column is further standardized to have mean 0 and unit

norm. We use the effect sizes described in Figure 5 to generate

a synthetic response y following the linear model (I.1), with

noise z = 0. The results are plotted in Figure 7.

Study 3. Working under Gaussian and Bernoulli designs,

we now empirically examine the rank of the first false variable.

This study considers a varying sparsity level k and sets the
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Fig. 7. The TPP–FDP trade-off for the genotype dataset (Study 2). The
four curves correspond to the four sets of effect sizes described in Figure 5.
The noise term is set to be 0. The results are obtained by averaging over
200 replicates.

Fig. 8. The rank of the first spurious variable with varying sparsity (Study 3).

Left: design matrix of size 1000×1000 consists of i.i.d. N (0, 1
1000

) entries.

Right: design matrix of size 800 × 1200, with i.i.d. Bernoulli entries that
take the value 1/

√
500 with probability 1/2 and value −1/

√
500 otherwise.

Each curve is averaged over 200 independent replicates.

Fig. 9. The rank of the first spurious variable (Study 4). Left: Gaussian design
with an equi-correlation covariance matrix, with the non-diagonal correlation
ρ varying from 0 to 0.1. Right: Gaussian design with covariance Σ taking

the form Σij = ρ|i−j|/1000. Each curve is averaged over 200 independent
replicates.

effect sizes to βj = 100 for j = 1, . . . , k (low effect size

heterogeneity) or βj = j for j = 1, . . . , k (high effect

size heterogeneity). Each noise component zi follows N (0, 1)
independently. Figure 8 shows the results under an indepen-

dent Gaussian random design and an independent Bernoulli

design.

Study 4. This scenario uses 500×1000 design matrices that

have each row drawn independently from N (0,Σ). In the left

panel of Figure 9, the 1000 × 1000 covariance matrix Σ is

set to Σij = ρ/1000 if i 6= j and Σjj = 1/1000. In the

right panel, the covariance satisfies Σij = ρ|i−j|/1000 for all

i, j, with ρ varying from 0 to 0.95. The effect sizes are set to

βj = 100
√

2 log p for j � k (low effect size heterogeneity)

or, in the low effect size heterogeneity case, the true effect

sizes are set to a decreasing sequence from 100
√

2 log p to 0.

The noise z consists of independent standard normal variables.

As is clear, both Figure 8 and Figure 9 show that the rank of

Fig. 10. The TPP–FDP trade-off plot with varying noise levels. The
design matrix is specified by n = p = 1000, with i.i.d. Gaussian entries.
The regression coefficients are from Figure 5, and the noise vector has
i.i.d. N (0, σ2) entries, where σ is set to 0.1, 0.2, 0.5 and 1 in the top-left,
top-right, bottom-left, and bottom-right panels, respectively. The mean FDP
is obtained by averaging over 100 replicates.

the first false variable is larger when effect size heterogeneity

is high, aligning with our analysis in Section III.

B. Noise Level

While Theorem 2 concerning the regime of low effect size

heterogeneity only applies to the noiseless case, we make an

attempt to show the impact of effect size heterogeneity in the

noisy setting via simulations. Under an independent Gaussian

random design of size 1000 × 1000, we set the nonzero

regression coefficients to the four sets of effect sizes as

depicted in Figure 5. The noise term z consists of independent

N (0, σ2) entries with σ = 0.1, 0.2, 0.5, 1.0. The results are

displayed in Figure 10.

As with our previous simulation results, higher effect size

heterogeneity tends to give rise to a better trade-off between

the TPP and FDP from the beginning of the Lasso path.

Interestingly, we observe a crossing point in each of the four

panels of Figure 10 where higher heterogeneity undergoes

a transition from giving a better trade-off down to a worse

trade-off. In particular, the crossing point occurs earlier as the

noise level σ goes up. While it requires further research to

understand this transition in a concrete manner, our obser-

vation is that the unselected effect sizes in the late stage of

the Lasso path tend to be relatively small compared to the

noise level, especially the effect sizes depicted in the bottom-

right panel of Figure 10, which have relatively high effect size

heterogeneity. Intuitively, this crossing point is where signal-

to-noise ratio becomes the dominant factor in place of effect

size heterogeneity.

VI. DISCUSSION

In this paper, we have proposed a concept termed effect

size heterogeneity for measuring how diverse the nonzero

regression coefficients are. Working under Gaussian random

designs, we demonstrate that effect size heterogeneity has
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a significant impact on model selection consistency of the

Lasso when the sparsity is linear in the ambient dimension.

In short, we prove that the Lasso attains the optimal trade-off

between true and false positives uniformly along its path when

the effect sizes are strong and heterogeneous, and attains the

worst trade-off when the effects are about the same size in the

noiseless case. We also identify similar dependence of the rank

of the first noise variable on effect size heterogeneity. While

the two theoretical results are proved under certain assump-

tions, our simulations show that effect size heterogeneity has

a significant impact on the Lasso estimate in a much wider

range of settings.

Moving forward, this paper opens up several directions

for future research. First, it is important to develop methods

that incorporate the level of effect size heterogeneity for

solving high-dimensional regression problems. In particular,

one would be tempted to improve on the Lasso when the

level of effect size heterogeneity is low. Interestingly, the

SLOPE method has inadvertently addressed this question as

its sorted `1 penalty generally increases as the heterogeneity

gets higher [30]–[32]. Another related method developed from

a Bayesian angle is the spike-and-slab Lasso procedure [33],

which enables the adaptation to a mixture of large and small

effects. Nevertheless, it is highly desirable to have methods

that leverage effect size heterogeneity more directly. Moreover,

a pressing question is to give a quantitative and formal defin-

ition of effect size heterogeneity. From a practical standpoint,

regression coefficients are seldom exactly zero and thus it

might be more appropriate to consider the Type S error, which

occurs when a nonzero effect is selected but with the incorrect

sign [34], [35]. This reality should prompt one to investigate

how effect size heterogeneity interacts with the trade-off

between the resulted directional FDP and power. Another

question of practical importance is to examine carefully how

the impact of effect size heterogeneity depends on the noise

level. As an aside, given that Proposition 3.1 remains true

for forward stepwise regression and least angle regression,

we conjecture that Proposition 3.2 and Theorem 4 also hold

for the two model selection procedures. More broadly, it is

of interest to investigate whether effect size heterogeneity

retains its impact on other `1 regularized methods such as

the two-stage Lasso [19] and the Dantzig selector.

APPENDIX

A. Technical Proofs for Section III

1) Proof of Proposition 3.2:

Proof of Proposition 3.2: We use the “primal-dual witness”

argument in the Lasso literature (for example, see Theorem 2

in [24]). As a reminder, here we consider the standard form

of Lasso as in (I.2).

β̂ = argmin
b∈Rp

1

2
ky − Xbk2 + λkbk1

with the model specified by (I.1),

y = Xβ + z.

We define a pair (β̂, ŵ) ∈ R
p ×R

p to be primal-dual optimal

if β̂ is a minimizer of (I.2), and ŵ ∈ ∂kβ̂k1, satisfying the

zero-subgradient condition

X	(Xβ̂ − y) + λŵ = 0.

For the convenience of analysis, we denote λn = λ
n . Thus

the condition above is equivalent to

1

n
X	(Xβ̂ − y) + λnŵ = 0. (A.1)

By the sufficiency of KKT condition, we know that if there

exists some ŵ such that the pair (β̂, ŵ) ∈ R
p × R

p satis-

fies (A.1), then β̂ is the solution to the Lasso. So ŵ can

be seen as a “dual witness” showing β̂ is indeed a solution.

We are therefore going to construct a “dual witness” vector ŵ

to prove a certain β̂ is the solution to the Lasso.

To concretely give our construction of β̂ and ŵ, we fix an

arbitrary small ξ > 0, and then let s = [(1 − ξ) n−1
1−ξ+2 log p ].4

Denote S0 ≡ {1, 2, . . . , s}, S1 ≡ {s+1, s+2, .., k}, and S =
S0 ∪ S1, thus we have SC = {k + 1, . . . , p}. Let M(n) = na

for some a > 1
2 , and let λn = nb for some b that satisfies

(k−s)a−1 < b < (k−s+1)a− 3
2 . We omit the dependence

of M on n in the following proof. For clarity, for any subset

of T ⊂ {1, 2, .., p}, we always use the notation wT to denote

the restricted vector (wi)i∈T of a vector w, and the notation

XT to denote the restricted column matrix (xi,j)j∈T of a

matrix X . We consider the following procedure to construct

the pair (β̂, ŵ),

1) Let β̂SC
0

= 0;

2) Solve (β̂S0
, ŵS0) ∈ R

s × R
s from the following oracle

sub-problem

β̂S0
∈ argmin

b∈Rs

{
1

2
ky − XS0bk2

2 + λkbk1

}
, (A.2)

and choose ŵS0 ∈ ∂kβ̂S0
k1 such that

1

n
XS0

	(XS0β̂S0
− y) + λnŵS0 = 0;

3) Given β̂S0
, ŵS0 , and β̂SC

0
= 0, compute ŵSC

0
∈ R

p−s

by equation (A.1), and check whether the strict dual

feasibility condition kŵSC
0
k∞ < 1 holds.

The primal-dual witness construction guarantees that if a pair

(β̂, ŵ) satisfies all the three conditions above, then β̂ is

the unique solution of the Lasso [24]. Once we prove our

construction satisfies the conditions above, the second claim

of Proposition 3.2 is an easy corollary as we explicitly require

β̂j = 0 for all j ∈ SC
0 , and this gives

#
{

j : β̂j(λ) 6= 0, βj = 0
}

= 0.

