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Abstract

This paper presents the first parallel implementation of the novel “Interpolated Factored Green
Function” (IFGF) method introduced recently for the accelerated evaluation of discrete integral operators
arising in wave scattering and other areas (Bauinger and Bruno, Jour. Computat. Phys., 2021). On
the basis of the hierarchical IFGF interpolation strategy, the proposed (hybrid MPI-OpenMP) parallel
implementation results in efficient data communication, and it scales up to large numbers of cores—
without any hard limitations on the number of cores efficiently employed. Moreover, on any given
number of cores, the proposed parallel approach preserves the O(N log N) computing cost inherent in
the sequential version of the IFGF algorithm. Unlike other approaches, the IFGF method does not utilize
the Fast Fourier Transform (FFT), and it is thus better suited for efficient parallelization in distributed-
memory computer systems. In particular, the IFGF method relies on a “peer-to-peer” strategy wherein,
at every level, field propagation is directly enacted via “exchanges” between “peer” polynomials of
constant degree, without data accumulation in large-scale “telephone-central” mathematical constructs
such as those used in the Fast Multipole Method (FMM) and pure FFT-based approaches. A variety of
numerical results presented in this paper illustrate the character of the proposed parallel algorithm, in
particular demonstrating scaling from 1 to all 1,680 cores available in the High Performance Computing
cluster used, and for problems of up to 4,096 wavelengths in acoustic size.
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1 Introduction

This paper presents a parallel implementation of the “Interpolated Factored Green Function” (IFGF)
method introduced recently for the accelerated evaluation of discrete integral operators arising in wave
scattering and other areas [1]. The proposed implementation, which is structured as a hybrid MPI-
OpenMP computer program suitable for instantiation in modern high-performance computing systems
(HPC), scales up to large numbers of cores without hard limitations on the number of cores efficiently
employed, while preserving the linearithmic complexity (namely, O(N log N) computing cost) inherent in
the sequential IFGF algorithm. The IFGF method accelerates the evaluation of discrete integral operators
by relying on a certain factorization of the Green function into two factors, a “centered factor” that
is incorporated easily as a common factor in the calculation, and an “analytic factor” which enjoys a
property of analyticity up to and including infinity—and which thus motivates the IFGF strategy, namely,
evaluation of a discrete integral operators by means of a hierarchical interpolation approach which relies on
use of a large number of small and independent interpolation procedures. In particular, the IFGF method
does not utilize acceleration elements commonly used by other acceleration methods [2-14] such as the
Fast Fourier Transform (FFT), special-function expansions, high-dimensional linear-algebra factorizations,
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translation operators, equivalent sources, or parabolic scaling; more details in these regards can be found
in [1] and below in this section. Roughly speaking, the IFGF method relies on a “peer-to-peer” strategy
wherein, at every level, field propagation is directly enacted via “exchanges” between “peer” polynomials
of constant degree, without data accumulation in large-scale “telephone-central” mathematical constructs
which require a “downward pass” through the box octree inherent in other methods [7], or the surface
evaluation of equivalent sources in direct FFT-based methods [10]. (Note that a downward pass was
avoided in the low-frequency implementation [15], to increase parallel efficiency at the expense of additional
floating point operations, but we are not aware of any high-frequency FMM-based implementations that
do not rely on use of a downward pass.) A variety of numerical results presented in this paper illustrate
the character of the proposed parallel method, including its favorable weak and strong parallel scaling
properties in all cases considered—for problems of up to 4,096 wavelengths in electrical size, and scaling
tests spanning from 1 compute core to all 1,680 cores available in the HPC cluster used.

The parallelization of accelerated Green function methods has been the subject of a significant literature,
which is mostly devoted to tackling a particular difficulty, namely, the “parallelization bottleneck” —which
manifests itself under various related guises [16-24], and which almost invariably concerns uses of the
hard-to-parallelize [25] FFT algorithm. (Reference [26, Sec. 7], for example, mentions two alternatives
to the use of FFTs in the context of the FMM, which, however, it discards as less efficient than an
FFT-based procedure.) In the case of the multilevel Fast Multipole Method (FMM), the parallelization
bottleneck arises in the evaluation of translation operators associated with the upper part of the octree
structure, which leads to low parallel efficiency [2,16,21]. In the “directional” FMM [16] the low efficiency
in the upper octree is alleviated as a result of the parabolic scaling utilized; however, the parallelization
strategy does suffer from hard limitations in the number of parallel tasks that, in the cases considered
in that reference, lead to a “leveling off” of the parallel scaling at 256 or 512 cores [16, Secs. 3.6, 4.2],
depending on the geometry under consideration. Reference [17] identifies the part of the FMM relying
on FFTs as a parallelization bottleneck which arises from FFT-related “lowest arithmetic intensity” and
“bandwidth contention”. In references [18,19], in turn, a hybrid octree storage strategy is used, which
stores a complete set of tree nodes for a certain number of “full” levels in each process, and which reduces
the communication in the upper octree levels. These articles demonstrate the treatment of problems
containing very large numbers of discretization points on up to 2,560 processes, but they restrict their
illustration of the algorithm’s parallel efficiency to a limited strong scaling test for a sphere, from 1 process
(sequential) to 64 processes, for which an efficiency slightly above 70% is reported in [19]. In contrast
to this hybrid octree-storage strategy, reference [20] simultaneously partitions boxes (clusters) and field
values representing the radiating and incoming fields of each box. This approach leads to increased efficiency
compared to a parallelization purely based on the boxes (clusters), but the communication in the translation
step still poses a bottleneck, resulting in 30% parallel efficiency from one (sequential) core to 128 cores.
Reference [27], finally, presents scaling results for the parallel BEMFMM implementation of the FMM
algorithm, for wave scattering problems on a computer cluster containing 196,608 cores on 6,144 compute
nodes. Like the implementations mentioned above, the results in [27] indicate a deterioration of the strong-
scaling for growing numbers of cores, as manifested by a flattening of the strong-scaling speedup curves as
the numbers of cores increase. Specific comparisons of IFGF and BEMFMM results, including comparisons
of runs of the BEMFMM and IFGF software on our in-house computer system, are presented at the end
of Section 4.7 and in Section 4.8.

Following a different approach, to avoid the communication bottleneck in the upper multilevel FMM
octree entirely, references [21,22] utilize a single-level Fast Multipole strategy. While this method signif-
icantly simplifies the algorithm and minimizes the required communication in a parallel setting, it does
give rise to a sub-optimal asymptotic computational cost (e.g. O(N?®/?) in [22] or, exploiting the FFT,
O(N*/310g*? N) in [21]), and, while resulting in good parallel scaling up to 512 processes in the O(N3/2)
algorithm [22], as in the case of [16], the parallel efficiency does level off beyond 512 processes. Direct FFT
methods, in turn, present alternatives to the various FMM strategies, including, for example, the Adaptive



Integral Method [11] (AIM) and the sparse-FFT method [10]. Like the single-level FMM algorithms, these
FFT methods exhibit sub-optimal algorithmic complexity (of orders O(N3/2) and O(N*/3), respectively),
and, owing to their strong reliance on FFTs, they also suffer from reduced parallel efficiency, as shown and
discussed for the AIM in e.g. [23,24]. (A parallel version of the algorithm [10], which has been developed
by the authors, has not been published, but we report here that, as may have been expected, the overall
parallel efficiency of the method suffers from the typical FFT-related degradation.)

Finally, we consider parallel methods proposed for non-singular [28] and low-frequency [15,29] problems
which, albeit important and interesting, do not incur some of the main challenges associated with the singu-
lar and high-frequency kernels considered in this paper. We thus mention the Butterfly Method [28] which
is not applicable to singular Green function kernels such as the ones considered here: it provides an accel-
eration technique for Fourier integral operators. The butterfly method, which is based on linear-algebra
constructs instead of the hierarchical interpolation method underlying the IFGF algorithm, incorporates
a parallelization strategy that is somewhat reminiscent of the proposed IFGF parallelization approach; its
Blue Gene/Q implementation [28] demonstrates results of high quality in terms of parallel scaling to a
large number of cores. The parallel FMM method presented in [29], in turn, which is restricted to box
geometries and to the Laplace and low-frequency Helmholtz problems, shows scaling up to 299,008 cores
on 18,688 nodes. Similarly, the parallel Barnes-Hut tree code [15] for the low-frequency singular problem
provides high-quality scaling up to 294,912 cores with up to 2,048,000,000 particles.

