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The Price of Competition: Effect Size
Heterogeneity Matters in
High Dimensions

Hua Wang ™, Yachong Yang™, and Weijie J. Su

Abstract—In high-dimensional sparse regression, would
increasing the signal-to-noise ratio while fixing the sparsity level
always lead to better model selection? For high-dimensional
sparse regression problems, surprisingly, in this paper we answer
this question in the negative in the regime of linear sparsity for
the Lasso method, relying on a new concept we term effect size
heterogeneity. Roughly speaking, a regression coefficient vector
has high effect size heterogeneity if its nonzero entries have
significantly different magnitudes. From the viewpoint of this
new measure, we prove that the false and true positive rates
achieve the optimal trade-off uniformly along the Lasso path
when this measure is maximal in a certain sense, and the worst
trade-off is achieved when it is minimal in the sense that all
nonzero effect sizes are roughly equal. Moreover, we demonstrate
that the first false selection occurs much earlier when effect size
heterogeneity is minimal than when it is maximal. The underlying
cause of these two phenomena is, metaphorically speaking, the
“competition” among variables with effect sizes of the same
magnitude in entering the model. Taken together, our findings
suggest that effect size heterogeneity shall serve as an important
complementary measure to the sparsity of regression coefficients
in the analysis of high-dimensional regression problems. Our
proofs use techniques from approximate message passing theory
as well as a novel technique for estimating the rank of the first
false variable.

Index Terms— Approximate message passing, false discovery
rate, high-dimensional sparse regression, model selection, signal-
to-noise ratio.

I. INTRODUCTION

WE CONSIDER high-dimensional sparse regression
problems in which we observe an n-dimensional
response vector y that is generated by a linear model

y=XpB+z, (L1)

where X is an n X p design matrix of features, 3 € R?
denotes an unknown vector of regression coefficients, and
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Fig. 1. The TPP-FDP trade-off along the entire Lasso path, with three
different sets of regression coefficients. Note that the TPP-FDP trade-off is
equivalent to the receiver operating characteristic curve. The sparsity of 3
is fixed to k& = 200 (throughout this paper, we use k to denote the sparsity
level) and the 200 true effects are plotted in the logarithmic scale in the
three panels. For example, in the “Strong effect sizes w/ little heterogeneity”
setting, ﬂ1 = ... = ﬂgoo = 103, and ,3201 = ... = ,31000 = 0. The
design matrix X € R™*P has independent A (0,1/n) entries, where n =
p = 1000, and the noise term z has independent N(0,0?) entries with
o = 0.01. The bottom-right panel shows the plot of FDP as a function of
TPP, averaged over 100 independent runs. For completeness, we remark that
effect size heterogeneity influences model selection in a more complex manner
at a higher noise level (see Figure 10).

z € R” is a noise term. In the big data era, this model has
been increasingly applied to high-dimensional settings where
the number of variables p is comparable to or even much
larger than the number of observational units n. While this
reality poses challenges to the regression problem, in many
scientific problems there are good reasons to suspect that
truly relevant variables account for a small fraction of all the
observed variables or, equivalently, 3 is sparse in the sense that
many of its components are zero or nearly zero. Indeed, a very
impressive body of theoretical work shows that the difficulty
of variable selection in the high-dimensional setting relies
crucially on how sparse the regression coefficients are [1], [2].

This paper, however, asks whether there are other measures
concerning the regression coefficients that have a practi-
cal impact on variable selection for the linear model (I.1).
To address this question, we present a simulation study in
Figure 1. Notably, the sparsity—or, put differently, the number
of nonzero components—of the regression coefficients 3 is
fixed to 200 across three experimental settings, but with vary-
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ing magnitudes of the 200 true effect sizes. The method we
use for variable selection is the Lasso [3], which is perhaps the
most popular model selector in the high-dimensional setting.
Given a penalty parameter A > 0, this method finds the
solution to the convex optimization program

~ 1
B(\) = argmin Sy — Xb|* + A[b1,  (12)
beRr
where || - || and || - || denote the ¢ and the ¢; norms,

respectively. A variable j is selected by this method at A
if 3;(\) # 0, and a false selection occurs if it is a noise
variable in the sense that 3; = 0. Formally, we use the false
discovery proportion (FDP) and true positive proportion (TPP)
as measures of the type I error and power, respectively,
to assess the quality of the selected model {1 < j < p :

Bi(\) # 0}:
~ #{j:8; =0and §;(\) # 0}

FDP, = —— , (1.3)
#{J : B;(\) # 0}
#{j: 8 #0 and B;()) # 0}
TPP, = - . (1.4)
A #{j: B; #0}
As is clear, we wish to select a model with a small FDP and
large TPP.

Despite weaker effect sizes, strikingly, Figure 1 shows that
the Lasso can achieve better model selection in terms of
the TPP-FDP trade-off and, in particular, this counterintuitive
behavior holds uniformly along the entire Lasso path or, equiv-
alently, over all values of A. Existing theory often analyzes
how the worst-case performance of the Lasso and other related
procedures depends on the regression coefficients through the
sparsity of the regression coefficients (see, for example, [4]).
However, the sparsity level is fixed across the experimental
settings of Figure 1. In light of this, therefore, one would
expect that the strong signals and weak signals would yield the
best and worst model selection results, respectively. Figure 1
shows that this is not necessarily the case.

Thus, a finer-grained structural analysis of the effect sizes
is needed to better understand the Lasso in some settings.
In this paper, we address this important question by proposing
a concept that we term effect size heterogeneity concern-
ing the regression coefficients in high dimensions. Roughly
speaking, a regression coefficient vector has higher effect size
heterogeneity than another vector (of the same sparsity) if the
nonzero entries of the former are more heterogeneous than
those of the latter in terms of magnitude. As a complement
to sparsity, effect size heterogeneity will be shown to have a
significant impact on how the Lasso performs in terms of the
false and true positive rates trade-off: while the sparsity level
of the regression coefficients is fixed, the higher the effect
size heterogeneity is, the better the Lasso performs. Turning
back to Figure 1, we note that the strong effect sizes are
the least heterogeneous in magnitude, and the weak effect
sizes are the most heterogeneous. Therefore, the comparisons
made in Figure 1 match well the implication of effect size
heterogeneity.

Concretely, the main thrust of this paper lies in the develop-
ment of two complementary perspectives to precisely quantify
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Fig. 2. The Lasso Crescent diagram specified by the parameters n/p = 1
and k/p = 0.2, following the setting in Figure 1. The lower/upper smooth
curve is asymptotically achieved with maximal/minimal effect size hetero-
geneity (ESH) in the regime of infinite signal-to-noise ratio. The explicit
expressions of the curves are given in Section II. Our Theorem 1 implies that
nowhere on the Lasso path we can find any (TPP, FDP) pairs in the region
below the Lasso Crescent (also see [S]). In the noiseless setting, moreover, this
impossibility result continues to hold in the region above the Lasso Crescent
(Theorem 2), which is labeled “Unachievable (Noiseless).”.

the impact of effect size heterogeneity. First, following the
setup of Figure 1, we consider the full possible range of
the asymptotic trade-off between the TPP and FDP along the
Lasso path, while varying the level of effect size heterogeneity.
Assuming a random design with independent Gaussian entries
and working in the regime of linear sparsity—meaning that the
fraction of true effect sizes tends to a constant—we formally
show that the full possible range is enclosed by two smooth
curves in the (TPP, FDP) plane, which we referred to as the
Lasso Crescent. Figure 2 presents an instance of the Lasso
Crescent. More precisely, having excluded the impact of noise
by taking z = O in the linear model (I.1), the lower curve
is asymptotically achieved when effect size heterogeneity is
maximal in the sense that all true effect sizes are widely
different from each other, while the upper curve is asymp-
totically achieved when the heterogeneity is minimal in the
sense that all true effects are of the same size. In general,
the (TPP,FDP) pairs computed from the entire Lasso path
must be asymptotically sandwiched between the two curves
in the noiseless setting or, equivalently, in the regime of the
infinite signal-to-noise ratio. The gap between the two curves
is fundamental in the sense that it persists no matter how strong
the effects are.

While the TPP-FDP trade-off essentially examines the
“bulk” of the Lasso solution path, the second perspective
we take extends to the “edge”: when does the first noise
variable enter the model along the Lasso path? More precisely,
we decrease A from oo to 0 and find the first “time” a false
selection occurs. To indicate the difficulty of consistent model
selection, formally, we consider the rank of the first noise
variable or, put concretely, one plus the number of the true
variables before the Lasso selects the first noise variable. Intu-
itively, a large rank is desirable. As with the first perspective,
assuming a Gaussian random design and regression coeffi-
cients with linear sparsity, we prove that the rank of the first
false selection is bounded above by (1+0(1))n/(2logp). This
upper bound, which approximately equals 72 in the setting
of Figure 1, holds no matter how strong the effect sizes are.
Interestingly, this upper bound is exactly achieved when effect
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size heterogeneity is maximal and the noise level tends to zero.
On the other hand, [6] has obtained a sharp prediction of the
rank of the first false variable in the case of minimal effect size
heterogeneity, which, together with our new result, shows that
the first noise variable occurs much earlier with minimal effect
size heterogeneity than with maximal effect size heterogeneity.
Although not entirely related, the two perspectives consistently
demonstrate that effect size heterogeneity is an important and
useful concept for understanding the performance of the Lasso.

The fact that effect size heterogeneity matters, as shown
above, is due to the bias introduced by the shrinkage nature
of the Lasso. This bias in turn makes the residuals absorb
many of the true effects that act as what we may want to call
“shrinkage noise”. Metaphorically, variables yet to be selected
tend to “compete” with each other in entering the Lasso path
and contribute to the shrinkage noise. The “competition” is
particularly intensive among variables having about the same
effect sizes, which is the case when effect size heterogeneity
is low. As a price, the shrinkage noise gets inflated and
some noise variables may be selected early due to their
high correlations with the shrinkage noise. This is why false
selections occur with a good chance and early. In contrast,
when the heterogeneity is high, the largest true effect yet to
be selected tends to have a significant correlation with the
residuals, thereby having a better chance to be selected sooner.
To appreciate this heuristic explanation, it is instructive to
note that the least-squares estimator, if available, does not
exhibit this price-of-competition phenomenon, as it is unbiased
for the regression coefficients.! An alternative but less direct
way to appreciate effect size heterogeneity is to relate it to
the restricted eigenvalue condition [2]. Roughly speaking, this
condition is concerned with a vector of regression coefficients
such that its ¢; norm is largely contributed by a few com-
ponents, and such approximate sparse regression coefficients
can be well estimated by the Lasso and the Dantzig selector
under certain designs [2], [7]. From the viewpoint of this
condition, therefore, regression coefficients with high effect
size heterogeneity can be thought of as having a smaller
effective sparsity level, which is favored by the Lasso.

As a final remark, the price-of-competition phenomenon
does not appear if the sparsity is sub-linear in the ambient
dimension p, which is often assumed in the copious body of
literature on high-dimensional regression. In this regime of
sparsity, effect size heterogeneity has a vanishing impact on
the performance of the Lasso if the signal-to-noise ratio is
sufficiently strong or the beta-min condition is satisfied. Our
paper also departs from this line of literature from a technical
standpoint. Indeed, the proofs of the results in this paper make
heavy use of approximate message passing (AMP) theory
[8]—-[10], with nontrivial extensions.

A. Organization

The remainder of this paper is organized as follows.
In Section II, we formalize the Lasso Crescent diagram by
presenting our theoretical results that predict the TPP—FDP

UIf the effect sizes are sufficiently strong, variable selection using the ¢
values of the least-squares estimator can lead to full power without any type
I errors.
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trade-off with respect to effect size heterogeneity. Section III
extends the investigation of effect size heterogeneity to the
problem of the first false variable along the Lasso path.
Section IV is devoted to proving the results in Section II,
whereas technical details of the proofs are deferred to the
appendix. In Section V, we provide numerical studies to
demonstrate the impact of effect size heterogeneity in general
settings. We conclude the paper in Section VI with a few
directions for future research.

II. THE LASSO CRESCENT

In this section, we derive the full possible range of the
asymptotic trade-off between the TPP and FDP along the
Lasso path, with a focus on its dependence on effect size het-
erogeneity. Specifically, our results can be pictorially presented
by the Lasso Crescent as in Figure 2, hence the title of this
section. The proofs are deferred to Section IV.

Throughout this section, and indeed the entire paper,
we assume the following working hypotheses to specify the
linear model (I.1). For ease of reading, we use boldface letters
to denote vectors and matrices.

Gaussian Design Matrix: We consider a sequence of designs
X € R™*Pt consisting of i.i.d. N'(0, 1/n;) entries so that each
column has an approximate unit /o norm. As the index [ — oo,
we assume p;, n; — oo with n;/p; — 6 for a constant 6 > 0.
The index [ is often omitted for the sake of simplicity.

Regression Coefficients: Let the regression coefficients
Bi,...,0p beii.d. copies of a random variable II that satisfies
ETI? < oo. Of particular interest to this paper is an e-sparse
prior II in the sense that P(II # 0) = e for a constant
0 < € < 1. Thus, the realized (3,...,3, are in the linear
sparsity regime since the sparsity is approximately equal to ep.

Noise: The noise term z consists of i.i.d. elements drawn
from (0, 0%), where the noise level o > 0 is fixed.

For completeness, X, 3, and z are jointly independent.
These assumptions are used in the literature on AMP theory
and its applications (see, for example, [9]-[13]) and, more
recently, have been commonly made in the high-dimensional
regression literature [14]-[17]. On top of that, we adopt some
adjustments made by [5] that slightly simplify the assumptions
on 3 and z. Regarding the assumption on the noise, it is
worth noting that we do not exclude the case o = 0, which
corresponds to noiseless observations. For some of the results
in this section, the price-of-competition phenomenon manifests
itself most clearly in the noiseless setting.

A. Most Heterogeneous Effect Sizes

Our first main theorem considers regression coefficients that
are drawn from the following prior distribution:
Definition 2.1: For M > 0 and an integer m > 0, we call

0 wp.1l—e€
M wp. =

% = M2 wp. < (IL1)
M™ wp.

the (e, m, M)-heterogeneous prior.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 09,2023 at 01:55:46 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: PRICE OF COMPETITION: EFFECT SIZE HETEROGENEITY MATTERS IN HIGH DIMENSIONS

For notational convenience, we suppress the dependence of
II* on €,m, M. This prior is e-sparse in the sense of the
working hypotheses. As is clear, larger values of m, M would
render the prior more heterogeneous. Indeed, this paper is
primarily concerned with the case where both M, m — oc.
This corresponds to the regime where the signal-to-noise
ratio tends to infinity and, in addition, the true effect sizes
are increasingly different. To be complete, the (e, m, M)-
heterogeneous prior is only a specific example that attains
increasing heterogeneity. See Remark 2.2 for more examples.