And from this construction, it is also not hard to prove the

first claim of the Proposition 3.2. With this protocol in mind,

we proceed to prove that we can construct such a pair of

(β̂, ŵ). Now, we solve β̂S0
, ŵS0 from the subproblem in

condition 2. Then, we set β̂SC
0

= 0 as in condition 1, and solve

ŵSC ∈ R
p−s from (A.1). To prove Proposition 3.2, we only

need to prove that with this construction, the strict dual

4This is only for technical convenience. One can easily verify that this
condition is equivalent to s = (1 − oP(1)) 2n

log p
.
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feasibility condition holds with high probability as n, p → ∞.

To prove this, we first simplify condition (A.1) by substituting

β̂SC
0

= 0, and write it in block matrix form as follows,

1

n

⎡
⎣

XS0

	XS0 XS0

	XS1 XS0

	XSC

XS1

	XS0 XS1

	XS1 XS1

	XSC

XSC
	XS0 XSC

	XS1 XSC
	XSC

⎤
⎦ ·

⎡
⎣

β̂S0
− βS0

−βS1

0

⎤
⎦

− 1

n

⎡
⎣

XS0

	z

XS1

	z

XSC
	z

⎤
⎦+ λn

⎡
⎣

ŵS0

ŵS1

ŵSC

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ ,

or equivalently,

1

n
X	

S0
XS0(β̂S0

− βS0
) − 1

n
X	

S0
XS1βS1

− 1

n
X	

S0
z

+ λnŵS0 = 0,

(A.3)

1

n
X	

S1
XS0(β̂S0

− βS0
) − 1

n
X	

S1
XS1βS1

− 1

n
X	

S1
z

+ λnŵS1 = 0,

(A.4)

1

n
X	

SC XS0(β̂S0
− βS0

) − 1

n
X	

SC XS1βS1
− 1

n
X	

SC z

+ λnŵSC = 0.

(A.5)

By (A.3), we have

β̂S0
− βS0

=
(
XS0

	XS0

)−1 [
XS0

	XS1βS1
+ XS0

	z
]
−

λnn
(
XS0

	XS0

)−1

ŵS0 .

(A.6)

By substituting (A.6) into (A.4) and (A.5), we can solve ŵj

for any j ∈ SC
0 as

ŵj

=− 1

λnn
Xj

	XS0(β̂S0
−βS0

)+
1

λnn

[
Xj

	XS1βS1
+Xj

	z
]

=Xj
	XS0

(
XS0

	XS0

)−1

ŵS0

− 1

λnn
Xj

	XS0

(
XS0

	XS0

)−1[
XS0

	XS1βS1
+XS0

	z
]

+
1

λnn

[
Xj

	XS1βS1
+Xj

	z
]

=Xj
	XS0

(
XS0

	XS0

)−1

ŵS0

︸ ︷︷ ︸
vj

+Xj
	PS⊥

0

[
z

λnn
+XS1

βS1

λnn

]

︸ ︷︷ ︸
uj

,

(A.7)

where PS⊥
0

= I−XS0

(
XS0

	XS0

)−1

XS0

	. As mentioned

previously, our goal is to show the strict dual feasibility

condition maxj∈SC
0
|ŵj | < 1 holds with high probability.

We will prove it by analyzing the two terms uj and vj

separately. Specifically, we prove that vj < 1 − ξ
16 and

uj → 0 with high probability.

Denote Mn = 1
nŵ

	
S0

(
XS0

	XS0

)−1

ŵS0 . Conditioning

on the event E = {ŵS0 = sgn(βS0
)} and its complement

gives us

P

(
max
j∈SC

0

|vj | ≥ c

)
≤ P

(
max
j∈SC

0

|vj | ≥ c

∣∣∣∣E
)

+ P(EC).

It can be seen through Lemma 1.10 that the second term of

the last display tends to zero; For the first term, we let T (ϑ)
denote the event {|Mn −EMn| ≥ ϑEMn}. Similar as before,

conditioning on the event T (ϑ) and its complement gives for

any c ∈ (0, 1),

P

(
max
j∈SC

0

|vj | ≥ c

∣∣∣∣E
)

≤ P

(
max
j∈SC

0

|vj | ≥ c

∣∣∣∣T (ϑ)C ∩ E

)

+ P(T (ϑ) ∩ E).

By Lemma 1.2 and Lemma 1.4, the second term in the last

display goes to 0 as n → ∞ faster than 2
ϑ2(n−s−3) . And for

the first term, we tackle it by considering maxj∈SC
0

vj and

minj∈SC
0

vj separately. Denote the event T = T (ϑ)C ∩ E for

convenience, we have

P

(
max
j∈SC

0

vj ≥ c

∣∣∣∣T
)
≤ P

(
max
j∈SC

0

ṽj ≥ c

)
,

where ṽj are i.i.d. from N (0, (1 + ϑ)E[Mn|E]) = N (0, (1 +
ϑ) s

n−s−1 ). This inequality follows from Lemma 1.9, which

states that the probability of the event {maxi∈SC
0

vi ≥ c}
increases as the mean and variance of vi increase for Gaussian

variables vi. Given the event T , the maximum variance of vj

is simply (1 + ϑ)E[Mn|E], and thus we have the inequality

above. Set c = $ + E maxj∈SC
0

ṽj . From Lemma 1.5,

we have

P

(
max
j∈SC

0

vj ≥ c
∣∣∣T
)
≤ P

(
max
j∈SC

0

ṽj > $ + E max
j∈SC

0

ṽj

)

≤(p − s) exp

(
− $2

2(1 + ϑ)E[Mn|E]

)
.

A similar argument for minj∈SC
0

ṽj gives us

P

(
min
j∈SC

0

vj < −c
∣∣∣T
)

= P

(
− min

j∈SC
0

vj > $ + E max
j∈SC

0

ṽj

∣∣∣T
)

≤(p − s) exp

(
− $2

2(1 + ϑ)E[Mn|E]

)
.

Combining the two inequalities above yields

P

(
max
j∈SC

0

|vj | > $ + E max
j∈SC

0

ṽj

∣∣∣∣T
)

≤2(p − s) exp

(
− $2

2(1 + ϑ)E[Mn|E]

)
→ 0. (A.8)

By Lemma 1.4 and (A.8), we get

P

(
max
j∈SC

0

|vj | ≥ $ + E max
j∈SC

0

ṽj

)
≤ 2

ϑ2(n − s − 3)

+ 2(p − s) exp

(
−$2(n − s − 1)

2s(1 + ϑ)

)
. (A.9)
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With the relation of s = [(1 − ξ) n−1
1−ξ+2 log p ], we can set

$ = ξ
8 , ϑ =

(1− ξ
4 )2

1−ξ − 1 > 0, and obtain

$ +

√
(1 + ϑ)

s

n − s − 1
2 log(p − s)

≤$ +

√√√√(1 + ϑ)
(1 − ξ) n−1

1−ξ+2 log p + 1

n − (1 − ξ) n−1
1−ξ+2 log p − 1

2 log p

=$ +

√
(1 + ϑ)

(1 − ξ)(n − 1) + (1 − ξ + log p)

2(n − 1) log p
2 log p

=$ +

√
(1 + ϑ)

(
(1 − ξ) +

(1 − ξ + log p)

(n − 1)

)

≤ ξ

8
+ (1 − ξ

4
) +

C

n − 1

<1 − ξ

16
for some large n. (A.10)

Combining this with the well-known fact of the expec-

tation of the maximum of i.i.d. Gaussian variables that

E maxj∈SC
0
|ṽj | ≤

√
(1 + ϑ) s

n−s−12 log(p − s) and (A.9),

we know

P(max
j∈SC

0

|vj | ≥ 1 − ξ

16
) ≤ 2

ϑ2(n − s − 3)

+2(p − s) exp

(
−$2(n − s − 1)

2s(1 + ϑ)

)
+ P(EC).

(A.11)

This bound is good enough for our purpose. We now proceed

to obtain a similar bound of uj .

By the Cauchy–Schwarz inequality, we have

|uj | ≤
∥∥∥Xj

	PS⊥
0

∥∥∥ ·
∥∥∥∥

z

λnn
+ XS1

βS1

λnn

∥∥∥∥ . (A.12)

Therefore, we can bound |uj | if we can control the two norms

in (A.12) separately. Because all eigenvalues of PS⊥
0

are less

than 1, we have

∥∥∥Xj
	PS⊥

0

∥∥∥
2

≤ kXjk2 =

n∑

i=1

X
2
ij

D
=

1

n

n∑

i=1

W 2
i ,

where Wi
i.i.d.∼ N (0, 1). The summation

∑n
i=1 W 2

i is thus a

χ2-distribution with degree of freedom n. By Lemma 1.6, for

any t1 > 0, we have

P

(∣∣∣∣
kXjk2

n
− 1

∣∣∣∣ ≥ t1

)
≤ 2 exp(−nt21/8).

Combining this with

∥∥∥Xj
	PS⊥

0

∥∥∥ ≤ kXjk gives us

kXj
	PS⊥

0
k2 ≤

√
1 + t1, w.p. ≥ 1 − 2 exp(−nt21/8).

(A.13)

Finally, let ũj denote

ũj =

∥∥∥∥
z

λnn
+ XS1

βS1

λnn

∥∥∥∥ .

It is easy to realize that

ei · (z + XS1βS1
) ∼ N (0, σ′2), for all 1 ≤ i ≤ s,

where ei ∈ R
n is the i-th standard unit vector and σ′2 =

σ2 + M2(k−s+1)−1
n(M2−1) . By easy calculation, we obtain

E(kũjk2) = n · σ′2

λ2
nn2

.

Applying Lemma 1.6 with Zi = ei · (z + XS1βS1
) again,

we know for any t2 ≥ 0

P

(∣∣∣∣
kũjk2

E(kũjk2)
− 1

∣∣∣∣ ≥ t2

)
≤ 2 exp(−nt22/8),

which is equivalent to

kũjk ≤
√

1 + t2 ·
σ′

λn
√

n
, w.p. ≥ 1 − 2 exp(−nt22/8).