The parallel IFGF strategy introduced in this contribution is based on adequate partitioning of the
interpolations performed on each level of the underlying octree structure, which facilitates the spatial
decomposition of the surface discretization points. As shown in [1], the number of interpolations performed
on each level is large and approximately constant (as a function of the octree level). The decomposition
and distribution of the interpolation data is based on a total order in the set of spherical cone segments
representing the interpolation domains, which is an extension of a domain decomposition based on a
space-filling Morton curve to the box-cone data structure inherent in the IFGF approach. The usage of
space-filling curves for the representation of octree structures underlying the acceleration methods is not
a novel concept [27,29,30]. However, the extension of space-filling curves to the box-cone structure of
the IFGF method to achieve the desired efficiency has not been reported before. In view of its strong
reliance on the IFGF’s box-cone structure, the proposed parallelization strategy is therefore not applicable
to other acceleration methods such as the FMM. The present parallel IFGF implementation on a 30-node
(1,680-core) HPC cluster with Infiniband interconnect, delivers perfect O(N log N) performance on all
1,680 cores. And, demonstrating high (albeit imperfect) strong parallel efficiencies, it does not suffer from
scaling limitations as the number of processing cores grow.

This paper includes is organized as follows. Section 2 briefly summarizes the description [1] of the IFGF
method, and it introduces the required notations and nomenclature. Section 3 then introduces the proposed
OpenMP and MPI parallelization strategies for the IFGF method (Sections 3.1 and 3.2, respectively). A
variety of numerical results are presented in Section 4. A few concluding comments, including a discussion
of known limitations and areas for further improvement, finally, are presented in Section 5.

2 Review of the IFGF Method

As discussed above, the IFGF method provides an accelerated algorithm, requiring O (N log N) operations,
for the numerical evaluation of discrete integral operators of the form

N
I(xg) =Y amG(xs,2m), (=1,...,N, (1)
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for given points z, on a surface I' C R3, and for given complex coefficients a,, € C, where the function
G(z,y), defined for z,y € R3, denotes a Green function for some partial differential equation, such as the

acoustic Green function

etrlz—yl
Gla.y) = )
associated with the Helmholtz equation (¢ denotes the imaginary unit and s the wavenumber) as well as
those associated with the Laplace, Stokes, and elasticity equations, among others. In what follows we
denote by I'y := {z1,...,2n} C T the set of surface discretization points. For definiteness, throughout
this paper we restrict attention to the challenging kernel (2), with possibly large values of s, but other

kernels can be treated analogously.
The strategy underlying the IFGF algorithm can be best appreciated by first considering an example

of a “restricted” discrete operator

|z —y|
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IR(IZ:) ::quG(xg,x;f), g=1,...,MT, (3)
q=1

where {565 c qg=1,...,M%) c Ty and {xg : p=1,...,MT} C T'y are given (mutually disjoint)
sets of “source points” and “target points”, respectively. The IFGF approach seeks to reduce the cost of
evaluation of the restricted operator (3) by relying on interpolation. For example, in order to avoid adding
all of the terms in the sum (3) for each target point xg, one might consider to approximate the restricted
operator by resorting to evaluation of Ig(z) at a small number of adequately chosen interpolation points
and, subsequently, to evaluate Ig at the target points :cg via interpolation. A direct interpolation of Iy (z)
is not viable, however, on account of the highly oscillatory and/or singular character of the kernels G(z,y)
under consideration—which are inherited by the restricted operator Ig itself. In order to address these
difficulties, the IFGF method interpolates, instead, a modified form of the restricted operator, which is
obtained by extraction of a certain common factor from the sum (3), and it considers restricted operators
for certain specific sets of source and target points, as discussed in what follows.

The main enabling element in the IFGF method emerges from these considerations: for a group of
“neighboring” sources, and a set target poir;ts that are adequately “separated” from the set of sources,
factorization of the quantity G (azg, xo) = % significantly reduces both the oscillations and singularity
of the sum, provided, 1) The point xq is selected to roughly coincide with some sort of centroid of the set
of source points; and 2) The set of target points is adequately separated from the set of source points.
For example, reference [1] shows that for a set of source points contained within an axis-aligned cubic box
B(xzg, H) of side H and centered at x(, and for all target points that are at least “one box away” (or, more
precisely, outside the concentric box B(xo,3H) of side 3H), the quotient G(x,xf)/G(:ﬁ,xo) for each g,
and therefore, the complete restricted sum Ig(z)/G(x,xg), are slowly-oscillatory and non-singular. More
precisely, as shown in [1], these functions are analytic up to and including |z — zy| = oo, and their n-th
order derivatives are uniformly bounded by a constant times (kH)™ for all x outside B(xzg,3H). Thus,
with these constraints, the quotient functions considered are “slowly varying”, and they may therefore be
interpolated, with a fixed error, by means of a number of interpolation points that, for interpolation onto a
surface, depends only quadratically on the size kH of the box B(xo, H). Thus, as shown in detail in [1], for
example, if the box size is doubled, the number of interpolation points required to meet a prescribed error
tolerance is quadrupled. But, as the box sizes are doubled, the number of boxes covering I v is reduced by
a factor of four—so that box-size doubling does not increase the total number of interpolation points used
across the surface.

The interpolation procedure is implemented via piecewise Chebyshev interpolants in a certain (s, 6, ¢)
spherical coordinate system around each box center xp (where using the radius r = |z — zo| and box

half-diameter h = @, the variable s = h/r is used to exploit the analytic character of the slowly varying
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(a) Two-dimensional sketch of a three level (D =3) (b) Two-dimensional illustration of cone segments:
IFGF domain decomposition with neighbors (in in red, cone-segments co-centered with the box B{,
white) and cousin boxes (in gray) for the particular  and, in black, cone-segments co-centered with the
box B?Zl)' A surrogate scatterer is sketched in parent box ’PBl‘f.
blue.

Figure 1: Hlustration of the box and cone hierarchical structures used in the IFGF method.

quotients Ig(z)/G(x,xg)). To achieve an overall O(N log N') complexity, the interpolation from any given
box B(xg, H) is restricted to certain set “cousin” target points, that are outside B(zo,3H), but “not too
far” from it. Necessary interpolations to non-cousin points is enacted, recursively, by commingling smaller
“child” boxes into larger “parent boxes”, and obtaining necessary parent-box interpolation data from the
available child-box interpolation data.

In detail, for a given D € N, the IFGF method is based upon use of a D-level octree hierarchical
decomposition of a cube B%’Ll containing the discrete surface I'y, where each level is determined by a
set of axis-aligned boxes Bfﬁ C R? (defined as the Cartesian product of three one-dimensional half-open
intervals of the form [a,a + Hy) for some a € R), where k € N3 denotes a multi-index describing the
three-dimensional position of the box in the resulting Cartesian grid of boxes, and where d (1 < d < D)
denotes the level in the octree. The octree structure of boxes is defined iteratively starting from a single box
B%,l,l DTy of side H € R, H; > 0, on level d = 1. (Note that there is no undue expense incurred for, say,
an elongated surface I', for which a cubic box could be mostly empty—since, as indicated in what follows,
only certain “relevant” child boxes in the box octree are used by the algorithm.) The boxes on consecutive
levels d = 2, ..., D are defined by means of a partition of each of the level (d—1) boxes into eight equi-sized
and disjoint boxes of side Hy = Hy_1/2 resulting in the level d boxes B (k € {1,...,2971}3 =: 14). We
note that, in particular, for each d, 1 < d < D, we have

Iy = |J (BiNTw). (4)
keld,

The two-dimensional equivalent of the resulting hierarchical octree structure for an illustrative three-level
configuration (D = 3) is depicted in Figure la. Clearly, each box B{ on level d (2 < d < D) admits a
unique (d — 1)-level parent box PB{ containing By.

To achieve the desired acceleration, the IFGF method only considers interactions between boxes in a
certain set Rpg of relevant boxres, which are defined as the boxes in the octree structure that contain at



least one surface discretization point:
RL :={Be : IynnBL#0,keIt}, d=1,...,D,

Rp = U RdB.
d=1,..,.D

Furthermore, for a given box Bf(l on any level d, the method relies on a number of additional concepts,
such as the set of neighboring bozes N° Bfé (namely the set of level-d boxes whose closures have a non-empty

intersection with the closure Bf(l of Bﬁ) and the set of cousin bozes /\/lei (non-neighboring boxes that
are children of the parents neighbors), as well as related concepts such as the set of neighboring points
L{Bﬁ and the set of cousin points VBﬁ (which denote the set of surface discretization points within the
neighboring boxes and the cousin boxes, respectively):

NBil={Bf e Rp:||j — klle <1},
MBY = {B{ € Rp : B{ ¢ NB{ NPBj € NPB{},

uBi:=| (J B|nTwx, (5)
BeNB{

VBi:=| |J B|nIx.
BeMB{

Figure 1a displays the neighbors and cousins of the box Bé’l) in white and gray colors, respectively.

