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Abstract

This paper presents a spectral scheme for the numerical solution of nonlinear conservation
laws in non-periodic domains under arbitrary boundary conditions. The approach relies on
the use of the Fourier Continuation (FC) method for spectral representation of non-periodic
functions in conjunction with smooth localized artificial viscosity assignments produced by
means of a Shock-Detecting Neural Network (SDNN). Like previous shock capturing schemes
and artificial viscosity techniques, the combined FC-SDNN strategy effectively controls spuri-
ous oscillations in the proximity of discontinuities. Thanks to its use of a localized but smooth
artificial viscosity term, whose support is restricted to a vicinity of flow-discontinuity points,
the algorithm enjoys spectral accuracy and low dissipation away from flow discontinuities, and,
in such regions, it produces smooth numerical solutions—as evidenced by an essential absence
of spurious oscillations in level set lines. The FC-SDNN viscosity assignment, which does
not require use of problem-dependent algorithmic parameters, induces a significantly lower
overall dissipation than other methods, including the Fourier-spectral versions of the previ-
ous entropy viscosity method. The character of the proposed algorithm is illustrated with a
variety of numerical results for the linear advection, Burgers and Euler equations in one and
two-dimensional non-periodic spatial domains.

Keywords: Machine learning, Neural networks, Shocks, Artificial viscosity, Conservation laws,
Fourier continuation, Non-periodic domain, Spectral method

*Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA
fComputational Mathematics and Simulation Science (MCSS), Ecole Polytechnique Federale de Lausanne, CH-
1015 Lausanne, Switzerland



1 Introduction

This paper presents a new “FC-SDNN” spectral scheme for the numerical solution of nonlinear
conservation laws under arbitrary boundary conditions. The proposed approaches relies on use of
the FC-Gram Fourier Continuation method [1,2,6,29] for spectral representation of non-periodic
functions in conjunction with localized smooth artificial viscosity assignments prescribed by means
of the neural network-based shock-detection method proposed in [38]. The neural network ap-
proach [38] itself utilizes Fourier series to discretize the gas dynamics and related equations, and it
eliminates Gibbs ringing at shock positions (which are determined by means of an artificial neural
network) by assigning artificial viscosity over a small number of discrete points in a close vicinity of
shocks. The use of the classical Fourier spectral method in that contribution restricts the method’s
applicability to periodic problems (so that, in particular, the outer computational boundaries can-
not be physical boundaries), and its highly localized viscosity assignments give rise to a degree of
non-smoothness, resulting in certain types of unphysical oscillations manifested as serrated level-set
lines in the flow fields. The FC-SDNN method presented in this paper addresses these challenges.
In particular, in view of its use of certain newly-designed smooth viscosity windows introduced in
Section 3.3, the method avoids the introduction of roughness in the viscosity assignments and thus
it yields smooth flows away from shocks and other flow discontinuities. In addition, the underly-
ing FC-Gram spectral representations enable applicability to general non-periodic problems, and,
in view of the weak local viscosity assignments used, it gives rise to sharp resolution of shocks.
As a result, and as demonstrated in this paper via application to a range of well known 1D and
2D shock-wave test configurations, the overall FC-SDNN approach yields accurate and essentially
oscillation-free solutions for general non-periodic problems.

The computational solution of systems of conservation laws has been tackled by means of a
variety of numerical methods, including low-order finite volume [26,27] and finite difference methods
equipped with slope limiters [26,27], as well as higher order shock-capturing methods such as the
ENO [15] and WENO schemes [17,28]. An efficient FC/WENO hybrid solver was proposed in [39].
The use of artificial viscosity as a computational device for conservation laws, on the other hand, was
first proposed in [37,45] and the subsequent contributions [10,22,23]. The viscous terms proposed
in these papers, which incorporate derivatives of the square of the velocity gradient, may induce
oscillations in the vicinity of shocks [23] (since the velocity itself is not smooth in such regions),
and, as they do not completely vanish away from the discontinuities, they may lead to significant
approximation errors in regions were the fluid velocity varies rapidly. Reference [32] proposes the
use of a shock-detecting sensor in order to localize the support of the artificial viscosity, which is
used in the context of a Discontinuous Galerkin scheme.

The entropy viscosity method [14] (EV) incorporates a nonlinear viscous “entropy-residual” term
which essentially vanishes away from discontinuities—in view of the fact that the flow is isentropic
over smooth flow regions—and which is thus used to limit non-zero viscosity assignments to regions
near flow discontinuities, including both shock waves and contact discontinuities. This method,
however, relies on several problem-dependent algorithmic parameters that require tuning for every
application. Additionally, this approach gives rise to a significant amount of dissipation even away
from shocks, in particular in the vicinity of contact discontinuities and regions containing fast spatial
variation in the flow-field variables. Considerable improvements concerning this issue were obtained
in [21] (which additionally introduced a Hermite-based method to discretize the hyperbolic systems)
by modifying the EV viscosity term. Like the viscous term introduced by [45], the EV viscosity
assignments [14,21] are themselves discontinuous in the vicinity of shocks, and, thus, their use may



introduce spurious oscillations. The C-method [33, 34, 36], which augments the hyperbolic system
with an additional equation used to determine a spatio-temporally smooth viscous term, relies, like
the EV method, on use of several problem dependent parameters and algorithmic variations.

Recently, significant progress was made by incorporating machine learning-based techniques
(ML) to enhance the performance of classical shock capturing schemes [9, 35, 38, 43]. The ap-
proach [9, 35, 38] utilizes ML-based methods to detect discontinuities which are then smeared by
means of shock-localized artificial viscosity assignments in the context of various discretization
methods, including Discontinuous Galerkin schemes [9,35] and Fourier spectral schemes [38]. The
ML-based approach utilized in [43], in turn, modifies the finite volume coefficients utilized in the
WENOb5-JS scheme by learning small perturbations of these coefficients leading to improved accu-
rate representations of functions at cell boundaries.

Like the strategy underlying the contribution [38], the FC-SDNN method proposed in this paper
relies on the occurrence of Gibbs oscillations for ML-based shock detection. Unlike the previous
approach, however, the present method assigns a smooth (albeit also shock-localized) viscous term.
In view of its smooth viscosity assignments this procedure effectively eliminates Gibbs oscillations
while avoiding introduction of the flow-field roughness that is often evidenced by the serrated
level sets produced by other methods. In view of its use of FC-based Fourier expansions, further,
the proposed algorithm enjoys spectral accuracy away from shocks (thus, delivering, in particular,
essentially vanishing dispersion in such regions; see Section 2.3 and Figure 6) while enabling solution
under general (non-periodic) boundary conditions. Unlike other techniques, finally, the approach
does not require use of problem-dependent algorithmic parameters.

The capabilities of the proposed algorithm are illustrated by means of a variety of numerical
results, in one and two-dimensional contexts, for the Linear Advection, Burgers and Euler equations.
In order to provide a useful reference point, this paper also presents an FC-based version, termed
FC-EV, of the EV algorithm [14]. (The modified version [21] of the entropy viscosity approach,
which was also tested as a possible reference solver, was not found to be completely reliable in our
FC-based context, since it occasionally led to spurious oscillations in shock regions as grids were
refined, and the corresponding results were therefore not included in this paper.) We find that
the FC-SDNN algorithm generally provides significantly more accurate numerical approximations
than the FC-EV, as the localized artificial viscosity in the former approach induces a much lower
dissipation level than the latter.

This paper is organized as follows. After necessary preliminaries are presented in Section 2 (con-
cerning the hyperbolic problems under consideration, as well as the Fourier Continuation method,
and including basic background on the artificial-viscosity strategies we consider), Section 3 describes
the proposed FC-SDNN approach. A link to a git repository containing basic Matlab implemen-
tations and test codes for the 1D FC algorithm is provided at the end of Section 2.3. Section 4
then demonstrates the algorithm’s performance for a variety of non-periodic linear and nonlinear
hyperbolic problems. In particular, cases are considered for the linear advection equation, Burg-
ers equation and Euler’s equations in one-dimensional and two-dimensional rectangular and non-
rectangular spatial domains, including cases in which shock waves meet smooth and non-smooth
physical boundaries.



2 Preliminaries

2.1 Conservation laws

This paper proposes novel spectral methodologies, applicable in general non-periodic contexts and
with general boundary conditions, for the numerical solution of conservation-law equations of the
form

0
ae(w, t)+ V- (f(e(:c, t))) =0 (1)

on a bounded domain 2 C R, where e: Q2 x[0,7] — R" and f : R" — R" x R? denote the unknown
solution vector and a (smooth) convective flux, respectively.