(A.14)

Using (A.12) by combining the two bounds (A.13) and (A.14),

we get

P(max
j∈SC

0

|uj| ≥
√

1 + t1
√

1 + t2 ·
σ′

λn
√

n
)

≤ 2(p − s)(exp(−nt21/8) + 2 exp(−nt21/8)).

(A.15)

Now, we can set M = na for some a > 1
2 , λn = nb for some

b that satisfies (k − s)a − 1 < b < (k − s + 1)a − 3
2 , and

t1 = t2 = 1 to obtain

√
1 + t1

√
1 + t2 ·

σ′

λn
√

n
=2

√
σ2 + M2(k−s+1)−1

n(M2−1)

λn
√

n

�2 n(k−s)a−1−b → 0. (A.16)

Particularly, when n is large enough,
√

1 + t1
√

1 + t2 · σ′

λn

√
n

is less than ξ
32 , which in turn gives

P(max
j∈SC

0

|uj|≥
ξ

32
) � 2(p−s)(exp(−nt21/8)+2 exp(−nt21/8)).

(A.17)

And thus by a union bound and then (A.7, A.11, A.17),

we have

P

(
max
j∈SC

0

|ŵj | ≥ 1 − ξ

32

)

≤ P

(
max
j∈SC

0

|vj | ≥ 1 − ξ

16

)
+ P

(
max
j∈SC

0

|uj| ≥
ξ

32

)
+ P(EC)

�
2

ϑ2(n − s − 3)
+ 2(p − s)

(
exp

(
−$2(n − s − 1)

2s(1 + ϑ)

)

+ exp(−nt22/8) + exp(−nt21/8)

)
. (A.18)

We observe that as n → ∞,

2

ϑ2(n − s − 3)
+ 2(p − s)

(
exp

(
−$2(n − s − 1)

2s(1 + ϑ)

)

+ exp(−nt22/8) + exp(−nt21/8)

)
→ 0,

(A.19)
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which simply implies that as n → ∞,

P(max
j∈SC

0

|ŵj | ≥ 1) → 0.

Thus, we have proven under our construction, strict dual

feasibility holds. And as we pointed out at the beginning of

the proof, the second part of the proposition 3.2 holds, since

we set β̂j = 0 for any j ∈ SC
0 . Therefore, we obtain

#
{

j : β̂j(λ) 6= 0, βj = 0
}

= 0.

Now, we proceed to prove the first part of the proposition, that

is,

#
{
j : β̂j(λ) 6= 0, βj 6= 0

}
= s = (1 − oP(1))

n

2 log p
.

Observe that the second equality is due to our assumption on

s. So we only need to prove the first equality, that is, for all

j ∈ S0, β̂j are non-zero, and thus the total number of non-zero

β̂’s is exactly s. To show this, observe that if βj−β̂j < βj , it is

clear that β̂j > 0. Therefore, it suffices to show the following

inequality

max
j∈S0

(βj − β̂j) < min
j∈S0

βj = Mk−s+1 ≡ ρ

holds with probability tending to 1. We denote

Yi = −e	i ·
(
XS0

	XS0

)−1

XS0

	 [XS1βS1
+ z

]

+ ei · λnn

(
XS0

	XS0

n

)−1

ŵS0 , (A.20)

where ei ∈ R
n is the i-th standard unit vector. By (A.6),

we know

max
j∈S0

(βj − β̂j) = max
1≤i≤n

Yi.

So it is equivalent to show that max1≤i≤n Yi ≥ ρ holds with

probability tending to zero. By Lemma 1.7, we know for Ei =
E(Yi

∣∣XS0), and Vi = Var(Yi

∣∣XS0), the event

A ≡
s⋃

i=1

{
|Ei| ≥ (1 +

√
n)|E(Ei)|, or |Vi| ≥ 2 E(Vi)

}

has probability

P(A) ≤ sK

n − s
→ 0, as n → ∞.

By conditioning on the event A and its complement, we have

P(max
i∈S0

Yi ≥ ρ) ≤ P(max
i∈S0

Yi ≥ ρ
∣∣AC) + P(A)

≤ P(max
i∈S0

Ỹi ≥ ρ) +
K

n
s − 1

,

where Ỹi
i.i.d.∼ N ((1 +

√
n) E(Ei), 2 E(Vi)) and the second

inequality used the fact in Lemma 1.9 that the probability

of the event {maxi∈S0 Yi ≥ ρ} increases as the mean and

variance increase as long as the mean is less than ρ, which

can be directly verified by

(1 +
√

n) E(Ei) = (1 +
√

n)
λnn2

n − s − 1
< ρ. (A.21)

Markov’s inequality then gives us

P(max
i∈S0

Ỹi ≥ ρ) ≤ 1

ρ
E

(
max
i∈S0

|Ỹi|
)

≤1

ρ

(
E(Ỹi) + E

(
max
i∈S0

|Ỹi − E(Ỹi)|
))

≤1

ρ

(
(1 +

√
n)λnn2

n − s − 1
+ 3

√
2σ′2 log s

n − s − 1

)
, (A.22)

where the last inequality uses the bound on Gaussian maxima

in Lemma 1.8. By the relation in (A.21), we can easily verify

that the probability in (A.22) converges to zero under our

conditions of M = na, ρ = Mk−s+1 and λn = nb, where a
and b satisfy a > 1

2 and (k− s)a− 1 < b < (k− s + 1)a− 3
2 ,

as n → ∞. �
2) Miscellaneous Lemmas for Section III: We first state

a well-known result in the random matrix theory (see, for

example, Theorem 5.2 in [36]) that we use in the proof of

Theorem 4. Then we list all the necessary lemmas for proving

Proposition 3.2.

Lemma 1.1: Under the working assumptions, for any deter-

ministic 1 ≤ m ≤ p/2, the matrix spectrum norm k·k2 satisfies

max
|S|≤m

∥∥∥X	
S XS − I

∥∥∥
2
≤ C

√
m log(p/m)

n

with probability 1−1/p2, where C is a universal constant and

T is any set of column indices.

Lemma 1.2: For vj defined in (A.7), and any i, j ∈ SC
0 ,

we have the following facts,

1) E(vj |XS0) = 0;

2) Var(vj |XS0) = 1
nŵ

	
S0

(XS0

	XS0)
−1ŵS0 ;

3) Cov(vj , vi|XS0) = 0, if i 6= j.

Proof of Lemma 1.2:

Because j ∈ SC
0 , Xj ⊥⊥ XS0 and vj =

Xj
	XS0t(XS0

	XS0t)
−1ŵS0 , fact 1 follows from Xj being

a centered Gaussian variable.

For fact 2 and fact 3, we observe

Cov(Vj , Vi|XS0)

=E

(
ŵ

	
S0

(
XS0

	XS0

)−1

XS0

	XjX
	
i XS0

(
XS0

	XS0

)−1

ŵS0

∣∣∣∣XS0

)

=ŵ
	
S0

(
XS0

	XS0

)−1

XS0

	
E
(
XjX

	
i

∣∣XS0

)

XS0

(
XS0

	XS0

)−1

ŵS0

=

⎧
⎨
⎩

1
nŵ

	
S0

(
XS0

	XS0

)−1

ŵS0 if i = j,

0 if i 6= j.

�
Lemma 1.3: Consider XS0 ∈ R

n×s, and suppose each of

its column Xj
i.i.d.∼ N (0,Σ) where Σ ∈ R

s×s is positive

definite. Then XS0

	XS0 is a Wishart distribution of degree

of freedom n, and (XS0

	XS0)
−1 is the inverse Wishart

distribution, with expectation and variance

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 09,2023 at 01:55:46 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: PRICE OF COMPETITION: EFFECT SIZE HETEROGENEITY MATTERS IN HIGH DIMENSIONS 5285

1) E(XS0

	XS0)
−1 = Σ

−1

n−s−1 ;

2) Var[(XS0

	XS0)
−1
i,j ] =

(n−s+1)(Σ−1
i,j )2+(n−s−1)Σ−1

i,i Σ−1
j,j

(n−s)(n−s−1)2(n−s−3) .

Proof of Lemma 1.3: See for example Lemma 7.7.1 of [37]

and the formula for the second moment of the inverse Wishart

matrices in [38]. �

Lemma 1.4: Let Mn = 1
nŵ

	
S0

(
XS0

	XS0

)−1

ŵS0 . Con-

ditioned on the event E, that is, ŵS0 = sgn(βS0
), we have

the following facts:

1) E(Mn|E) = s
n−s−1 ;

2) Var(Mn|E) = 2s2

(n−s−1)2(n−s−3) ;

3) ∀ϑ > 0, P[|Mn − E(Mn)| ≥ ϑE(Mn)|E] ≤ 2
ϑ2(n−s−3) .

Proof of Lemma 1.4: Observe that XS0

	XS0 follows

the Wishart distribution with variance 1
nIS0 , and thus by

Lemma 1.3, the matrix (XS0

	XS0)
−1 is the inverse Wishart

distribution with mean

E(XS0

	XS0)
−1 =

n

n − s − 1
IS0 . (A.23)

Notice that ŵi = ±1 for all i ∈ S0, and when conditioned

on E, it is equal to sgn(βS0
), which is independent of XS0 .

Therefore, we have

E(Mn|E) =
1

n

n

n − s − 1
ŵ

	
S0

IS0ŵS0 =
s

n − s − 1
.

To calculate the second moment of the inverse Wishart

matrices ([38]), we have that for n−s − 3 > 0,

E(M2
n|E) =

1

n2

1

(n−s)(n−s− 3)
(n·ŵ	

S0
IS0ŵS0)

2 n − s

n − s − 1

=
s2

(n − s − 1)(n − s − 3)
.

Therefore, combining the two equations above, we obtain

Var(Mn|E) =
s2

(n − s − 1)(n − s − 3)
− s2

(n − s − 1)2

=
2s2

(n − s − 1)2(n − s − 3)
.