The IFGF algorithm accelerates the evaluation of the operator (1) by evaluating pairwise interactions
between cousin boxes on every level d, for d = D,...,3. (Note that the algorithm ends at level d = 3—
since at d = 3, each box is a cousin or a neighbor of all the other boxes, and thus, all remaining surface
evaluations are completed at this stage.) The evaluation of these interactions is enacted by means of a
simple piecewise interpolation method based on a certain factored form of the Green function in a set
of box-centered spherical coordinate systems, with one such spherical-coordinate system centered at each
one of the relevant boxes. The use of angular and radial interpolation methods gives rise to so-called
cone segments Cff;y: one for each box Bﬁ and for each multi-index v € Ig C N3 characterizing a conical
interpolation domain. A set X Clilw of P € N interpolation points is used within each cone segment Cﬁw,
where, letting Py and Pj,g denote the number of interpolation points in the radial s variable and each one
of the angular variables 6§ and ¢, P = angPS is an arbitrary but fixed number throughout the algorithm.
In what follows, cone segments Cﬁw are called co-centered with a box Bﬁ if and only if the origin of the
spherical coordinate system defining the cone segment coincides with the center of the box. Two cone
segments are called co-centered if they are co-centered with the same box. Note that the sub- and super
indices k and d in the cone-segment notation Cﬁ; - coincide with the corresponding indices of the co-centered
box.

To achieve competitive computation times, a certain factorization of the Green function G(x,z’) =
G(x,2{)gd(z,2') into a centered factor G(x,x{) (centered at the boz-center z{ of the box B{) and an
analytic factor g (x, '), is used. The field I(x) in (1) can be expressed, for each level d, as the sum, over
all multi-indices k € I%, of fields IZ(z) equal to the sum of G(z,2’) for all surface discretization points 2’
within the box Bﬁ, ie., for all 2/ € Bf(l NT'n. Using the aforementioned factorization centered at xﬁ yields

K@) = Y a@)Gx) =G r)R(x), F@)= Y  a@)gza), (6)
'€BINT N ' €BINT N

where a(z") denotes the coefficient a,,, in (1) that corresponds to the point 2’ € T'y. The IFGF interpolation
procedure is then used to evaluate Fﬁl. The generation of the P coefficients of each one of the degree-P



polynomial interpolants I pCffw, corresponding to interpolation of the field F? (cf. (6)) over the cone
segment C’f{lw, is achieved on the basis of the field values Fﬁl(XCﬁw) = {Fd(x):x € XCIC{IW}.

In [1] it is shown that the analytic factor is analytic everywhere in R3 \ N/ Bf{l and up to and including
infinity, and it can therefore be interpolated accurately throughout that region on the basis of a small
(finite!) number of interpolation points. (It is is easy to check that the same is true for most of the
relevant kernels arising in applications.) Since Ff(i equals a linear combination of finitely many analytic-
factor functions, it is clear that this function shares the same analytic properties, and it can therefore be
interpolated with equal quality and efficiency. The cone segments C’l‘(l;7 are defined by means of an iterative

procedure similar to the one used in the definition of the boxes Bl‘f, but in reversed order, starting from
d = D and moving upwards the tree to d = 3. The set of cone segments that is to be used at a given
level d depends strongly on the character of the surface I'y, the wavenumber s and, possibly, the Green
function G. A two-dimensional sketch of some illustrative box-centered cone segments for a given box Bff
and its parent PBf{l is provided in Figure 1b.

In order to evaluate the discrete operator (1) in O(Nlog N) operations, the IFGF algorithm uses
iterated interpolation, as illustrated in Figure 2, to evaluate the analytic factor at the interpolation points of
consecutive levels—thus avoiding the cost of directly evaluating the field I{(x) on levels (d—1), (d—2),...,3,
and using instead the interpolation data on level d to generate the necessary interpolation data at on the
consecutive level (d — 1). It is important to note that, in order to further increase the efficiency and
achieve the desired O(N log N) complexity, in analogy to the approach used for boxes, the IFGF method
only utilizes the set of relevant cone segments RCBﬁ for each box Bl‘f, namely, the cone segments that are
actually needed for interpolation back to cousin surface discretization points or to relevant cone segments
on the parent level. The relevant cone segments Rch(l are thus defined by

ReBl =0 for d=1,2,

7

RoBE = C'f{lw:velg’,C’ﬁwﬂVBﬁyé(DorCﬁwﬂ U Cl#0 for d> 3. @)
CEchBﬁ

The serial IFGF algorithm, introduced in [1], is summarized in Figure 2 and described in what follows.
Starting from the given coefficients in equation (1) at the bottom of Figure 2, the IFGF algorithm first
performs “LevelDSingularInteractions” (which, while required for the full evaluation of (1), are not, strictly
speaking, a part of the IFGF strategy, and would, in the context of a scattering solver, be substituted by
an appropriate local integration scheme; see e.g. [31]). The “LevelDSingularInteractions” stage evaluates
the field I at all surface discretization points z in all the neighbor boxes of each box BY (i.e. at all
T € UBI? for all relevant boxes BkD ). Next, the algorithm performs “LevelDEvaluations”, that is, it first
evaluates the field FiP(z) (see (6)) at every interpolation point in the relevant cone segments co-centered
with the box Bl?, and it subsequently generates the necessary level-D interpolants. The IFGF algorithm
then proceeds through levels d = D, ..., 3 by performing, on each level d, 1) Interpolations to cousin surface
discretization points in the “Interpolation” stage, as well as, 2) Interpolations to level d — 1 interpolation
points, and subsequent generation of the interpolants on level d — 1, in the “Propagation” stage, just as in
the “LevelDEvaluations” stage, but utilizing the interpolants instead of direct field evaluations.

The corresponding pseudo-code is presented in Algorithm 1. Note that this algorithm does not include
evaluations of interactions between neighboring boxes on the lowest level D (“LevelDSingularInteractions”
in Figure 2), which would generally be produced by means of a separate algorithm, as mentioned above in
this section.

3 Parallel IFGF Method



Interpolation(3 (0] t
Level 3 [ Interpolants ] P B [ perator
Output
N\ T J
- l Propagation(D — 1) |—\
I
Level D — 1 / Interpolants
v g
o .
P Propagation(D)
Level D [ Interpolants ]/ .
N\

e
SN
'
LevelDEvaluations , /
7

O

Figure 2: Visual representation of the IFGF algorithm, outlined in Algorithm 1, and also expressed in
Algorithm 5 in terms of three fundamental functions called LevelDFEvaluations, Propagation and Inter-
polation. Starting from the given coefficients aq,...,ax in equation (1), the LevelDFEvaluations function
generates the first set of interpolants on level D. The Interpolation function interpolates to the surface
discretization points and the Propagation function facilitates the upwards traversal of the octree structure.
Although they are not part of the IFGF algorithm, the interactions between level-D neighbor boxes are
represented here by the LevelDSingularInteractions function. Note that, unlike other acceleration methods
such as the FMM, contributions to the operator output are made at every level, and without a requirement
of a downward pass over the octree.

N

The IFGF parallelization scheme proposed in this paper relies on use of a hybrid MPI-OpenMP approach.
The OpenMP parallelization method, which is described in Section 3.1, is used to distribute the work
assigned to each MPI rank. Hence, in the specific 56-core-per-node hardware implementation demonstrated
in this paper, four intra-node MPI ranks are used per compute node, each one of which spawns fourteen
OpenMP threads—which, according to our experiments, leads to the best performance achievable without
the adverse impact (concerning e.g. code complexity, memory requirements, and communications) entailed
in pure MPI parallelism within each node or other intra-node hybrid OpenMP /MPI schemes. Section 4.4
presents results of our investigation of MPI vs OpenMP performance within each computing node, leading
to the aforementioned arrangement of intra-node MPI ranks. A general discussion on the performance of
hybrid MPI-OpenMP approaches can be found in [32-34].

3.1 IFGF OpenMP parallelization

The proposed strategy proceeds via parallelization of the three independent programming functions that
comprise the IFGF method, namely the LevelDFEvaluations function, the Interpolation function and the
Propagation function, as mentioned in Section 2 and illustrated in Figure 2. The first of these functions,
the LevelDEvaluations function, which corresponds to the loop in line 2 of Algorithm 1, evaluates, for each
relevant level-D box, the field generated by the point sources within the box (given by (6) with d = D) at
the interpolation points in all relevant cone segments co-centered with the box and generates the required
interpolants. The second function, the level-d-dependent Interpolation function, which corresponds to line
14 under the loops in lines 11 and 12, and which is represented in Figure 2 by rightward lines connecting
various levels to the “Operator Output”, performs the necessary interpolations to cousin surface discretiza-
tion points on level d (d = 3,..., D). The third and final programming function, the level-d-dependent



Algorithm 1 IFGF Method

1: \\Direct evaluations on the lowest level.