Following (1.3), FDP, (IT) and TPP,(IT) denote the (ran-
dom) false discovery proportion and true positive proportion,
respectively, of the Lasso estimate at A when the regression
coefficients in (I.1) are i.i.d. draws from a prior II. For ease of
reading, we say a pair (TPP, FDP) outperforms another pair
(TPP’,FDP’) if TPP > TPP’ and FDP < FDP'. As noted
earlier, all theoretical results in this paper are obtained under
the working hypotheses. For conciseness, the statements of our
theorems shall not mention this fact anymore.

Theorem 1: Let C' > ¢ > 0 be fixed. For any e-sparse
prior II, if both m and M are sufficiently large in the
(€,m, M)-heterogeneous prior TI, then the following con-
clusions are true:

(a) The event

U { (TPP (IT), FDPy, (II)) outperforms
c<AN <C

(TPPA(HALFDPA(HA))}

happens with probability tending to zero as n,p — oo.

(b) For any constant v > 0, no matter how we choose

MN(y,X) > c adaptively as long as it always satis-
fies TPPy, (H) > v, with probability approaching one
there exists A > 0 such that (TPP;(IT%), FDP5 (I14))
outperforms (TPPy, (IT), FDP, (II)) .

Remark 2.2: The priors for which the theorem holds can
be extended in the following way. Consider a sequence of
priors TT# satisfying II® = 0 with probability 1 — ¢ and
12 = M; # 0 with probability ev; fori = 1,...,m such that
7+ A Ym = 1, max; y; — 0, and ming << IMi/MHI —
oo (set My = 1). Alternatively, the nonzero component of
the prior can be drawn from a continuous random variable
with cumulative distribution function of form log—”{m for
1 <a < M™. While the theorem statement is restricted to
(e, m, M )-heterogeneous priors for brevity, its proof considers
the general case.

This theorem demonstrates the optimality of heterogeneous
and strong effects in terms of the trade-off between the TPP
and FDP. Importantly, this optimality is uniform in the sense
that it holds along the entire Lasso path, no matter how strong
the true effects coming from II are. To be sure, the event as a
union in (a) is taken over any (TPP, FDP) pair from the prior I
and any pair from the prior II®. Although each conclusion
alone is not a consequence of the other, as we will see from
the proof in Section IV, the two conclusions are built on top of
the fact that the pairs (TPP,, FDP)) with varying A converge
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uniformly to a deterministic smooth curve for both IT and IT4.
This fact allows us to obtain the following byproduct:

Proposition 2.3: Under the assumptions of Theorem 1, for
any sufficiently small constant v > 0, the following statement
holds with probability tending to one: for any A, A’ > ¢ such
that |[TPP,(I1*) — TPP, (II)| < v and TPPy (II) > 0.001,
we have

FDP), (IT®) < FDP,, (IT).

This result makes it self-evident why the prior IT* is a most
favorable for the entire Lasso path, though literally, we should
interpret this favorability in the limit m, M — oo. More
precisely, this result implies that given a required power level,
the smallest possible FDP is achieved when the effects are
increasingly heterogeneous and strong. Of note, the number
0.001 above can be replaced by any small positive constant,
and it does not impede the interpretability of the theorem since
we are generally not interested in a model that includes only
a tiny fraction of true variables.

An interesting yet unaddressed question is to find an expres-
sion of the asymptotic minimum of FDP given TPP (IT%) = u
in the limit m, M — oo. Call this function ¢*(u;d, €). From
our results, one can easily see that ¢° is nothing but the lower
envelope of instance-specific TPP-FDP trade-off curves over
all e-sparse priors. To see this, first note that one can prove
that as n,p — oo, the pairs (TPP,(II),FDP,(II)) over all
A converge to a smooth curve, which is denoted by ¢"(u)
(see Section IV). Recogmzmg that II® is also e-sparse and
assumlng hmm M —o00 q exists, we must have
A( ¢"(u). (12

inf
II:e-sparse

lim " (u) >

u) = m,M— oo

On the other hand, it follows from Theorem 1 and in particular
Proposition 2.3 that
. A
@)= tim (" () +o(1)) = ¢t (W)

m,M— o0

for any e-sparse prior II. This display, together with (II.2),
gives
A= inf g"(w)
:e-sparse
Interestingly, the right-hand side of (II.3) has been tackled
in [5], leading to a precise expression. To describe this expres-
sion, let 2 (u) be the largest positive root of the following

equation in t,
2(1 —€) [(L+2)D(—t) — tp(t)] + e(1 +12) =6
e[(1412)(1 —20(—t)) + 2to(1)]
1—-u
T 1-20(—t)
where ®(-) and ¢(-) denote the cumulative distribution func-

tion and probability density function of the standard normal
distribution, respectively. Theorem 2.1 in [5] shows that

2(1 — )®(—t2(u))

(I1.3)

(I1.4)

. I B
H:el—rslg.arse (’U,) B 2(]_ _ G)q)(—tA(u)) + cu (H.S)
Taken together, (I[.3) and (IL.5) yield
Ay = 21— 92 (—t(u))
) = o e (B (w) + e (IL6)
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Remark 2.4: If uw = 0, treat oo as a root of the equation
and set 0/0 = 0 in (IL5). As such, ¢ satisfies ¢ (0) = 0.
If § < 1 and € is larger than a threshold determined by
0, the function qA is defined only for u between 0 and a
certain number strictly smaller than 1. This is where the
celebrated Donoho—Tanner phase transition occurs [18] (also
see Section B.2). Throughout this paper, however, we focus on
the regime that is below the Donoho—Tanner phase transition—
that is, the case where § > 1, or § < 1 and e is small so that
the range of w is the unit interval [0, 1]. In contrast, above the
phase transition, the mapping from the TPP to FDP might not
be unique (see Figure 3.1 in [19] and [20]).

In summary, we have the following corollary, which
addresses the aforementioned question.

Corollary 2.5: Under the assumptions of Theorem 1,
we have

lim  lim sup [FDP,(II*) — ¢® (TPP,(II%))| = 0,
m,M— oo n,p—00 A>c
where lim,, ,—.~ is taken in probability. Moreover, for any
e-sparse prior II, we have

FDP) (1) > ¢~ (TPPy(IT)) — 0.001

for all A > ¢ with probability tending to one.

Remark 2.6: As X\ — oo, both TPP,(IT*) and FDP) (IT#)
tend to 0. Hence, there is no need to impose an upper bound on
A when taking the supremum sup, .. The second conclusion
of Corollary 2.5 follows from Proposition 2.3 in conjunction
with the continuity of ¢”. As earlier, 0.001 can be replaced
by any positive constant.

The second conclusion of Corollary 2.5 is part of
Theorem 2.1 in [5] and demonstrates that true variables and
irrelevant variables are always interspersed along the Lasso
path. In particular, this is true when the regularization para-
meter A tends to 0. In this case, indeed, the Lasso would
select a significant fraction of false variables with vanish-
ing but nonzero estimated coefficients. This fact necessitates
a form of calibration of the Lasso estimates for variable
selection [19], [20].

The significance of Theorem 1 and Corollary 2.5, how-
ever, extends beyond earlier results. Precisely, [5] derived the
expression (IL.5) by constructing a different signal prior IT
for each power level u. Indeed, the nonzero component of
the prior constructed in [5] has two different magnitudes with
weights depending on u, as opposed to an increasing number
of different magnitudes as in the (e, m, M )-heterogeneous
prior. The increasing level of heterogeneity allows us to give
a one-shot construction of most heterogeneous priors at all
power levels.

B. Least Heterogeneous Effect Sizes

We now turn to the opposite question: which effect sizes
lead to the worst trade-off between the TPP and FDP along
the Lasso path? Inspired by the interpretation of effect size
heterogeneity, it is natural to consider the following signal
prior as a candidate:

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Definition 2.7: For M > 0, we call

v — 0 wp.1l-e
M w.p. €

the (e, M )-homogeneous prior.

This prior would render all true effect sizes equal, thereby
being least heterogeneous or most homogeneous among all
e-sparse priors. The following theorem confirms our intuition
that this homogeneous prior is least favorable for the Lasso
as the resulting effect sizes give the least optimal trade-off
between false positives and power.

Theorem 2: Let C' > ¢ > 0 be fixed. In the noiseless setting
— that is, z = 0 — for any e-sparse prior II that is non-
constant conditional on II # 0, the following conclusions are
true for the (e, M )-homogeneous prior ITV:

(a) The event

I1.7)

U {(TPP,\ (ITV), FDP, (ITV)) outperforms
c<AN <C

(TPP, (IT), FDP,, (H))}

happens with probability tending to zero as n,p — oo.

(b) For any constant v > 0, no matter how we choose

M(y,X) > c adaptively as long as it always satis-
fies TPP; (II) > v, with probability tending to one
there exists A > 0 such that (TPP, (IT), FDPy, (II))
outperforms (TPP5(IIV), FDP5(I1V)) .

This theorem is similar, but in the opposite sense, to
Theorem 1. One distinction between the two theorems is that
Theorem 2 assumes the noiseless setting, as opposed to the
noisy setting considered in Theorem 1. The noiseless setting
is equivalent to an infinite value of the signal-to-noise ratio,
which allows us to better isolate the impact of effect size
heterogeneity from that of the noise term. That said, this
theorem remains true in the presence of noise by setting a
sufficiently large magnitude M for the true effect sizes.

Just as Proposition 2.3 does, the following result follows
from the proof of Theorem 2 presented in Section IV.

Proposition 2.8: Under the assumptions of Theorem 2, for
any sufficiently small constant v > 0, the following statement
holds with probability tending to one: if A\, \ > ¢ satisfy
TPP) (IT) > 0.001 and |TPP,(I1V) — TPPy (IT)| < v, then

FDP, (T1V) > FDP,,(II).

As is clear, this result demonstrates that the prior v is
least favorable for the entire Lasso path in the noiseless case.
Roughly speaking, this proposition shows that if the two Lasso
problems agree on the value of the TPP along their paths,
then the (e, M)-homogeneous prior ITV must yield a higher
FDP. As with Proposition 2.3, 0.001 can be replaced by any
positive constant. On a related note, the prior (II.7) is known to
be least favorable for certain estimation problems both in the
noiseless and noisy settings [21] (see also Lemma 4.4.1 and
Corollary 4.4.3 in [22]). An interesting direction for future
research is to study the relationship between estimation and
variable selection with regard to the least favorability of the
prior distribution.
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The sharp distinction between Propositions 2.3 and 2.8
must be attributed to the priors II* and IIV. The cause is,
loosely speaking, due to the “competition” among variables
with about the same effect sizes in entering the Lasso model.
However, we find it easier to elucidate the underlying cause
when studying the rank of the first false variable and thus defer
the detailed discussion to Section III.

We now proceed to specify the curve on which
(TPP(ITV), FDP,(ITV)) lies in the limit. For a fixed a, let
¢ = ¢(«) denote the largest root of the equation

§=2(1-¢)[(1+a*)®(—a) — ag(a)] — e(2a +<)o(s)
+ 65p(200+5) + (1 + ) [®(s) + P(—2a — 5]
+ e(s 4 a)?[®(—) + &(—20 — )],

and let tV = tV(u;d,¢€) be the largest root of the following
equation in a:

D(s(a)) + P(—2a — ¢()) = u.
With all of these in place, define

2(1 - @(~17 (w)
2(1 —€)®(—tV(u)) + eu’

qV (u;8,¢) = (I1.8)
The derivation of the expression is given in Lemma 1.16 in
Section B.2. The following result shows that this function
describes the limiting trade-off between the TPP and FDP in
the case of minimal effect size heterogeneity:

Corollary 2.9: Under the assumptions of Theorem 2,
we have

lim sup [FDP\(ITY) — ¢V (TPPA(IIV))| = 0.

n,p— oo A>C

Moreover, for any e-sparse prior 11, we have
FDP,(IT) < ¢V (TPPx(II)) + 0.001

for all A > ¢ with probability tending to one.

As with Theorem 2, Corollary 2.9 holds for any M > 0
because of the noiseless setting.

Taken together, Corollaries 2.5 and 2.9 give the following
result:

Theorem 3: Let ¢ > 0 be any small constant. In the
noiseless setting, for any e-sparse prior II, we have

¢~ (TPP,(IT)) — 0.001 < FDP,(IT) < ¢V (TPP,(II)) + 0.001

for all A > ¢ with probability tending to one.

The two curves ¢ and ¢V enclose a crescent-shaped
region, which we call the Lasso Crescent. This theorem shows
any (TPP,FDP) pairs along the entire Lasso path would
essentially lie in the corresponding Lasso Crescent that is
specified by the shape n/p of the design and the sparsity
ratio k/p of the effect sizes, and this region is tight. Figure 3
presents two instances of the Lasso Crescent, with simulations
showing good agreement between the predicted and observed
behaviors.?

2R and Matlab code to calculate ¢® and ¢V is available at
https://github.com/huawang-wharton/effectsizeheterogeneity.

5273

0.20° — High ESH

Moderate ESH /
— Low ESH // !

0.15
o
0 0.10-
L

0.05

0.00-

0.00 0.25 0.50 0.75 1.00
TPP
0.3" — High ESH
Moderate ESH
— Low ESH

0.2-
o
0
L

0.1-

0.0-

0.00 0.25 0.50 0.75 1.00
TPP

Fig. 3. Illustration of the interpretation of the Lasso Crescent via Theorem 3.

The design of size n X p has i.i.d. N'(0,1/n) entries and the noise level is
set to 0. Specifically, we use n = p = 1000, and sparsity k& = 200 in
the left panel, and n = 800,p = 1200, £k = 200 in the right panel.
The “high effect size heterogeneity (ESH)” setting: the 200 coefficients take
4 different values; The “moderate ESH” setting: the first 100 coefficients are
set to 100 and the second 100 coefficients are set to 50; The “low ESH”
setting: the 200 coefficients are set to 100. The dashed lines are averaged

over 200 independent runs of the Lasso path. The two boundaries ¢ and

¢V are in solid black lines.

III. THE FIRST FALSE SELECTION

In this section, we examine the impact of effect size
heterogeneity on model selection by the Lasso from a dif-
ferent perspective: when is the first false variable selected?
Intuitively, the later the first false variable occurs, the better
the method performs. Using a mix of new and old results,
this section will show that the first false variable occurs much
earlier when effect size heterogeneity is minimal than when it
is maximal.

Denote the rank of the first falsely selected variable by

Ti=#{j: B;(\* —0) £ 0} = #{j : B;(\*) #£0} + 1.

Above, A" is the first time along the Lasso path that a false
variable is about to be selected:

A* = sup{\ : there exists 1 < i < p, Bi(\) # 0, 3 = 0},
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and \* — 0 informally represents a value that is infinitesimally
smaller than A*. In words, T is equal to one plus the number
of true variables before the first false variable.