For the third statement, Markov’s inequality gives us

P(|Mn − E(Mn)| ≥ ϑE(Mn|E) ≤ Var(Mn|E)

ϑ2(E(Mn|E))2

=

2s2

(n−s−1)2(n−s−3)

ϑ2 s2

(n−s−1)2

=
2

ϑ2(n − s − 3)
.

�

Lemma 1.5: Consider i.i.d. Gaussian random variables zj ∼
N (0, σ2), where j = 1, . . . , l for some l ≥ 2. We have for

any $ > 0,

P

(
max
1≤j≤l

zj > $ + E

(
max
1≤j≤l

zj

))
≤ e−

�2

2σ2 .

Proof of Lemma 1.5: By the Gaussian tail bound

P(zj > $) ≤ σ√
2π$

e−
�2

2σ2 ,

and the well-known fact for the expectation of maximum of

i.i.d. Gaussian variables

E

(
max
1≤j≤l

zj

)
≤ σ

√
2 log l,

we have the following union bound

P

(
max
1≤j≤l

zj > $ + E[ max
1≤j≤l

zj ]

)

≤l
1√

2π($
σ +

√
2 log l)

· exp

(
($ +

√
2 log(l)σ)2

2σ2

)

=
1√

2π($
σ +

√
2 log l)

exp

(
− $2

2σ2

)
· exp

(√
2 log l

$

σ

)

≤ exp

(
− $2

2σ2

)

holds as long as l ≥ 2. �

Lemma 1.6: Consider Zi
i.i.d.∼ N (0, θ2), and denote Z =∑n

i=1 Z2
i . For t > 0, we have the inequality

P

(∣∣∣∣
Z

E(Z)
− 1

∣∣∣∣ ≥ t

)
≤ 2 exp(−nt2/8).

Proof of Lemma 1.6: Let Z̃i be defined as

Z̃i =
Zi

θ

i.i.d.∼ N (0, 1).

We have

E(Z) =

n∑

i=1

θ2 = nθ2,

and therefore

Z

E(Z)
=

∑n
i=1 Z̃i

n

D
=

χ2

n
.

By easy calculation, we obtain

E

(
eλ(�Z2

i −1)
)

=
1√
2π

∫ +∞

−∞
eλ(z2−1)e−z2/2dz

=
e−λ

√
1 − 2λ

≤ e2λ2

.

This means Z is sub-exponential with parameter (2, 4)
(definition of a sub-exponential variable is standard, so we

refer the reader to, for example, the Definition 2.2 and

Example 2.11 in [4]), and thus Z is a sub-exponential vari-

able with parameter (2
√

n, 4). By the Bernstein inequality,

we obtain

P

(∣∣∣∣
Z

E(Z)
− 1

∣∣∣∣ ≥ t

)
≤ 2 exp(−nt2/8).

�

Lemma 1.7: For Yi defined in (A.20), we have the follow-

ing facts:

1) Denote Ei = E(Yi

∣∣XS0), then we have |E(Yi)| =

|E(Ei)| = λnn2

n−s−1 ;

2) Denote Vi = Var(Yi

∣∣XS0), then we have E(Vi) = 1;

3) For n sufficiently large, the inequality P
(
|Ei| ≥ (1 +√

n)|E(Ei)|, or |Vi| ≥ 2 E(Vi)
)
≤ K

n−s holds for some

constant K independent of n and s.

Proof of Lemma 1.7: The idea of the following proof is

adapted from Lemma 6 of [24].
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For part (a), since XS1 ⊥⊥ XS0 and z ⊥⊥ XS0 , we get

Ei = E(Yi

∣∣XS0) = −λnne	i

(
XS0

	XS0

)−1

ŵS0 .

Thus, we have

|E(Yi)| =

∣∣∣∣E
(
−λnnei

(
XS0

	XS0

)−1

ŵS0

)∣∣∣∣

=

∣∣∣∣−λnne	i
n

n − s − 1
I−1

S0
ŵS0

∣∣∣∣

=
λnn2

n − s − 1
,

where the second equality is by (A.23) for the mean of the

inverse Wishart distribution.

Next, we turn to prove part (b). We observe that each entry

of vector (XS1βS1
+ z) is i.i.d. distributed as N (0, σ′2),

and is independent of XS0 , where we denote σ′2 = σ2 +
M2(k−s+1)−1

n(M2−1) . So we have

Var(Yi

∣∣XS0)

= E

[
(e	i ·

(
XS0

	XS0

)−1

XS0

	 (XS1βS1
+ z

)
)2
∣∣XS0

]

= e	i

(
XS0

	XS0

)−1

XS0

	
E

[
(XS1βS1

+ z)

· (XS1βS1
+ z)	

∣∣XS0

]
XS0

(
XS0

	XS0

)−1

ei

= σ′2eT
i

(
XS0

	XS0

)−1
XS0

	XS0

(
XS0

	XS0

)−1
ei

= σ′2e	i

(
XS0

	XS0

)−1

ei.

Thus by (A.23) again, we obtain

E(Vi) = E(σ′2e	i

(
XS0

	XS0

)−1

ei)

= σ′2e	i
n

n − s − 1
I−1

S0
ei

=
nσ′2

n − s − 1
.

To prove part (c), we use the formula for the second

moment of the inverse Wishart distribution in the part (2) of

Lemma 1.3. With Ei = E(Yi

∣∣XS0), we get

E(E2
i ) = E(E(Yi

∣∣XS0))
2

=
λ2

nn2

(n − s)(n − s − 3)

⎡
⎣
(

e	i

(
1

n
IS0

)−1

ŵS0

)2

+
n2

n − s − 1

(
ŵ

	
S0

ŵS0

) (
e	i ei

)]

=
λ2

nn2

(n − s)(n − s − 3)

[
n2 +

1

n − s − 1
· ns · n

]

=
λ2

nn4(ns + n − s2 − 2s + 1)

(n − s)(n − s − 3)(n − s − 1)
.

Thus, we have

Var(Ei) =
λ2

nn4(ns + n − s2 − 2s + 1)

(n − s)(n − s − 3)(n − s − 1)
− λ2

nn4

(n − s − 1)2

=
λ2

nn4(n − 1)

(n − s)(n − s − 3)(n − s − 1)
. (A.24)

By Chebyshev’s inequality, we can get

P(|Ei| ≥ (1 +
√

n) E(Ei)) ≤ P(|Ei − E(Ei)| ≥
√

n E(Ei))

≤ Var(Ei)

n(E(Ei))2

=
ns + n − s2 − 2s + 1

4n(n − s)(n − s − 3)

≤ K1

n − s
, (A.25)

for some constant K1 when n is large enough.

Similarly, by Lemma 1.3 (2) again for i = j, and Σ = 1
nI ,

we have

Var(V 2
i ) =σ′4Var

[
(e	i

(
XS0

	XS0

)−1

ei)
2

]

=σ′4 (n − s + 1 + n − s − 1)n2

(n − s)(n − s − 1)2(n − s − 3)

=
2σ′4n2

(n − s)(n − s − 1)(n − s − 3)
,

and thus

P(Vi ≥ 2E(Vi)) = P(Vi − E(Vi) ≥ E(Vi))

≤ Var(Vi)

(E(Vi))2
=

2σ′4n2

(n−s)(n−s−1)(n−s−3)(
nσ′2

n−s−1

)2

≤ K2

n − s
, (A.26)

for some constant K2 for large n. Therefore combin-

ing (A.25,A.26) with union bound, the statement in part

3 holds with K = K1 + K2. �

Lemma 1.8: Let (X1, . . . , Xn) be independent and nor-

mally distributed. We have

E[ max
1≤i≤n

|Xi|] ≤ 3
√

log n max
1≤i≤n

√
E X2

i .

Proof of Lemma 1.8: This is a well-known result of

Gaussian maxima. We omit its proof and refer the reader to,

for example, [24] Lemma 9. �
Lemma 1.9: Let Y ∼ N (μ, σ2). Suppose μ ≤ μ0, σ ≤ σ0,

and ρ ≥ μ0, then the probability P(Y ≥ ρ) ≤ P(Z ≥ ρ),
where Z ∼ N (μ0.σ0).

Proof of Lemma 1.9: By definition, we have

P(Y ≥ ρ) = 1 − Φ

(
ρ − μ

σ

)
= Φ

(
μ − ρ

σ

)
.

And similarly, we have

P(Z ≥ ρ) = Φ

(
μ0 − ρ

σ0

)
.

By the assumption, we know that

μ − ρ

σ
≤ μ0 − ρ

σ0
,

and thus the lemma follows from the fact that Φ is

increasing. �
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Lemma 1.10: Under the working assumptions, the event

E = {ŵS0 = sgn(βS0
)} satisfies

P(EC) = on(1).
Proof of Lemma 1.10: This is the classic result of Theorem

3 in [24]. For the Lasso problem considered in Equation (A.2),

with the identity covariance matrix, all conditions (26a), (26b),

(26c) therein are easily satisfied with Cmin = Cmax = 1.

As long as we have the condition

min
j=1,..,s

βj > g(λ) = c3λ + 20

√
σ2 log s

n
, (A.27)

for some constant c3 > 0, we can guarantee that

sgn(βS0
) = sgn(β̂S0

) ≡ ŵS0 with probability 1 −
c1 exp(−c2 min{s, log(k − s)}) for some constant c1, c2 > 0.

To verify condition (A.27), recall that λ = nb, s =
O(n/ log p), and minj=1,..,s βi = M(n)k−s+1. Because

M(n) = na and b < (k−s + 1)a − 3
2 , we have

min
j=1,..,s

βj = M(n)k−s+1 = n(k−s+1)a

≥ nb+ 3
2

= λn
3
2

≥ c3λ + 20

√
σ2 log s

n
= g(λ).

for sufficiently large n. This implies P (E) → 1, or P (EC) =
on(1). �

B. Technical Proofs for Section IV

1) A Property of FDP and TPP: Any Trade-off Curve Is

Strictly Increasing: A natural belief on the pair of (TPP, FDP)
is that FDP (type-I error) should increase with TPP (power),

which may be strengthened by our simulation plots. However,

along a single Lasso path, this is in general not necessarily

true. It is well-known that Lasso is not monotone [18], so it

is possible that with more and more true variables entering

the Lasso path, fewer and fewer noise variables retain in the

Lasso path. In such a case, FDP is no longer a monotone

function of TPP. This possibility complicates our analysis, yet

the following lemma asserts that this possibility is impossible.