2: for Bl? € Rg do

3: for C{EA{ € R¢BP do > Evaluate F' at all relevant interpolation points
4 Evaluate and store F”(XCy.)
5: Generate interpolant I pC{g7
6: end for
7: end for

: \\Interpolation onto surface discretization points and parent interpolation points.
10: ford=D,...,3 do
11: for B € R do

©

12: for z € VBl‘iZ do > Interpolate at cousin surface points
13: Determine Cf., s.t. = € CfL.,

14: Evaluate and add to result IpC’ff;a (z) x G(z,28)

15: end for

16: if d > 3 then > Evaluate F' on parent interpolation points
17: Determine parent Bjiil = ’PBl‘f

18: for Ci ' € ReBj™! do

19: for x € XC’ﬁ;l do

20: Determine C{f;a st. x € Cﬁ;a

21: Evaluate and add IpC’f(l;a(:z:) x G(z,28)/G(x, I?_l)

22: end for

23: end for

24: end if

25: end for > Generate interpolants on parent level
26: for Bjd_1 € Rg do

2: for C{' € ReBj ™" do

28: Generate interpolant I pC’ﬁ;l

29: end for

30: end for

31: end for

Propagation function, which corresponds to line 21 under the loops in lines 11, 18, and 19 and is represented
in Figure 2 by means of upward pointing arrows targeting the “Interpolant” boxes, interpolates, for each
relevant level-d box, to interpolation points in the relevant cone segments co-centered with the parent box
on level (d — 1) and generates the required interpolants. These three functions are outlined in Algorithms
2, 3, and 4, respectively. Using these functions, the IFGF algorithm (Algorithm 1) may be re-expressed
as Algorithm 5. In what follows, we present our strategies for efficient parallelization of each one of these
functions separately.

Our approach to efficient parallelization of the LevelDFEwvaluations function is based on changing the
viewpoint from iterating through the level-D relevant boxes to iterating through the set Rg of all relevant
cone segments on level D. Since corresponding sets of level-d relevant cone segments for the wider range
3 < d < D are utilized in the parallelization of the Propagation function, we generalize the definition: the
set of all relevant cone segments on level d is denoted by R%, that is

R&:= |J TReBi for3<d<D. (8)
keld:BleRp

Using (8), a parallel version of Algorithm 2 is presented in Algorithm 6. The aforementioned change in
viewpoint corresponds to collapsing the two outermost nested loops in Algorithm 2, effectively increasing



Algorithm 2 LevelDEvaluations

1: for BE € R do
2: for Clgﬁf € ReBP do

3 Evaluate and store F\”(XCy.)
4: Generate interpolant I pC{(:?7

5 end for

6: end for

Algorithm 3 Interpolation(d)
1: for Bff € Rg do
2: for x € VB do
3 Determine C{., s.t. = € Cft,
4: Evaluate and add to result IpC{._ (z) x G(x,x{)
5: end for 1
6: end for

the number of independent tasks and, consequently, the achievable parallelism.

The proposed parallelization of the d-dependent Propagation function follows a similar idea as the
parallel LevelDFEvaluations considered above—relying now on iteration over the relevant (d — 1) (parent-
level) cone segments, which are targets of the interpolation, instead of the relevant level-d boxes emitting
the field. In the context of the oscillatory Green functions over two-dimensional surfaces I' C R? considered
in this paper, for example, the IFGF strategy provides an approximately constant number of relevant cone
segments on each level d—cf. Section 2 and [1, Sec. 3.3.3]—which the proposed parallelization of the
Propagation function exploits, resulting in an approximately constant number of independent parallel
task on each level. Additionally, the proposed parallel Propagation strategy avoids a significant “thread-
safety” [35,36] predicament, that is ubiquitous in the straightforward approach, whereby multiple writes
to the same target interpolation point on the parent level take place from different threads. In contrast,
the proposed Propagation strategy, is by design thread-safe without any additional considerations, since it
distributes the targets of the interpolation to the available threads. Note that the practical implementation
of this approach requires the algorithm to first determine the relevant box

RpCY., = Bi. st.  Ci., € ReBi (9)

that is co-centered with a given relevant cone segment Clil;v; then to determine the relevant level-(d + 1)
child bozes
CBI .= {BJ.d“ €Rp:jeIi PRI = Bg}, (10)

of a given relevant box Bf(l on level d; and, finally, to find all the interpolants I pC’fi7 on the relevant cone
segments (7) co-centered with the child boxes from which the propagation needs to be enacted. Using this
notation, the resulting Parallel Propagation algorithm is presented in Algorithm 7.

The proposed parallelization strategy for the third and final IFGF programming function, namely, the
Interpolation function, relies on the strategy used for the LevelDFEvaluations and Propagation functions—
which, in the present case, leads to iterating through the surface discretization points that are the target
of the interpolation procedure. This approach once again results in an approximately constant number of
independent parallel tasks on each level, and it avoids thread-safety difficulties similar to those discussed
above in the context of the Propagation function. For a concise description of the parallel Interpolation
function in what follows we denote by

M(z) = {Bﬁ ERp:x€ VBfﬁ} , (11)

10



Algorithm 4 Propagation(d)
1: for Bl‘f € Rg do
2 Determine parent Bjd_1 = PBﬁ
3. for C{_' € ReB{ " do
4 for z € XCﬁ;l do
5: Determine Cf., s.t. = € CfL.,
6
7
8
9

Evaluate and add IPCﬁ;a(.T) x G(z, xﬁ)/G(wafl*l)
end for
end for
: end for
10: for iji_l € Rp do
1: for Gt € ReB{ ™! do

12: Generate interpolant I pCjC?; !
13: end for
14: end for

Algorithm 5 IFGF Method
: LevelDEvaluations()

:ford=D,...,3do
Interpolation(d)
if d > 3 then
Propagation(d)
end if
end for

AR IR AN I S

the set of cousin boxes of a surface discretization point x € I'y on level d, 3 < d < D, which extends
the concept of cousin boxes of a box, introduced in equation (5). Using the definition (11), the Parallel
Interpolation function is presented in Algorithm 8.

In summary, the OpenMP parallel functions Parallel LevelDEvaluations, Parallel Propagation and
Parallel Interpolation introduced in this section are thread-safe by design, and they provide effective work
distribution by relying on iteration over items (relevant cone segments or surface discretization points)
that exist in a sufficiently large (and essentially constant) quantities for all levels d, 3 < d < D, in the
box-octree structure.

3.2 IFGF MPI parallelization

The proposed MPI parallel IFGF algorithm, which enables both data distribution onto the MPI ranks and
efficient communication of data between MPI ranks, is described in detail in Sections 3.2.1 through 3.2.2.
The approach mirrors the one proposed in Section 3.1 for the corresponding OpenMP interface. In fact,
the MPI parallel scheme is based on slight modifications of the OpenMP parallel Algorithms 6, 7, and 8.
As indicated by the theoretical discussion in Section 3.2.2, the communication overhead is such that the
intrinsic IFGF linearithmic complexity previously demonstrated in [1] for a single core implementation is

Algorithm 6 Parallel LevelDEvaluations
1: parallel for CI?W € RE do

2 Evaluate and store F}P (X C’lj?;,y)

3: Generate interpolant [ kaD;,Y

4: end parallel for

11



Algorithm 7 Parallel Propagation(d)
1: parallel for C’Jff;l € Rdc_l do
2 for B € C(RBCJff;l) do
3 for z € XC{ " do
4 Determine C’féa st. x € C’l‘ia
5: Evaluate and add IpCl‘f;a(x) x G(z, mﬁ)/G(axm}i*l)
6
7
8
9:

end for
end for
Generate interpolant [ chd;;l
end parallel for

Algorithm 8 Parallel Interpolation(d)

1: parallel for x € T'y do

2 for B € M%(z) do

3: Determine CffW st. x € Cﬁw
4: Evaluate IpCl‘f;,Y(x) x G(z,zd)
5 end for

6: end parallel for

preserved on any fixed number N, of cores; an illustration of this theoretical result on N, = 1,680 cores is
presented in Table 1. Most importantly, as in the OpenMP case (cf. the last paragraph of Section 3.1), for
arbitrarily large numbers D of levels, the MPI IFGF algorithm iterates over items (relevant cone segments
or surface discretization points) that exist in a sufficiently large (and essentially constant) quantities for
all levels d, 3 < d < D, in the box-octree structure. The proposed parallelization strategy thus results in
an overall MPI-OpenMP IFGF parallel scheme without hard limitations on the achievable parallelism as
the number of cores grows.

3.2.1 Problem decomposition and MPI data distribution

The proposed overall MPI data distribution strategy follows directly from consideration of 1) The partition
induced on the point-set I'y by the leaves of the octree structure, namely, the partition (4) with d = D,
as well as, 2) Associated partitions of the level-d sets {XC : C € R‘é} of level-d interpolation points.
Clearly, for an efficient parallel implementation, the distribution used should balance the amount of work
performed by each rank while maintaining a minimal memory footprint per rank, while also minimizing
the communication between ranks. A concise description of the method used for data distribution to the
MPI ranks is presented in what follows, where we let N, € N and p € N (1 < p < N,) denote the number
of MPI ranks and the index of a specific MPI rank, respectively.