The proposed spectral approaches are demonstrated for several equations of the form (1), in-
cluding the Linear Advection equation

ou ta ou

ot 83:'
with a constant propagation velocity a, where we have e = u, and f(u) = au; the one- and two-
dimensional scalar Burgers equations

=0 (2)

ou 1 /0u?
3 talar) = ®)
and 0 1 /0u? 1,0
u u u
— — (= 0 4
ot T3 <0>+2<8y> ) (4)
for each of which we have e = w and f(u) = “—22; as well as the one- and two-dimensional Euler
equations
p pu
0 0 )
5 | 7 + a9 | P +p | =0 (5)
uw(E + p)
and
p pu pv
0 (v 0 u? + 0 uv
o I - I IS R —0 (6)
ot | pv Ox PUV dy | pv*+p
E uw(E + p) v(E + p)
with ,
p 2
E=_-Y 4=
L ol (7
for each of which we have
e=(p,pu, )",  f(e) = (pu, pu® u+pl, u(E + p))". (8)

Here I denotes the identity tensor, a®@b = (a;b;) denotes the tensor product of the vectors a = (a;)
and b = (b;), and p, u, £ and p denote the density, velocity vector, total energy and pressure,
respectively. The speed of sound [26]
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for the Euler equations plays important roles in the various artificial viscosity assignments considered
in this paper for Euler problems in both 1D and 2D.

Remark 1. As an example concerning notational conventions, note that in the case of the 2D
Euler equations, for which f is given by (8), V- (f(e)) can be viewed as a three coordinate vector
whose first, second and third coordinates are a scalar, a vector and a scalar, respectively. Using
a super-index notation for the velocity vector u (i.e., u! = u and (u',u?) = (u,v) for the 1D
and 2D equations, respectively), together with the Einstein summation convention, these three
components are respectively given by V - (pu) = 8;(pu’), (V- (pu® u+ p]I))j = 0;(pv/u’ + p) and
V- ((E+p)u) = 0i((E+p)u').

2.2 Artificial viscosity

As is well known, the shocks and other flow discontinuities that arise in the context of nonlinear
conservation laws of the form (1) give rise to a number of challenges from the point of view of compu-
tational simulation. In particular, in the framework of classical finite difference methods as well as
Fourier spectral methods, such discontinuities are associated with the appearance of spurious “Gibbs
oscillations”. Artificial viscosity methods aim at tackling this difficulty by considering, instead of
the inviscid equations (1), certain closely related equations which include viscous terms containing
second order spatial derivatives. Provided the viscous terms are adequately chosen and sufficiently
small, the resulting solutions, which are smooth functions on account of viscosity, approximate well
the desired (discontinuous) inviscid solutions. In general terms, the viscous equations are obtained
by adding a viscous term of the form V - (fuic[€]) to the right hand side of (1), where the “viscous
flux” operator

fvisc[e] - :u[e]D[eL (10>
(which, for a given vector-valued function e(z,t), produces a vector-valued function fs.[€](z,t)
defined in the complete computational domain), is given in terms of a certain “viscosity” operator
wlel(x,t) (which may or may not include derivatives of the flow variables e), and a certain matrix-
valued first order differential operator D. Once such a viscous term is included, the viscous equation

Oe(x,t)

T + V . (f(e(a:, t))) == V : (fvisc[e](ma t)) <11)

results.

Per the discussion in Section 1, this paper exploits and extends, in the context of the Fourier-
Continuation discretizations, two different approaches to viscosity-regularization—each one result-
ing from a corresponding selection of the operators p and D. One of these approaches, the EV
method, produces a viscosity assignment pu[e](x,t) on the basis of certain differential and algebraic
operations together with a number of tunable problem-dependent parameters that are specifically
designed for each particular equation considered, as described in Section 2.2.2. The resulting vis-
cosity values ule](x,t) are highest in a vicinity of discontinuity regions and decrease rapidly away
from such regions. The neural-network approach introduced in Section 2.2.1, in turn, uses machine
learning methods to pinpoint the location of discontinuities, and then produces a viscosity function
whose support is restricted to a vicinity of such discontinuity locations. As a significant advantage,
the neural-network method, which does not require use of tunable parameters, is essentially problem
independent, and it can use a single pre-trained neural network for all the equations considered.
Details concerning these two viscosity-assignment methods considered are provided in what follows.



2.2.1 Artificial viscosity via shock-detecting neural network (SDNN)

The SDNN approach proposed in this paper is based on the neural-network strategy introduced
in [38] for detection of discontinuities on the basis of Gibbs oscillations in Fourier series, together
with a novel selection of the operator p in (10) that yields spatially localized but smooth viscosity
assignments: per the description in Section 3.3, the FC-SDNN viscosity p[e](x,t) is a smooth
function that vanishes except in narrow regions around flow discontinuities. The differential operator
D, in turn, is simply given by

Dle|(z,t) = V(e(x, 1)), (12)

where the gradient is computed component-wise. As indicated in Section 1, the smoothness of the
proposed viscosity assignments is inherited by the resulting flows away from flow discontinuities,
thus helping eliminate the serrated level-set lines that are ubiquitous in the flow patterns produced
by other methods.

2.2.2 Entropy viscosity methodology (EV)

The operators p and D employed by the EV approach [14] are defined in terms of a number of
problem dependent functions, vectors and operators. Indeed, starting with an equation dependent
entropy pair (n,v) where 1 is a scalar function and v is a vector of the same dimensionality as the
velocity vector, the EV approach utilizes an associated scalar entropy residual operator

Rpvle](z 1) = W £V el 1)) (13)
together with a function C' = C(e) related to the local wave speed, and a normalization operator
N = Nle|(x,t) obtained from the function 7.

In practice, reference [14] proposes n(e) = %, vie) = a% and C'(e) = a for the Linear Advection
equation (2), n(e) = “—22, vie) = “—3 and C'(e) = u for the 1D and 2D Burgers equations (3) and (4),
and n(e) = £5log(p/p), v(e) = uztylog(p/p) and C(e) = |u| + a (where a denotes the speed
of sound (9)) for the 1D and 2D Euler equations (5) and (6). As for the normalization operator,
reference [14] proposes N = 1 for the Euler equations and Nle|(z,t) = |n(e)(x,t) —7(e)(t)| for the
Linear advection and Burgers equations, where 7j(e)(t) denotes the spatial average of n(e) at time ¢.

For a numerical discretization with maximum spatial mesh size h, the EV viscosity function is

defined by
ule](, 1) = min(pmasl€] (1), psle] (2, 1) (14)

where the maximum viscosity e 1S given by

fmas|€](t) = Cmazh max C(e(, t))] (15)
and where Rovld(@.1)
pelel(z,t) = cph W (16)

In particular, the EV viscosity function depends on two parameters, ¢, and cg, both of size O(1),
that, following [14], are to be tuned to each particular problem.
Finally, the EV differential operator D for the Linear Advection and Burgers equations is defined
by
Dle](z,t) = V(e(z 1)), (17)



while for the Euler equations it is given by

0
Dle|(z,t) = %(Vu—i— (Vu)T) (18)
1(Vu+ (Vu)")u+ kV(p/p)

where, using once again the Einstein convention, {(Vu+ (Vu)")u}. = (9;u + d;u’)u’, and where
K = %u, with the Prandtl number P taken to equal 1.

2.3 Spatial approximation via Fourier Continuation

The straightforward Fourier-based discretization of nonlinear conservation laws generally suffers
from crippling Gibbs oscillations resulting from two different sources: the physical flow discontinu-
ities, on one hand, and the overall generic non-periodicity of the flow variables, on the other. Unlike
the Gibbs ringing in flow-discontinuity regions, the ringing induced by lack of periodicity is not
susceptible to treatment via artificial viscosity assignments of the type discussed in 2.2. In order to
tackle this difficulty we resort to use of the Fourier Continuation (FC) method for equispaced-grid
spectral approximation of non-periodic functions.
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Figure 1: Fourier Continuation of the non-periodic function F'(x) = x on the interval [0, 1]. With
reference to the text, the red triangles (resp. squares), represent the d = 5 left (resp. right)
matching points, while the blue circles represent the C' = 27 continuation points.

The basic FC algorithm [1], called FC-Gram in view of its reliance on Gram polynomials for
near-boundary approximation, constructs an accurate Fourier approximation of a given generally
non-periodic function F defined on a given one-dimensional interval-—which, for definiteness, is
assumed in this section to equal the unit interval [0, 1]. The Fourier continuation algorithm relies
on use of the function values F; = F'(z;) of the function F': [0,1] — R at N points z; = jh € [0, 1]
(h=1/(N — 1)) to produce a function

Fe(x) = Y Fyexp(2mike/B) (19)



which is defined (and periodic) in an interval [0, 3] that strictly contains [0, 1], where F¢ denote the
FC coefficients of F' and where, as detailed below, M is an integer that, for N large, is close to (but
different from) the integer | N/2].