We prove that the asymptotic FDP is strictly increasing with

the asymptotic TPP. Formally speaking, as λ varies, fdp∞λ
can be seen as a function of tpp∞λ , and fdp∞λ is a strictly

increasing function of tpp∞λ . To be rigorous, in the following

lemma—indeed throughout the paper—we consider the regime

below the Donoho–Tanner phase transition. We refer interested

readers to [19] for results above this phase transition.

Lemma 1.11: Fix �, δ, σ, and Π 6= 0. We have that

fdp∞λ (Π) is a strictly increasing function of tpp∞
λ (Π). That is,

fdp∞λ (tpp∞λ ) is a well-defined function, and fdp∞′
λ (·)

∣∣
tpp∞

λ

>

0 for any valid value of tpp∞λ .5

To prove this lemma, we need the following characteriza-

tions among α, λ, fdp∞λ and tpp∞λ .

5As we will see in Lemma 1.15, the valid range of tpp∞
λ

is the range
(0, u?). In this paper, we only focus on the case where u? = 1.

Lemma 1.12: Fix �, δ, σ, and Π 6= 0. Consider any α, τ , λ
that solve equations (IV.1). We have the following facts

dα

dλ
> 0 (A.28)

dtpp∞

dα
< 0 (A.29)

dfdp∞

dα
< 0 (A.30)

dtpp∞

dfdp∞
> 0 (A.31)

We note that the denotations of fdp∞ and tpp∞ stand for

fdp∞α and tpp∞α , where we treat α as the free parameter.

We often suppress this dependence on α in the following proof

when it is clear from the context, and use the denotations of

fdp∞ and tpp∞ for simplicity.

Proof of Lemma 1.12: The (A.28) is a well-known result,

and one can refer to, for example, Lemma 4.11 of [15] for a

proof.

To prove (A.29), we note that tpp∞ = P(|Π?+τW | > ατ),
where Π? is the distribution of an entry of β given it’s not

zero. For any Π that is a proper distribution and satisfies (IV.1),

proving d
dαP(|Π+τW | > ατ) < 0 will suffice. And this result

follows from Lemma 4.10 of [15]. Now we left to prove (A.30)

and (A.31). We note that, however, (A.31) follows directly

from (A.30), and therefore we only need to prove (A.30).

To see this fact, we note that tpp∞ is a strictly increasing

function of α, so α is also a function of tpp∞. By the chain

rule, we have

dfdp∞

dtpp∞ =
dfdp∞

dα
· dα

dtpp∞
.

Note that we have already proven
dtpp∞

dα < 0, which implies
dα

dtpp∞
< 0. Therefore, we only need to show (A.30) is true to

prove (A.31).

Now, to prove (A.30), we observe that

fdp∞(α) =
1

1 +
�P(|Π�

τ
+W |>α)

2(1−�)Φ(−α)

,

and thus

dfdp∞

dα
=

�

2(1 − �)
·

d

�
P(|Π�

τ
+W|>α)

Φ(−α)

�
dα(

1 +
�P(|Π�

τ
+W |>α)

2(1−�)Φ(−α)

)2 .

Since the denominator is positive, we only need to show

the numerator is negative. For simplicity, we will abuse the

notation a little bit by using Π for Π? in the rest of the proof.

We need to show for all Π 6= 0,

d

(
P(|Πτ +W |>α)

Φ(−α)

)

dα
< 0,

or equivalently,

dP
(∣∣Π

τ +W
∣∣ > α

)

dα
· Φ(−α)+P

(∣∣∣∣
Π

τ
+ W

∣∣∣∣ > α

)
· φ(α) > 0.

(A.32)
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We observe that

P

(∣∣∣∣
Π

τ
+W

∣∣∣∣ > α

)

= E

[
PW

(
W > α−Π

τ

∣∣∣∣Π
)

+PW

(
W <−α−Π

τ

∣∣∣∣Π
)]

= E

[
Φ

(
Π

τ
−α

)
+Φ(−Π

τ
−α)

]
. (A.33)

Substituting the expressions of (A.33) into (A.32),

we obtain, (A.34), as shown at the bottom of the next page.

Note the denominator is positive, so we only need to prove

that the numerator is positive. Let g(u) = (Φ(u−α)+Φ(−u−
α))φ(α) − (φ(u − α) + φ(u + α))Φ(−α). By Lemma 1.14,

g(u) > 0 for u 6= 0, and therefore we have

Ω1 + Ω3 =
σ2δ

τ3
EΠ

[
g

(
Π

τ

)]
> 0. (A.35)

For Ω5, we observe that if Π > 0, then −φ
(
α − Π

τ

)
+

φ
(
α + Π

τ

)
< 0; and if Π < 0, then −φ

(
α − Π

τ

)
+

φ
(
α + Π

τ

)
> 0. Therefore, we have

EΠ

[
Π

τ

(
−φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

))]
≤ 0

So, by the fact that Φ(−α) ≤ φ(α)
α , the definition of Φ(x),

we have

Ω5 = EΠ

[
Π

τ2

(
−φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

))]

· EΠ

[(∫ ∞

α−Π
τ

φ(w)dw +

∫ −α−Π
τ

−∞
φ(w)dw

)]
· αΦ(−α)

≥ EΠ

[
Π

τ2

(
−φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

))]

· EΠ

[(∫ ∞

α−Π
τ

φ(w)dw +

∫ −α−Π
τ

−∞
φ(w)dw

)]
· φ(α)

= EΠ

[
Π

τ2

(
−φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

))]

· EΠ

[
Φ

(
Π

τ
− α

)
+ Φ

(
−Π

τ
− α

)]
· φ(α)

= EΠ

[
Π

τ2

∫ α−Π
τ

−α−Π
τ

wφ(w)dw

]

· EΠ

[
Φ

(
Π

τ
− α

)
+ Φ

(
−Π

τ
− α

)]
· φ(α). (A.36)

Similarly, by (A.34) and (A.36), and then by the definition of

f(u) in Lemma 1.13, we obtain

Ω2 + Ω5 ≥ EΠ

[
Φ

(
Π

τ
−α

)
+ Φ

(
−Π

τ
−α

)]

· EΠ

[
Π

τ2

∫ α−Π
τ

−α−Π
τ

wφ(w)dw +
Π2

τ3

∫ α−Π
τ

−α−Π
τ

φ(w)dw

]
· φ(α)

= EΠ

[
Φ

(
Π

τ
−α

)
+ Φ

(
−Π

τ
−α

)]
EΠ

[
1

τ
f

(
Π

τ

)]
φ (α) .

(A.37)

Similarly, we have

Ω4 + Ω6 = −EΠ

[(
α − Π

τ

)
+ φ

(
α +

Π

τ

)]
EΠ

[
1

τ
f

(
Π

τ

)]
.

(A.38)

Combining the last display, (A.37), (A.38), Lemma 1.13

and the well-known result that Φ(−α) ≤ φ(α)
α , we

obtain

Ω2 + Ω4 + Ω5 + Ω6 ≥ EΠ

[
g

(
Π

τ

)]
· EΠ

[
1

τ
f

(
Π

τ

)]
> 0,

(A.39)

Put together (A.35), (A.34) and (A.39), we have for all Π 6= 0

dP
(∣∣Π

τ +W
∣∣ > α

)

dα
· Φ(−α)+P

(∣∣∣∣
Π

τ
+W

∣∣∣∣ > α

)
· φ(α) > 0,

which, by (A.32), amounts to (A.30), or

dfdp∞

dα
< 0.

Therefore, combining with (A.29), we obtain that

dtpp∞

dfdp∞
> 0.

�

Summarizing the result we have proven, it is very easy to

prove Lemma 1.11.

Proof of Lemma 1.11: Observe tpp∞(α) is a strictly

increasing function of α, and thus tpp∞ is a one-to-one

function of α. The inverse function therefore exists, so α is

a strictly increasing function of tpp∞. Similarly, fdp∞ is also

a strictly increasing function of α. Therefore, we conclude

that fdp∞ = fdp∞(α) = fdp∞(α(tpp∞)) = fdp∞(tpp∞) is a

strictly increasing function of tpp∞, and that
dfdp∞

dtpp∞
> 0 holds

for any valid value of tpp∞. �

Now, we prove the lemmas that we have used in the proof

of Lemma 1.12.

Lemma 1.13: Let f(u) = u
∫ α−u

−α−u(w + u)φ(w)dw.

We have f(u) > 0, for all u 6= 0 ∈ R.

Proof of Lemma 1.13: Observe that

f(u) = u

∫ α−u

−α−u

(w + u)φ(w)dw

w′=w+u
= u

∫ α

−α

w′φ(w′ − u)dw′

= u

∫ α

0

w′[φ(w′ − u) − φ(−w′ − u)]dw′.

