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a b s t r a c t

The Finite Element Method (FEM) is an important numerical method to solve Partial Differential
Equations (PDEs). The widely used open source FEM platform — FEniCS, supports Hierarchical Data
Format 5 (HDF5), which is very effective at storing and organizing large amounts of simulation data.
However, HDF5 files can become prohibitively large for certain engineering applications, such as
the thermal simulation of CPUs. Thus, this paper introduces a Type-Length-Value data format (TDF)
plugin for compact storage of the FEM simulation solutions. Our Type-Length-Value (TLV) encoding
implementation can be readily expanded to store more generic mathematical data generated by
engineering and scientific applications. The evaluation results indicate that the TDF format could lead to
a ≈95% space savings in our illustrated example. Meanwhile, the read/write speed has been improved
compared to HDF5 used by FEniCS.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Partial Differential Equations (PDEs) are important to model
early all fields of science and engineering, and the Finite Element
ethod (FEM) is a widely used numerical method to solve PDEs.
o implement the FEM, the domain of interest is discretized into
mall elements through mesh generation techniques. Usually,
umerical accuracy in the FEM benefits from a higher resolution
esh, but this greatly increases the computation time and storage
eeds.
Hierarchical Data Format (HDF) is a set of file formats (e.g.,

DF4, HDF5) designed to store and organize large amounts of
ata [1]. The open source platform — FEniCS [2], is widely used
n the FEM simulation to solve engineering problems, and it

∗ Corresponding author.
E-mail address: yuliu@clarkson.edu (Y. Liu).

utilizes the HDF5 as the principle file format. However, HDF5
files can become prohibitively large, which creates a challenge
to collecting the FEM data obtained from FEniCS simulation. In
this paper, we study the storage size required by our illustrated
example — the thermal simulation of CPUs. In this example, we
performed the FEM simulation to predict the thermal behaviors
on all functional units of an AMD Athlon CPU, and a dataset
of 20,000 time step solutions can easily achieve a storage size
of 1 terabyte with a coarse mesh of 129 × 129 × 14. For the
finer mesh of 512 × 512 × 14, the storage size requested for
the same number of time steps is around 12 terabytes, which is
difficult for most research projects. Note that only ≈87 ms of the
thermal behavior is simulated, even with 20,000 time steps, and
longer simulation time is required to match real-world scenarios.
Therefore, it is necessary to propose a new compact file format
plugin for FEniCS to accommodate such scenarios.

During our examination of the HDF5 format, it was observed
that storing an FEM solution could take more than 200 ms when
ttps://doi.org/10.1016/j.softx.2023.101329
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Type field bits.
Bits Description

0 Vector/Matrix indicator
1–3 Data type indicator
4–7 TDF field number

a higher resolution mesh was used. This leads to a large time
overhead when a long simulation is performed. In the example of
20,000 time steps, 200 ms to store a solution accounts for more
than 60 min of the total run time. Therefore reducing the time to
store solutions is necessary to reduce the time requirements for
FEM simulation.

Type-Length-Value(TLV) encoding has very successful imple-
entations in the data encoding of network protocols (e.g., Trans-
ort Layer Security Protocol [3]) and video formats (e.g.,
uickTime File Format [4]). We realized that it can be readily
ustomized for versatile uses in the data storage of a variety
f applications. For this work, this encoding is utilized with the
oal of being able to store FEM solution data effectively, and our
mplementation for FEniCS can be readily expanded to store more
eneric mathematical data generated by engineering and scien-
ific simulations. Our evaluation indicates that the proposed TLV
ata format (TDF) could lead to a ≈95% space savings per time
tep in our illustrated example of thermal simulation compared to
EniCS’ HDF5 interface, while the read performance is improved
y 4.9% on average. The write performance is improved by 70.1%
n average and 98.9% on average when not storing the metadata.