The problem of the rank of the first false selection has been
considered by [6] in the case where all nonzero regression
coefficients are equal. This corresponds to minimal effect
size heterogeneity. While we continue employing the working
hypotheses as earlier, in this section the regression coefficients
3 are assumed to be deterministic.

Proposition 3.1: [6, Theorem 2] Under the working
hypotheses, let 3; = M for 1 < j < k and 3; = 0 for
kE+1<j<p, where k/p — € and M — oo as n,p — .
Then, the rank 7' of the first false variable selected by the
Lasso satisfies

log T = (1 + 0p(1))] 2282

where op(1) tends to O in probability.

This result also applies to forward stepwise regression and
least angle regression [23]. Note that this proposition considers
the regime where the signal-to-noise ratio M/oc — oo as
o is fixed. If M/o is bounded, one has log7T < (1 +

op(1))4/ 261# [6, Theorem 1]. Indeed, the original theorem
predicts that

logT < (1+ 0p(1))( on(log p)/k — n/(2k)
+log(n/(2plogp)) ).

which is reduced to the upper bound above since n/p — ¢
and k/p — e under our working hypotheses.

Turning to most heterogeneous effect sizes, we have the
result below.

Proposition 3.2: Under the working hypotheses, let 3; =
MFH1=ifor1 < j<kand 3j =0fork+1<j<np,
where k/p — e. If M is sufficiently large, then there exists A
depending on n such that

#{3: B0 #£0,8; # 0} = (14 0e(1))
and#{j:@(A) £0, 5 :o} —0

as n,p — oo.

The proof of this proposition is given in the appendix.
Regarding how large M should be, precisely, this proposition
holds if M satisfies M > n® as n — oo for any constant
a > % It is also worth mentioning that the proof is adapted
from the proof of Theorem 1 in [24]. The effect sizes in
Proposition 3.2 are essentially the same as an (e,m,M)-
heterogeneous prior (I.1) with m — oo.

Proposition 3.2 asserts that all (1 + o0p(1))575 selected
variables are true at some point along the Lasso path. If the
Lasso does not kick out any selected variables before that
point,® this result implies that 7 > (1 + 09(1))$.

)

2logp

31t is well-known that along the Lasso path, a selected variable can
be dropped out as A decreases [23]. However, we did not observe this
phenomenon before the first (1 + op(1)) variables are selected in all

_n_
. . 2logp
of our simulations.
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Recognizing the fact that

e(1+0p(1))\/@ < (14 0p(1)) §

2logp’

most heterogeneous effect sizes are more favorable than least
heterogeneous effect sizes for the Lasso not only in terms of
the TPP-FDP trade-off as shown in the previous section, but
also in terms of the rank of the first false variable.

Unlike Theorem 1 and Theorem 2, the two propositions
here are silent on whether their bounds can be extended to
general ep-sparse effect sizes. The following theorem gives
a partial affirmative answer to this question, which broadly
applies to all regression coefficients with sparsity no more
than ep, as opposed to the exact sparsity level ep.

Theorem 4: Under the working hypotheses, for arbitrary
regression coefficients 3 with sparsity satisfying k < ep, the
rank 7' of the first false variable selected by the Lasso satisfies

T < (1+o0p(1))

2logp
as n,p — oo.

Together with Proposition 3.2, this theorem indicates that
maximal effect size heterogeneity is most favorable for the
Lasso in terms of the rank of the first false variable. Impor-
tantly, the sharp bound (1 + op(1))575— is the maximum
number of true variables before a false selection for essentially
all sparsity levels, no matter how strong and how heteroge-
neous the effect sizes are. This novel result is a contribution of
independent interest to high-dimensional statistics. The proof
is given in Section III-A and does not involve any elements
from AMP theory.

In regard to Proposition 3.1, however, it is tempting to ask
whether minimal effect size heterogeneity is least favorable
from the same standpoint; that is, whether or not

26 logp

logT > (1 + op(1)) -

for any ep-sparse regression coefficients in the noiseless case.
We leave this question for future work.

In passing, we briefly explain how and why effect size
heterogeneity has a significant impact on model selection by
the Lasso, shedding light on the price-of-competition phe-
nomenon. To ease the elaboration, we assume the noiseless
setting (z = 0) and denote by S the set of all true variables.
Consider the Lasso solution B()) at some A where no false
selection occurs (that is, the support S of 3 is a subset of .5).
Our explanation relies crucially on the fact that a variable
X; (j ¢ 95) is likely to be the next selecteAd variable if its
inner product with the residual, X ;r(y — X 3), is the largest
in magnitude. Note that (denote by X the matrix that is
formed by the columns corresponding to () for a subset @) of

{1,...,p}
X (y-XB)=X](y— X583
T T r
=X; Xg\58s5 + X; X585 — Bg).
Now, we argue that the largest X ]-TX S\ B & in absolute

value in the case of high effect size heterogeneity is likely
to be from a true variable X; (j € S\ S) and, conversely,
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it is likely to be from an irrelevant variable X ; (j ¢ S) if

effect size heterogenelty is low. Informally, regarding S as

deterministic, then X X 5\ 30 \§ is approximately normally

distributed with variance HXS\S,BS\SH /n & ||,6'S\SH /m and
ifj¢s

mean

0

g, ifjeS\8S.
In the setting of Proposition 3.2 where true effect sizes
are widely different from each other, the standard deviation
HBS\S |l/+/n is much smaller than sup jes\§ 5] Consequently,
the unselected variable with the largest effect size sup €S\ Bj
tends to stand out, with essentially no “competition” among all
unselected variables, thereby being the next selected variable.
In the setting of Proposition 3.1, however, the standard devia-
tion || 8 S\§H/ \/n is comparable to the largest unselected effect
sizes, which are in fact of the same size. Another way to put
this is that the overall effect is evenly distributed across true
variables, and the resulted competition renders any variable
dwarfed by the noise. Accordingly, some noise variable X
is very likely to have a larger inner product X (y— X ,8)
in magnitude than any unselected true variable does. As such,
a false selection is likely to occur very early when effect size
heterogeneity is low.

A. Proof of Theorem 4

Let v > 0 be any small constant and denote by A, the
event that the rank of the first false variable

T>(1+v)

2logp’
The proof follows if one can show P(A,)) — 0 for all v > 0 as
n,p — oo. Recall that S denotes the support supp(3). If the
sparsity [S| =k < (1+v)g5— — 1= (1+v+o0(1)) 510,
the event 4, is an empty set because 7" is always no greater
than |S|+1 < (1 + v) 575, leading to P(A,) = 0.

Now, we turn to the more challenging case where
E>(14v)572— 5Togp — L and the remainder of the proof aims to

show P(A,) — 0. Consider the solution B() to the restricted
Lasso problem

B(\) := argmin —Ily X sb|* + Al[bl|1.
beERF

(IIL1)

Let

x:sup{A: 1B o > (1+V)21:gp _1}

be the first time that the restricted Lasso selects (1+v)

N N 2logp
1 variables and denote by S the support of B(A — 0) (here
A — 0 is infinitesimally smaller than ). In particular, this set
must satisfy

(1+v) —1<|8<(1+v) (I11.2)

n
2logp 2logp
On the event A,, the support of the full Lasso solution is
a subset of S. Therefore, B(A) defined in (IIL.1) is also the
solution to the full Lasso problem at A:

~ 1 —
B(\) = argmin ||y — Xb|* + X|[B|s.
beR?
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Note that B(X) may be k-dimensional as in (IIL1) or
p-dimensional by setting the remaining p — k entries to zero,
depending on the context. Writing 3 as a shorthand for [)’( ),
Xsﬁ)‘ < X for all

as a consequence, we have ‘X
j ¢ S on the event A,, thereby certlfymg

P(A,) <P (‘X;(y - XSE)‘ < forall j ¢ 5) .
To prove P(A,) — 0, therefore, it suffices to show that
max ‘X

XSB)‘ > (I11.3)

with probability tending to one. Making use of the indepen-
dence between X; and y — X g0, X (y — XsB)’s are
p—k i.i.d. normal random variables with rgean 0 and variance
lly — X sB||*/n, conditional on y — X /3. This gives

+or() =B o)

Xo(XiXa) X1 (y—XsB
\ ( S)\/ﬁ S(y S )H\/m7
(II1.4)

. ~
rjngang (y—XsB)|=(1

where the inequality follows since X 5(X gX ) 'X g is a
projection. For the moment, take the inequality

T “1yT ~ - n
[X5(XgXg) Xgly—XsB)| = (1+c)/\,/210gp

(IIL.5)

as given for some constant ¢ > 0 possibly depending on v,
with probability tending to one. Combining (II1.4) and (IIL.5)
yields

1+c)A
I?gagx (y — XsB)| > (14 0p(1)) 21°g(p‘k>%
= (1+c+ox(1)A %
>(l+c+o X el — )
> p(1))A log p

=(1+c+op(1)A

with probability tending to one, which ensures (II1.3).

We proceed to complete the proof of this theorem by
verifying (III.5). The Karush—Kuhn-Tucker condition for the
Lasso asserts that

X 1(y - XsP) = Nsgn(Bg) € M1, 1119,
from which we get
X5 - XsB)| = WS

A classical result in random matrix theory (see Lemma 1.1
in the appendix) shows that the singular values of
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Xg(X ;:X 5)~ ! are all bounded below by ﬁ with proba-
bility 1 — 1/p?, where

) o OV 080/ (L + Vi) [loglosy
n logp

(I11.6)
for an absolute constant C'. This allows us to get
IXs(XEX ) ' Xy — XsB)|
]. T -~
> X:(y—X
> e IX S - X B
5|+
=/ A 1.7
1+46 ( )

with probability tending to one. Recognizing that § < /2 for
sufficiently large p and plugging (II1.6) and (II1.2) into (II1.7),
we obtain

~ AI+v)opm —1
Xo(XIXg)'Xi(y—-X > [ f2lep
IXs(XEX5) X=X 2 \| 0%
~ [/ n
=(1 A
(1+c) 2logp
with probability approaching one, where ¢ = 1}:;72 —

1 > 0. This proves (IIL.5), thereby completing the proof of
Theorem 4.

IV. PROOFS FOR THE LASSO CRESCENT

To prove Theorems 1 and 2, we start by introducing AMP
theory at a minimal level. In the case of the Lasso, loosely
speaking, tools from AMP theory enable the characterization
of the asymptotic joint distribution of the Lasso estimate
B()\) and the true regression coefficients 3 under the work-
ing hypotheses [8]-[10]. The distribution is determined by
several parameters that can be solved from two equations
(see (IV.1) below). It is important to note, however, that
this body of literature only allows for the analysis of the
Lasso at a fixed value of A\. As such, these tools are not
directly applicable to the full Lasso path that this paper
deals with.

To overcome this difficulty, we leverage a recent exten-
sion on AMP theory that allows us to work on the Lasso
problem uniformly over its penalty parameter [5]. Under the
working hypotheses, let 7 > 0 and o > g be the unique
solution to

1
72 = 0 S E(ar (I + 77 — T2

1
A= (1 — —P(II+7W| > 047)) ar,

5 av.1)

where 7.(z) := sgn(z)-max{|xz|—c, 0} is the soft-thresholding
function, W is a standard normal random variable that is
independent of II, and oy = 0 if § > 1 and otherwise is the
unique root of (1+t2)®(—t) —to(t) = % int > 0. Let IT* be
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distributed the same as IT conditional on II # 0, and define
the two deterministic functions

tpp3” (1) = P(III" +7W| > a7)
2(1 —¢)®(—a)
€)P(—a) + eP(|II* + 7W| > at)’
(IV.2)

31D =

Above, II* remains independent of . For convenience,
we use —— to denote convergence in probability. With the
notation in place, now we state a lemma that our proofs
rely on.

Lemma 4.1 ([25, Lemma A.2]): Fix 0 < ¢ < C. Under the
working hypotheses, we have

sup |TPPA(IT) — tpp3°(I1)| = 0,
c<ALC

sup [FDP,(IT) — fdp$® (IT)| — 0. (1V.3)

Lemma 4f.<1/\f)?fers all the elements the present paper
needs from AMP theory. In addition to the use of
this lemma, notably, our proofs of Theorems 1 and 2
involve several technical novelties that we shall highlight in
Sections IV-A and IV-B. Relating to the literature, the con-
vergence of TPP)(II) and FDP, (II) for a single A has been
established earlier in [10], [26].

We use ¢(-) to represent the A-parameterized curve
(tppS°, £dp3°) in the sense that

fdp3° (IT) = ¢" (tpp3 (I1)).

Formally, Lemma 1.11 in Section B.1 demonstrates that
the instance-specific trade-off curve ¢'! is continuously dif-
ferentiable and strictly increasing. Relating to Section II,
Corollary 2.5 implies that, taking the (e, m, M )-heterogeneous
prior T2, ¢ converges to ¢® as m, M — oo. Likewise,
from Corollary 2.9 it follows that ¢™" () is identical to ¢V (-)
in the noiseless setting.

and

A. The Upper Boundary

Our first aim is to prove Theorem 2 along with
Proposition 2.8. The proof is built on top of the following
important lemma, which considers a non-constant II*.

Lemma 4.2: LetII be any e-sparse prior that is non-constant
conditional on IT # 0. In the noiseless setting 0 = 0, we have

q" (u) < q" (u)

forall 0 <u < 1.
Taking this lemma as given for the moment, we prove part
(a) of Theorem 2.
Proof of Theorem 2(a): We start by pointing out the
following fact: there exists a constant v > 0 such that for
all ¢ < A\, ) < C, the two inequalities

tpp3 (ITY) > tpp3? (IT) — v and fdp3® (1Y) < fdp3? (1) + v
Iv.4)
cannot hold simultaneously.

Assuming this fact for the moment, it is a stone’s
throw away to prove Theorem 2. Lemma 4.1 ensures that,
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with probability tending to one as n,p — oo, the four
terms |TPP,(ITV) — tpps° (IIV) |, [FDP,(IIV) — fdp3° (I1V)],
|TPP, (IT) — tppSY(II)|, and |FDPy/ (IT) — £dp$s (IT)| are all
smaller than v/2 for all ¢ < A\, X < C. In this event,

TPP,(ITV) > TPP, (IT)
implies
tpp3° (I1Y) > tpp5y (IT) — v

and, likewise, FDP, (IT1V) < FDP,(II) implies fdp$®(ITV) <
fdp$7 (IT) 4+ v. Recognizing that the two inequalities in (IV.4)
cannot both hold, therefore, in this event the following inequal-
ities

TPP,(ITY) > TPP,/ (1) and FDP,(IT1V) < FDP,, (II)

cannot hold simultaneously for all ¢ < XN < C.
In words, (TPP,(ITV),FDP5(IIV)) does not outperform
(TPP,/ (II), FDPy/ (II)), and this applies to all ¢ < A\, < C
with probability tending to one.