So, if u > 0, then φ(w′ − u) − φ(−w′ − u) > 0, for any

w′ ∈ (0, α], thus f(u) > 0; and if u < 0, then φ(w′ − u) −
φ(−w′ − u) < 0, for any w′ ∈ (0, α], thus f(u) > 0. �

Lemma 1.14: For any fixed α > 0, let g(u) = (Φ(u−α)+
Φ(−u − α))φ(α) − (φ(u − α) + φ(u + α))Φ(−α). Then we

have g(u) ≥ 0, and the equality g(u) = 0 holds if and only if

u = 0.
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Proof of Lemma 1.14: We observe that

g(u) =φ(α)

(∫ ∞

α−u

φ(w)dw +

∫ ∞

α+u

φ(w)dw

−
∫ ∞

α

φ(w)dw

(
φ(u − α)

φ(α)
+

φ(u + α)

φ(α)

))

=φ(α)

(∫ ∞

α

φ(w)ewu · e−u2

2 dw

+

∫ ∞

α

φ(w)e−wu · e−u2

2 dw

−
∫ ∞

α

φ(w)(eαu + e−αu) · e−u2

2 dw

)

=φ(α)e
−u2

2

∫ ∞

α

φ(w)
[
(ewu+e−wu)−(eαu + e−αu)

]
dw.

Since for any w > α > 0, we have

ewu + e−wu > eαu + e−αu, for any u ∈ R.

We obtain g(u) ≥ 0, and it is clear the equality holds if and

only if u = 0. �
2) Miscellaneous Proofs for Section IV-A: In this section,

we prove all the necessary lemmas for Theorem 2. To start

with, we state the following lemma that specifies the range of

all valid tpp∞’s.

Lemma 1.15: [Lemma C.1 and Lemma C.4 in [5]] Put

u?(δ, �) :=

{
1 − (1−δ)(�−��)

�(1−��) , δ < 1 and � > �?(δ),

1, otherwise.

Then

tpp∞ < u?(δ, �).

dP
(∣∣Π

τ + W
∣∣ > α

)

dα
· Φ(−α) + P

(∣∣∣∣
Π

τ
+ W

∣∣∣∣ > α

)
· φ(α)

=
1

σ2δ
τ3 + EΠ,W

[
Π2

τ3 1{−α<Π
τ

+W<α}

]

·

⎡
⎢⎢⎢⎣

Ω1︷ ︸︸ ︷
EΠ

[
Φ

(
Π

τ
− α

)
+ Φ(−Π

τ
− α)

]
· σ2δ

τ3
· φ(α)

+

Ω2︷ ︸︸ ︷
EΠ

[
Φ

(
Π

τ
− α

)
+ Φ(−Π

τ
− α)

]
· EΠ,W

[
Π2

τ3
1{−α< Π

τ
+W<α}

]
· φ(α)

Ω3︷ ︸︸ ︷
−EΠ

[
φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

)]
· σ2δ

τ3
· Φ(−α)

Ω4︷ ︸︸ ︷
−EΠ

[
φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

)]
· EΠ,W

[
Π2

τ3
1{−α< Π

τ
+W<α}

]
· Φ(−α)

+

Ω5︷ ︸︸ ︷
EΠ

[
Π

τ2

(
−φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

))]

·

Ω5,cont.︷ ︸︸ ︷

EΠ

[
α

(∫ ∞

α−Π
τ

φ(w)dw +

∫ −α−Π
τ

−∞
φ(w)dw

)]
· Φ(−α)

+

Ω6︷ ︸︸ ︷
EΠ

[
Π

τ2

(
−φ

(
α − Π

τ

)
+ φ

(
α +

Π

τ

))]

·

Ω6,cont.︷ ︸︸ ︷

EΠ

[∫ ∞

α−Π
τ

−wφ(w)dw +

∫ −α−Π
τ

−∞
wφ(w)dw

]
· Φ(−α).

(A.34)
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Moreover, any u between 0 and u? can be uniquely realized

as tpp∞, by setting α = t?(u) which is the root to (II.4).

From this lemma, we know for δ < 1 and large �, it is

possible that the range of tpp∞ is no longer (0, 1). In such

a case, we are “above the Donoho–Tanner phase transition

(DTPT)”; and symmetrically, when tpp∞ has the range (0, 1),
we are “below the DTPT”. The purpose of this lemma is

mainly for the completeness of the theory. In the following,

however, we will always assume the range of tpp∞ is (0, 1)
to avoid extra complicity. This assumption will simplify our

argument, but the proofs of the theorems can be extended to

the case when this assumption is not true.

Now, we prove that the upper curve can be achieved by

any (�, M)-homogeneous prior (II.7). This implies that the

homogeneous effect sizes are the least desired.

Lemma 1.16: Given (�, δ) and σ = 0. Any (�, M)-
homogeneous prior gives the same unique trade-off curve q∇

on (0, u?). Furthermore, this curve has the expression specified

in (II.8).

Proof of Lemma 1.16: We start with the proof to show the

curve q∇ is unique in the sense that any two different (�, M)-
homogeneous priors give the same trade-off curve. Consider

any two (�, M)-homogeneous priors Π1 and Π2. Let their

nonzero conditional priors be Π?
1 ≡ M1 and Π?

2 ≡ M2.

Treating α > α0 as the free parameter, we denote the solution

to τ in equation (IV.1) with prior Π1 by τ1. We have

δ = (1 − �) E(ηα(W )2) + � E

(
ηα

(
M1

τ1
+ W

)
− M1

τ1

)2

.

It is clear from a simple calculation that τ2 = τ1
M1

M2
, α and

Π2 also solve the first equation in (IV.1), that is,

δ = (1 − �) E(ηα(W )2) + � E

(
ηα

(
M2

τ2
+ W

)
− M2

τ2

)2

,

(A.40)

which implies τ2 is the solution to (IV.1) given α and prior Π2.

Observe the relationships τ2 = τ1
M1

M2
, Π?

1 ≡ M1 and Π?
2 ≡

M2. We have

P

(∣∣∣∣
Π?

1

τ1
+ W

∣∣∣∣ > α

)
= P

(∣∣∣∣
Π?

2

τ2
+ W

∣∣∣∣ > α

)
.

Therefore, combining the equality above with (IV.2), we obtain

tpp∞α (Π1) = P

(∣∣∣∣
Π?

1

τ1
+ W

∣∣∣∣ > α

)
= P

(∣∣∣∣
Π?

2

τ2
+ W

∣∣∣∣ > α

)

= tpp∞α (Π2),

and

fdp∞α (Π1) =
2(1 − �)Φ(−α)

2(1 − �)Φ(−α) + � P

(∣∣∣Π
�
1

τ1
+ W

∣∣∣ > α
)

=
2(1 − �)Φ(−α)

2(1 − �)Φ(−α) + � P

(∣∣∣Π
�
2

τ2
+ W

∣∣∣ > α
)

= fdp∞α (Π1).

This means that any point on qΠ1(·) is also on qΠ2(·). Simi-

larly, any point on qΠ2(·) is also on qΠ1(·). By Lemma 1.11,

they are both strictly increasing function, and thus must equal

everywhere on the entire domain (0, u?).

Now, we proceed to prove that this unique trade-off

curve has the expression given by (II.8). Fix some (�, M)-
homogeneous prior Π∇. Let u be some point between 0 and

u? = 1, and set α such that tpp∞α (Π∇) equals to u. We have

u= tpp∞α =P(|Π∇?+τW |>ατ)=Φ(−α+M̃)+Φ(−α − M̃),

where M̃ = M
τ . Let ς = −α + M̃ , then the equation above

becomes

Φ(ς) + Φ(−2α − ς) = u. (A.41)

According to (IV.1), we have

δ = (1 − �)E[ηα(W )]2 + �E[ηα(M̃ + W ) − M̃ ]2. (A.42)

By a simple algebraic fact

E[ηα(W )]2 = 2[(1 + α2)Φ(−α) − αφ(α)],

and the fact

E[ηα(M̃ + W ) − M̃ ]2

= − (α + M̃)φ(α − M̃) − (α − M̃)φ(α + M̃)

+ (1 + α2)[Φ(−α + M̃) + Φ(−α − M̃)]

+ M̃2[Φ(α − M̃) − Φ(−α − M̃)],

we can plug-in the definition of ς into (A.42) and obtain

δ = 2(1 − �)[(1 + α2)Φ(−α) − αφ(α)]

+ �[−(2α + ς)φ(ς) + ςφ(2α + ς)+

(1 + α2)[Φ(ς) + Φ(−2α − ς)]

+ (ς + α)2[Φ(−ς) + Φ(−2α − ς)]]. (A.43)

So ς = ς(α; �, δ) is the solution of the equation above. And

finally combining the last equation with (A.41), we get an

equation in α

Φ(ς(α)) + Φ(−2α − ς(α)) = u, (A.44)

Denote the solution of α to the equation above by t∇ =
t∇(u; �, δ). We have

q∇(u; �, δ) = fdp∞t∇(Π∇) =
2(1 − �)Φ(−t∇(u))

2(1 − �)Φ(−t∇(u)) + �u
.

(A.45)

Therefore, the expression for the upper boundary is just

defined by (A.45), where t∇ is solved from (A.43) and (A.44).

� We comment about the existence of α in the proof above.

Note that both equations (A.43) and (A.44) are derived from

the AMP equations, which for any α > α0, have unique

solution τ . Note that ς is a function of τ , and thus it is also

unique. Therefore, the solution to (A.43) also uniquely exists

by Lemma 1.15.

3) Miscellaneous Proofs for Section IV-B: In this section,

we prove all necessary lemmas needed for Theorem 1, and

then prove Theorem 1. We start by giving the proof to

Lemma 4.4.