The distribution of the surface discretization points is orchestrated on the basis of an ordering of the
set of relevant boxes R% on each level d, which, in the proposed algorithm, is obtained from a depth-first
traversal of the octree structure. This ordering is equivalent to a Morton order of the boxes (as described
e.g. in [27,29,30,37] and depicted by the red N-looking curve in the left panel of Figure 3) which, as
indicated in [37], can be generated quickly from the positions k € I g of the level-D boxes B{? through
a bit-interleaving procedure. At every level d the Morton order introduces a total order < on the set
of boxes. The surface discretization points I'y are then ordered according to the Morton order of their
containing level-D box. The resulting overall order has the desirable properties that, on every level d,
surface discretization points within any given box are contiguous in memory, and that boxes close in real
space are also close in memory. The sorted surface discretization points are distributed to the MPI ranks
based on their containing level-D boxes, in such a way that the boxes processed by each rank are an
“Interval” set of the form {B € Rg : Bll{)1 < B < Blg }, for suitable choices of ky,ka € [ g designed to

12
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Figure 3: Left panel: Two-dimensional example of an ordering of the cone segments based on the Morton
order of the boxes on level d = 3 with four cone segments per box. The red line indicates the Morton order of
the boxes where the red numbers denote the actual Morton code of the containing box. The green numbers
denote the ordering of the cone segments in the proposed Morton-based cone-segment ordering. The blue
curve represents the domain boundary I'. Right panel: Sketch of a possible cone-segment memory layout,
demonstrating the equi-distribution of cone segments among ranks, and emphasizing a central element of
the proposed parallelization strategy, namely, that co-centered cone segments may be assigned to different
MPI ranks. Note that only relevant boxes and cone segments are stored in memory resulting in some
numbers in the ordering being skipped.

\
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Algorithm 9 MPI Parallel Level DEvaluations
1: parallel for C’lgW € ngp do
2 Evaluate and store Iy (XC.)
3: Generate interpolant I pC’l?w
4: end parallel for

guarantee that all the boxes on a given rank contain a number of surface discretization points as close as
possible to the average value N/N,.

The set of surface discretization points stored in the p-th MPI rank, 1 < p < N,, is denoted by I'y ,.
By definition, the subsets I'y , of Iy are pairwise disjoint and their union over all MPIranks p =1,..., N,
equals I'y. This partition of the set of surface discretization points is used to evenly divide, among all
MPT ranks, the work performed in the Interpolation function (OpenMP Algorithm 8). The level-D based
partition of Iy is used to order the discretization points for all subsequent levels (d = D —1,...,3). Thus,
the MPI parallel Interpolation function results from the straightforward and level-independent modification
of Line 1 in Algorithm 8, to read x € I'y, instead of € I'y—as shown in Algorithm 10. Naturally, the
values of the discrete operator I(x,) in (1) computed by the p-th MPI rank correspond to points 2, € I'y ),
and they are therefore also stored in the p-th MPI rank. In other words, the set of resulting field values I (/)
is partitioned and stored in the MPI ranks according to the partition utilized for the surface discretization
points I'y.

Algorithm 10 MPI Parallel Interpolation(d)

1: parallel for x € I'y , do

2 for B € M4(z) do

3 Determine C{fw st. x € Cf(lw
4: Evaluate IpC’ff;,Y(x) x G(z,zd)
5 end for

6: end parallel for

13



Algorithm 11 MPI Parallel Propagation(d)
1: parallel for C’Jff;l € Rdcjpl do
2: for B € C(RBCJff;l) do

Generate interpolant [ chd.;l
end parallel for

3: for z € XCj‘f;I do

4: Determine C’féa st. z e CL,

5: Evaluate and add IpCl‘f;a(x) x G(z, mﬁ)/G(axm}i*l)
6: end for

T end for

8:

9:

The data associated with the level-d relevant cone segments is also distributed to MPI ranks on the
basis of a total order—in this case, a total order on the set of level-d cone segments that is based on the
Morton order imposed on the level-d boxes, in such a way that co-centered cone segments are close in
memory. It should be noted that, for every relevant cone segment Cf{l;,y € R4, 3 < d < D (see (8)), the
set of P coefficients that characterize the polynomial interpolants I pC’l‘f;,Y (Section 2), which approximate
the field Flf in (6) within the cone segment Cd Ky need to be stored, in appropriately distributed manner,
for two consecutive levels. Indeed, for each d, these level-d coefficients are utilized to enable two different
interpolation procedures, namely interpolation from level d to interpolation points at the parent-level (d—1)
in the Propagation function (Line 4 in Algorithm 7), as well as interpolation to the level-d cousin surface
discretization points in the Interpolation function (Line 3 in Algorithm 8).

The set of level-d relevant cone segments Rdc is sorted on the basis of the Morton order induced by
the co-centered level-d boxes followed by a suitable sorting of cone segments in each spherical coordinate
system—resulting in a total order C in the set of all level-d relevant cone segments, as depicted in the
left panel of Figure 3. (Each set of co-centered cone segments is ordered using the radial direction first,
then elevation and finally azimuth, although any other ordering could be used.) Finally, at each level d
(d=D,...,3), approximately equi-sized and pair-wise disjoint intervals of relevant cone segments C' of the

form {CeRE : O, CCOCCE,

contiguous cone segments), are distributed to the MPI ranks, as illustrated in the right panel of Figure 3.
Note that the specific assignment of cone segments to MPI ranks is solely determined by the order C and
the number of MPI ranks and cone segments, and it does not otherwise relate to the underlying box tree.
In particular, as suggested in the right panel of Figure 3, co-centered cone segments may be assigned to
different MPI ranks—which induces a flexibility that leads to load-balancing of good-quality and, therefore,
high parallelization efficiency. As is the case for the relevant boxes, the proposed ordering of the relevant
cone segments implies that cone segments which are close in real space (i.e. co-centered with the same
box and pointing in the same direction or co-centered with boxes which are close in real space) are also
close in memory, and, in particular, are likely to be stored within the same MPI rank. Analogously to
the notation introduced above for the distributed surface discretization points, the relevant level-d cone
segments assigned to a MPI rank with index p, 1 < p < N,, are denoted by Rd . The MPI-capable
algorithm is thus obtained by adjusting the loops in the first lines in Algorithms 6 and 7 to only iterate
over the level-d relevant cone segments Rd stored in the current rank p, as shown in the MPI parallel
Algorithms 9 and 11, instead of iterating over all relevant cone segments on level d.

, for some ki,ks € I% and v;,72 € I‘é (i.e., disjoint intervals of

3.2.2 Data communication

Clearly, for an MPI rank to access data stored in a different rank, explicit communication between the
ranks must take place. The proposed solution, which we favor due to the decreased complexity of the im-
plementation it entails, is based on one-sided or remote memory access (RMA) communication introduced
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Algorithm 12 CommunicateInterpolationData(d)

1: parallel for x € I'y , do

2 for B € M%(z) do

3: Find 4 such that z € C{f;:y € RCBI‘Z

4: Identify the MPI rank p on which I pCf(l;;/ is stored
5 MPI_Get I pCﬁﬁ from rank p

6 end for

7: end parallel for

Algorithm 13 CommunicatePropagationData(d)

1: parallel for Cj(f;l € R%Tpl do

2:  for Bf € C(RpC{") do

3 for z € XCﬁ;l do

4 Find 4 such that = € G5 € RoBj

5: Identify the MPI rank p on which IpCl‘fﬁ is stored
6 MPI_Get IpCf(lﬁ from rank p

7 end for

8 end for

9: end parallel for

in MPI-2 [38, Section 5], [39, Section 8]—which utilizes a single MPI_Get or MPI_Put call on the origin
rank instead of a coupled MPI_Recv-MPI_Send call (or similar functionalities) involving both the origin
and the target rank.

The data any MPI rank may require from other MPI ranks is limited to certain interpolants I pCﬁW. It
is therefore sufficient to store the corresponding coefficients in so-called RMA windows (in MPI given by
MPI_Win and allocated with e.g. MPI_Win_allocate), which enable the one-sided communication approach.
For increased efficiency, the computations and communications are organized among the ranks on the basis
of the following two considerations: 1) For each p, 1 < p < N,, the p-th rank asynchronously collects
from other ranks all the data (i.e. the coefficients of the interpolants) it requires to perform Interpolation
or Propagation computations assigned to it; and 2) The communications necessary to collect this data
are interleaved with the computations in such a way that while the computations by the Interpolation
function take place, the communication for the next Propagation function is performed and vice versa.
This approach, which effectively hides the communications behind computations (thus improving the overall
performance and parallel efficiency), requires every MPI rank to store all data it obtains from other ranks
for one full level-d (3 < d < D) Interpolation or Propagation step while it continues to store the coefficients
it has itself generated—which effectively increases the peak memory per rank requirements slightly (by e.g.
10% or less). The level-d dependent CommunicateInterpolationData (resp. CommunicatePropagationData)
programming function in Algorithm 12 (resp. Algorithm 13) encapsulates the communications performed
by each rank to obtain, from other ranks, the polynomial coefficients it needs to enact the necessary level-
d interpolation computations (resp. interpolation computations onto level-(d — 1) interpolation points)
required by the Interpolation (resp. Propagation) function.