. Software description

.1. TDF design

Besides the enormous storage size needed, the HDF5 imple-
entation in FEniCS is restrictive to the user, and does not allow

ine-grained control over the file operation, especially when par-
llel operation is considered. Thus, we need a new format allows
ull control over key operations with sufficient simplicity, allow-
ng the user to make use of the data efficiently. Also, it can
e easily parsed and searched by generalized parsing functions.
hus, the TLV encoding is an ideal choice for such purposes.
TLV is comprised of three components: the type of the stored

ata, the length of the stored data, and the actual stored data
i.e., a ‘‘length’’ amount of data representing the value for the
‘type’’). The type field of TLV encodes the type of data stored in
he TLV field. Table 1 shows the bit fields of the type header. The
irst bit encodes whether the TLV field is a vector or a matrix, the
econd through fourth bits encode the data type, and the last 4
its are kept to encode an application-chosen number for the TLV
ield. The last 4 bits are optional, but kept for potential future use,
nd to maintain the byte-alignment of the format. Table 2 shows
he different values that the data type indicator can take. Note
hat a single file (chunk) of TLV encoded data is allowed to include
ultiple TLV fields, demarcated by the TLV headers, but in this
lugin, each file is comprised of only a single TLV field. Moreover,
atrices and vectors are basic data structures used in numerical
imulations, such as building linear equations. For these goals,
here is a bit reserved to indicate if the data stored is a matrix
r a vector. In FEniCS, FEM solutions are stored in vectors. Thus,
upport for matrix storage has not yet been implemented, but can
eadily be added at a later stage to expand the versatility of the
ormat. For matrix data, the length field would need to include
he number of rows and the number of columns of the stored
atrix.

Table 2
Data type indicator values (Note that 110 & 111 are unused).
Value 000 001 010 011 100 101

Type unsigned int float double char long unsigned

The length field of the TLV header is encoded as a 64-bit
integer. This allows for the data length to become extremely large
if needed. In the case that the field is storing a matrix, this would
be encoded as a pair of 64-bit integers. This integer value stores
the number of elements in the value field. The actual size of
each element may vary greatly between different data types, for
instance a char value may only take one byte, while a double
may take 8 instead. Encoding the length as the number of values
helps to keep the logic of the format consistent between different
data types and avoids the overhead of accounting for potential
variations in data size between types.

2.2. TDF implementation for storing FEM solutions in FEniCS

DOLFIN is the C++/Python computational high-performance
backend library of FEniCS, and it provides data structures and
algorithms for finite element meshes, automated finite element
assembly, and numerical linear algebra [2]. Through study of the
DOLFIN library implementation, it was found that there are a total
of four vectors of data that are needed to properly load a FEniCS
Function object into a mesh for use. Three of these vectors consist
of metadata used for ordering the actual solution values, while
only the last vector contains the solution data. Thus, the metadata
takes up a large majority of the space, especially for the finer
mesh. However, such data only needs to be saved once for the
entire simulation run. The method described to use HDF5 files
for storing FEniCS functions implies that these vectors are stored
for every time step’s FEM solution. This leads to an unnecessary
and massive increase in the disk usage.

DOLFIN Function objects store the data values at each mesh
node and their indices for ordering and access. In the DOLFIN
API, there is a function used by the HDF5 utility that uses these
vectors to order the data into a Function object for use. This
function is used by our implementation for ordering points into
the Function objects. This is allowed because the logic for order-
ing does not change as long as the metadata vectors are available
along with the solution vector. This also retains simplicity in our
implementation, as the logic for ordering the data into the mesh
does not need to be re-implemented.

It should be noted that HDF5 files have full support for use
with the Message Passing Interface (MPI) [5]. They are able to
store Function objects and load them with a differing number
of MPI processes than were used to create the original file. This
functionality is highly desirable to ensure the usability and per-
formance of this format, and thus our TDF implementation fully
supports this feature.

2.3. TDF plugin APIs

From a plugin perspective, the use of this file format for storing
and loading FEM solution data should not add unacceptable over-
head to the user compared with HDF5 provided by the DOLFIN
library. Listing 1 below shows a snippet of C++ code that can be
used to load a Function from a HDF5 file, then write that same
Function to a different HDF5 file.