In order to produce the FC function F€¢, the FC-Gram algorithm first uses two subsets of
the function values in the vector F = (Fp, ..., Fiy_1)" (namely the function values at the“matching
points” {x, .., x4—1} and {xn_g, ..., zny_1 } located in small matching subintervals [0, A] and [1—A, 1]
of length A = (d — 1)h near the left and right ends of the interval [0, 1], where d is a small integer
independent of N), to produce, at first, a discrete (but “smooth”) periodic extension vector F¢
of the vector F. Indeed, using the matching point data, the FC-Gram algorithm produces and
appends a number C' of continuation function values in the interval [1, 8] to the data vector F, so
that the extension F¢ transitions smoothly from Fly_; back to Fp, as depicted in Figure 1. (The FC
method can also be applied on the basis of certain combinations of function values and derivatives
by constructing the continuation vector F¢, as described below in this section, for a given vector
F = (Fy,...,Fy_2, F}_,)T, where Fj ~ F(z;) for 1 < j < N—2and where F§y_, ~ F'(zy_1). Such
a procedure enables imposition of Neumann boundary conditions in the context of the FC method.)
The resulting vector F¢ can be viewed as a discrete set of values of a smooth and periodic function
which can be used to produce the Fourier continuation function F° via an application of the FFT
algorithm. The function F*© provides a spectral approximation of F' throughout the interval [0, 1]
which does not suffer from either Gibbs-ringing or the associated interval-wide accuracy degradation.
Throughout this paper we assume, for simplicity, that N + C' is an odd integer, and, thus, the
resulting series has bandwidth M = N+TC_1; consideration of even values of N + C would require a
slight modification of the index range in (19).

To obtain the necessary discrete periodic extension F¢, the FC-Gram algorithm first produces two
polynomial interpolants, one per matching subinterval, using, as indicated above, a small number d
of function values or a combination of function values and a derivative near each one of the endpoints
of the interval [0, 1]. This approach gives rise to high-order interpolation of the function F' over the
matching intervals [0, A] and [1—A, 1]. The method for evaluation of the discrete periodic extension
is based on a representation of these two polynomials in a particular orthogonal polynomials basis
(the Gram polynomials), for each element of which the algorithm utilizes a precomputed smooth
function which blends the basis polynomial to the zero function over the distance § — 1 [1,2].
Certain simple operations involving these “blending to zero” functions are then used, as indicated
in these references and as illustrated in Figure 1, to obtain smooth transitions-to-zero from the left-
most and right-most function values to the extension interval [1, 3]. The values of this transition
function at the points N/(N —1),(N+1)/(N —1),...,(N+C —1)/(N —1) provide the necessary
C' additional point values from which, as mentioned above, the discrete extension F¢ is obtained.
The continuation function F¢ then easily results via an application of the FFT algorithm to the
function values F° in the interval [0, 5].

The discrete continuation procedure can be expressed in the matrix form

F¢ = F 20
~ \AQTF, + A.Q7F, (20)

where the d-dimensional vectors F, and F, contain the point values of F' at the first and last d
discretization points in the interval [0, 1], respectively; where @ is a d x d matrix, whose columns
contain the point values of the elements of the Gram polynomial bases on the left matching intervals;
and where A, and A, are C' X d, matrices containing the C values of the blended-to-zero Gram



polynomials in the left and right Gram bases, respectively. These small matrices can be computed
once and stored on disc, and then read for use to produce FC expansions for functions G : [a,b] — R
defined on a given 1D interval [a, b], via re-scaling to the interval [0, 1].

A minor modification of the procedure presented above suffices to produce a Fourier continuation
function on the basis of data points at the domain interior and a derivative at interval endpoints.

For example, given the vector F = (Fy, ..., Fy_o, Fy_;)?, using an adequately modified version @ of
the matrix @, an FC series F'°(z) can be produced which matches the function values Fy, ..., Fy_o
at * = xo,...,Tn_2, and whose derivative equals F\,_; at xy_;. The matrix @ is obtained by using

the matrix ) to obtain a value Fiy_; such that the derivative F'(zx_1) equals the given value F},_;.
Full details in this regard can be found in [2, Sec. 3.2].

Clearly, the approximation order of the Fourier Continuation method (whether derivative values
or function values are prescribed at endpoints) is restricted by the corresponding order d of the
Gram polynomial expansion, which, as detailed in various cases in Section 4, is selected as a small
integer: d = 2 or d = 5. The relatively low order of accuracy afforded by the d = 2 selection, which
must be used in some cases to ensure stability, is not a matter of consequence in the context of the
problems considered in the present paper, where high orders of accuracy are not expected from any
numerical method on account of shocks and other flow discontinuities. Importantly, even in this
context the FC method preserves one of the most significant numerical properties of Fourier series,
namely its extremely small numerical dispersion. In fact, with exception of the cyclic advection
example presented in Section 4.1.2, for which errors can accumulate on account of the spatio-
temporal periodicity, for all cases in Section 4 for which both the d = 2 and d = 5 simulations were
performed (which include those presented in Sections 4.1.1 (1D linear advection), 4.2.2 (2D Burgers
equation) and 4.3.1 (1D Euler equations), the lower and higher order results obtained were visually
indistinguishable.

The low dispersion character resulting from use of the FC method is demonstrated in Figure 6,
which displays solutions produced by means of two different methods, namely, the FC-based order-5
FC-SDNN algorithm (Section 3) and the order-6 centered finite-difference scheme (both of which
use the SSPRK-4 time discretization scheme), for a linear advection problem. The FC-SDNN
solution presented in the figure does not deteriorate even for long propagation times, thus illustrating
the essentially dispersion-free character of the FC-based approach. The finite-difference solution
included in the Figure, in turn, does exhibit clear degradation with time, owing to the dispersion
and diffusion effects associated with the underlying finite difference discretization.

An online repository containing containing basic Matlab implementations and test codes for the
1D FC algorithm is available at https://github.com/oscarbruno/FC.git.

3 FC-based time marching under neural network-controlled
artificial viscosity

3.1 Spatial grid functions and spatio-temporal FC-based differentiation

We consider in this work 1D problems on intervals I = [, &,] as well as 2D problems on open
domains 2 contained in rectangular regions I x J, where I = [§,&,] and J = [£4,&.] (& < &,
&4 < &,). Using a spatial meshsize h, the spatially discrete vectors of unknowns and certain related
flow quantities will be represented by means of scalar and vector grid functions defined on 1D or



2D discretization grids of the form
G:{x@ : .Ti:xo—l-’ih, Z:O,,N—l} (;Eozfg, Q?Nflzfr),

and
G=Qn{(zi,y;) : xi=mzo+ihy; =yo+jh,0<i <Ny —1, 0<j < Ny—1},

respectively. Here Q denotes the closure of Q, zg = &, zn,—1 = &, Yo = & and yn,—1 = &,. In
either case a function
b: G — RY

will be called a “g-dimensional vector grid function”. Letting
Z={(i,7)€{0,....Ny =1} x {0,...,No — 1} : (24,y;) € G},

we will also write b(z;) = b; (0 <4 < N—1) and b(z;,y;) = bij ((¢,7) € T). The set of g-dimensional
vector grid functions defined on G will be denoted by G9.

It is important to mention that, although the two-dimensional setting described above does
not impose any restrictions on the character of the domain €2, for simplicity, the FC-SDNN solver
presented in this paper assumes that the boundary of  is given by a union of horizontal and
vertical straight segments, each one of which runs along a Cartesian discretization line; see e.g.
the Mach 3 forward-facing step case considered in Figure 19a. Extensions to general domains
2, which could rely on either an embedded-boundary [6,7,29] approach, or an overlapping patch
boundary-conforming curvilinear discretization strategy [1,2,5], is left for future work.

A spatially-discrete but time-continuous version of the solution vector e(x,t) considered in
Section 2 for 1D problems (resp. 2D problems) can be viewed as a time-dependent g-dimensional
vector grid function e; = e;(t) (resp. e;; = e;;(t)). Using e, = ep(t) to refer generically to the
1D and 2D time-dependent grid functions e; and e;;, the semidiscrete scheme for equation (11)

becomes
deh(t) .
) — Lleat), 1)

where L denotes a consistent discrete approximation of the spatial operator in (11).

The discrete time evolution of the problem, on the other hand, is produced, throughout this
paper, by means of the 4-th order strong stability preserving Runge-Kutta scheme (SSPRK-4) [13]—
which, while not providing high convergence orders for the non-smooth solutions considered in this
paper, does lead to low temporal dispersion and diffusion over smooth space-time regions of the
computational domain. The corresponding time step is selected adaptively at each time-step t = ¢,
according to the expression

CFL
At = ﬂ_(maxmeg|i[e](x,t)))| N maxwegzg[e}(g;t))‘ (22)

Here CFL is a constant parameter that must be selected for each problem considered (as illustrated
by the various selections utilized in Section 4), and ple](x,t) and S = S[e](x,t) denote the artificial
viscosity (equations (37) and (42)) and a mazimum wave speed bound (MWSB) operator (which
must be appropriately selected for each equation; see Section 3.3) at the spatio-temporal point (x,t).
(To avoid confusion we emphasize that equation (22) utilizes the mazimum value for all x €  of
the selected bound S[e|(x,t) on the mazimum wave speed.)
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To obtain FC-based approximate derivatives of a function F' : K — R defined on a one-
dimensional interval K = [xg,zy_1], whose values (Fy, Fy,...,Fy_1)T are given on the uniform
mesh {zg,x1,...,2x_1}, the interval K is re-scaled to [0,1] and the corresponding continuation
function F¢ is obtained by means of the FC-Gram procedure described in Section 2.3. The ap-
proximate derivatives at all mesh points are then obtained by applying the IFFT algorithm to the
Fourier coefficients ,

(o), = T . (23)
g
of the derivative of the series (19) and re-scaling back to the interval K.