Using the functions 9 through 12, the pseudo-code for the proposed overall MPI-OpenMP IFGF algo-
rithm is given in Algorithm 14. Note that access to RMA windows is usually asynchronous and requires
some form of synchronization to ensure the data transfer is finalized before the communicated data is
accessed. Moreover, the call to the CommunicatePropagationData in Algorithm 14 requires for the Prop-
agation function to have completed in all ranks targeted by the communication function.

15



Algorithm 14 IFGF Method

1: LevelDEvaluations()
2: CommunicatePropagationData(D)

3:

4: ford=D,...,3 do

5: CommunicatelnterpolationData(d)
6: if d > 3 then

T Propagation(d)

8: if d > 4 then

9: CommunicatePropagationData(d — 1)
10: end if
11: end if
12: Interpolation(d)
13: end for

Figure 4: Test geometries. Left: Oblate spheroid z? + y? + (2/0.1)2 = a?. Right: Prolate spheroid
22+ 9%+ (2/10)? = a®.

4 Numerical Results

Our numerical examples focus on three simple geometries which coincide with the test cases presented in [1]:
a sphere of radius a, the oblate spheroid 22+ +(2/0.1)? = a? and the prolate spheroid z2 +y*+(2/10)? =
a®. The latter two geometries are depicted in Figure 4. In what follows the diameter (also referred to as
the “size”) of a geometry I' is denoted by

A= A(T) := max |z — y|; (12)

z,yel’

clearly we have A = 2a in the case of the sphere and the oblate spheroid geometries and A = 20a for
the prolate spheroid geometry. These relatively simple geometries present the same kinds of challenges,
in the context of the IFGF method, that arise in a wide range of real-world problems, including aircraft,
lenses and meta-materials (with a point distribution somewhat similar to that in an oblate spheroid),
submarines (prolate spheroid), etc. For example, even though the problem of finding a scattering solution
for a submarine is much more challenging than the corresponding problem for a spheroid of the same
size, in view of the need for accurate integration of singular kernels and adequate representation of the
surface Jacobians, the performance of the IFGF method for the evaluation of the discrete operator (1) for
a submarine should not differ significantly from the corresponding performance on a prolate spheroid of a
comparable discretization, point distribution and electromagnetic size. Per the discussion in Section 4.4, a
strategy based on pinning 4 MPI ranks to each compute node, where each MPI rank spawns 14 OpenMP
threads, is utilized in all test cases presented in this paper. Throughout this section, further, numbers
P, = 3 and P,,s = 5 of interpolation points in the radial and angular variables, respectively, were used in
each cone segment; cf. Sections 2 and 5.

In what follows we present IFGF performance data based on various runs for the aforementioned ge-
ometries. In detail, Section 4.1 describes the hardware employed for the numerical tests and Section 4.2
introduces the relative Lo error estimate used. Section 4.3 then details the concepts of strong parallel-
efficiency and speedup that are used subsequently, and Section 4.4 describes the observed impact of the
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proposed hybrid MPI-OpenMP strategy on performance. Sections 4.5 and 4.6 present the observed com-
munication patterns and linearithmic scaling, respectively. Sections 4.7 and 4.8, finally, present test cases
demonstrating the strong parallel efficiency of the algorithm and its performance for large sphere problems,
including detailed comparisons with the relevant recent literature.

4.1 Compiler and hardware

The proposed parallel IFGF program was implemented in C++, and the resulting code was compiled with
the Intel mpiicpc compiler, version 2021.1, and the Intel MPI library. The following performance-relevant
compiler flags were used: -std=c++20, -O3, -ffast-math, -qopt-zmm-usage=high, -no-prec-sqrt, -no-prec-
div. All tests were run on our internal Wawvefield cluster which consists of 30 dual-socket nodes. Each node
consists of two Intel Xeon Platinum 8276 processors with 28 cores per processor, for a total of 56 cores
per node, and 384 GB of GDDR4 RAM per node. (The Xeon processors we use support hyper-threading,
but this capability was not exploited in any of the tests presented in this paper.) The nodes are connected
with HDR Infiniband.

4.2 Numerical error estimation

The errors reported in what follows were computed as indicated in [1], that is, utilizing the relative Lo
difference €57 between the full, non-accelerated evaluation of the field I(x), as stated in (1), and the IFGF-
accelerated evaluation I,c.(z) of (1) computed on a randomly chosen subset of M surface discretization
points. More precisely, the error is given by

M
; “[(‘TO'(’L)) - ‘l:'rlCC(:rcT(i))‘2

EM — ) (13)

M
; [ 1(240)) 2

where o is a random permutation and x; € I'y denote the surface discretization points. The method used
in [1] is suitably extended to the present MPI parallel implementation by using a set of test points xy
that contains a number M = 1000 of randomly chosen points on each MPI rank. (In [1] it was shown for
sufficiently small examples that an error evaluation on a subset of 1000 points produces an error estimation
close to the actual error.) More precisely, 1000 surface discretization points are randomly chosen on each
MPI rank from the distinct set of surface discretization points I'y , assigned to MPI rank p (1 < p < N;) on
the basis of the data distribution strategy introduced in Section 3.2. The final errors are then accumulated
resulting in the overall error estimate

e:=¢epy with M =1000 x N,. (14)

As a result, the error estimates we use depend on the number N, of MPI ranks, which accounts for the
slight variations in the errors reported as number of MPI ranks is varied (cf. Tables 3 and 4). All tests
were set up in such a way that an error of approximately 10~ was achieved, although the IFGF method
can achieve arbitrarily small errors.

4.3 Strong parallel efficiency concept

Let T'(N., N) denote the time required by a run of the parallel IFGF algorithm on an N-point discretization
I'y of a given surface I" (obtained by means of a fixed discretization scheme) on a total of N, computing

cores. Using this notation, for a given N, the strong parallel efficiency FE3, N. that results as the number
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of cores is increased from N? to N, is defined as the quotient of the resulting speedup Snon, to the

s ideal .
corresponding ideal speedup value S}V:S?Nc.
0
Sidgal — N, Sno n. 1= T(Nc ) FN) s — SNQ,NC
N9, N, Ng’ cr Ve T(N07FN) ’ NQ,Ne¢ }\C}Cg’a]lvc

Note that the implicit dependence on N and I' is suppressed in the speedup and efficiency notations.

4.4 Impact of single-node OpenMP /MPI pinning selections

In order to optimize code performance we investigated the dependence of the strong parallel efficiency and
the memory usage on the number of OpenMP threads per MPI rank for a fixed total of 56 OpenMP threads
in a single node. Representative results of these experiments are presented in Figure 5, which correspond
to a test case involving 393,216 discretization points on a sphere 16\ in diameter, where A = 2?” denotes
the wavelength. (A small problem was selected for this example as a stress-test for the parallelization
strategy used.) That figure shows that the lowest efficiency results as a single MPI rank spawning all 56
OpenMP threads is utilized, each pinned to one of the 56 physical cores available in the single dual-socket
node used. The figure also shows that the use of an increasing number of MPI ranks and a decreasing
number of OpenMP threads per rank while maintaining a total of 56 threads, results in varying efficiencies
and memory requirements. In particular, the memory requirements increase, albeit sublinearly, with
the number of MPI ranks, owing to the grouped communication strategy used—which, as described in
Section 3.2.2, requires storage of all the communicated data and which, therefore, leads to increases in the
memory requirements as the number of MPI ranks utilized grows. It is therefore desirable to minimize the
number of MPI ranks per node while maintaining as high an efficiency as possible. Figure 5 shows that
the best efficiency is achieved, while incurring a modest memory usage, when 4 MPI ranks per node are
utilized, each one of which spawns 14 OpenMP threads. This selection was therefore adopted and used
throughout the numerical examples presented in this paper.