Listing 2 illustrates the interface of our TDF plugin with
DOLFIN, and Listing 3 shows how an equivalent operation can
be achieved using the TDF format. The primary read and write
operations are extremely similar to the HDF5 interface. The main
change being that while constructing the file object, instead of
2
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Listing 1: HDF5 File Input and Output
1 Function u;
2 HDF5File in_file=HDF5File(mesh->mpi_comm() ,"file.h5 ","r");
3 input_file.read(u);
4 HDF5File out_file=HDF5File(mesh->mpi_comm() ,"outfile.h5 ","w");
5 output_file.write(u);

Listing 3: TDF File Input and Output
1 Function u;
2 TDFFile in_fh=TDFFile(mesh->mpi_comm() ,"file.tdf ","meta ");
3 in_fh.cache_metadata = true; //enables caching of metadata
4 in_fh.read(u);
5
6 TDFFile out_fh=TDFFile(mesh->mpi_comm() ,"out.tdf ","out_meta ");
7 out_fh.save_metadata = true; //only needed for first write
8 out_fh.write(u);

specifying if the object is in read or write mode, the metadata
file prefix must be given. For simplicity of use, no explicit mode
needs to be specified.

Listing 2: Function TDFFile Interface
1 TDFFile::TDFFile(
2 MPI_Comm comm,
3 const std::string& name,
4 const std::string& mname = "" )
5
6 comm: The MPI communicator to be used.
7 name: The filename for the solution vector
8 mname: The prefix for the meta data vectors.
9 Note suffixes will be added automatically.

The primary difference between the usage of the file formats
s on lines 3 and 6 between Listing 1 & 3. Line 3 enables the
aching of metadata vectors that have been previously loaded.
nce the first file is read, these vectors are stored in the object
or later use, allowing the file to be loaded to be changed, and
new Function to be loaded without reloading the metadata
ectors. Line 6 enables the storage of the metadata vectors. Leav-
ng the save_metadata option set to false will cause the object
o only store the Function values. This feature allows for great
mprovements to the speed of storing FEM data.

. Illustrative example

.1. FEM based thermal simulation on CPUs

With the rapid miniaturization of integrated circuits (ICs)
n the last several decades, high-performance microprocessors
re becoming more thermally constrained due to the increasing
ower density [6,7]. High temperature could seriously degrade
he microprocessor performance and reliability [8]. Thermal man-
gement and thermal-aware exploration are the effective ways
o decrease the possibility of CPU failure and improve processor
erformance, but accurate prediction of the thermal distribution
n the processor is needed [9,10]. The FEM is one of the most
ccurate approaches for thermal simulation of semiconductor
hips. In this case, the heat transfer equation (1) is solved by
he FEM to predict the temperature of the CPU, and it has been
mplemented on the FEniCS platform.

C
∂T (r⃗, t)

= ∇ · k∇T + Pd(r⃗, t) (1)

Table 3
One time-step file sizes.
Mesh 129 × 129 × 14 256 × 256 × 14 512 × 512 × 14

TDF 1.8 MB 7.1 MB 29 MB
HDF5 41.4 MB 163.1 MB 652 MB

where k, ρ and C are the thermal conductivity, density and
specific heat, respectively. Pd(r⃗, t) is the interior power density.

A quad-core CPU, AMD Athlon II X4 610e [11], is selected in
this example to demonstrate the thermal simulation model in
the FEM. As shown in Fig. 1(a) for the floorplan, this quad-core
processor includes the following units: four 512 KB L2 caches,
a Northbridge in the center and I/O and DDR3 placed around
the periphery. The simulation domain of this processor covers a
volume of 14 mm×12 mm×650 µm in the x, y and z directions,
respectively. All the surfaces of the chip, except for the bottom
surface, are assumed adiabatic. Heat dissipation from the bottom
of each unit to the ambient is modeled by a convective boundary
condition. The dynamic power in each unit applied in the DNS is
calculated using McPAT [12] based on statistics information for
each time step as generated by gem5 [13]. Using these power
traces, DNS is performed to calculate the temperature of the CPU
at each time step. Some snapshots of the dynamic temperature
maps are shown in Fig. 1(b), where a mesh as fine as 512 × 512
on the xy plane is needed to capture many high-temperature
small-diameter hot spots.

However, FEM requires a large number degrees of freedom
(DoF), and therefore require extensive computational time and
storage resources to provide detailed temperature distributions.
It could be calculated that the storage size required for 20,000
time steps is around 12 terabyte if the mesh of 512 × 512 × 14
is used.

3.2. Performance evaluation

This evaluation was done on a Dell Precision 7810 with two
Intel Xeon E5-2683v4 CPUs, 32 GB DDR3 RAM, and a 256 GB
Solid-State Drive. The OS used is Ubuntu 18.04.6 LTS with Linux
kernel 5.4.0. Table 3 shows the sizes when the data is saved to
disk as the TDF and HDF5 format respectively. The comparison
shows our TDF plugin offers a ≈95% space savings in total by
eliminating redundant mesh data in HDF5 files.