All of the numerical derivatives needed to evaluate the spatial operator L[ey(t)] are obtained
via repeated application of the 1D FC differentiation procedure described above. For a function
F = F(xz,y) defined on a two-dimensional domain € and whose values Fj; ((i,j) € Z) are given on
a grid G of the type described above in this section, for example, partial derivatives with respect to
x along the line y = y;, for a relevant value of j, are obtained by differentiation of the FC expansion
obtained for the function values (F(z;, y;,)): for integers i such that (4, jo) € Z. The y differentiation
process proceeds similarly. Mixed derivatives, finally, are produced by successive application of the
x and y differentiation processes. Details concerning the filtered derivatives used in the proposed
scheme are provided in Section 3.4.

The boundary conditions of Dirichlet and Neumann considered in this paper are imposed as
part of the differentiation process described above. Dirichlet boundary conditions at time ¢, ,
(tn < tny < tn+1) corresponding to the v-th SSPRK-4 stage (v = 1,...,4) for the time-step starting
at t = t,, are simply imposed by overwriting the boundary values of the unknown solution vector ey,
obtained at time ¢ = ¢,,, with the given boundary values at that time, prior to the evaluation of the
spatial derivatives needed for the subsequent SSPRK-4 stage. Neumann boundary conditions are
similarly enforced by constructing appropriate continuation vectors (Section 2.3) after each stage of
the SSPRK-4 scheme on the basis of the modified pre-computed matrix @ mentioned in Section 2.3.

It is known that enforcement of the given physical boundary conditions at intermediate Runge-
Kutta stages, which is referred to as the “conventional method” in [8], may lead to a reduced
temporal order of accuracy at spatial points in a neighborhood of the boundary of the domain
boundary. This is not a significant concern in the context of this paper, where the global order of
accuracy is limited in view of the discontinuous character of the solutions considered. Alternative
approaches that preserve the order of accuracy for smooth solutions, such as those introduced
in [8,31], could also be used in conjunction with the proposed approach. Another alternative, under
which no boundary conditions are enforced at intermediate Runge-Kutta stages [20], can also be
utilized in our context, but we have found the conventional method leads to smoother solutions
near boundaries.

3.2 Neural network-induced smoothness-classification
3.2.1 Smoothness-classification operator and data pre-processing

The method described in the forthcoming Section 3.3 for determination of the artificial viscosity
values ule](x,t) (cf. also Section 2.2) relies on the “degree of smoothness” of a certain function
P (e)(x,t) (called the “proxy variable”) of the unknown solution vector e. In detail, following [38],
in this paper a proxy variable ®(e) is used, which equals the velocity u, ®(e) = u, (resp. the Mach

number, ®(e) = |[uf| /) for equations (2) through (4) (resp. equations (5) and (6)). The degree of

11



smoothness of the function ®(e) at a certain time ¢ is characterized by a smoothness-classification
operator 7 = 7[®(e)] that analyzes the oscillations in an FC expansion of ®(e)—which is itself
obtained from the discrete numerical values ¢ = ®(e;,), so that, in particular, 7[®(e)] = T[¢] for
some discrete operator 7. The determination (or, rather, estimation) of the degree of smoothness
by the operator 7 is effected on the basis of an Artificial Neural Network (ANN). (We introduce
the operators 7 and 7 for the specific function ®(e), but, clearly, the algorithm applies to arbitrary
scalar or vector functions, as can be seen e.g. in the application of these operators, in the context
of network training, in Section 3.2.2.)

We first describe the operator 7 = 7[¢] for for a conservation law over a one-dimensional interval
I = [&,&,] discretized by an N-point equispaced mesh (zo, ..., xy_1) of mesh-size h, and for which
FC expansions are obtained on the basis of the extended equispaced mesh {zq,...,zx1c_1}. (Note
that, in accordance with Section 2.3, this extended mesh includes the discrete points {zo,...,xy_1}
in the interval I as well as the discrete points {zy,...,2nc-1} in the FC extension region.) In
this case, the evaluation of the operator 7 proceeds as follows.

(i) Obtain the FC expansion coefficients (¢¢ ;. ..., ¢5,)T of ®(e) by applying the FC procedure
described in Section 2.3 to the column vector (¢, ..., ®dny_1)". (Note that in the present 1D
case we have ¢; = ®(e;).)

(ii) For a suitable selected non-negative number § < h, evaluate the values q§§-5) (0<j<N+C-1)
of the FC expansion obtained in point (i) at the shifted grid points zo+0, 11+, ..., Tn1c-1+0.
This is achieved by applying the FFT algorithm to the “shifted” Fourier coeﬂi(:lents ¢5 =
(&4, PS,) where ¢5 qbc exp(%”‘;) Here, as in Section 2.3 and equation (19), 8 denotes
the length of the FC periodicity interval. Throughout this work, the value § = 1—}6 is used for
classification of flow discontinuities. As indicated in Section 3.2.2, different values of § are
used in the training process.

(iii) For each j € {0,..., N — 1}, form the seven-point stencil

55) (5) (©)] (%) T
P! = (¢m(j—3,N+C)’ < PNy "¢m(j+3’N+0))

of values of the shifted grid function obtained per point (ii). (Here, for an integer 0 < j < P,
m(j, P) denotes the remainder of j modulo P, that is to say, m(j, P) is the only integer
between 0 and P — 1 such that j —m(j, P) is an integer multiple of P. In view of the extended
domain inherent in the continuation method, use of the remainder function m allows for the
smoothness classification algorithm to continue to operate correctly even at points x; near
physical boundaries—for which the seven-point subgrid (x;_s,...,z;,...,2;413) may not be
fully contained within the physical domain.)

: : : o T ~(5 5 5 T .
(iv) Obtain the modified stencils ¢ = (¢7(nzj—3,N+C)7 Ceey qbfnzj N4C): ¢7(nzj+3,N+C)) given by

~(5 5
qbgn)(aurr,NJrc) - ¢fn)(j+r,N+C) — Ll (=3<1r<3), (24)
that result by subtracting the “straight line”

) r+3 6 ©)
£j+r - ¢m(j—3,N+C) + 6 (¢’m(j+3,N+C) - ¢m(j—3,N+C))

(=3<r<3) (25)
passing through the first and last stencil points.
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(v) Rescale each stencil &5(50‘ ) 50 as to obtain the ANN input stencils

1065 _ (56) 7.(5) 7.(8) T
¢( D = (¢m(j73,N+C)’ - "¢m(j,N+C)’ : "¢m(j+3,N+C)) )

given by
260 — M - p
7(6) _ T¥m(j+r,N+C) J J
PrnjarNrc) = Y (=3<r<3) (26)
j J
where (+) ) ) ©)
N ~ B ~
Mj - 7I3I1§81:}§3 ¢m(j+r,N+C) and Mj - 7%211;23 ¢m(g+r N+C)* (27)

Clearly, the new stencil entries satisfy satisfy —1 < d)fi)(j trntoy S L

(vi) Apply the ANN algorithm described in Section 3.2.2 to each one of the stencils @) =

{ ¢m(3 BN4C)r cﬁm(J N4C)s q’sﬁjb 13N +C)}, to produce a four-dimensional vector w’ of es-

timated probabilities (EP) for each j € [0,...,N — 1], where w] is the EP that ®(e) is
discontinuous on the subinterval I; = [x; — 3h, x; 4 3h], where, for i = 2,3, w] equals the EP
that ®(e) € C'""2\ C'~! on I;, and where, for i = 4, w] equals the EP that ®(e) € C* on I;.
Define 7[¢]; as the index i corresponding to the maximum entry of w! (i =1,...4):
Hel, = argmax(w!) (0<j<N-1). (28)
1<i<4
(Note that, for points x; close to physical boundaries, the interval I; = [z; — 3h,z; + 3h],

within which the smoothness of the function ®(e) is estimated, can extend beyond the physical
domain and into the extended Fourier Continuation region; cf. also point iii above.)

This completes the definition of the 1D smoothness classification operator 7.

For 2D configurations, in turn, we define a two-dimensional smoothness classification operator
Ty [P (€)] = Toy[¢p], similar to the 1D operator, which classifies the smoothness of the proxy variable
®(e) on the basis of its discrete values ¢ = ¢;;. Note the zy subindex which indicates 2D classifi-
cation operators 7,, and 7,,; certain associated 1D “partial” discrete classification operators in the
x and y variables, which are used in the definition of 7,,, will be denoted by 7, and 7, respectively.