4.5 MPI communication patterns

As detailed in Section 3.2.1, the proposed parallelization strategy and associated data distribution approach
are based on ordering of data according to the Morton order and associated N\ curve depicted in Figure 3.
This ordering is introduced with the dual intent of minimizing the amount of data communicated between
MPI ranks, and localizing the communication that is still required to pairs of ranks containing data
corresponding to nearby boxes. Figure 6 displays the resulting communication patterns for a representative
test case, wherein, using 1,572,864 discretization points, a problem for a sphere 128 in diameter was run
on 16 ranks (224 cores). The left panel displays the amount of data communicated by rank j to rank &,
0 < j,k < 15, whereas the right panel reports the total amount of data communicated to each rank (in red)
and the peak memory usage on each rank (in blue). The results presented in the left panel indicate that
a high degree of localization was achieved by the strategy: the majority of the communication takes place
between MPI ranks with IDs differing only by 1, although significant amounts of communication can be
observed between certain pairs of non-neighboring ranks (e.g. ranks 1 and 8). This is easily understood in
terms of the character of the N curve depicted in Figure 3, which preserves locality to a significant extent
but not perfectly. The right panel of figure 6 shows that the data communicated to each rank through
the complete run of the algorithm (including, for the case the D = 10 presently considered, the memory
communicated in each one of seven levels d = 3 to d = 10 where memory exchanges take place) is less
than 10% of the peak memory requirements of each rank. In particular, since the amount of memory
communication is essentially independent on the level d, it follows that approximately 1.5% of the peak
memory requirements were communicated on each level.
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Figure 5: Strong Parallel Efficiency and Peak Memory usage as a function of the number of OpenMP
threads per MPI rank for a fixed total of 56 OpenMP threads.
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Figure 6: Communication patterns observed for a representative test case run on 16 MPI ranks. Left:
amount of data communicated between ranks with IDs j (row) and k (column), 0 < j,k < 15. Right:
total amount of data communicated to each rank (in red) and the the peak memory usage on each rank
(in blue).
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Figure 7: Illustration of the linearithmic complexity of the parallel IFGF method (which had previously
been demonstrated [1] for the serial version of the algorithm), for the prolate spheroid geometry, on 30
compute nodes. Various statistics associated with this figure are presented in Table 1 and its caption.

4.6 Linearithmic scaling

Figure 7 presents results of a study of the scaling of the parallel IFGF method for the prolate spheroid
geometry on a fixed number of nodes (namely, all 30 nodes available in the computer cluster we use),
utilizing four MPI ranks per node (as recommended in Section 4.4), and with parameters resulting in
an IFGF error ¢ ~ 2 x 1072 (cf. equation (14)). The study was implemented for values of N ranging
from 25,165,824 to 1,610,612,736, and for corresponding diameters ranging from 512X to 4,096\. Various
statistics associated with this figure are presented in Table 1. The results show that the linearithmic
algorithmic complexity and memory requirements of the basic IFGF algorithm are maintained in the
parallel setting. In fact, the observed complexity even slightly outperforms the postulated O(N log N)
within this range of values of N; cf. Table 1 which suggests convergence to exact linearithmic complexity,
with a well defined proportionality constant as N grows.

r N A N, € T (s) Memory | T/(NlogN)

25,165,824 | 512\ 7.20 x 10° 83 GB | 1.678 x 1078
Prolate 100,663,296 | 1,024\ 5 [ 3.03x10' | 268 GB | 1.636 x 1078
Spheroid | 402,653,184 | 2,048\ 1,680 1 2> 10 1.28 x 102 | 1022 GB | 1.600 x 10~8
1,610,612,736 | 4,096\ 5.42 x 10% | 4123 GB | 1.588 x 1078

Table 1: Data underlying the linearithmic scaling test illustrated in Figure 7. In this test the acoustic
diameter of the ellipsoid was kept proportional to v/N, and a discretization density of 5.6 points per
wavelength was used. The Memory column presents the sum over all MPI ranks of the peak memory usage
per MPI rank. The values in the last column suggests convergence to exact O(N log N) scaling.

4.7 Strong parallel efficiency tests

This section concerns the strong parallel efficiency of the proposed parallel IFGF algorithm. In order
to properly assess the parallel performance of the code, all the scaling tests were conducted without
hyper-threading, and with the Intel®Turbo Boost technology deactivated. (When active, the Turbo
Boost technology scales the processors frequency depending on the number of CPU cores in use within
each processor.) The observed strong-scaling speedups S n, and associated parallel efficiencies EY N,
(1 < N, < 1,680) are displayed in the upper and lower panels of Figure 8, respectively, including results
for three test cases, namely, a sphere of diameter A = 128\ and oblate and prolate spheroids (Figure 4)
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Figure 8: Observed speedup S1,n, (upper panel) and strong-scaling efficiency EXo N, (lower panel) versus
number of cores N, in a strong scaling test transitioning from 1 core to 1,680 cores (= 30 compute nodes)
for three geometries: a sphere 128 wavelengths in size (blue), an oblate spheroid 128 wavelengths in size
(red), and a prolate spheroid 256 wavelengths in size (yellow). The dash-dotted purple line in the upper
graph indicates the theoretical perfect speedup.

of large diameters A = 128\ and A = 256, respectively. In all test cases considered in this section
discretizations at 5.6 points per wavelength were used.

In view of the requirements of the strong-scaling setup, test problems were selected that can be run
in a reasonable time on a single core and with the memory available in the corresponding compute node.
Clearly, such test problems tend to be too small to admit a perfect distribution onto large numbers of
cores. As illustrated in Figure 8, however, in spite of this constraint, scaling is observed in the complete
range going from 1 core to 1,680 cores (30 nodes), and, as discussed in Section 3, no hard limitation on
the scaling can be observed. It is reasonable to expect that, unlike other approaches (for which either hard
limits arise [16], or which rely on memory duplication [18,19]), the observed speedup continues to scale
with the number of cores, as suggested by Figure 8, up to large numbers of cores.
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r N A | N, £ T (s) Ef n, (%) | Sin.

1 4.29 x 103 100 | 1.00

2 2.18 x 103 98 | 1.97

Sphere | 1,572,864 | 128\ | 4 | 2x 1073 | 1.09 x 103 99 | 3.94
8 5.46 x 102 98 | 7.86

14 3.17 x 102 97 | 13.53

1 1.57 x 103 100 | 1.00

2 7.90 x 102 100 | 1.99

Sgﬁé?f)‘fd 1,572,864 | 128X | 4 | 5x 107 | 3.98 x 107 99 | 3.95
8 2.03 x 102 97 | 7.74

14 1.22 x 102 92 | 12.90

1 3.63 x 103 100 | 1.00

Prolate 1.83 x 103 99 | 1.98
Spheroid | 6:291,456 | 256X | 4 | 6 x 1074 | 9.25 x 102 98 | 3.92
8 4.80 x 102 95 | 7.57

14 2.67 x 102 97 | 13.57

Table 2: Strong parallel scaling test of the OpenMP IFGF implementation from N, =1 to N, = 14 cores
in a single node for three different geometries I'.

r N A | N, | N. € T (s) Ey N, (%) | Sun,
1 |14 | 2x1073 | 3.17 x 102 100 | 1.00
Sphere | 1,572,864 | 128\ | 2 | 28 | 2x 1073 | 1.64 x 102 97 | 1.93
4 |56 | 2x1073 | 8.98 x 10! 88 | 3.54
1 |14 | 5x107% | 1.22 x 102 100 | 1.00

Oblate 4 1
Spheroid | 1,572,864 128\ | 2 | 28 | 6 x 10 6.14 x 10 99 | 1.98
4 | 56 | 6x10"%|3.26 x 10! 93 | 3.74
1 |14 | 6x107* ]| 2.67 x 102 100 | 1.00

Prolate —4 2
Spheroid | 6:291,456 256\ | 2 | 28 | 6 x 10 1.44 x 10 93 | 1.86
4 | 56 | 5x10"% | 8.28 x 10t 81| 3.23

Table 3: Strong parallel scaling test of the shared-memory MPI implementation on a single node, transi-
tioning from N, = 14 cores to N. = 56 (all cores available in one compute node) by increasing the number
N, of MPI ranks from 1 to 4, for three different geometries I'.
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T N A ]\fc 3 T (S) E;G,NC (%) 5567Nc E?VC N

2 ¢

56 | 2x 1073 | 8.98 x 10* 100 1.00 -

112 | 2x 1073 | 4.68 x 10! 96 1.92 96

224 | 2x 1073 | 2.61 x 10! 86 3.44 90

Sphere | 1,572,864 | 128X | /o | 9 1073 | 1.40 x 10! 80 | 6.40 93
896 | 2x 1072 | 7.76 x 10° 72 | 11.57 90

1680 | 2 x 1073 | 4.47 x 10° 67 | 20.08 *93

56 | 6 x 1074 | 3.26 x 10* 100 1.00 -

112 | 6 x 107* | 1.78 x 10! 92 1.83 92

Oblate 224 | 6 x 107 | 1.01 x 10! 81 3.22 88
Spheroid | 1,972,864 128X 448 | 6 x 107* | 5.66 x 10Y 72 5.76 90
896 | 6 x 1074 | 3.13 x 10° 65 | 10.41 90

1680 | 6 x 10~% | 1.89 x 10° 58 | 17.29 *89

56 | 4x107% | 8.28 x 10! 100 1.00 -

112 | 5x 107* | 4.50 x 10! 92 1.84 92

Prolate 224 | 6x 1074 | 2.48 x 10! ]3 3.34 91
Spheroid | 6,291,456 256 448 | 6 x 107* | 1.36 x 10* 76 6.11 92
896 | 6 x 1074 | 8.29 x 10° 62 9.99 82

1680 | 6 x 10~ | 4.29 x 10° 64 | 19.33 *103

Table 4: Strong parallel scaling test of the distributed-memory MPI implementation from N, = 56 to
N, = 1680 cores (1 to 30 compute nodes) with 4 MPI ranks per node for three different surfaces I". In view
of the limitation imposed by the total number (1680) of available cores in the hardware used, the data
points marked with an asterisk (*) in the last column do not correspond to doubling of core numbers, but
show instead the parallel efficiency Egqg 1450 with respect to the second to last row for each surface I'.