We conclude the proof by verifying (IV.4). To this end,
first find 0 < u; < ug < 1 such that the asymptotic powers
tpp$ (1Y), tpp3y (I1) are always between uq and us for ¢ < A,
N\ < C. Next, set

= inf  (q¥(u) —q¢"(w)). (IV.5)

w1 <u<uz
From Lemma 4.2, we must have v > 0. Since qv is a
continuous function on the closed interval [0, 1], its uniform
continuity gives

v Vi, v’
\q (u) —q (u)‘ < 0}
as long as |u — u/| < v for some v > 0.

As the final step, we show that (IV.4) cannot hold simul-
taneously by taking v = min{v’/2,v"}. To see this, suppose
we already have tpp° (IIV) > tppS?(IT) — v, from which we
get

Iv.e)

fdp (1Y) = ¢¥ (tpp (ITV))

> % (ippR° (1) +v) = 5

/

v
> ¢V (tpp3y (1)) — 7

Above, the first inequality follows from (IV.6). We proceed by
leveraging (IV.5) and obtain

Finally, note that
1T (e U, 11 (e (e
¢ (tppxr(IN) + 5 = ¢ (tppX7 (I1)) + v = fdp5y (1) + .
Taken together, these calculations reveal that the condition
tpp$° (1Y) > tppSs (IT)—v implies fdp3° (IIV) > fdpSy (I1)+v.
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As such, the two inequalities in (IV.4) cannot hold at the same
time. This completes the proof. 0

The same reasoning in the proof above can be used to prove
part (b) of Theorem 2 and Proposition 2.8. More precisely, the
first step is to establish the desired result for the deterministic
functions tppy® and fdp$® using Lemma 4.2, followed by
the second step that shows the uniform convergence using
Lemma 4.1. In particular, part (b) of Theorem 2 relies on the
strictly increasing property of ¢V. Moreover, note that a lower
bound on TPP)(II) can be translated into an upper bound on
N [25, Lemma D.1].

Before turning to the proof of Lemma 4.2, we propose the
following preparatory lemma.

Lemma 4.3 ([5, Lemma C.1]): For any fixed o > 0, define
a function y = f(x) in the parametric form

z(t) =Pt +W > «af)

y(t) = E(na(t+ W) —t)*
for t > 0, where W is a standard normal random variable.
Then f is strictly concave.

Proof of Lemma 4.2: We parameterize the curve
(tpp3°, fdp3°) using o > «vp. Explicitly, treating « as the free
parameter instead of A\, we can solve 7 from the AMP equation
(IV.1). Define

fd2°(T1) = 2(1 — €)P(—a)
tdoo(I1) = e P(|IT* + 7W| > ar).

This allows us to express the asymptotic power and FDP as
functions of a:

tppy (II) = —=

fdpg” (11)

_ fdo” (II)
o £dS°(I0) + td2°(1T)

To prove Lemma 4.2, for each o > «y, it is sufficient to
find a certain value of M such that

fd2°(T1) = fd°(ITY) and d°(IT) > Wd>° (1Y),  (IV.7)

where IV is the (e, M )-homogeneous prior (I1.7). To see this
fact, suppose on the contrary that

q"(u) > ¢V (u)

for some 0 < u < 1. Let « satisfy tpp2° (II) = u. From (IV.7)
we obtain

(IV.8)

td>° (1) d2 (1Y -
w=pp(1n) = T o M) e 9 = 9
(IV.9)
and
£do° (TT £d2° (TTV
U — )
fd;, (H) + tdg (H) fd;, (H ) + td (H )
= fdpgo (Hv)a

which gives

¢"(u) = fdp3° (1) < fdp3’ (IIV) = ¢¥ (u").
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This inequality combined with (IV.8) gives
¢ (u) < q" (uV),

which, together with the fact that ¢V is an increasing function,
leads to v < uV. This is a contradiction to (IV.9). Therefore,
(IV.8) cannot hold for any 0 < u < 1.

The remainder of the proof aims to establish (IV.7) by

constructing a certain prior IIV . Explicitly, it suffices to show
tdS°(IT) > tdS° (1Y) (IV.10)

because the equality in (IV.7) holds regardless of the choice
of ITV. To construct ITV, we first write td2°(II) as

00 (IT) = e/IP’(|t LW > a)dr(t), aV.11)

where dm(t) denotes the measure of II*/7. Since
P(jt + W| > «) is a strictly increasing function of ¢,
there must exist ¢’ > 0 such that

W (IT) = eP(|t' + W| > a). (IV.12)

Following (I1.7), we let IIY = 7 with probability ¢ and
IIV = 0 otherwise.

Now, let 7V denote the solution to (IV.1) given o and TIV.
That is (note that o = 0),

¢ v\
(1 - ) Ena(W)? + ¢E <na <T—§ +W> - T—é) =4

Our next step is to show

Tv>’7'.

To this end, we invoke Lemma 4.3 and the strict concavity of
f gives

5 (54 w) = 17) = s 4w > )
=1 (=t w1 ayano)
> [ £+ W1 > ) an(e)
— [+ W) -0 dan(o

* * 2
:E<na <HT+W>—HT) . (IV.13)

where the second equality follows from the definition of ¢’ in
(IV.11) and (IV.12), and the inequality is strict because IT* is
not constant. Together with the AMP equation for II

Ir* I\ ?
(1- e)Ena(W)Q + ek (77(y (T + W) — T) =4,
(IV.13) implies

/ / 2
(1= 9B+ ek (m (4 w) - ) >
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or, equivalently,
(1— ) Ena(W)?

v v\ 2
+E[("7a <HT+W>—HT> ;HV;AO] > 0. (IV.14)

By definition, however, 7V must satisfy
) v v 2 v
1— ) Eng (W)24E| (o (B 4w ) =) . 11¥ £ 0| =5

(Iv.15)

A comparison between (IV.14) and (IV.15) immediately gives
™V > T
Having shown 7V > 7, we complete the proof by noting

td2°(I) = e P(|t' + W| > «)
t'r
> el ( —~ + W‘ > a)
T
=P (JU¥ + 79w > ar"|1¥ £ 0)
= td>°(1I1V).

This verifies (IV.10).

B. The Lower Boundary

Now we turn to the proof of Theorem 1. As with the
architecture of the proof of Theorem 2, our strategy is to first
prove the theorem for the deterministic functions tpp$® and
fdp%°, and then apply Lemma 4.1 to carry over the results to
the random functions TPP), and FDP),. Having said this, it is
important to note that the proof presents a novel element to
the literature. Below, we shall highlight the novel part of the
proof of Theorem 1 and leave the rest to the appendix.

As shown in [5], the trade-off curve ¢! of any e-sparse
prior II obeys

¢"(u) > ¢ (u)

for 0 < u < 1 in both the noiseless and noisy settings,
where the curve ¢® is defined in (IL6). If the (TPP,FDP)
pairs from the (e, m, M )-heterogeneous prior 1% form the
curve ¢” asymptotically as n,p — oo, the proof of
Theorem 1 would follow immediate, just as Theorem 2. For
any values of m and M, however, the A-parameterized curve
(tpp3° (1), fdp3° (TI2)) does not agree with ¢*. This is in
contrast to the proof of Theorem 2, where the (TPP,FDP)
pairs from the (e, M)-homogeneous prior (IL.7) converge to
the curve ¢V for any value of M # 0, thanks to the assumed
noiseless setting.

To tackle this challenge, our strategy is to uniformly approx-
imate ¢® using a more general prior for effect sizes that takes
the form

0 wp.1—e€
M; wp.enn
M. .p-
A (M, ~) = M2 W-p- €72 (IV.16)
3 W.p. €73
M,, W.p. €ym,
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~ m = 5 different levels ~ m = 10 different levels
0.15 -
— m =5 different levels

0.15-

Fig. 4. Illustration of Lemma 4.4, showing the convergence to the lower
curve ¢2. Left: m = 5 different levels in the prior (IV.16) with 41 = - -- =
v5 = 0.2, and the associated trade-off curve touches the lower boundary at
4 points; Right: the case m = 10 and y; = -+ = 7y10 = 0.1 is added as a
comparison to the left case.

where 0 < My < My < --- < M,, and y1+- - -+, = 1 with
~i > 0. Fixing v = (71, . ..,7m) while letting M; — oo and
M1 /M; — oo for all 4, we have the following lemma:

Lemma 4.4: The curve qHA(M ) converges to a function
that agrees with ¢® at m — 1 points on (0, 1).

For convenience, denote by ¢®(¥) the limiting curve of
" M) a M, — oo and M;y1/M; — oc. Figure 4
provides an illustration of this limiting curve. To see why
¢® is close to ¢2, note that Lemma 4.4 ensures that there
exist 0 < ug < ug < -+ < Upm_1 < 1 such that

¢ (u;) = ¢° (ui)

forv=1,...,m — 1. In fact, the two functions also agree at
ug = 0 and u,, := 1. Recognizing that both functions are
increasing, for any u; < u < u;y1 we get
0 < ¢ (u) - ¢*(w) < ¢* P (uip1) — 4% (ui)
= ¢®(uit1) — ¢ (wi).

Making use of the uniform continuity of qA, the desired
conclusion follows if we show that the gaps ;41 —u; are small
for all « = 0,...,m — 1. The proof of Lemma 4.4, indeed,
reveals that this is true if maxy; is sufficiently small. See the
proof of this lemma and the remaining details in Section B.

In passing, we remark that (IV.16) in the special case m = 2
has been considered in [5]. Explicitly, the lower boundary >
is formed as the lower envelope of the instance-specific trade-

off curves induced by the e-sparse priors. See the discussion
following (II.3) in Section II.

V. ILLUSTRATIONS

In this section, we present simulation studies to illustrate
the impact of effect size heterogeneity beyond the working
hypotheses, with a focus on how the impact depends on the
design matrix and the noise level.

A. Design Matrix

We perform four simulation studies to examine the impact
of effect size heterogeneity on the Lasso method under various
synthetic design matrices. Overall, the simulation results show
that effect size heterogeneity remains an influential factor in
determining the performance of the Lasso far beyond Gaussian
designs.
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Fig. 5. Four sets of effect sizes ranked in increasing order of their effect
size heterogeneity. The corresponding regression coefficients in R1000 with
sparsity 200 are used in the experiments of Figures 6, 7, and 10.
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Fig. 6. The TPP-FDP trade-off along the Lasso path under a correlated
Gaussian design and a Bernoulli design (Study 1). We set n = p = 1000,
k =200 and o = 0 in both simulations. Left: Gaussian design matrix, each
row having covariance X taking the form X;; = 0.514l, Right: design
matrix with i.i.d. Bernoulli entries taking the value 1/4/1000 or —1/4/1000
with equal probability. The four sets of regression coefficients are described
in Figure 5. The mean FDP is obtained by averaging over 200 replicates.

Study 1. We consider a design matrix of size 1000 x 1000
that has each row independently drawn from A/ (0, X), where
Yij = 0.5!"=71/1000 and another design matrix of the
same size that has independent Bernoulli entries, which
take the value 1/4/1000 with probability half and otherwise
—1/4/1000. The sparsity is fixed to k& = 200 while we
consider four scenarios of the 200 true effects corresponding
to low, moderately low, moderately high, and high effect size
heterogeneity (see Figure 5). The results on the TPP-FDP
trade-off are presented in Figure 6

Study 2. In this study, we use a dataset of size 1000 x 892
that is simulated from the admixture of the African-American
and European populations, based on the HapMap genotype
data [27] (see more details in [28], [29]). The variables can
only take 0,1, or 2 according to the genotype of a genetic
marker. To improve the conditioning of the design matrix,
we add i.i.d. AM(0,1/1000) perturbations to all the entries.
Each column is further standardized to have mean O and unit
norm. We use the effect sizes described in Figure 5 to generate
a synthetic response y following the linear model (I.1), with
noise z = 0. The results are plotted in Figure 7.

Study 3. Working under Gaussian and Bernoulli designs,
we now empirically examine the rank of the first false variable.
This study considers a varying sparsity level k and sets the
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Fig. 7. The TPP-FDP trade-off for the genotype dataset (Study 2). The
four curves correspond to the four sets of effect sizes described in Figure 5.
The noise term is set to be 0. The results are obtained by averaging over
200 replicates.
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Fig. 8. The rank of the first spurious variable with varying sparsity (Study 3).

Left: design matrix of size 1000 x 1000 consists of i.i.d. A/(0, ﬁ) entries.

Right: design matrix of size 800 x 1200, with i.i.d. Bernoulli entries that

take the value 1/+/500 with probability 1/2 and value —1/+/500 otherwise.

Each curve is averaged over 200 independent replicates.
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0.000 0.025 0.050 0.075 0.100 0.00 0.25 0.50 0.75 1.00
P

Fig. 9. The rank of the first spurious variable (Study 4). Left: Gaussian design
with an equi-correlation covariance matrix, with the non-diagonal correlation
p varying from O to 0.1. Right: Gaussian design with covariance X taking
the form ¥;; = p”*j ‘ /1000. Each curve is averaged over 200 independent
replicates.

effect sizes to 3; = 100 for j = 1,...,k (low effect size
heterogeneity) or 3; = j for j = 1,...,k (high effect
size heterogeneity). Each noise component z; follows N (0, 1)
independently. Figure 8 shows the results under an indepen-
dent Gaussian random design and an independent Bernoulli
design.

Study 4. This scenario uses 500 x 1000 design matrices that
have each row drawn independently from A/(0, X). In the left
panel of Figure 9, the 1000 x 1000 covariance matrix X is
set to X;; = p/1000 if ¢ # j and ¥;; = 1/1000. In the
right panel, the covariance satisfies ¥;; = pli=31/1000 for all
1, 7, with p varying from 0 to 0.95. The effect sizes are set to
B; = 100y/2logp for j < k (low effect size heterogeneity)
or, in the low effect size heterogeneity case, the true effect
sizes are set to a decreasing sequence from 100+/2 logp to 0.
The noise z consists of independent standard normal variables.
As is clear, both Figure 8 and Figure 9 show that the rank of
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Fig. 10. The TPP-FDP trade-off plot with varying noise levels. The
design matrix is specified by n = p = 1000, with i.i.d. Gaussian entries.
The regression coefficients are from Figure 5, and the noise vector has
iid. N(0,0?) entries, where & is set to 0.1,0.2,0.5 and 1 in the top-left,
top-right, bottom-left, and bottom-right panels, respectively. The mean FDP
is obtained by averaging over 100 replicates.

the first false variable is larger when effect size heterogeneity
is high, aligning with our analysis in Section III.

B. Noise Level

While Theorem 2 concerning the regime of low effect size
heterogeneity only applies to the noiseless case, we make an
attempt to show the impact of effect size heterogeneity in the
noisy setting via simulations. Under an independent Gaussian
random design of size 1000 x 1000, we set the nonzero
regression coefficients to the four sets of effect sizes as
depicted in Figure 5. The noise term z consists of independent
N(0,0?) entries with o = 0.1,0.2,0.5,1.0. The results are
displayed in Figure 10.