In order to introduce the operator 7,, we utilize certain 1D sections of both the set Z and the
grid function ¢ = ¢;; (see Section 3.1). Thus, the i-th horizontal section (resp. the j vertical
section) of 7 is defined by Z;, = {j € Z : (i,j) € I} (resp. Z; ={i € Z : (i,5) € Z}). Similarly,
for a given 2D grid function ¢ = ¢;;, the i-th horizontal section ¢;. (resp. the j vertical section
@.;) of ¢ is defined by (cﬁi:)j = ¢ij, J € L;. (vesp. (@), = @ij, i € L;). Utilizing these notations
we define

Toyl@liy = min {7 [@i];, 7y[dylit (29)
where, as suggested above, 7, (resp. 7,) denotes the discrete one-dimensional classification operator
along the z direction (resp. the y direction), given by (28) but with j € Z;. (resp. i € Z;). In
other words, the 2D smoothness operator 7., equals the lowest degree of smoothness between the
classifications given by the two partial classification operators.

Remark 2. Small amplitude noise in the proxy variable can affect ANN analysis, leading to mis-
classification of stencils and under- predlctlon of the smoothness of the proxy variable. In order to
eliminate the effect of noise, stencils (;,’)J %9 for which M; ) _ M J(*) < ¢, for a prescribed value of ¢,
are assigned regularity 7[¢|; = 4. Throughout this paper we have used the value ¢ = 0.01.
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3.2.2 Neural network architecture and training

The proposed strategy relies on standard neural-network techniques and nomenclature [12, Sec.
6]: it utilizes an ANN with a depth of four layers, including three fully-connected hidden lay-
ers of sixteen neurons each. The ANN takes as input a seven-point “preprocessed stencil” z =
(21, 22, 23, 24, 23, 26, 27) | —namely, a stencil z that results from an application of points (i) to (v) in
the previous section to the 401-coordinate vector F of grid values obtained for a given function F' on
a 401-point equispaced grid in the interval [0, 27r]—in place of the grid values of the proxy variable
®(e)—resulting in a total of 401 stencils, one centered around each one of the 401 grid points con-
sidered; cf. points (i) to (iii) and note that, on the basis of the FC-extended function, the stencils
near endpoints draw values at grid points outside the interval [0,27]. (A variation of point (ii) is
used in the training process: shift values § = 1—%, % e % are used to produce a variety of seven-
point stencils for training purposes instead of the single value § = % used while employing the ANN
in the classification process.) The output of the final layer of the ANN is a four-dimensional vector
w = (W, W, W3, w,)", from which, via an application of the softmax activation function [12, Sec.

4.1], the EP mentioned in point (vi) of the previous section, are obtained:

w;

e
Z?ﬂ e’

(The values w’ (1 < i < 4) mentioned in point (vi) result from the expression (30) when the overall
scheme described above in the present Section 3.2.2 is applied to z = ¢(5’j).) The ELU activation
function

1<i<d4. (30)

w

T ifz>0

ap(e” —1) if z <0, (31)

ELU(z; ap) = {
with ap = 1, is used in all of the hidden layers.
In what follows we consider, for both the ANN training and validation processes, the data set Dx
of preprocessed stencils resulting from the set F = {(Fk, Dk), k=1,2,... } of all pairs (Fk, Dk),
where F, is a function defined on the interval [0, 27| and where Dy, is a certain “restriction domain”,
as described in what follows. The functions F}, are all the functions obtained on the basis of one of
the five different parameter-dependent analytic expressions

fi(z) = sin(2ax)

fo(z) = alx — 7|

folz) = ap if |z —7|<ag
3 as if |z — 7| >C.63 (32)
i) = alr — 7| —ajaz if |z —7| <as

4 as|lx — | —agaz if |r— 7| > ag

fo(z) = 0.5a1|r — 7|* — aya3 iflx — 7| < as

YT aglr — 7? — ag — 0563 (a1 — ap) if|lz — 7| > as

proposed in [38], for each one of the possible selections of the parameters a, a1, as, az, as prescribed
in Table 1. The corresponding parameter dependent restriction domains D), are also prescribed in
Table 1; in all cases Dy, is a subinterval of [0, 27].

The restriction domains Dy, are used to constrain the choice of stencils to be used among all of
the 401 stencils available for each function Fj,—so that, for a given function F}, the preprocessed
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stencils associated with gridpoints contained within Dy, but not others, are included within the set
Dy. The set Dz is randomly partitioned into a training set D7 containing 80% of the elements in Dy
(which is used for optimization of the ANN weights and biases), and a validation set D% containing
the remaining 20%—which is used to evaluate the accuracy of the ANN after each epoch [12, Sec.
7.7].

The network training and validation processes rely on use of a one-hot encoded label function
C defined on D which takes one of four possible values. Thus each stencil z € Dx is labeled by a
class vector C(z2) = (Cy(2), Cy(2), C5(2), Cs(2))T, where for each z, C(z) = (1,0,0,0)T, (0,1,0,0)7,
(0,0,1,0)T or (0,0,0,1)" depending on whether z was obtained from a function Fj that is C2, C*\C?,
C%\ C!, or discontinuous over the subinterval I, N [0, 27], where I, denotes the interval spanned by
the set of seven consecutive grid points associated with the prepocessed stencil z.

The ANN is characterized by a relatively large number of parameters contained in four weight
matrices of various dimensions (a 16 x 7 matrix, a 4 x 16, and two 16 x 16 matrices), as well as four
bias vectors (one 4-dimensional vector and three 16-dimensional vectors). In what follows a single
parameter vector X is utilized which contains all of the elements in these matrices and vectors in
some arbitrarily prescribed order. Utilizing the parameter vector X, for each stencil z the ANN
produces the estimates w;, given by (30), of the actual classification vector C'(z). In order to account
for the dependence of w; on the parameter vector X for each stencil z, in what follows we write

The parameter vector X itself is obtained by training the network on the basis of existing data,
which is accomplished in the present context by selecting X as an approximate minimizer of the
“cross entropy” loss function [12, Sec. 6.2]

LX) =~ 3 3 Cie) oa(Ai(X, 2) (3)

zED; i=1

over all z in the training set DL, where Ny denotes the number of elements in the training
set. The loss function £ provides an indicator of the discrepancy between the EP A(X,z) =
(A1(X, 2), A2(X, 2), A3(X, 2), A4(X, 2)) produced by the ANN and the corresponding classification
vector C(z) = (C}(z),Ca(2),C5(z),C4(2))" introduced above, over all the preprocessed stencils
2z € Dx. The minimizing vector X of weights and biases define the network, which can subse-
quently be used to produce A(X, z) for any given preprocessed stencil z.

The Neural Network is trained (that is, the loss function L is minimized with respect to X)
by exploiting the stochastic gradient descent algorithm without momentum [12, Secs. 8.1, 8.4],
with mini batches of size 128 and with a constant learning rate of 107%. The weight matrices
and bias vectors are initialized using the Glorot initialization [11]. The training set is randomly
re-shuffled after every epoch, and the validation data is re-shuffled before each network validation.
The network with the highest validation accuracy that was obtained over a few neural network
retrains, which is used for all the illustrations presented in this paper, has a training accuracy of

99.61% and validation accuracy of 99.58%.

3.3 SDNN-localized artificial viscosity algorithm

As indicated in Section 1, in order to avoid introduction of spurious irregularities in the flow field, the
algorithm proposed in this paper relies on use of smoothly varying artificial viscosity assignments.
For a given discrete solution vector ey, the necessary grid values of the artificial viscosity, which
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f(x) Parameters restriction domains T
fi Ja={-20,-195,...,19,5} [0, 2]
f a={-10,-9,...,10} 3.53,5.89] 4

a; ={—-10,-9,...,9}

£ as ={-10,-9,...,9}

az = {0.25,0.5,...,2.5}
s.t. aq 7A a9

a; ={—-10,-9,...,9}

az ={—10,-9,...,9}

J4 az = {0.25,0.5,...,2.5}

s.t. a1 > 2a9 or a; < 0.5a4
a; ={—-10,-9,...,9}
az ={—10,-9,...,9}

fs az = {0.25,0.5,...,2.5}

s.t. a1 > dag or a; < 0.2a,

N

[7 4 a3 — 0.05,7 4 az + 0.05] | 1

[+ as — 0.05,7 4 az + 0.05] | 2

[7 4 az — 0.05,7 4 az + 0.05] | 3

Table 1: Data set.

correspond to discrete values of the continuous operator p = pfe] in (10), are provided by a certain
discrete viscosity operator i = fi[ey]. The discrete operator fi is defined in terms of a number
of flow- and geometry-related concepts, namely the proxy variable ¢ defined in Section 3.2.1 and
the smoothness-classification operator given by equations (28) and (29) for the 1D and 2D cases,
respectively, as well as certain additional functions and operators, namely a “weight function” R and
“weight operator” R, an MWSB operator S (see Section 3.1) and its discrete version S, a sequence
of “localization stencils” (denoted by L? with 0 < 4 < N — 1 in the 1D case, and by L with
(7,7) € Z in the 2D case) , and a ”windowed-localization” operator A. A detailed description of the
1D and 2D discrete artificial viscosity operators i = fiep] is provided in Sections 3.3.1 and 3.3.2,
respectively.

3.3.1 One-dimensional case

The proxy variable ¢ and 1D smoothness-classification operator 7 that are used in the definition
of the 1D artificial viscosity operator have been described earlier in this paper; in what follows we
introduce the additional necessary functions and operators mentioned above.