Proof of Lemma 4.4: We treat τ as the free parameter

instead of λ. To explicitly express the limiting process of

M , we consider a sequence of priors {Π∆(M (t), γ)}t, where
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M
(t)
1 → ∞ and M

(t)
i+1/M

(t)
i → ∞ as t → ∞. From (IV.2),

the asymptotic TPP of Π∆(M (t), γ) at τ can be written as

tpp∞τ (Π∆(M (t), γ)) = P

(
|Π∆?(M (t), γ) + τW | > ατ

)

=

[
γ1 P

(∣∣∣∣∣W +
M

(t)
1

τ

∣∣∣∣∣ > α

)
+ γ2 P

(∣∣∣∣∣W +
M

(t)
2

τ

∣∣∣∣∣ > α

)

+ · · · + γm P

(∣∣∣∣∣W +
M

(t)
m

τ

∣∣∣∣∣ > α

)]
, (A.46)

where α is solved from (IV.1). We denote the last display by

tpp
∞(t)
τ for convenience. Similarly, we denote

fdp∞(t)
τ ≡ fdp∞τ (Π∆(M (t), γ))

=
2(1 − �)Φ(−α)

2(1 − �)Φ(−α) + �tpp∞(t)(τ)
. (A.47)

In the following proof, we will choose an m-tuple

of (τ
(t)
i )m

i=1 for each fixed t, such that as t → ∞,

(tpp
∞(t)

τ
(t)
i

, fdp
∞(t)

τ
(t)
i

) → (ui, q
∆(ui)) at m different ui’s. This

implies exactly that the limit of trade-off curves qΠ∆(M(t),γ)

agrees with q∆ at (at least) different m points in (0, 1].

A natural way to pick such an m-tuple (τ
(t)
i )m

i=1 is

τ
(t)
i =

√
M

(t)
i M

(t)
i+1, 1 ≤ i ≤ m − 1,

and τ
(t)
m = m × M

(t)
m when i = m.6 Under the regime of

M
(t)
1 → ∞ and M

(t)
i+1/M

(t)
i → ∞ for all i, we know τ

(t)
i

satisfies

|M (t)
i | = o(τ

(t)
i ), and τ

(t)
i = o(|M (t)

i+1|), 1 ≤ i ≤ m − 1

(A.48)

and

|M (t)
m | = o(τ (t)

m ), (A.49)

as t → ∞. Moreover, for any α > α0 and any 1 ≤ i ≤ m,

we have

P

(∣∣∣∣∣W +
M

(t)
j

τ
(t)
i

∣∣∣∣∣ > α

)

=

{
P(|W | > α) + ot(1), for j ≤ i,

1 + ot(1), for j ≥ i + 1,
(A.50)

and

ηα

(
W +

M
(t)
j

τ
(t)
i

)
−

M
(t)
j

τ
(t)
i

=

{
ηα(W )+ot(1), for j≤ i,

W − α+oP,t(1), for j≥ i+1.

(A.51)

Let γ(j) =
∑m

i=j+1 γi and use α
(t)
i to denote the solution of

α to (IV.1) given τ
(t)
i . We have

(
1 − σ2

τ
(t)2
i

)
δ

=� · E
(

ηα

(
Π∆(M (t), γ)

τ
(t)
i

+ W

)
− Π∆(M (t), γ)

τ
(t)
i

)

︸ ︷︷ ︸
(∗)

6In fact, one can pick any τ
(t)
i such that (A.48) and (A.49) hold.

+ (1 − �) E(ηα(W ))2. (A.52)

By (A.51), the (∗) part of the last display is

(∗) =
i∑

j=1

γj E

(
ηα

(
M

(t)
j

τ
(t)
i

+ W

)
− M

(t)
i

τ (t)

)2

+
m∑

j=i+1

γj E

(
ηα

(
M

(t)
j

τ
(t)
i

+ W

)
−

M
(t)
j

τ
(t)
i

)2

= (1 − γ(i)) E(ηα(W )2) + γ(i)
E((W − α)2) + ot(1).

Observe the fact that σ is fixed and thus σ2

τ
(t)2
i

→ 0. With some

simple calculation, (A.52) can be written as

�γ(i)(1+α2)+2(1−�γ(i))[(1+α2)Φ(−α)−2αφ(α)] = δ+ot(1).

Therefore the solution α
(t)
i of the equation above has a limit7

α
(t)
i → α(i), as t → ∞, (A.53)

which solves the equation

�γ(i)(1 + α2) + 2(1 − �γ(i))[(1 + α2)Φ(−α) − 2αφ(α)] = δ.

(A.54)

Note α(i) is independent of the choice of {M (t)}∞t=1 and

(τ
(t)
i )m

i=1. Direct calculation can verify that each solution α(i)

also satisfies the equation (II.4) with setting

u = ui = 2Φ(−α(i))(1 − γ(i)) + γ(i). (A.55)

This implies α(i) is also the unique solution of (II.4), so

α(i) = t∆(ui). (A.56)

Combining (A.46), (A.47), (A.50) and (A.53), the limits of

tpp
∞(t)

τ
(t)
i

and fdp
∞(t)

τ
(t)
i

are

⎧
⎨
⎩

tpp
∞(t)

τ
(t)
i

→ 2Φ(−α(j))(1 − γ(i)) + γ(i),

fdp
∞(t)

τ
(t)
i

→ 2(1−�)Φ(−α(i))

2(1−�)Φ(−α(i))+�(2Φ(−α(i))(1−γ(i))+γ(i))
.

(A.57)

By α(i) = t∆(ui) and (A.55), we obtain from (II.5) that

q∆(ui; δ, �) =
2(1 − �)Φ(−t∆(ui))

2(1 − �)Φ(−t∆(ui)) + �ui

=
2(1 − �)Φ(−α(i))

2(1 − �)Φ(−α(i)) + �(2Φ(−α(i))(1 − γ(i)) + γ(i))
.

(A.58)

Combining (IV.3), (IV.2), (A.55), (A.57) and (A.58), we finally

obtain as t → ∞,
{

tpp∞t (τ
(t)
i ) → ui,

fdp∞t (τ
(t)
i ) → q∆(ui; δ, �).

Therefore, the limiting function of the trade-off curves of

priors Π∆(M (t), γ) agrees with the lower boundary q∆(·; δ, �)
at (ui, q

∆(ui)), for i = 1, 2, · · · , m. Since the m different

7By the existence asserted by AMP theory, the equation (A.54) has a unique

solution, denote it by α(i) , we know the solution α
(t)
i of (A.53) must converge

into it, since the left-hand side of (A.53) is continuous in α.
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points are nonzero, there must be at least m − 1 points

in (0, 1). �
An important set of equations is (A.55). Recall that (A.56)

asserts α(i) = t∆(ui) for all i, and therefore the equa-

tions (A.55) are, for all i,

ui = 2Φ(−t∆(ui))(1 − γ(i)) + γ(i). (A.59)

The last display allows us to quantify the exact points ui the

limit of Π∆(M (t), γ) agrees with q∇. This fact allows us to

set γ cleverly so that the distance between any two consecutive

ui’s are small enough. This is formalized in the following

lemma.

Lemma 1.17: For any ξ > 0, there is some γ =
{γ1, . . . , γm}, with

∑
i γi = 1, such that the m points

specified by (A.59), together with u0 = 0 and um+1 = 1
8 satisfy the following

max
1≤j≤m+1

|uj − uj−1| <
ξ

2
. (A.60)

Proof of Lemma 1.17: We first prove that the difference

um+1 − um = 0. Since γ(m) = 1, and by (A.55), we obtain

that um = 1, and thus um+1 − um = 1 − 1 = 0.9 With this

in mind, we only need to prove the following two quantities

can be arbitrarily small to ensure (A.60),

u1 − 0 = γm + 2(1 − γm)Φ(−α(m)), (A.61)

and for all m ≥ j ≥ 2,

uj − uj−1 = γm−j+1 + 2(1 − γ(j))Φ(−α(j))

− 2(1 − γ(j−1))Φ(−α(j−1)), (A.62)

where we remind the reader that by definition, γ(m) = γm

and γ(j) − γ(j−1) = γm−j+1.

For the expression in (A.62), we observe that

uj − uj−1 ≤γm−j+1|1 + 2(Φ(−α(j)) − Φ(−α(j−1)))|
+ 2(1 − γ(j))|Φ(−α(j)) − Φ(−α(j−1))|

≤5γm−j+1+2|Φ(−α(j))−Φ(−α(j) − γm−j+1))|.
(A.63)

We observe that in equation (A.55) or (A.59), the dependence

of α(j) on γ(j) is only through linear functional of γ(j).

Therefore, it is not hard to realize that α(j) is continuous in

γ(j). When all {γs}s>m−j+1 are fixed, the α(j) is a continuous

function in γm−j+1, and so is the expression in (A.63). So we

can pick γm−j+1 sufficiently small to ensure the (A.63) is less

than ξ
2 .

For the expression in (A.61), we pick some M sufficiently

large such that Φ(−M) < ξ
8 . By Lemma 1.18, we can pick

γm < ξ
4 such that the solution to (II.4) with u being (A.61)

8Technically speaking, it should be um+1 = u?, yet as discussed earlier,
we will focus on the case when we are below the Donoho–Tanner phase
transition, so always u? = 1.

9One might want to verify the existence of α(m). Since we always assume
that we are below the DTPT, then for any u < u? = 1, the α = t∆(ui)
exists as the solution to (II.4) by Lemma 1.15. By setting γ(m) = 1, one can
directly verify this corresponds to set u = um = 1−, and by the continuity
of t in equation (II.4), we know α(m) = t∆(um) exists and less than infinite.

And since all other α(i)’s are less than α(m) , they also exist.

satisfies that α(m) > M , or Φ(−α(m)) < Φ(−M) < ξ
8 .

Therefore

γm + 2(1 − γ(m))Φ(−α(γ(m))) <
ξ

4
+ 2 · 1 · ξ

8
=

ξ

2
.

�

Lemma 1.18: For any fixed δ, �, ξ > 0 and M > 0. There

exists γ < ξ
4 , such that the solution α to (II.4) with u =

γ + 2(1 − γ)Φ(−α) satisfies α > M .

Proof of Lemma 1.18: We will use the following fact:

there exists γ < ξ
4 and large M ′′ > M ′ > M , such that:

(1 − �γ)A(M ′) + �γ(1 + M ′2) < δ,

(1 − �γ)A(M ′′) + �γ(1 + M ′′2) > δ. (A.64)

where A(M) = 2[(1 + M2)Φ(−M) − Mφ(M)].
Taken this as given for the moment, we set u = γ + 2(1−

γ)Φ(−α) with γ such that (A.64) holds. Then (II.4) becomes10

2(1 − �)
[
(1 + t2)Φ(−t) − tφ(t)

]
+ �(1 + t2) − δ

� [(1 + t2)(1 − 2Φ(−t)) + 2tφ(t)]

=
1 − γ − 2(1 − γ)Φ(−t)

1 − 2Φ(−t)
.