Tables 2, 3, and 4 provide details concerning the data displayed in Figure 8: they focus, respectively, on
the strong parallel efficiencies achieved by the proposed OpenMP, shared-memory MPI, and distributed-
memory MPI parallelization. In detail, these tables display the main two quantifiers of strong parallel
performance, namely, the observed strong parallel efficiency ENO N, and speedup Spyo y,, along with the
computing times T, the resulting accuracy ¢, the largest diameter A and the numbers of discretization points
used. The tables and figure suggest that the IFGF parallel efficiencies are essentially independent of the
geometry type. Among these tables greater significance may be attached to Table 4, which demonstrates the
scaling of the method under the one hardware element that can truly be significantly increased, namely, the
number of compute nodes. According to this table, a strong scaling efficiency of approximately 60% across
the complete cluster used can be observed in all cases. The observed efficiency loss can mainly be attributed
to the load-imbalance induced by the necessary data partitioning structure and the cost of communication
between ranks. In detail, the algorithm’s data partitioning strategy is based on an equi-partition of the
number of target points of the interpolation procedures associated with both, the interpolation to the
surface discretization points (Algorithm 8), and the interpolation points on the parent-level cone segments
(Algorithm 7). While this strategy leads to a reasonable memory distribution (as suggested by the right
panel in Figure 6), it does not guarantee an equi-partition of the number of operations, as the number of
interpolants used on a given target point may vary significantly across the set of target points, resulting
in load-imbalance.

The speedups achieved by the proposed parallel strategy appear to outperform those achieved by MPI-
parallel implementations of FMM, as can be verified by comparison with results presented in, e.g., [20,
22,27]. Indeed, [20, Fig. 4, Fig. 5], presents a scaling test case for a problem of spheres of diameters
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between 40\ and 120\, run from 1 to 128 cores, showing, in all cases, parallel efficiencies of the order of
60% for the 128 core runs. According to the value shown in Figure 8 for the sphere 128\ in diameter,
in turn, the IFGF method achieves 82% efficiency on 112 cores for this problem, and it remains above
60% efficiency up to 1,680 cores. Reference [22, Fig. 1], on the other hand, utilizes up to 1024 cores
for a single-level FMM implementation, showing a parallel efficiency of less than 50% going from eight
cores to 1024 cores for a sphere test case of 90\ in size, whereas, according to Figure 8, the IFGF
approach achieves 57% efficiency scaling from 1 core to all 1680 cores. Reference [27], in turn, presents
scaling results for the parallel BEMFMM implementation of the FMM algorithm; detailed comparisons
with results presented in that paper are presented in Section 4.8. To obtain a useful direct comparison with
the BEMFMM implementation presented in [27] we additionally utilized the freely available BEMFMM
open-source download provided by the authors to performed direct performance comparisons of the IFGF
and BEMFMM implementations. (Direct comparisons with data reported in in [27] are presented in
Section 4.8.) By necessity, our tests were limited to a test example consisting of a sphere containing
approximately 360,000 DOF, which is the largest test case provided with the BEMFMM test code, and
we selected a sphere of acoustic diameter of 16\ for this experiment. We run both algorithms in the 30
available nodes in our clusterm each one of which contains 56 computing cores. Our observations are laid
out in Table 5. We note that, in particular, that the IFGF algorithm exhibits reasonable scaling even for
the extremely small problem considered. Further, the IFGF runs were faster than the BEMFMM runs by
factors of 9.3 and 41.6 in the 1-node and 30-node runs, respectively, with an IFGF speedup over 4 times
higher than that provided by BEMFMM going from 1 to 30 nodes.

BEMFMM | IFGF | BEMFMM/IFGF
N 361,224 | 393,216
1 Node (s) 14.95 1.60 9.3
30 Nodes (s) 4.99 0.12 41.6
Speedup 3.00 13.33

Table 5: Computing times, speedups and performance ratios observed in runs of the BEMFMM [27] and
IFGF implementations in the 30 Node/1680 core cluster used in the present paper.

4.8 Large sphere tests

Table 6 illustrates the performance of the IFGF method in terms of computing time and memory require-
ments for a large-sphere problem, 1,389\ in diameter, which was run on the full 30 node, 1,680 core cluster.
As indicated in the table, the sphere was discretized using = 2.15 billion degrees of freedom, and, with a
memory usage of under 11 TB and with a computing time of under 900 seconds, the algorithm evaluated
the discrete integral operator with a relative L? near-field error of 6 x 1073, This sphere problem corre-
sponds to the 2-meter sphere at f = 238.086KHz considered in [27, Table 2]—whose acoustic size indeed
equals 2 meters/\ = 2f/c = 2-238,086/343 ~ 1, 389.

For reference, [27, Table 2] reports a BEMFMM run configured with 1.0 x 1072 accuracy for the
aforementioned f = 238,086KHz sphere test case, showing a near-field solution error of 2 x 10~! with
evaluation of the discrete integral operator in a computing time of ~ 52 seconds in a computer containing
131,072 cores and with an unspecified amount of memory.
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r N A N, € T (s) Memory

Sphere | 2,147,483,648 | 1,389 X | 1,680 | 6 x 1073 | 8.77 x 10? | 10,449 GB

Table 6: Large sphere test case run on thirty 56-core compute nodes (for a total of 1,680 cores), utilizing
120 MPI ranks. The sphere of acoustic size 1,389 A in diameter (resulting in a resolution of approximately
19 points per wavelength) in this table coincides with largest sphere test case considered in [27].

5 Concluding Remarks

This paper presented a parallel version of the IFGF acceleration method introduced in [1], demonstrating in
practice parallel scaling to large core numbers while simultaneously preserving the linearithmic complexity
of the sequential IFGF algorithm. The proposed parallelization approach exploits the box-cone octree
structure inherent in the IFGF method, resulting in a strategy that, per the theoretical discussion in
Section 3.1 and the first paragraph of Section 3.2, natively avoids bottlenecks or hard limits inherent in
approaches that orchestrate the parallelization on the basis of octree-box partitioning only. A number of
additional questions are left for future work, as briefly summarized in what follows. On one hand, minor
modifications to the data-decomposition strategy introduced in Section 3.2.1 could be introduced to not
only (approximately) equipartition the surface discretization points and cone segments among MPI ranks,
but to also incorporate the number of actual computations and the amount of data required from other MPI
ranks in the partitioning scheme. Such an improved data-decomposition design could indeed be obtained by
relying on minor adjustments to the cone and box intervals introduced in Section 3.2.1 leading to improved
load-balancing, and, thus, improved parallel efficiency. Further, the feasibility of implementations on
heterogeneous architectures such as, e.g., computer systems that incorporate general purpose graphical
processing units (GPUs), is currently under study, as is the use of CPU vectorization in the performance-
critical interpolation stage. In particular, the use of GPUs to accelerate the interpolation processes, which
represent the most time consuming part of the IFGF method, appears as a highly promising avenue of
inquiry. Concerning mathematical aspects of the algorithm, the implementation presented in this paper
is intended for use with relatively low-order interpolation degrees Py and Payg, as in [1], but higher-order
counterparts are envisioned. Further, trigonometric coordinate transformations that are required as part
of the spherical-coordinates interpolation scheme that is central to the IFGF algorithm, and which entail
approximately 50% of the computational cost of the algorithm, have been incorporated by direct evaluation
of trigonometric functions whenever needed, presenting an opportunity for further optimization. In any
case, while a number of additional optimizations could be pursued, we submit that the current purely
memory based load-balancing strategy (presented in Section 3.2.1) achieves an adequate balancing of
memory transfers and computing times per MPI rank and leads to an overall favorable parallel scaling.
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