The weight function R assigns a viscosity weight according to the smoothness classification;
throughout this paper we use the weight function given by R(1) = 2, R(2) = 1, R(3) = 0, and
R(4) = 0; the corresponding grid-function operator }Nz, which acts over the set of grid functions n
with grid values 1, 2, 3 and 4, is defined by ﬁ[n]z = R(n;).

The MWSB operator S : G — G maps the ¢-dimensional vector grid function e, onto a grid
function corresponding to a bound on the maximum eigenvalue of the flux Jacobian (Jf),, =
(Deefr) at e = ey, where e’ (resp. fi.) denotes the (-th (resp. k-th) component of the unknowns
solution vector e (resp. of the convective flux f(e)). For the one-dimensional problems, the MWSB
operator S(e) (resp. the discretized operator S[ey] on the grid {z;}) is taken to equal the maximum
characteristic speed (since the maximum characteristic speed is easily computable from the velocity

in the 1D case), so that S(e) = a (resp S[en]; = a;) for the 1D Linear Advection equation (2),
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Figure 2: Left: Windowing function W7 (z) (with j7 = 100, on the domain [0, 1], and using N = 200
discretization points) utilized in the definition of the windowed-localization operator A. Right:
Windowing function ¢ig9(x — z) utilized for the localized filtering of the initial condition on the
domain [0, 1] (using N = 200 discretization points) for a discontinuity located at z = 0.5.

S(e) = |u| (resp S[en]; = |us|) for the 1D Burgers equation (3), and S(e) = |u| + a [26] (resp
S[en]; = |ui| + a;) in the case of the 1D Euler problem (5) (in terms of the sound speed (9)).

The localization stencil L? (0 <i < N —1)is a set of seven points that surround z;: L =
{xi,g, cey Ty .ng} ford <i< N—4, LI = {xo, .. .91:6} fori < 3,and L' = {a:N,7, .. .xN,l} for
1> N —3.

The windowed-localization operator A is constructed on the basis of the window function

1 if |z| <ch/2
Ger(2) = { cos? (w) it ch/2 <|z| < (¢/2+7)h (34)
0 if |x| > (¢/2+71)h,

depicted in Figure 2 left, where ¢ and r denote small positive integer values, with ¢ even. (Note that
the g., notation does not explicitly display the h-dependence of this function.) Using the window
function g.,, two sequences of windowing functions, denoted by W/ and Wi (0<j<N-1),
are defined, where the second sequence is a normalized version of the former. In detail W7 (z) is
obtained by translation of the function g, with ¢ = 0 and r = 9: W/ (x) = qoo(x — z;); the
corresponding grid values of this function on the grid {z;} are denoted by W/ = W(z;). The
normalized windowing functions W7 and the windowed-localization operator A, finally, are given
by
. Wi

Wi= i (35)
i N— )
ro Wi
and
N—-1
Apli =) Wiy, (36)
k=0

respectively. Using these operators and functions, we define the 1D artificial viscosity operator

filen]; = A[R(T[@])]; - Ijggi(s[eh]j)h; (37)

as mentioned in Section 1 and demonstrated in Section 4, use of the smooth artificial viscosity
assignments produced by this expression yield smooth flows away from shocks and other disconti-
nuities. Note that the localization stencils L* (0 < ¢ < N) used in equation (37) were designed to
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Figure 3: Comparison of the viscosity functions arising at the first viscous time-step for the Sod
problem, using N = 500 discretization points. Left: viscosity used in [38]. Right: viscosity used in
the present FC-SDNN method (equation (37)).

differ from those defined in point (iii) of Section 3.2.1: unlike the latter, the former ones do not use
values of the FC-extension of the solution outside the physical domain. This difference relates to
the nature of the functionality required in each case: viscosity assignment in the first case, which
should be based on the local character of the solution in physical space, and detection of solution
discontinuities in the second case, which can be gleaned from consideration of the FC extension.

It is important to note the essential role of the windowed-localization operator in the assignment
of smooth viscosity profiles. The smooth character of the resulting viscosity functions is illustrated
in Figure 3, which showcases the viscosity assignments corresponding to the second time-step in the
solution process. (This run corresponds to the Sod problem described in Section 4.3.1.) The left
image displays the viscosity profiles used in [38] (which do not utilize the smoothing windows (36))
and the right image presents the window-based viscosity profile (37). The right-hand profile, which
is comparable in size but, in fact, more sharply focused around the shock than the non-smooth profile
on the left-hand image, helps eliminate spurious oscillations that otherwise arise from viscosity non-
smoothness, and allows the FC-SDNN method to produce smooth flow fields, as demonstrated in
Section 4.3.1. The functions ¢, used to construct the windowed-localization operator are translated
and scaled versions of the Hann window functions, also called “lag windows” [3, Sec. 5], which are
commonly used as frequency filters in the field of signal processing. The normalized form used in
this paper, equation (35), combines several such window functions to produce a “partition of unity”
in the sense of differential geometry—that is, a set of non-negative functions whose sum equals one
throughout the domain.

Remark 3. For the case of a 1D periodic problem, such as those considered in Section 4.1.2, the lo-
calization stencils and the windowing functions are defined by L = {xm(i,g,’ NYs - s Ton(i,N)s - - - Ton(i43, N)},
where the modulo function m is defined in Section 3.2.1, and where W} = q..(|z; — zm0.;.5)|). Here,

for s = § + r we have set

j+ N —q¢ if j<2sand N —2s+j7<i1<N-1
m(i,j,N)=<¢ j—1—i if N-2s<j<N-land0<i<2s—(N-—j) (38)
1 else.
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Figure 4: Viscosity assignment (orange dashed line) resulting from application of the SDNN-
localized artificial viscosity algorithm to the initial condition (39) (blue solid line), using N = 500
discretization points.

The values ¢ = 0 and » = 9 considered previously are once again used in the periodic context.

As an example, Figure 4 displays the viscosity assignments produced, by the method described
in this section for the function

10(x —0.2) if0.2<x<03
10(0.4 — x) if0.3<x<04

u(zr) = 1 0.6 <z<0.8 (39)
100(x — 1H)(1.2—2) ifl<x<1.2
0 otherwise.

in the interval [0,1.4]. Clearly, the viscosity profiles are smooth and they are supported around
points where the function u is not smooth.

3.3.2 Two-dimensional case

The definition of the 2D viscosity operator follows similarly as the one for the 1D case, with
adequately modified versions of the underlying functions and operators. In detail, in the present
2D case we define R and R (R[n);; = R(n;;)) as in the 1D case, but using the values R(1) = 1.5,
R(2) =1, R(3) = 0.5, and R(4) = 0. We note that, while the definition of the 1D weight function
R led to stable 2D simulations, it was found through experimentation that use of the modified 2D
definition yields smoother flow profiles away from shocks for all the 2D problems considered (and,
conversely, while the 2D definition can stably be used for the 1D problems, sharper resolutions of
shocks and contact discontinuities were obtained with the 1D definition). Additional comments in
this regard can be found in the paragraph entitled “Higher spatial dimensionality” in Section 5).
The 7 x 7 localization stencils L™’ ((i,5) € Z) are defined in terms of the 1D localization stencils
L" and L/ via the relation L*/ = L' x L7. For the 2D scalar Burgers equation, the MWSB operator
Sle] (resp. the discrete operator S[ey]) is taken to equal the maximum characteristic speed, that
is S[e] = |ul| (resp. g[eh]zj = |w;;| for (4,5) € Z). In the case of the 2D Euler problem, the MWSB
operator S used in this paper assigns to e the upper bound S(e) = |u] + |v| + a on the speed of
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propagation u - K + a of the wave corresponding to the largest eigenvalue of the 2D Flux-Jacobian
(which, in a direction supported by the unit vector &, equals u- & + a [16, Sec. 16.3 and 16.5]), so
that the discrete operator S we propose is given on the grid by

Slenli; = |uij| + |vij| + ai;. (40)

It is relevant to note that the MWSB operator (40), which equals a plus the sum of the absolute
values of the components of the velocity vector u, differs slightly from the upper-bound selected
in [14,21], where the (equivalent) Euclidean-norm of u was used instead. The two-dimensional
local-window operator, finally, is given by

Al = Y Wi b (41)
(ke

—which, clearly, can be obtained in practice by applying consecutively the 1D local window operator
introduced in Section 3.3.1 in the horizontal and vertical directions consecutively. As in the 1D
case, using these operators and functions, we define the 2D artificial viscosity operator

filen]i; = A[R(Tey[@])]ij - max (S[en]re)h. (42)

(k,0)eLis

3.4 Spectral filtering

Spectral methods regularly use filtering strategies in order to control the error growth in the un-
resolved high frequency modes. One such “global” filtering strategy is employed in the context of
this paper as well, in conjunction with FC [1,2], as detailed in Section 3.4.1. Additionally, a new
“localized” filtering strategy 3.4.2 is introduced in this paper, in order to regularize discontinuous
initial conditions, while avoiding the over-smearing of smooth flow-features. Details regarding the
global and localized filtering strategies are provided in what follows.