Observe the right hand side of the last display is just 1 − γ,

so it is equivalent to

2(1 − �)
[
(1 + t2)Φ(−t) − tφ(t)

]
+ �(1 + t2) − δ

= (1 − γ)�
[
(1 + t2)(1 − 2Φ(−t)) + 2tφ(t)

]
,

or,

2(1 − �γ)
[
(1 + t2)Φ(−t) − tφ(t)

]
+ �γ(1 + t2) − δ = 0.

(A.65)

By relationship (A.64) and the fact that there exists unique

solution α = t∇(u) to (II.4) and thus to (A.65), we know the

solution α ∈ (M ′, M ′′), and thus especially α > M .

Now, to prove (A.64), we first note that it is direct to verify

A(t) = E[ηt(W )2], and thus it is decreasing in t. And as

t → ∞, A(t) → 0. Therefore for any δ > 0, we can pick

M ′ large enough such that A(M ′) < δ
2 , and now pick γ < ξ

4

small enough such that �γ(1 + M ′2) < δ
2 . Therefore, the left-

hand side of the first equation of (A.64) is bounded by δ. For

the second equation in (A.64), pick M ′′ large enough so that

the term �γ(1 + M ′′2) > δ, and since (1 − �γ)A(M ′′) > 0,

the second line also holds. �

The agreeing points asserted by Lemma 4.4 are close to each

other in their x-coordinate distances. Therefore, by the uniform

continuity of the lower curve q∇ and Cantor’s diagonalization

argument, we can extend the result from Lemma 4.4 to

uniform convergence.

Lemma 1.19: There exist a sequence of prior of Π(t) =

Π∆(M (t), γ(t)), such that their trade-off curve qΠ(t)

converge

uniformly to q∆ on any compact interval in (0, 1).
Proof of Lemma 1.19: Fix any compact interval I = [a, b]

in (0, 1). As in Lemma 4.4, we first consider prior Π(t) =
Π∆(M (t), γ(t)) with γ(t) = γ being some fixed m-

tuple. By Lemma 1.11, we know that both qΠ(t)

(u) and

q∆(u) are continuous and strictly increasing. Consider any

10Since the solution to t is α here, we can plug in u = γ+2(1−γ)Φ(−t).
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two adjacent agreeing points uj, uj+1 specified in (A.55),

such that q∆(uj) = limt→∞ qΠ(t)

(uj) and q∆(uj+1) =

limt→∞ qΠ(t)

(uj+1). Since in the interval (uj , uj+1) the dif-

ference is controlled by

qΠ(t)

(u)−q∆(u)≤q∆(uj+1)−q∆(uj), for any u ∈ (uj, uj+1)

by the monotonicity of qΠ(t)

. This difference will be small as

long as the gap q∆(uj+1)−q∆(uj) is small, so we proceed to

prove we can select Π(t) to ensure the gaps q∆(uj+1)−q∆(uj)
are small for all i.

Fix any θ > 0. Since q∆ is uniformly continuous on the

compact set I, there exists ξ > 0 such that for any u, v ∈ I,

|q∆(u)−q∆(v)| <
θ

2
, as long as |u−v| < ξ (A.66)

By the proof of Lemma 4.4, we can construct γ(t) = γθ to be

specified later, and M (t)
γθ

, such that the limit of qΠ(t)

agrees

with q∆ at m points u1, · · · , um. This implies there exists

some Tθ such that for all t ≥ Tθ,

max
j

∣∣∣qΠ(t)

(uj) − q∆(uj)
∣∣∣ <

θ

2
. (A.67)

To specify the choice of γθ, note that by Lemma 1.17, we can

choose γθ such that u1, .., um satisfies u1−a < u1 − 0 < ξ
2 ,

um − b < ξ
2 and

max
2≤j≤m

|uj − uj−1| <
ξ

2
.

With this choice of γθ together with (A.66) and (A.67),

we obtain

sup
t≥Tθ,u∈I

∣∣∣qΠ(t)

(u) − q∆(u)
∣∣∣ < θ.

Specifically, we have the equation above holds for t = Tθ,

sup
u∈I

∣∣∣qΠ(Tθ)

(u) − q∆(u)
∣∣∣ < θ.

Since Π(Tθ) = Π∆
(
M (Tθ)

γθ
, γθ

)
, the inequality above is

simply

sup
u∈I

∣∣∣qΠ∆(M
(Tθ)
γθ

,γθ)(u) − q∆(u)
∣∣∣ < θ. (A.68)

Now we can apply Cantor’s diagonalization trick since the last

display is true for any θ > 0. We set θζ = 1
ζ → 0, ζ ≥ 1, and

choose the priors

Π(ζ) =
{

Π∆
(
M

(Tθζ
)

γθζ
, γθζ

)}
ζ
.

Then we know from (A.68) that qΠ(ζ)

converges to q∆

uniformly on I as ζ → ∞. � Now, we can proceed to prove

Theorem 1, whose proof is very similar to that of Theorem 2

in Section IV-A.

Proof of Theorem 1 (a): Consider any non-constant

prior Π, we first prove that there exists some Π∆ and ν > 0
such that for all c < λ, λ′ < C,

tpp∞λ (Π∆) < tpp∞
λ′ (Π) + ν and fdp∞λ (Π∆) > fdp∞λ′ (Π) − ν

(A.69)

cannot hold simultaneously. To see this fact, first find

0 < u1 < u2 < 1 such that the asymptotic powers

tpp∞λ (Π∆), tpp∞λ′ (Π) are always between u1 and u2 for c <

λ, λ′ < C. Next, we know from Lemma 1.20 that q∆ is the

strictly below any trade-off curve. So, for any prior Π, we have

q∆(u) < qΠ(u) for any u ∈ I = [u1, u2]. Note that both q∆

and qΠ are uniformly continuous on I and thus one can set

ν′ > 0 to be

ν′ := inf
u1≤u≤u2

(
qΠ(u) − q∆(u)

)
> 0. (A.70)

Since q∆ is a continuous function on the closed interval [0, 1],
we can make use of its uniform continuity, which ensures

∣∣q∆(u) − q∆(u′)
∣∣ <

ν′

4
(A.71)

as long as |u − u′| ≤ ν′′ for some ν′′ > 0. By the assertion

of Lemma 1.19, we can choose a prior Π∆ such that it is
ν′

4 -close to q∆ on I,

sup
u1≤u≤u2

(qΠ∆

(u) − q∆(u)) <
ν′

4
. (A.72)

Now we can prove (IV.4) cannot hold simultaneously with our

choice of Π∆ and ν = min{ν′/2, ν′′}. To see this, suppose

we already have tpp∞λ (Π∆) < tpp∞λ′ (Π)+ν. Now observe that

fdp∞λ (Π∆) = qΠ∆

(tpp∞λ (Π∆))

≤ q∆
(
tpp∞λ (Π∆)

)
+

ν′

4

< q∆
(
tpp∞λ′ (Π∆) + ν

)
+

ν′

4

≤ q∆ (tpp∞λ′ (Π)) +
ν′

2

≤ qΠ (tpp∞λ′ (Π)) − ν′ +
ν′

2

= qΠ (tpp∞λ′ (Π)) − ν′

2
≤ qΠ (tpp∞λ′ (Π)) − ν

= fdp∞λ′ (Π) − ν,

where the first inequality follows from (A.72); the second

inequality follows from the fact that fdp∞(tpp∞) is strictly

increasing, and tpp∞λ (Π∆) < tpp∞λ′ (Π)+ν; the third inequality

is by (A.71); the fourth inequality is by (A.70); the last

inequality is by the definition of ν. As such, the first inequality

in (A.69) leads to the violation of the second inequality. Hav-

ing shown (A.69), it is easy to prove Theorem 1. Lemma 4.1

ensures that the following four terms
∣∣TPPλ(Π∆) − tpp∞

λ (Π∆)
∣∣ ,
∣∣FDPλ(Π∆) − fdp∞λ (Π∆)

∣∣ ,
|TPPλ′(Π) − tpp∞λ′ (Π)| , |FDPλ′(Π) − fdp∞λ′ (Π)| (A.73)

are all smaller than ν/2 for all c < λ, λ′ < C, with probability

tending to one as n, p → ∞. On this event, it is easy to check

that TPPλ(Π∆) ≤ TPPλ′(Π) implies tpp∞λ (Π∆) < tpp∞λ′ (Π)+
ν, and FDPλ(Π∆) ≥ FDPλ′(Π) implies fdp∞λ (Π∆) >
fdp∞λ′ (Π) − ν. As such, in the event (A.73), the impossibility

of (A.69) uniformly for all c < λ, λ′ < C implies the

impossibility of

TPPλ(Π∆) ≤ TPPλ′(Π) and FDPλ(Π∆) ≥ FDPλ′(Π)

for all c < λ, λ′ < C. �
It is the same as the comment after the proof of Theorem 2,

we can prove part (b) of Theorem 1 similarly, and we omit

for simplicity.
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In closing, we present the following lemma to be self-

contained. It shows that the lower boundary is strictly below

any trade-off curve, on which the proof of Theorem 1 relies.

Lemma 1.20 (Lemma C.3 in [5]): Consider any �-sparse

prior Π. The lower boundary q∆ is strictly below the trade-off

curve qΠ(·), that is, q∆(u) < qΠ(u) for any u.

Proof of Lemma 1.20: This is just a re-statement of

Lemma C.3 in [5]. They have proved that for any tpp∞ = u,

fdp∞ > q∆(u), which implies qΠ(u) > q∆(u). �
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