As with our previous simulation results, higher effect size
heterogeneity tends to give rise to a better trade-off between
the TPP and FDP from the beginning of the Lasso path.
Interestingly, we observe a crossing point in each of the four
panels of Figure 10 where higher heterogeneity undergoes
a transition from giving a better trade-off down to a worse
trade-off. In particular, the crossing point occurs earlier as the
noise level o goes up. While it requires further research to
understand this transition in a concrete manner, our obser-
vation is that the unselected effect sizes in the late stage of
the Lasso path tend to be relatively small compared to the
noise level, especially the effect sizes depicted in the bottom-
right panel of Figure 10, which have relatively high effect size
heterogeneity. Intuitively, this crossing point is where signal-
to-noise ratio becomes the dominant factor in place of effect
size heterogeneity.

VI. DISCUSSION

In this paper, we have proposed a concept termed effect
size heterogeneity for measuring how diverse the nonzero
regression coefficients are. Working under Gaussian random
designs, we demonstrate that effect size heterogeneity has
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a significant impact on model selection consistency of the
Lasso when the sparsity is linear in the ambient dimension.
In short, we prove that the Lasso attains the optimal trade-off
between true and false positives uniformly along its path when
the effect sizes are strong and heterogeneous, and attains the
worst trade-off when the effects are about the same size in the
noiseless case. We also identify similar dependence of the rank
of the first noise variable on effect size heterogeneity. While
the two theoretical results are proved under certain assump-
tions, our simulations show that effect size heterogeneity has
a significant impact on the Lasso estimate in a much wider
range of settings.

Moving forward, this paper opens up several directions
for future research. First, it is important to develop methods
that incorporate the level of effect size heterogeneity for
solving high-dimensional regression problems. In particular,
one would be tempted to improve on the Lasso when the
level of effect size heterogeneity is low. Interestingly, the
SLOPE method has inadvertently addressed this question as
its sorted ¢; penalty generally increases as the heterogeneity
gets higher [30]-[32]. Another related method developed from
a Bayesian angle is the spike-and-slab Lasso procedure [33],
which enables the adaptation to a mixture of large and small
effects. Nevertheless, it is highly desirable to have methods
that leverage effect size heterogeneity more directly. Moreover,
a pressing question is to give a quantitative and formal defin-
ition of effect size heterogeneity. From a practical standpoint,
regression coefficients are seldom exactly zero and thus it
might be more appropriate to consider the Type S error, which
occurs when a nonzero effect is selected but with the incorrect
sign [34], [35]. This reality should prompt one to investigate
how effect size heterogeneity interacts with the trade-off
between the resulted directional FDP and power. Another
question of practical importance is to examine carefully how
the impact of effect size heterogeneity depends on the noise
level. As an aside, given that Proposition 3.1 remains true
for forward stepwise regression and least angle regression,
we conjecture that Proposition 3.2 and Theorem 4 also hold
for the two model selection procedures. More broadly, it is
of interest to investigate whether effect size heterogeneity
retains its impact on other ¢; regularized methods such as
the two-stage Lasso [19] and the Dantzig selector.

APPENDIX
A. Technical Proofs for Section 111

1) Proof of Proposition 3.2:

Proof of Proposition 3.2: We use the “primal-dual witness”
argument in the Lasso literature (for example, see Theorem 2
in [24]). As a reminder, here we consider the standard form
of Lasso as in (I.2).

~ 1
B = argmin S ||y — Xb|* + A|b[|x
berr 2
with the model specified by (I.1),

y=XB+z.

We define a pair (,8, w) € RP x R to be primal-dual optimal
if B is a minimizer of (1.2), and W € 5‘||,6'||1, satisfying the

5281
zero-subgradient condition
X' (XB—y)+Axw = 0.
For the convenience of analysis, we denote \,, = % Thus
the condition above is equivalent to
lXT(XB—y)-f—)\n’l/l\) =0. (A.1)

By the sufﬁmency of KKT condition, we know that if there
exists some w such that the pair (,6', ) € RP x RP satis-
fies (A.1), then 6 is the solution to the Lasso. So W can
be seen as a “dual witness” showing 3 is indeed a solution.
We are therefore going to construct a “dual witness” vector w
to prove a certain 3 is the solution to the Lasso.

To concretely give our construction of ﬁ and w, we fix an
arbitrary small £ > 0, and then let s = [(1 — &) =575
Denote Sp = {1,2,...,s},S1 ={s+1,s+2,..,k},and S =
So U Sy, thus we have S¢ = {k+1,...,p}. Let M(n) = n®
for some a > 1, and let \,, = n® for some b that satisfies
(k—s)a—1<b< (k—s+1)a— 3. We omit the dependence
of M on n in the following proof. For clarity, for any subset
of T C {1,2,..,p}, we always use the notation wr to denote
the restricted vector (w;);er of a vector w, and the notation
X1 to denote the restricted column matrix (z;;);er of a
matrix X. We consider the following procedure to construct
the pair (,8, w),

1) Let B sg = 0;

2) Solve (,850, Ws,) € R* x R® from the following oracle

sub-problem

N (1
Bs, € argm1n{§|y — X 5,b||3 + /\||b|1} , (A2)
beRs

and choose wg, € 5‘||BSOH1 such that

X5, (X5,Bs, — ) + Mg, = 0
3) Given ﬁs ,Wg,, and ,Bsc = 0, compute wSc c RPTS

by equation (A.l), and check whether the strict dual
feasibility condition ||wgc || < 1 holds.

The primal-dual witness construction guarantees that if a palr

(,8, w) satisfies all the three conditions above, then 6 is

the unique solution of the Lasso [24]. Once we prove our

construction satisfies the conditions above, the second claim

of Proposition 3.2 is an easy corollary as we explicitly require

,8 =0 for all j € S§, and this gives

#1550 #£0.8,=0} =0,

And from this construction, it is also not hard to prove the
first claim of the Proposition 3.2. With this protocol in mind,
we proceed to prove that we can construct such a pair of
(ﬁ, w). Now, we solve ﬁso,wso from the subproblem in
condition 2. Then, we set B 56 = 0 as in condition 1, and solve
wge € RP™# from (A.1). To prove Proposition 3.2, we only
need to prove that with this construction, the strict dual

4This is only for technical convenience. One can easily verify that this

condition is equivalent to s = (1 — op(1)) lfg"p
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feasibility condition holds with high probability as n,p — oo.
To prove this, we first simplify condition (A.1) by substituting
Bse = 0, and write it in block matrix form as follows,

1 X5, Xs, Xs, X5, Xs, Xge Bso—ﬂso
E XS1TXSO XS1TXS1 XSlTXSC . _/651
Xgo'Xg, Xgo'Xs, Xgo' Xgo 0
1 XSOTZ ’l/l\)so 0
- Xg 'z| + M |Ws, | = |0],
XSCTZ Wge 0

or equivalently,

EXSOXSU(ﬁsO — Bs,) — EXSOXSUBSH - EXSOZ

+ \ws, =0,
(A.3)
1 T 2 1 T 1 T
EXslxso(ﬁSO - Bs,) — EXSIXslﬁSI - EXslz
+ Aws, =0,
(A4)
1 _+ ~ 1 T 1 T
EXSCXSO(ﬁSU - BSU) - EXSCXSHBSl - EXSCZ
+ M\wge = 0.
(A5)

By (A.3), we have

o~

-1
Bs,—Bs, = (X5, Xs,) [ X, X585, + X, 2] -
T -
/\n’I’L (XSO XSO) wSO.
(A.6)

By substituting (A.6) into (A.4) and (A.5), we can solve W,
for any j € S§ as

o~

Wy
__1 X. "X (B ! X, 'X X;'
=T So(ﬁso—ﬁso)‘f‘m { i X585, +X; Z}
=]
:XjTXSo (XSOTXSO) {[’So
1 —1
-3 anTXs0 (XSOTXSO) |:XSQTXS1ﬂ51+XSOTZ:|
n
1
+)\ - |:XjTX51ﬂsl+XjTZ:|
n
-1 z 53
:XjTXSO (XSOTXSO) u’So—’_‘XVJ‘TIPSOL |:m+XSl An7l'Lj|’
vi uj
(A7)

-1
where Pg1 = I-X, (X s X5, X, . As mentioned
previously, our goal is to show the strict dual feasibility
condition max;egc [W;| < 1 holds with high probability.
We will prove it by analyzing the two terms wu; and v;
separately. Specifically, we prove that v; < 1 — % and
u; — 0 with high probability.
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T
Denote M, = %wso

on the event £ = {wg, = sgn(Bg,)} and its complement
gives us

—1
(X sy X So) wg,. Conditioning

P <max lvj| > c) <P (max lvj| > ¢
JjeSY jESS

E) + P(E°).

It can be seen through Lemma 1.10 that the second term of
the last display tends to zero; For the first term, we let T'(¢})
denote the event {|M,, — EM,,| > YEM,,}. Similar as before,
conditioning on the event 7'(¢) and its complement gives for
any ¢ € (0,1),

P (max lvj| > ¢
jesy

0

E> <P (max lvj] > ¢
jess§

+P(T(9) N E).

T@%Cer>

By Lemma 1.2 and Lemma 1.4, the second term in the last
display goes to 0 as n — 00 faster Fhan' m. And for
the first term, we tackle it by considering max;cgc v; and
min;¢ g v; separately. Denote the event 7' = T'(4)“ N E for

convenience, we have

P (max v; > ¢
. C
JESH

T) SP(maXHj 20),
jese

where v; are i.i.d. from NV(0, (1 4+ 9)E[M,|E]) = N(0, (1 +
¥))7—5—). This inequality follows from Lemma 1.9, which
states that the probability of the event {max;cgcvi > c}
increases as the mean and variance of v; increase for Gaussian
variables v;. Given the event T, the maximum variance of v;
is simply (1 + ¥)E[M,,|E], and thus we have the inequality
above. Set ¢ = w + Emaxjesoc v;. From Lemma 1.5,
we have

IP’(maX v; > C‘T) < IP’(maX v; > w + E max @)
jeS§ jeS§ jESS

wQ
<(p—s)exp (‘ 2(1 +9)E[M,|E] >

A similar argument for min ;e ge vj gives us

P(min v; < —C‘T) = IP’(— min v; > w—I—IEmaxﬁj‘T)
jeSY JjeSY jeS§

TDQ
<(p—s)exp (— 3(1+ 0)E[M,|E] >

Combining the two inequalities above yields

7)

P (max |vj| > w + E max v;
- C : C
JES§ JESG

o2
<2(p — — . A.
<2(p S)QXP( 2(1+z9)E[Mn|E])_)O &.8)

By Lemma 1.4 and (A.8), we get
P ( max |vj| > w+ Emax v, | < 2

X ; w X UVj; —
jese T jese ) T 92(n—s—3)
wi(n—s—1)
2(p — _ ). A.
+2(p — s)exp ( 250+ 7) ) (A9)
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With the relation of s = [(1 — &)
£9= —U

n—1
m], we can set

1 > 0, and obtain

w + \/(1 +ﬁ)ﬁ210g(p— s)

n—1
(1 — &) 1 ai0ep 11
-1
L (]‘ - g) 1751210gp -

—w+Ww)“—@(”‘””1—5“(%1’)

2(n—1)logp
—w+\/(1+19) ((1_5)“1_(5;10@))

n—1)
§ § c
§§+(1—1)+
§
<1—1—6

<w +

(1+9) 2logp

2logp

n—1

for some large n. (A.10)

Combining this with the well-known fact of the expec-
tation of the maximum of i.i.d. Gaussian variables that

Emax;cgo [U;] < \/(1+19)n *—2log(p —s) and (A.9),
we know
13 2
P >1- <
(max Jos| T T r—y
w?(n — s —

+2(p — s) exp (— )1)) +P(EY).

2s(1+ 9
(A.11)

This bound is good enough for our purpose. We now proceed
to obtain a similar bound of w;.
By the Cauchy-Schwarz inequality, we have

‘ +X /65’1

.
uj| < HXj Pyt

A.12
Al "Ann ( )
Therefore, we can bound |u;| if we can control the two norms
in (A.12) separately. Because all eigenvalues of PSOL are less
than 1, we have

=3 k2 2 12 w?,

=1

HXJTPSOL

where W; "% A/(0,1). The summation 37, W2 is thus a
x2-distribution with degree of freedom n. By Lemma 1.6, for
any ¢; > 0, we have

15112 2
P(|—— —1| >t ) < 2exp(—nty/8).
n
Combining this with HX]-TPSOL < |1X;]|| gives us

1X; " Psslle < VI+H,

w.p. > 1—2exp(—nt?/8).
(A.13)

Finally, let u; denote

- 2L x
Ui /\nn+ Sl)\nn

’ - IBSl

It is easy to realize that

e (24 Xg,Bs,) ~N(0,0), forall 1 <i<s,

5283

where e; € R” is the i-th standard unit vector and ¢’?> =

2 M2k—s+1) 4 . .
0"+ SaE By easy calculation, we obtain

~ 12y _
B(Ji1%) = n - 57

Applying Lemma 1.6 with Z; = e; - (z + X 5,85,) again,

we know for any to > 0
;> o
) 1| >ty | < 2exp(—nt3/8),

P(\W

which is equivalent to

2]l < VI+is-

" \/_ w.p. > 1—2exp(—nt3/8).
(A.14)

Using (A.12) by combining the two bounds (A.13) and (A.14),
we get

(max|uj| >VI1+tV1+to- \/_)

s)(exp(—nt?/8) 4+ 2 exp(—nt?/8)).
(A.15)

<ofp-

Now, we can set M = n® for some a > 1 > A, = nb for some
b that satisfies (k —s)a —1 < b < (k:—s+1)a— 3, and
t1 = to = 1 to obtain

M2(k—s+1) _1
o’ _2 \/‘72 + G-
A/t A1

§2 n(kfs)aflfb N 0

V1I+tv1i4ts-

(A.16)

Particularly, when n is large enough, 1+ 411+ %2+ 5 "\l/ﬁ

is less than ﬁ, which in turn gives

< 2(p—s)(exp(nt? /8)+ 2 exp(—nt /8)).