3.4.1 Global filtering strategy

As indicated above, the proposed algorithm employs spectral filters in conjunction with the FC
method to control the error growth in unresolved high frequency modes [1,2]. For a given Fourier

Continuation expansion
M

F¢ exp(2mikaz/ 3)
k=—M

the corresponding globally-filtered Fourier Continuation expansion is given by

M
fg = Z F,fa(NQfC) exp(2mikz/pB) (43)

k=—M

"(Nifc) P < - O‘f(Nifc)pf>

for adequately chosen values of the positive integer p; and the real parameter ay > 0. For appli-
cations involving two-dimensional domains the spectral filter is applied sequentially, one dimension
at a time.

where
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In the algorithm proposed in this paper, all the components of the unknown solution vector e
are filtered using this procedure at every time step following the initial time, using the parameter
values oy = 10 and py = 14, as indicated in Algorithm 1.

3.4.2 Localized discontinuity-smearing for initial data

In order to avoid the introduction of spurious oscillations arising from discontinuities in the initial
condition, the spectral filter considered in the previous section is additionally applied, in a modified
form, before the time-stepping process is initiated. A stronger filter is used to treat the initial
conditions, however, since, unlike the flow field for positive times, the initial conditions are not
affected by artificial viscosity. In order to avoid unduly degrading the representation of the smooth
features of the initial data, on the other hand, a localized discontinuity-smearing method, based on
use of filtering and windowing is used, that is described in what follows.

We first present the discontinuity-smearing approach for a 1D function F': I — R, defined on a
one-dimensional interval I, which is discontinuous at a single point z € I. In this case, the smeared-
discontinuity function F,, which combines the globally filtered function Fj in a neighborhood of
the discontinuity with the unfiltered function elsewhere, is defined by

Fan () = e (2 = 2)Fy(2) + (1 = gep (v = 2)) F (), (44)

Remark 4. Throughout this paper, windows ¢., with ¢ = 18 and r = 9 and globally filtered
functions Fj with filter parameters oy = 10 and py = 2, which is depicted in Figure 2 right, were
used for the initial-condition filtering problem, except as noted below in cases resulting in window
overlap.

In case multiple discontinuities exist the procedure is repeated around each discontinuity point.
Should the support of two or more of the associated windowing functions overlap, then each group
of overlapping windows is replaced by a single window which equals zero outside the union of the
supports of the windows in the group, and which equals one except in the rise regions for the
leftmost and rightmost window functions in the group.

In the 2D case the localized discontinuity-smearing strategy for the initial condition is first
performed along every horizontal line y = y;. for 0 < j < N, — 1. The resulting “partially” filtered
function is then filtered along every vertical line x = x; for 0 < ¢ < N — 1 using the same procedure.
For PDE problems involving vectorial unknowns, further, the discontinuity-smearing strategy is
applied to each component separately.

Remark 5. As indicated in line 10 of Algorithm 1, only initial data that are spatially discontinuous
are treated by the discontinuity-smearing procedure. Note that, for such data, the spatial positions
of the initial-data discontinuities are explicitly known, as required by the filtering procedure used.

3.5 Algorithm pseudo-code

A pseudo-code for the complete FC-SDNN numerical method for the various equations considered
in this paper, and for both 1D and 2D cases, is presented in Algorithm 1.

It may be useful to emphasize that the FC procedure introduced in Section 2.3, without modi-
fications, is used in Algorithm 1 even as shocks or other solution discontinuities exist at or around
domain boundaries; cf. also the paragraph entitled “FC order” in Section 5. Additionally, we note
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Algorithm 1 FC-SDNN algorithm

1:

\\Initialization.

2: Input the trained ANN weights and biases (Section 3.2.2).

@«

10:

11:

12:

13:

14:
15:

Initialize the unknown solution vector e (Section 2.1) to the given initial-condition values over the
given spatial grid.

Initialize time: ¢t = 0.

while ¢t < T do

Evaluate the proxy variable ¢ corresponding to e; at all spatial grid points.

Obtain the smoothness classification operator values (7[¢], equation (28), in the 1D case, or 7,y [¢],
equation (29), in the 2D case) at all grid points by applying steps (i) through (vi) in Section 3.2.1 as
required in each case, 1D or 2D.

Evaluate the MWSB operator S[ey| at all spatial grid points (Section 3.3.1 in the 1D cases, and
Section 3.3.2 in the 2D cases).

Determine the artificial viscosity assignments fi[e;] (Equation (37) in the 1D case or equation (42)
in the 2D case) at all spatial grid points.

(Case t = 0, discontinuous initial data only) Apply localized discontinuity-smearing (Section 3.4.2)
to the solution vector e; and overwrite e, with the resulting values.

(Case t > 0) Apply global filtering (Section 3.4.1) to the solution vector ey, and overwrite e, with
the resulting values. N

Evaluate the temporal step-size At by substituting the discrete version S|ey| and fi[e] of S[e] and
p[e] in equation (22).

Perform the FC-based spatial differentiations required for time-stepping for given (Dirichlet or
Neumann) boundary conditions (Sections 2.3 and 3.1) and use them to time-step the discrete version
of the viscous system of equations (10)-(11), with u[e] substituted by fi[ep], in accordance with the
SSPRK-4 time stepping scheme.

Update time: t =t + At
end while
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a point of contrast with the related publication [38]: unlike the algorithm presented in Section 4 of
that paper, the FC-SDNN use of the shifting procedure described in point (ii) in Section 3.2.1 is
not limited to the training stage of the neural network, but is also performed at every time-step, as
indicated in line 7 of Algorithm 1, as part of the evaluation of the smoothness classification oper-
ator. This strategy exploits the fact that Gibbs oscillations in the proxy variable can be detected
on the shifted grid before spurious oscillations affect the solution vector grid function ey, and thus
allows for up-front “corrective” viscosity assignments in that region—thus avoiding both, spurious
oscillations, and necessary subsequent use of larger viscosity values and more frequent viscosity
assignments. Experiments have shown that use of the shifting procedure during the time-stepping
phase leads to reduced discontinuity smearing and sharper solution profiles.

4 Numerical results

This section presents results of application of the FC-SDNN method to a number of non-periodic test
problems (with the exception of a periodic linear-advection problem, in Section 4.1.2, demonstrating
the limited dispersion of the method), time-dependent boundary conditions, shock waves impinging
on physical boundaries (including a corner point and a non rectangular domain), etc. All of the
examples presented in this section resulted from runs on Matlab implementations of the various
methods used. Computing times are not reported in this paper in view of the inefficiencies associated
with the interpreter computer language used but, for reference, we note from [39] that, for the types
of equations considered in this paper, the FC implementations can be quite competitive, in terms
of computing time, for a given accuracy. Our experiments indicate, further, that the relative cost of
application of smooth-viscosity operators of the type used in this paper do not vary substantially as
the mesh is refined, and that for large enough discretizations the relative cost of the neural network
algorithm becomes insignificant. We thus expect that, as in [39], efficient implementations of the
proposed FC-SDNN algorithm will prove highly competitive for general configurations.

4.1 Linear advection

The simple 1D linear-advection results presented in this section demonstrate, in a simple context,
two main benefits resulting from the proposed approach, namely 1) Effective handling of bound-
ary conditions (Section 4.1.1); and 2) Essentially dispersionless character (Section 4.1.2). For the
examples in this section FC expansions with d = 5 were used.

4.1.1 Boundary conditions

Figure 5 displays the FC-SDNN solution to the linear advection problem (2), in which three waves
with various degrees of smoothness emanate from the left boundary and travel within the spatial
interval [0, 1.4], with an initial condition u(z,0) = 0 and boundary condition at = 0 given by

100¢(t — 0.2) if0<t<0.2

1 if02<t<04
u(0,t) = 10(t — 0.8) if 0.8 <t<0.9 (45)
1-10(t—-09) if09<t<1
0 otherwise.
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At the outflow boundary x = 1.4, the solution was evolved in the same manner as the interior
points, as befits an outflow boundary. The solution was computed up to time 7' = 2.3, using the
adaptive time step given by (22), with CFL = 2. As shown in Figure 5, the waves travel within
the domain matching the exact solution. The induction of waves and discontinuities at times ¢ = 0,
t=02¢t=04,t=06,t=08,t=0.9,t=1 through the left boundary is automatically
accompanied by the assignment of artificial viscosity on a small spatio-temporal area near that
boundary. The FC-SDNN algorithm stops assigning viscosity shortly after these induction events,
once the associated discontinuities are smeared, as illustrated in Figures 5d-e. Note that the waves
exit the domain without producing undesired reflection artifacts around the physical exit boundary.