The timing comparison of the file types is the time to store
and load a Function object, which is shown in Fig. 2. The
latency to read a Function in the TDF format is very similar
∂t
3
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Fig. 1. Thermal simulation of the AMD Athlon CPU.

Fig. 2. I/O time comparison between HDF5 and TDF format.

o HDF5. This is likely due to overhead from ordering the data
oints into each Function object. However, the write time is
reatly improved with the new format. Further improvement is
chieved when only the Function values are stored without the
etadata. This optimization allows for eliminating a great deal of

ime needed when performing the FEM simulation. The time to
oad a Function is currently dominated by the ordering of the
alues into the mesh, but on a machine restricted by the disk,
uch as a Hard Disk Drive, or when a larger mesh is used, the
DF format with cached metadata will likely outperform HDF5,
s shown by the slight improvement over HDF5 when more MPI
rocesses are used. The read time is CPU-bound, as the values
ave to be ordered into the mesh, so the use of more processes
eads to a speedup of that operation. Write time, however, is disk-
ound, meaning more processors can speed that operation up,
ut once the limit of the disk is reached, no further speedup will
ccur. Overall, the read/write performance has been improved by
.9% and 70.1% respectively in the default configuration; enabling
aching optimizations improves performance by 4.9% and 98.9%
espectively. For this evaluation, the default HDF5 configuration
f FEniCS was used.

TDF caching can further improve the reading performance
shown in Fig. 2. The idea behind the TDF caching is that since the
metadata vectors do not change, they can be kept in memory for
use when loading other solution vectors. This is very useful when
loading multiple time steps of data. Once the metadata is loaded,
it just does not get loaded again, it is kept in vector objects in the
TDF file object, then for subsequent time steps the same metadata
vectors are used to order the solution into the mesh. This makes
it so the metadata vectors are only loaded once, no matter how
many time steps of data are loaded.

4. Impact

FEniCS is a very popular open-source FEM platform to solve
PDEs, which enables users to model their problems with efficient
finite element codes. HDF5 is a standard data format for FEniCS,
but HDF5 files can become prohibitively large for FEM simulations
that require high resolution results. The illustrated example in
this paper has shown the enormous storage requested if the HDF5
format is used. Our TDF plugin aims to store the FEM data ob-
tained from FEniCS simulation in a more effective manner, which
4
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oes not harm the I/O performance. With the assistance of this
ovel data format, the storage issue of large-scale FEM simulation
an be mitigated for certain scenarios. Our TDF plugin for FEniCS
an also be readily expanded to store more generic mathematical
ata generated by engineering and scientific simulations due to
he flexibility of the TLV encoding scheme. Also, we provide the
ource code and building instructions of the TDF plugin imple-
ented in FEniCS to the research community using numerical
imulation through a public release on Github [14], which enables
esearchers to adapt our design and implementation for use in
ther open source packages.

. Conclusion

The popular HDF5 format in the open source software FEniCS
as unacceptable restrictions in terms of its usability, potential
rite speed, and required storage space for the FEM simulation to
olve certain engineering and scientific applications. This is allevi-
ted through the creation of an alternative binary file format, TDF,
hich uses a proposed TLV encoding to store data. Furthermore,
hrough careful optimization of the use of the metadata needed
o load the FEM solution data, the requirements for disk space
nd I/O operations can be greatly improved. With FEniCS, our
valuation of an FEM based thermal simulation case indicates
hat the proposed TDF format could lead to a ≈95% space savings
n total, while maintaining or exceeding the I/O performance of
DF5. In addition, the API provided for use of the HDF5 file format
n FEniCS is restrictive to the user and does not allow fine-grained
ontrol over the file operation. The new TDF format allows full
ontrol over key operations, allowing the user to make use of the
ata as needed.
Future work includes the completion of the expansion of the

ormat to enable the storage of matrix data for use with other
athematical programs besides the FEM solutions. Also, opera-

ion with multiple TLV fields being stored in a single file may
e investigated, which would enable the storage of all metadata
ectors in a single file. Furthermore, creation of a plugin for
opular open-source visualization tools would enable simplified
iewing of solutions stored as TDF.
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