(A.17)

£
P(Helgg lujl=55) <

And thus by a union bound and then (A.7, A.11, A.17),
we have

P (max |w;| >1— i)
JjESY

; 32
<P max|v»|>1—£ +P max|u»|>£ +P(E°)
- jesg Jh= 16 jess 7= 39

2 w?(n—s—1)
<t 9y _wn=s—1)

S FEmos—g T S>(6Xp( 251+ 0) )

+ exp(—nt§/8) + exp(—nt%/S)) . (A.18)

‘We observe that as n — oo,

oy 2= (-

+ exp(—nt3/8) + exp(—nt%/8)> -

(A.19)

w?(n—s—1)
25(1+ ) )
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which simply implies that as n — oo,

P(max |w;| > 1) — 0.
(max ] > 1)

Thus, we have proven under our construction, strict dual
feasibility holds. And as we pointed out at the beginning of
the proof, the second part of the proposition 3.2 holds, since
we set 6 =0 for any j € S§. Therefore, we obtain

#{5: B0 £0,5=0} =0,

Now, we proceed to prove the first part of the proposition, that
is,
n

#{i B £ 0,8 #0) =5 =(1- or(1)) 37—
Observe that the second equality is due to our assumption on
s. So we only need to prove the first equality, that is, for all
J € So, ﬁ] are non-zero, and thus the total number of non-zero
ﬁ sis exactly s. To show this, observe that if 3; — 5] < By, itis
clear that ﬂj > 0. Therefore, it suffices to show the following
inequality

gggg(ﬁ Bj) < min B =

Mkferl =p
holds with probability tendlng to 1. We denote

—1
Y= el (XSOTXSO) X, [Xs,8s, + 2]

-1
Xs ' X R
e Ann <M> Ws,,  (A20)

n

where e; € R™ is the ¢-th standard unit vector. By (A.6),
we know

max = max Y;.
]ESU(B Bj) 1<i<n

So it is equivalent to show that maxi<;<, Y; > p holds with
probability tending to zero. By Lemma 1.7, we know for E; =
E(Y;|Xs,), and V; = Var(Y;| X g,), the event

A=J{IE] > 0+ V) E(E)|, or [Vi| > 2E(V;)}
=1

has probability
sK

n—s

P(A) <

— 0, as n — oo.

By conditioning on the event A and its complement, we have
P(maxY; > p) < P(maxY; > p|AC) +P(A)
i€So 1€So

<P Y> _—
(max¥; p)+s_1,

where Y; "% A((1 + vn)E(E;),2E(V;)) and the second
inequality used the fact in Lemma 1.9 that the probability
of the event {max;cs,Y; > p} increases as the mean and
variance increase as long as the mean is less than p, which
can be directly verified by

(1 + V) E(E) = (1+ Vi) ————

<p. (A2D)

-1
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Markov’s inequality then gives us

P(maxY; > p) < — E (maX|Y|>
1€Sp 14 1€So

<2 (B + & (e 7 - 5501 )

1 (1 + v/n)A,n? 3 /20" log s
~p n—s—1)’

n—s—1

where the last inequality uses the bound on Gaussian maxima
in Lemma 1.8. By the relation in (A.21), we can easily verify
that the probability in (A.22) converges to zero under our
conditions of M = n®, p = M*=*t1 and )\, = n’, where a
and b satisfy a > £ and (k—s)a—1<b< (k—s+1)a
as n — oo. U

2) Miscellaneous Lemmas for Section III: We first state
a well-known result in the random matrix theory (see, for
example, Theorem 5.2 in [36]) that we use in the proof of
Theorem 4. Then we list all the necessary lemmas for proving
Proposition 3.2.

Lemma 1.1: Under the working assumptions, for any deter-
ministic 1 < m < p/2, the matrix spectrum norm |- ||2 satisfies

(A.22)

mlog(p/m)

max
[S|<m

XIXs— IH2 <C

with probability 1 —1/p?, where C'is a universal constant and
T is any set of column indices.

Lemma 1.2: For v; defined in (A.7), and any i,j € S§,
we have the following facts,

) E(o]Xs,) = 0;

2) Var(vj|Xg,) = 2w

n

W, (X s, Xs,) ' Ws,;
3) Cov(vj,v;|Xs,) =

0, if ¢ # j.
Proof of Lemma 1.2:

Because j € S§, X; L Xg, and v; =
X; " X g,t(Xs, " Xs,t) "s,, fact 1 follows from X; being
a centered Gaussian variable.

For fact 2 and fact 3, we observe

COV(VJ'v Vil X's,)
1
_E<@§O(XSOTXSO) X, X;X] X,

x.)

—1
w5, (Xs, Xs,)  Xs, E(X,X[| Xs,)

-1

(XSOTXSO) Ws,

T R
XSO (XSO XSO) ’wso
—1
lid (XSOTXSU) W,  ifi=j,
0 if i # j.
0
Lemma 1.3: Consider X g, € R"**, and suppose each of

its column X Sy N(O,E) where ¥ € R®*® is positive
definite. Then X s, X, is a Wishart distribution of degree
of freedom n, and (Xg, Xg,)~! is the inverse Wishart
distribution, with expectation and variance

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 09,2023 at 01:55:46 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: PRICE OF COMPETITION: EFFECT SIZE HETEROGENEITY MATTERS IN HIGH DIMENSIONS

Z 1

D E(Xs, Xg,) ' =2
(n—s+1)(27 )+ (n—s— 1)2”2“1

2) Var[(XSoTXSo) 1] (n— 9)(n s—1)2(n—s—3)
Proof of Lemma 1. 3: See for example Lemma 7.7.1 of [37]
and the formula for the second moment of the inverse Wishart
matrices in [38]. ) (]
Lemma 1.4: Let M, = La], (XSUTXSO) Ws,. Con-
ditioned on the event E, that is, wgs, = sgn(ﬁso), we have
the following facts:
1y ]E(MTI|E) = m»
2) Var(M,|E) = W7
3) V9 > 0, P[|M,, — E(M,)| > JE(M, )|E] Rt
Proof of Lemma 1.4: Observe that X g, X s, follows
the Wishart distribution with variance %I S, and thus by
Lemma 1.3, the matrix (X g, ' Xg,) ! is the inverse Wishart
distribution with mean

_ n
E(Xs, Xg,) ' =——""1I5

(A.23)
n—s—1

o-
Notice that @w; = =1 for all ¢ € Sy, and when conditioned
on F, it is equal to sgn(Bg, ), which is independent of Xg,.
Therefore, we have

1 n T . s

E(M,|E) = ————wq Ig,wg, = ———.
(M| E) nn—s—1 S0 S8 =TT
To calculate the second moment of the inverse Wishart

matrices ([38]), we have that for n—s — 3 > 0,

1 1 T n—s
E(M2\E S — I 27 2
E(M,|E) = “n2 (n— s)(n—s—3)(n Ws, LsaWs,) n—s—1
2
s

“n—s-1Dn—-s-3)
Therefore, combining the two equations above, we obtain

VarMalB) = o =5 =8 = s 1
252

Tn—s—12(n-s-3)
For the third statement, Markov’s inequality gives us
Var(M,|E)

P(|M, — E > E(M|E) < 5 s
(04~ B(O)| 2 VBV ) < el
25>
_(n—s-1D’m=s-3) _ 2
Y252 92(n —s—3)

(n—s—1)2
O
Lemma 1.5: Consider i.i.d. Gaussian random variables z; ~
N(0,0?%), where j = 1,...,l for some [ > 2. We have for
any w > 0,
w2
]P’<maxzj>w—|—E<maxzj <e 207,
1<5< 1<5<
Proof of Lemma 1.5: By the Gaussian tail bound

2

o _
e 202,
V2nw
and the well-known fact for the expectation of maximum of
i.i.d. Gaussian variables

E (max zj> < o+/2logl,

1<5<1

P(Zj > W) <

5285

we have the following union bound

P (mai{l Zj > w —HE[maX zj])

1<y <j<l
1 (w 2log 0)?
R ERNeTy 'exp<
1 w? w
:\/ﬂ(; el exp (— 202) exp (\/210gl J)
<exp (—W—Q)
202
holds as long as [ > 2. O

Lemma 1.6: Consider Z; "% N(0,62), and denote Z =
S, Z2. For t > 0, we have the inequality
P(|-Z _1]>t) <2 (—nt?/8)
—_— — xp(— .
E(z) |=7) = ToPT
Proof of Lemma 1.6: Let Z; be defined as

Zi— Zez zzd N(O 1)

We have

Z)= 2”292 = n?,
i=1

and therefore

2 E?lgi QX_
E(Z) n n’

By easy calculation, we obtain

~. +oo ;
E (e,\(zfq)) _ 12 / M1 =222,
V2T J—oco

—A
(§ 2
< e2)\

V1I=2\ "
This means Z is sub-exponential with parameter (2,4)
(definition of a sub-exponential variable is standard, so we
refer the reader to, for example, the Definition 2.2 and
Example 2.11 in [4]), and thus Z is a sub-exponential vari-
able with parameter (2,/n,4). By the Bernstein inequality,
we obtain

P (‘% - 1‘ > t) < 2exp(—nt?/8).

O
Lemma 1.7: For Y; defined in (A.20), we have the follow-
ing facts:
1) Denote E; = IE Y|XSU
[E(E)| = s
2) Denote V; = Var Yi‘XSO), then we have E(V;) =
3) For n sufficiently large, the inequality P (|E;| > (1 +
V)| E(E;)|, or |V;| = 2E(V;)) < £ holds for some
constant K independent of n and s.
Proof of Lemma 1.7: The idea of the following proof is
adapted from Lemma 6 of [24].

then we have |E(

Yol =
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For part (a), since Xg, 1L Xg, and z 1L Xg,, we get
—1
B = B(Y;|Xs,) = —Aune] (XSOTXSO) Ws,.
Thus, we have

1
IE(Y;)| = ‘IE <—)\nnei (XSDTXSO) @S>‘

-
= ‘—)\nnei

n N
7_1I 5o WS
B Ann?

n—s—1’
where the second equality is by (A.23) for the mean of the
inverse Wishart distribution.
Next, we turn to prove part (b). We observe that each entry
of vector (Xg,Bg, + z) is iid. distributed as N(0,07%),
and is independent of X g,, where we denote 0> = o2 +

% So we have
Var(Y;]| X 5,)
-1
=E {(e} (X5, Xs,) X5, (X585, + z))Q\XSO}

—1
ef (X5,7Xs,) Xs, E[(Xs,B5, +2)

—1
. (Xslﬂsl + Z)T}XSO}XSO (XSOTXSO) e;
-1 1
= U/QQZ(XSOTXSO) XSUTXSU (XSOTXSO) €;
—1
= J/QCZT (XSOTXSO) €.
Thus by (A.23) again, we obtain

—1
E(V;) = E(o”%e] (XSOTXSU) e)

n _
=0 ———1Ig'e;
n—s—1 »°
nO_/Q
n—s—1

To prove part (c), we use the formula for the second
moment of the inverse Wishart distribution in the part (2) of
Lemma 1.3. With E; = E(Y;| X g,), we get

E(E?) = E(E(Y:| X s,))

2
A2n? (1 -
S (n—s)(n—s5—23) (ei (EISO) Yo

n—s—1
= )\%nQ _n2—|—71 ns-n
T (n—s)(n—s5-3) | n—s—1
~ Mnt'(ns+n—s?—2s+1)
T (n—s)(n—5-3)(n—s—1)
Thus, we have
2.4 _ 2_2 1 2,4
Var(E;) = Aznt(ns+n—s s+1)  An
m—s)n—s=3)n—s-1) (n—s—1)2
Ant(n—1
- w(n—1) (A.24)

n—s)(n—s—3)(n—s—1)
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By Chebyshev’s inequality, we can get

B(E| > (1 + Vi) E(E) < B(|E: — E(E)| > VAE(E)
Var(Ei)
< (BB
ns+n—s—2s+1
dn(n —s)(n — s —3)
Ky

(A.25)

for some constant K; when n is large enough.
Similarly, by Lemma 1.3 (2) again for ¢ = j, and X = %I,
we have

1
Var(V2) =o' Var | (] (X" X))

4 (n—s+1l+n—s—1)n?
(n—s)(n—s—-1)2(n—s—3)
20'/4712
T (n—s)(n—s—1)(n—-s-3)’

and thus
P(V; > 2E(V;)) =P(V; — E(V;) > E(V))
2 /4n2
Var(Vi) _ s)n-s )(n—5-3)
S 2 2
(E(V2)) ( no’? )
n—s—1
< K> , (A.26)
n—s

for some constant Ko for large n. Therefore combin-
ing (A.25,A.26) with union bound, the statement in part
3 holds with K = Kl + KQ. O

Lemma 1.8: Let (Xy,...,X,) be independent and nor-
mally distributed. We have

E[ max |X;|] < 3y/logn max /E X2
1<i<n 1<i<n
Proof of Lemma 1.8: This is a well-known result of
Gaussian maxima. We omit its proof and refer the reader to,
for example, [24] Lemma 9. ]
Lemma 1.9: Let Y ~ N (u,0?). Suppose p < po, o < 0o,
and p > po, then the probability P(Y > p) < P(Z > p),
where Z ~ N (19.00).
Proof of Lemma 1.9: By definition, we have

P(yzp)—l_q)<ﬂ> —¢<u>.
o o
And similarly, we have
p(ZZp):q)<w>.
a0
By the assumption, we know that

Ho — p

=P
g ago

and thus the lemma follows from the fact that & is
increasing. 0
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Lemma 1.10: Under the working assumptions, the event
E = {ws, = sgn(Bg,)} satisfies

P(E®) = 0,(1).
Proof of Lemma 1.10: This is the classic result of Theorem
3 in [24]. For the Lasso problem considered in Equation (A.2),
with the identity covariance matrix, all conditions (26a), (26b),

(26¢) therein are easily satisfied with Chyiy = Chpax = 1.
As long as we have the condition
. o2logs
min B > g(N\) = esA + 204/ ———, (A.27)
J=1,..,s n

for some constant c3 > 0, we can guarantee that
sgn(Bg,) = sgn(BSO) = wg, with probability 1 —
c1 exp(—cg min{s, log(k — s)}) for some constant ¢y, cg > 0.

To verify condition (A.27), recall that A\ = n’ s =
O(n/logp), and minj—1 B = M(n)*s*l. Because
M(n) =n%and b < (k—s+ 1)a — 2, we have

min ﬁj _ M(n)kferl _ n(kferl)a
j=1,..,s
b+

Njw

vV

n
3
An 2

2]
> esh+ 204/ 2 ;:gs = (V).

for sufficiently large n. This implies P(E) — 1, or P(E®)
on(1).

ol

B. Technical Proofs for Section IV

1) A Property of FDP and TPP: Any Trade-off Curve Is
Strictly Increasing: A natural belief on the pair of (TPP, FDP)
is that FDP (type-I error) should increase with TPP (power),
which may be strengthened by our simulation plots. However,
along a single Lasso path, this is in general not necessarily
true. It is well-known that Lasso is not monotone [18], so it
is possible that with more and more true variables entering
the Lasso path, fewer and fewer noise variables retain in the
Lasso path. In such a case, FDP is no longer a monotone
function of TPP. This possibility complicates our analysis, yet
the following lemma asserts that this possibility is impossible.
We prove that the asymptotic FDP is strictly increasing with
the asymptotic TPP. Formally speaking, as A varies, fdp5®
can be seen as a function of tpp$°, and fdp§~ is a strictly
increasing function of tpp$°. To be rigorous, in the following
lemma—indeed throughout the paper—we consider the regime
below the Donoho—Tanner phase transition. We refer interested
readers to [19] for results above this phase transition.

Lemma 1.11: Fix €,6,0, and II # 0. We have that
fdp3°(IT) is a strictly increasing function of tpp3®(IT). That is,
fdpS°(tpps°) is a well-defined function, and fdpio’(-)| >

tpp3°
0 for any valid value of tpp3°.°
To prove this lemma, we need the following characteriza-
tions among «, A, fdp3” and tpps°.

5As we will see in Lemma 1.15, the valid range of tppS° is the range
(0, u*). In this paper, we only focus on the case where u* = 1.
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Lemma 1.12: Fix €,0,0, and II # 0. Consider any «, 7, A
that solve equations (IV.1). We have the following facts

da

da A28

B >0 ( )

d o0

ar (A.29)
da
f o0

didp™ _, (A.30)
do

dpp™ (A31)

dfdp™

We note that the denotationt of fdp™>® and tpp* stand for
fdpo® and tppS°, where we treat « as the free parameter.
We often suppress this dependence on « in the following proof
when it is clear from the context, and use the denotations of
fdp™> and tpp* for simplicity.

Proof of Lemma 1.12: The (A.28) is a well-known result,
and one can refer to, for example, Lemma 4.11 of [15] for a
proof.

To prove (A.29), we note that tpp> = P(|II*+7W| > ar),
where IT* is the distribution of an entry of 3 given it’s not
zero. For any II that is a proper distribution and satisfies (IV.1),
proving L P(|II+7W| > a7) < 0 will suffice. And this result
follows from Lemma 4.10 of [15]. Now we left to prove (A.30)
and (A.31). We note that, however, (A.31) follows directly
from (A.30), and therefore we only need to prove (A.30).
To see this fact, we note that tpp™ is a strictly increasing
function of «, so « is also a function of tpp>°. By the chain
rule, we have

dfdp™  dfdp™  da
dtpp>®  da  dtpp™’

Note that we have already proven % < 0, which implies
dt‘;goo < 0. Therefore, we only need to show (A.30) is true to
prove (A.31).

Now, to prove (A.30), we observe that

1
fdpoo (Oé) = EP(|H—*+W|>0¢) ’
L+ —i=gsca
and thus
(1)
d\ = —
dfdp™ € —_—

2(1—0)®(—a)

do 219 <1+w)

Since the denominator is positive, we only need to show
the numerator is negative. For simplicity, we will abuse the
notation a little bit by using II for IT* in the rest of the proof.
We need to show for all II # 0,

P %-Q—W >
o ()
da

<0,
or equivalently,

dP (|[24+W| > a)
da

- P(—)+P (‘g + W} > a) ~p(a) > 0.
(A.32)
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‘We observe that
II
P ;'FW >«

e e (> -2} sz (w <-a-2n)]
= sfo(Toa) o ta].

-
Substituting the expressions of (A.33) into (A.32),
we obtain, (A.34), as shown at the bottom of the next page.
Note the denominator is positive, so we only need to prove
that the numerator is positive. Let g(u) = (P(u—a)+P(—u—
a))p(a) — (p(u — a) + ¢(u + «))P(—a). By Lemma 1.14,
g(u) > 0 for u # 0, and therefore we have
25 II
O+ Q3 = U—BEH {g <—>] > 0.
T T
For s, we observe that if II > 0, then —¢ (o — Z) +
6(a+8) < 0; and if I < 0, then —¢(a— 1) +
10} (a + g) > (. Therefore, we have

2o D) ofor ) o

So, by the fact that &(—a) < @, the definition of ®(z),
we have

Qs = En [% <—¢<a—g>+¢<a+g>>]

d)(w)dw) ] ca®(—a)

> Ex %<—¢<a‘g>+¢<a+g>>]

(A.33)

(A.35)

. En [(/:ogmw)der/oo T

11 11
-En [(b (— — a) + & (—— — a)] (). (A.36)
T T
Similarly, by (A.34) and (A.36), and then by the definition of
f(u) in Lemma 1.13, we obtain

ou =2 o (1) o (1)

i i
m (e - m [o-

2
T ‘Q*E
=

e () o (o (Bt

N
e

¢(w)dw] - o(a)
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Similarly, we have

o Bes(or s ()]

(A.38)

Combining the last display, (A.37), (A.38), Lemma 1.13
and the well-known result that ®(—a) < @, we
obtain

Qo+ Q + Q5+ Q6 > En {g (g)] En [%f <§>} >0,

(A.39)
Put together (A.35), (A.34) and (A.39), we have for all II # 0

dP (|[2+W] > a)

- P(—a)+P <E+W‘ > a> ~p(a) >0,

da
which, by (A.32), amounts to (A.30), or
dfdp™
< 0.
da
Therefore, combining with (A.29), we obtain that
dtpp>
dtap™

O
Summarizing the result we have proven, it is very easy to
prove Lemma 1.11.

Proof of Lemma 1.11: Observe tpp™(«) is a strictly
increasing function of «, and thus tpp™ is a one-to-one
function of «. The inverse function therefore exists, so « is
a strictly increasing function of tpp®. Similarly, fdp™ is also
a strictly increasing function of «. Therefore, we conclude
that fdp>° = fdp™ («) = fdp*°(a(tpp>°)) = fdp°°(tpp>) is a
strictly increasing function of tpp>, and that ifggz > 0 holds
for any valid value of tpp™. 0

Now, we prove the lemmas that we have used in the proof
of Lemma 1.12.
Lemma 1.13: Let f(u) = u [ " (v + u)¢(w)dw.
We have f(u) >0, for all u # 0 € R.
Proof of Lemma 1.13: Observe that

= werwstde

—a—Uu

;. «
RAECa u/ w'(w' —u)dw’
—«

= u/oa w'[p(w' —u) — ¢p(—w' — u)]dw'.

So, if w > 0, then ¢(w' — u) — ¢(—w’ —u) > 0, for any
w' € (0,al, thus f(u) > 0; and if u < 0, then ¢(w' — u) —
¢(—w' —wu) <0, for any w’ € (0, ], thus f(u) > 0. O

Lemma 1.14: For any fixed a > 0, let g(u) = (®(u— )+
O(—u— a))op(a) — (p(u — a) + ¢p(u + a))P(—a). Then we
have g(u) > 0, and the equality g(u) = 0 holds if and only if
u = 0.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 09,2023 at 01:55:46 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: PRICE OF COMPETITION: EFFECT SIZE HETEROGENEITY MATTERS IN HIGH DIMENSIONS 5289

Proof of Lemma 1.14: We observe that Since for any w > o > 0, we have

e e > ™ 4 e, for any u € R.

o) =6(c) < | otwpas [ oty

We obtain g(u) > 0, and it is clear the equality holds if and

o only if u = 0. O
_/ P(w)dw (d)(u —a) + ¢lu + a)> 2) Miscellaneous Proofs for Section IV-A: In this section,
@ P(a) o) we prove all the necessary lemmas for Theorem 2. To start
0 2 with, we state the following lemma that specifies the range of
=¢(@) (/ P(w)e™™ - e72"dw all valid tpp>’s.
«

Lemma 1.15: [Lemma C.1 and Lemma C.4 in [5]] Put

_ (1=9)(e—er) *
(6, 6) = {1 T 0 <1 and € > €*(9),

B 1, otherwise.

+ /OO d(w)e™ e E dw
- /OO p(w) (e +e” ) - e%"2 dw)

L, e Then
—g(a)eE / Sw)[( +e ) — (e + e~)] duw. top™ < 1 (6.0,
o
dP (|7 ;W| >a) -cIJ(—a)+IP(‘E+W‘ >a> - ¢(a)
(6% T
_ 1
20 + Enw [E—i 1{7a<g+W<a}:|
1951
2
B |2 (T -a) + o0 - o) - 27 o)
Q2
II 11 12
+ En [CD (? - 04) =+ ‘b(_? - a)] “Emw |:7__31{—(1<13+W<oz}:| - ¢(a)
Q3
2
—En [¢><a— g) +¢<a+g>} ~UT—35-<I>(—04)
Q4
11 1T 112
B o (o= 7)o (o )] B [Ficact wen] 0o
Qs

AECE )

T T T

Qs cont.
-Eqn la </OOH o(w)dw + /70‘7? Qﬁ(w)dw)] - P(—a)
: .

AECE

T T T

Q6 cont.

T

“En l / e w¢<w>dw] . ®(-a).

-a —o0
=

(A.34)
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Moreover, any u between 0 and u* can be uniquely realized
as tpp>°, by setting o« = t*(u) which is the root to (I1.4).

From this lemma, we know for § < 1 and large e, it is
possible that the range of tpp™ is no longer (0,1). In such
a case, we are “above the Donoho-Tanner phase transition
(DTPT)”; and symmetrically, when tpp>° has the range (0, 1),
we are “below the DTPT”. The purpose of this lemma is
mainly for the completeness of the theory. In the following,
however, we will always assume the range of tpp™ is (0,1)
to avoid extra complicity. This assumption will simplify our
argument, but the proofs of the theorems can be extended to
the case when this assumption is not true.

Now, we prove that the upper curve can be achieved by
any (e, M)-homogeneous prior (I1.7). This implies that the
homogeneous effect sizes are the least desired.

Lemma 1.16: Given (¢,6) and o0 = 0. Any (e, M)-
homogeneous prior gives the same unique trade-off curve ¢V
on (0, u*). Furthermore, this curve has the expression specified
in (IL.8).

Proof of Lemma 1.16: We start with the proof to show the
curve ¢V is unique in the sense that any two different (e, M)-
homogeneous priors give the same trade-off curve. Consider
any two (e, M)-homogeneous priors II; and II,. Let their
nonzero conditional priors be II} = M; and II5 = Mo.
Treating oo > vy as the free parameter, we denote the solution
to 7 in equation (IV.1) with prior II; by 7;. We have

2
§=(1—€)E(na.(W)?) +€E (na <J\T4—11 + W) - ]\7_4—11> .

It is clear from a simple calculation that 75, = 7 % « and

II, also solve the first equation in (IV.1), that is,

M. My\?
§=(1—e)E(na.(W)?) +€E (na <—2 + W) - —2> ,
T2 T2
(A.40)
which implies 75 is the solution to (IV.1) given « and prior Ils.
Observe the relationships 72 = 71 5\\—2, II7 = M, and II5 =
M. We have

I I
IP(—1+W >a):P(

*
=2+ W|> a) .
1
Therefore, combining the equality above with (IV.2), we obtain

T2

tppzo(ﬂl)—]P’< 171_—3+W >a> —P(I;_I—E—I—W >a>
= tpp” (Il2),
and
oo 2(1 - €)®(—a)
fdp>° (I1;) =
par(Th) 2(1—e)q>(—a)+elp( Zow >a)
_ 2(1 — e)®(—a)
2(1—e)<1>(—a)+elP>( Ziw >a)
= fdeO(Hl)

This means that any point on ¢ (-) is also on ¢'2(-). Simi-
larly, any point on ¢'2(-) is also on ¢ (-). By Lemma 1.11,
they are both strictly increasing function, and thus must equal
everywhere on the entire domain (0, u*).
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Now, we proceed to prove that this unique trade-off
curve has the expression given by (I1.8). Fix some (e, M)-
homogeneous prior IIV. Let u be some point between 0 and
u* = 1, and set « such that tpp>°(IIV) equals to u. We have

u=tppX =P(IV* +7W|>ar) =®(—a+M)+d(—a — M),

where M — % Let ¢ = —a + M. , then the equation above
becomes
O(¢) + (20 — ) = u. (A41)
According to (IV.1), we have
0= (1= OEna(W)]* + Elna(M + W) — M. (A42)

By a simple algebraic fact
E[na(W)]* = 2[(1 + a®)®(-a) — ag(a)],
and the fact
Efno (M + W) — M]?
= — (a+ M)p(a — M) — (a — M)p(cx + M)
+(1+a?)[®(—a + M) + B(—a — M)]
+ M?[®(ov — M) — ®(—a — M),
we can plug-in the definition of ¢ into (A.42) and obtain
5= 2(1 - 9[(1 +0*)(~a) - a(a)]
+e[—(2a+9)P(s) +sp(2a+ )+
(1+a?)[®(c) + &(—2a — 9]
+ (s + a)?[®(—¢) + ®(—2a — ©)]]. (A.43)

So ¢ = ¢(a;€,0) is the solution of the equation above. And
finally combining the last equation with (A.41), we get an
equation in «

P(s()) + (20 —¢(a)) = u, (A44)

Denote the solution of a to the equation above by ¢tV =
tV(u;e,d). We have
2(1 — ) (Y (u))
2(1 —e)®(—tV(u)) + eu’
(A.45)

q" (u;€,8) = fdp¥ (IIV) =

Therefore, the expression for the upper boundary is just
defined by (A.45), where ¢V is solved from (A.43) and (A.44).
L] We comment about the existence of « in the proof above.
Note that both equations (A.43) and (A.44) are derived from
the AMP equations, which for any o > «g, have unique
solution 7. Note that ¢ is a function of 7, and thus it is also
unique. Therefore, the solution to (A.43) also uniquely exists
by Lemma 1.15.

3) Miscellaneous Proofs for Section IV-B: In this section,
we prove all necessary lemmas needed for Theorem 1, and
then prove Theorem 1. We start by giving the proof to
Lemma 4.4.

Proof of Lemma 4.4: We treat 7 as the free parameter
instead of A. To explicitly express the limiting process of
M, we consider a sequence of priors {II2 (M ® ~)},, where
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Ml() — 0o and M(tl/M — 00 as t — oo. From (IV.2),
the asymptotic TPP of IT2 (M), ~) at 7 can be written as

tpp2® (A (MW ~)) =

M(t)
T

M
+-~-+vmp<‘w+7

P (|HA*(M“>,~Y) +rW| > on')
()
T

> aﬂ , (A.46)

where « is solved from (IV.1). We denote the last display by

tpp?o(t) for convenience. Similarly, we denote
fdp>>® = fdp> (T4 (M ™, v))
2(1 —€)®(—
- (1= )®(-a) . (A.47)
2(1 — )@(~a) + etpp™)(7)

In the following proof, we will choose an m-tuple
of (Tz(f))l ; for each fixed ¢, such that as t — oo,

(tpp (t(;),fdpoc()t()t)) — (ui,¢™(u;)) at m different u;’s. This

1mphes exactly that the limit of trade-off curves ¢
agrees with ¢° at (at least) different m points in (0,1].
A natural way to pick such an m-tuple (Ti( )){” 1 18

"0 MG 1 < i< m

and 7, © = m x My, () when i = m.® Under the regime of
M(t) — oo and ler)l/M D oo for all i, we know T(t)
satisfies

|Mi(t)| = O(Ti(t))a and Ti(t) = 0(|Mi(4tr)1

4 (M )

), 1<i<m-—1
(A.48)

and

|MD| = o(rM), (A.49)

as t — oo. Moreover, for any o > «g and any 1 < i < m,

we have
M
Pl W+ (]t) >«
i
_JP(W] > @) +oi(1), forj: < Z A50)
1+0,(1), for j > i+ 1,
and
M(f) MW o
W+—_ | - = Na(W)+o(1), for j<i,
(t) Ti(t) W _ Oé+0]P”t(1)7 fOI' j22+1
(A.51)
Let 419 = ZZ-'L]-H v; and use agt) to denote the solution of

a to (IV.1) given Ti(t). We have

0_2
1——= 19
(=)
4 (MY, ) n4(MY, )
‘E'E<"a (T”V G
T; T;

3
OIn fact, one can pick any Ti(t) such that (A.48) and (A.49) hold.

()
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+ (1= ) E(na (W)
By (A.51), the (x) part of the last display is

2
M(t) M®
Z”J < < ) +W> )
m M(t) M(t) 2
J
j=i+1 7;
a)?) + o(1).

= (1 =7 E(.(W) ) + 7(“ E((W —
Observe the fact that ¢ is fixed and thus %2)2 — 0. With some

(A.52)

simple calculation, (A.52) can be written as
v (14a2) +2(1-7")[(1+0?)®(~a) ~2a6(a)] = 5+0,(1).

Therefore the solution a( ) of the equation above has a limit’

al! = a® ast— oo, (A.53)

which solves the equation
ey (1+a%) +2(1 — ey)[(1 + a?)®(—a) — 2a6(a)] = 6.
(A.54)

Note o!? is independent of the choice of {M ()} and

( 1(1&))1 .- Direct calculation can verify that each solution a(?)

also satisfies the equation (I.4) with setting
u=u; = 28(—a)(1

This implies o is also the unique solution of (IL.4), so
o =2 (uy).

Combining (A.46), (A.47), (A.50) and (A.53), the limits of
t oo (t) d fd oo (t)
ppT(t> an pT(t> are

— @Dy 440, (A.55)

(A.56)

tppofff) — 20(—aW))(1 — @) 4 @),
fdp oo(t) 2(1—e)d(—a®)

® 2(1—0)B(—a®)+e(28(—a®@)(1—7D)f7@) "

(A.57)
By a? = t*(u;) and (A.55), we obtain from (IL5) that
2(1 — €)®(—t2 (uy))
2(1 — €)®(—t2(us)) + ey
- 2(1 — €)®(—al?)
C2(1 - €)®(—a®) 4 €(2B(—a®)(1 = 4) + 4@’
(A.58)

Combining (IV.3), (IV.2), (A.55), (A.57) and (A.58), we finally
obtain as t — oo,

qA(ui; 57 6) =

tppg () — uy,
fdpy°© (T.(t)) — q®(ui; 6, €).

Therefore, the limiting function of the trade-off curves of
priors IT2 (M ® | ) agrees with the lower boundary ¢2(-; 6, €)

at (u;, q”(u;)), for i = 1,2,---,m. Since the m different

"By the existence asserted by AMP theory, the e(}uanon (A.54) has a unique
solution, denote it by ") we know the solution o}’ of (A.53) must converge
into it, since the left-hand side of (A.53) is contlnuous in .
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points are nonzero, there must be at least m — 1 points

in (0,1). U
An important set of equations is (A.55). Recall that (A.56)
asserts a(? = t2(u;) for all i, and therefore the equa-

tions (A.55) are, for all i,

up = 20(—t%(u;)) (1 — ) + 4. (A.59)
The last display allows us to quantify the exact points u; the
limit of IT4 (M ®, ~) agrees with ¢V. This fact allows us to
set ~y cleverly so that the distance between any two consecutive
u;’s are small enough. This is formalized in the following
lemma.

Lemma 1.17: For any ¢ > 0, there is some ~ =
{71,---»¥m}, with > 7.9 = 1, such that the m points
specified by (A.59), together with up = 0 and upmy1 = 1
8 satisfy the following

max (A.60)
1<j<m+1

Proof of Lemma 1.17: We first prove that the difference
Umi1 — Uy = 0. Since v™ = 1, and by (A.55), we obtain
that w,, = 1, and thus w41 — Uy =1 -1 = 0. With this
in mind, we only need to prove the following two quantities
can be arbitrarily small to ensure (A.60),

|Uj _uj—ll < 5

U — 0 =Y + 2(1 — 7 ) B(—a™), (A.61)
and for all m > j > 2,
uj = i1 = Ym—jr1 +2(1 = 7)d(-a?)
—2(1 =~V )@(—alY), (A62)

where we remind the reader that by definition, (") = ~,,
and 4\ — AU-1 = Y ji1-
For the expression in (A.62), we observe that

= 51 S 1+ 2(B(—a) = B(—al D))
+2(1=40)@(~al) ~ (aU~V)

S5’Ym,—j+1 +2|(I>(_a(j)) - (b(_a(j) - 7771/—j+1))|'

(A.63)

We observe that in equation (A.55) or (A.59), the dependence
of o) on 4U) is only through linear functional of ().
Therefore, it is not hard to realize that o) is continuous in
~9) . When all {Vs}s>m—j+1 are fixed, the a9 is a continuous
function in 7,,—;41, and so is the expression in (A.63). So we
can pick 7,41 sufficiently small to ensure the (A.63) is less
than 3.

For the expression in (A.61), we pick some M sufficiently
large such that ®(—M) < %. By Lemma 1.18, we can pick
Y < % such that the solution to (I.4) with u being (A.61)

8Technically speaking, it should be ., 11 = u*, yet as discussed earlier,
we will focus on the case when we are below the Donoho-Tanner phase
transition, so always u* = 1.

90One might want to verify the existence of a(™). Since we always assume
that we are below the DTPT, then for any v < u* = 1, the a = tA(ui)
exists as the solution to (IL.4) by Lemma 1.15. By setting v(™) = 1, one can
directly verify this corresponds to set u = wu,, = 17, and by the continuity
of ¢ in equation (IL.4), we know alm) =¢A (um) exists and less than infinite.
And since all other a(¥)°s are less than a(m), they also exist.
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satisfies that (™ > M, or ®(—al™)) < &(—-M) < %.
Therefore
B 4201 =7 )e(—a() < S 21 =%
4 8 2
0

Lemma 1.18: For any fixed d, ¢, £ > 0 and M > 0. There
exists v < %, such that the solution « to (II.4) with u =
v+ 2(1 —v)P(—a) satisfies o > M.

Proof of Lemma 1.18: We will use the following fact:
there exists v < % and large M" > M’ > M, such that:

(1— ey)A(M') + ex(1+ M?) < 5,
(1 —ey)AM") + exy(1 + M"?) > 6.
where A(M) = 2[(1 + M?)®(—M) — Mp(M)].
Taken this as given for the moment, we set u = v + 2(1 —
7)®(—a) with 7 such that (A.64) holds. Then (I1.4) becomes'®
21 =€) [(14+t2)D(—t) — top(t)] + (1 +t%) =6
e[(T+2)(1 —20(—1)) + 266(0)]
1y 2(1—y)®(-1)
1—2®(—t)
Observe the right hand side of the last display is just 1 — ~,
so it is equivalent to
2(1—€) [(1+ ) @(—t) — td(t)] + (1 + ) =4
= (1—7)e[(1+)(1 —2®(—t)) + 2tp(1)] ,

(A.64)

or,

2(1 —ey) [(1+t3)®(—t) — td(t)] + ey(1 +¢*) — 6 = 0.
(A.65)

By relationship (A.64) and the fact that there exists unique
solution o = ¢V (u) to (IL.4) and thus to (A.65), we know the
solution «« € (M’, M"), and thus especially o > M.

Now, to prove (A.64), we first note that it is direct to verify
A(t) = E[n:(W)?], and thus it is decreasing in ¢. And as
t — oo, A(t) — 0. Therefore for any 6 > 0, we can pick
M’ large enough such that A(M') < %, and now pick vy < %
small enough such that ey(1+ M'?) < 3. Therefore, the left-
hand side of the first equation of (A.64) is bounded by §. For
the second equation in (A.64), pick M" large enough so that
the term ey(1 + M"?) > 4, and since (1 — ey)A(M") > 0,
the second line also holds. U

The agreeing points asserted by Lemma 4.4 are close to each
other in their x-coordinate distances. Therefore, by the uniform
continuity of the lower curve ¢V and Cantor’s diagonalization
argument, we can extend the result from Lemma 4.4 to
uniform convergence.

Lemma 1.19: There exist a sequence of prior of II(Y) =
12 (M™, ~(1), such that their trade-off curve ¢ converge
uniformly to ¢® on any compact interval in (0, 1).

Proof of Lemma 1.19: Fix any compact interval Z = [a, b]
in (0,1). As in Lemma 4.4, we first consider prior IT(!) =
IA(M® 4®) with v = ~ being some fixed m-
tuple. By Lemma 1.11, we know that both " (u) and
¢®(u) are continuous and strictly increasing. Consider any

10Since the solution to ¢ is « here, we can plug in u = v +2(1—~)®(—t).
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two adjacent agreeing points wu;,u 11 specified in (A.55),
such that ¢®(u;) = limyoe ¢ (u;) and ¢®(ujp1) =
1m0 ¢ (uj41). Since in the interval (u;,wu;41) the dif-
ference is controlled by

)
¢ (u)—q (u) <q® (wj11)—q" (uy), for any u € (uy, u;j41)

by the monotonicity of qn(‘>_ This difference will be small as
long as the gap ¢ (uj11) — ¢~ (u;) is small, so we proceed to
prove we can select TT(*) to ensure the gaps ¢* (u;+1)—q* (u;)
are small for all 7.

Fix any 6 > 0. Since ¢* is uniformly continuous on the
compact set Z, there exists £ > 0 such that for any u,v € Z,

g% (u)—¢®
By the proof of Lemma 4.4, we can construct v = v to be
specified later, and M Efg, such that the limit of qn( ) agrees

(v)] < g, as long as |u—v| < ¢ (A.66)

with qA at m points uq,--- ,Uy,. This implies there exists
some Ty such that for all ¢ > Ty,
0] 0
max " (uy) — ¢® (uy)| < 7 (A.67)

To specify the choice of 7, note that by Lemma 1.17, we can
choose such that w1, .., U, satisfies ui1—a < u; — 0 < %,
-b<s ¢ and

2%, 10—l <5

With this choice of 79 together with (A.66) and (A.67),
we obtain

sup

()
" ) - A )| < 0.
t>Tg,u€l

Specifically, we have the equation above holds for ¢t = Ty,

sup ¢ (u) — ¢* (u)| < 0.

u€l
Since II(T®) = 12 (M%Tge),ye), the inequality above is
simply

A (Ty)
HM_YQ

sup ‘q o) (1) — qA(u)‘ <. (A.68)

ucl
Now we can apply Cantor’s diagonalization trick since the last
display is true for any ¢ > 0. We set 0, = % — 0, >1, and
choose the priors

(To,)
e — {HA (M’yei( ”79c)}<'

Then we know from (A.68) that qn(o converges to ¢~
uniformly on Z as ( — oco. 1 Now, we can proceed to prove
Theorem 1, whose proof is very similar to that of Theorem 2
in Section IV-A.

Proof of Theorem 1 (a): Consider any non-constant
prior II, we first prove that there exists some II® and v > 0
such that for all ¢ < A\, N < C,

tpp3 (T1%) < tpp3y (1) + v and fdp3® (T1%) > fdp3y (IT) — v
(A.69)
cannot hold simultaneously. To see this fact, first find

0 < w1 < w2 < 1 such that the asymptotic powers
tpp° (II12), tpp3S (I1) are always between u; and ug for ¢ <
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A, N < C. Next, we know from Lemma 1.20 that ¢® is the
strictly below any trade-off curve. So, for any prior II, we have
q®(u) < ¢™(u) for any u € T = [uy, us). Note that both ¢*
and ¢"! are uniformly continuous on Z and thus one can set
v >0 to be

/ .
V' = inf
Ul fugug

(4" (u) = g% (u)) > 0.

Since ¢* is a continuous function on the closed interval [0, 1],
we can make use of its uniform continuity, which ensures

(A.70)

!

A A v
[0 () — )| < %
as long as |u — u/| < v” for some v > 0. By the assertion
of Lemma 1.19, we can choose a prior IT2 such that it is

’
Y -close to ¢™ on Z,

(A1)

A v
sup (g™ (u) — ¢®(u)) < T (A.72)
u <u<ug

Now we can prove (IV.4) cannot hold simultaneously with our
choice of IT* and v = min{r//2,"}. To see this, suppose
we already have tpps° (IT2) < tpp$Y (IT) +v. Now observe that

fdp3e (I12) = ¢™ (tppg= (112))

/
A (tppe(I14)) + lj:

< ¢® (wp(ID) + 5
T (pp(1n) o/ +
" (ippp(am) ~
 (tpp3 (1)) — v

= fdp$o(IT) — v,

where the first inequality follows from (A.72); the second
inequality follows from the fact that fdp (tpp™) is strictly
increasing, and tpp$° (112) < tppSS (I1)+v; the third inequality
is by (A.71); the fourth inequality is by (A.70); the last
inequality is by the definition of v. As such, the first inequality
in (A.69) leads to the violation of the second inequality. Hav-
ing shown (A.69), it is easy to prove Theorem 1. Lemma 4.1
ensures that the following four terms

|TPP, (IT%) — tpp3° (IT%)| , [FDP (IT*) — fdp3° (I14)]
|TPP, (IT) — tpp%, (IT)[ , [FDPy/ (IT) — fdp57 (IT)|  (A.73)

are all smaller than /2 for all ¢ < A\, A" < C, with probability
tending to one as n, p — co. On this event, it is easy to check
that TPP, (IT%) < TPP,, (II) implies tpp3 (IT12) < tppss (IT) +
v, and FDP,(II®) > FDP, (II) implies fdp$®(I1®) >
fdp37 (IT) — v. As such, in the event (A.73), the impossibility
of (A.69) uniformly for all ¢ < A, X < C implies the
impossibility of
TPP, (II*) < TPP)/ (II) and FDP,(II1%) > FDP,, (II)

forall c< A\, N < C. O

It is the same as the comment after the proof of Theorem 2,

we can prove part (b) of Theorem 1 similarly, and we omit
for simplicity.
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In closing, we present the following lemma to be self-
contained. It shows that the lower boundary is strictly below
any trade-off curve, on which the proof of Theorem 1 relies.

Lemma 1.20 (Lemma C.3 in [5]): Consider any e-sparse
prior TI. The lower boundary ¢ is strictly below the trade-off
curve ¢'(+), that is, ¢ (u) < ¢'(u) for any w.

Proof of Lemma 1.20: This is just a re-statement of
Lemma C.3 in [5]. They have proved that for any tpp™ = u,
fdp> > ¢ (u), which implies ¢ (u) > ¢* (u). O
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