1 1 3 1
505 505 505
0 0 0
0 0.35 0.7 1.05 1.4 0 0.35 0.7 1.05 1.4 0 0.35 0.7 1.05 1.4
X X X

0 035 0.7 1.06 1.4 0 0.05 0.1 0.15
X X

(d) ()

Figure 5: Upper row: Solution of the non-periodic one dimensional linear advection problem at three
different points in time, using N = 500 discretization points. Exact (black solid line), FC-SDNN
(blue dashed line). Lower row: Time history of FC-SDNN artificial viscosity assignments. (d) Full
space-time range, showing that zero viscosity values are assigned in most of the spatio-temporal
domain, and a small rectangular region delimited by red sides, whose detail is shown on panel (e).
(e) Zoomed-in range on the small spatio temporal region for which non-zero viscosities are assigned.

4.1.2 Limited dispersion

To demonstrate the limited dispersion inherent in the FC-SDNN algorithm we consider a problem
of cyclic advection of a “bump” solution over a bounded 1D spatial domain—thus effectively simu-
lating, in a bounded domain, propagation over arbitrarily extended spatial regions. To do this we
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0.4

X

Figure 6: Numerical solutions to the periodic one-dimensional linear advection problem with a =1
up to time 7" = 500: Exact solution (solid black line), fifth order FC-SDNN method (blue circles) and
sixth order centered finite-difference scheme (red squares). Both numerical solutions were obtained
using N = 90 discretization points. In view of its nearly dispersionless character, the FC-based
solution remains significantly more accurate than its higher order finite-difference counterpart.

utilize the smooth cut-off “bump” function w = w(z, q1,¢2) (¢1 # g2) defined by

/6N .
eXp(2 g_llg) if ¢ < ’Q}‘ < ¢
w(z,q1,q2) = 1 if lz] <@ where ¢ =

if |3§" 2 q2,

|| - @ (46)
92 — q1

For this example we solve the equation (2) with a = 1, starting from a smooth initial condition
given by u(x,0) = w(z — 0.5,0,0.2), over the domain [0, 1] under periodic boundary conditions. In
order to enforce such periodic conditions, the FC differentiation scheme is adapted, by using the
same precomputed matrices Ay, A, and @ (see Section 2.3) in conjunction with the "wrapping”
procedure described in [1, Sec. 3.3]. Using the FC-SDNN algorithm of order d = 5 and SSPRK-4,
the solution was evolved for five hundred periods, up to 7" = 500; the resulting ¢ = 500 solution
u(x,500) is displayed in Figure 6. For comparison this figure presents numerical results obtained
by means of a 6-th order central finite-difference scheme (also with SSPRK-4 time stepping). The
finite-difference method uses a constant time-step At = 0.0034, while the FC-SDNN uses the
adaptive time step defined in (22) for which, in the present case, with 4 = 0 and S = 1, we have
At = 0.0036. Clearly, the FC-SDNN solution matches the exact solution remarkably well even after
very long times, showcasing the low dissipation and dispersion afforded by the FC-based approach.
In contrast, the higher-order finite difference solution suffers from noticeable dispersion effects.

4.2 Burgers equation

The 1D and 2D Burgers equation tests presented in this section demonstrate the FC-SDNN solver’s
performance for simple nonlinear non-periodic problems. In particular, the 2D example showcases
the ability of the algorithm to handle multi-dimensional problems where shocks intersect domain
boundaries (a topic that is also considered in Section 4.3.2 in the context of the Euler equations).
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4.2.1 1D Burgers equation
Propagating shock wave Figure 7 displays solutions to the 1D Burgers equation (3), where a
shock forms from the sharp features in the initial condition

1
exp(z — 5)[tanh(10z — 3) + 1] — tanh(10z — 3) + 1~

up(x) = (47)
Results of simulations produced by means of the FC-SDNN and FC-EV algorithms are presented
in the figure. In both cases Dirichlet boundary conditions at the inflow boundary x = 0 were used,
while the solution at the outflow boundary x = 27 was evolved numerically in the same manner
as the interior domain points. The FC-EV viscosity parameters defined in equations (15) and (16)
were set t0 Cpee = 0.2 and cg = 0.1; cf. Table 2. As shown in the figure, the shock is sharply
resolved by both algorithms, with no visible oscillations. In both cases the shock eventually exits
the physical domain without any undesired reflections or numerical artifacts. For this example FC

expansions with d = 2 were used. The reference solution (black) was computed on a 10000-point
domain, with the FC-SDNN method.

0.6 0.6 0.6
0.4 0.4 0.4
= -] -]
0.2 0.2 0.2
0 B 0 0
0 2 4 6 0 2 4 6 0 2 4 6
X X X
(a) t =27 (c) t =8

0 1 2 3 4 5 6
X

(d) Time history of FC-SDNN artificial viscosity.

Figure 7: Solutions to the non-periodic one dimensional Burgers equation produced by the FC-
SDNN and FC-EV algorithms of order d = 2 at three different times t. Black solid line: finely
resolved FC-SDNN (NN = 10, 000, for reference). Blue dashed line: FC-SDNN with N = 500. Green
dot-dashed line: FC-EV with N = 500. Note that the N = 500 FC-SDNN and FC-EV solutions
are virtually indistinguishable from each other in this case.
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Convergence test To demonstrate the FC-SDNN accuracy for FC expansions of order d = 5
before and after the formation of a shock in an initially smooth solution, we consider the 1D Burgers
equation (3) in the domain [0, 2], with an initial condition given by
1 )

uo(x) = 3% + sin(7x) (48)
and with an identically vanishing Dirichlet boundary condition at x = 0. The solution at times
t = 0.3 (before the formation of the shock) and ¢ = 0.8 (after the formation of the shock) are
displayed in Figures 8a and b. As demonstrated in Figure 9, a high order of convergence is obtained
both in L' and L? norms before the time ¢ = wil at which the shock forms. (An order 8.23 is

reported in the figure for the pre-shock solution, which is higher than the FC order 5 used in this
case. We attribute this discrepancy to the fact that the error is concentrated in the region near
the point of highest gradient, where the solution is smooth, and not near the boundary, where the
fifth-order FC error is smaller in magnitude than the error near the highest gradient point.) After
the shock-formation time, convergence of orders h and hz in the L' and L2 norms, respectively, is
observed—as expected, in view of the order-1 solution errors that exist in a spatial region of order
h around the shock. Figures 8a and b also show that a faster error decay and overall smaller L' and
L? errors are observed in spatial regions away from the shock. Finally, we note that both before
and after the formation of the shock, a selection of a higher order d = 5 for the FC algorithm yields
noticeably smaller errors away from the shock regions than the lower order d = 2, thus underscoring
the benefit of the use of a higher order scheme, even in the context of an order h (resp. h%) global
accuracy in L' norm (resp. L? norm).

0.5 0.5

o -

0 0.5 1 1.5 2 0 0.5 1 1.5 2

(a) t = 0.2 (b) t = 0.6

Figure 8: Solutions to the non-periodic one dimensional Burgers equation produced by the FC-
SDNN algorithm of order d = 5 at two different times ¢, with N = 6400.
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Figure 9: Convergence of the FC-SDNN solution for the Burgers 1D test in the L' and L? norms
(left and right panels, respectively), before (t = 0.1) and after (¢ = 0.6) the shock forms (empty and
full symbols, respectively). The reference data was obtained by solving the exact implicit form of
the solution [46, p.99] by Newton’s method, using a fine-grid numerical solution as an initial guess.
Full and empty red dots: errors at t = 0.6 and ¢ = 0.1, respectively, on the complete domain, using
FC order d = 5. Full and empty blue squares: errors at t = 0.6 and ¢t = 0.1, respectively, away from
highest gradient point (z € [0,1.1] U [1.7,2] and = € [0,1] U [1.6, 2], respectively), using FC order
d = 2. Full and empty green diamonds: errors at ¢t = 0.6 and ¢t = 0.1, respectively, away from the
highest gradient point (z € [0,1.1] U [1.7,2] and x € [0,1] U [1.6, 2], respectively), using FC order
d=5.

4.2.2 2D Burgers equation

To demonstrate the solver’s performance and correct handling of shock-boundary interactions for
2D problems, we consider the 2D Burgers scalar equation (4) on the domain D = [0, 1] x [0, 1], with
an initial condition given by the function

-1 if z€][0.5,1] and y € [0.5,1]

) =02 if z€]0,0.5 and y € [0.5,1]
w(T) =9 05 i 2€0.0.5 and y € [0,0.5] (49)

0.8 if z€[0.5,1] and y € [0,0.5],

and with vanishing normal derivatives at the boundary. This problem admits an explicit solution
(displayed in Figure 10b at time ¢ = 0.25) which includes three shock waves and a rarefaction
wave, all of which travel orthogonally to various straight boundary segments. Figures 10c, 10d,
and 10e present the corresponding numerical solutions produced by the FC-SDNN algorithm at
time t = 0.25 resulting from use of various spatial discretizations and with adaptive time step given
by (22) with CFL = 2. Sharply resolved shock waves are clearly visible for the finer discretizations,
as is the rarefaction wave in the lower part of the figure. The viscosity assignments, which are
sharply concentrated near shock positions as the mesh is refined, suffice to avert the appearance of
spurious oscillations. It is interesting to note that non-vanishing viscosity values are only assigned
around shock discontinuities. (The SDNN algorithm assigns zero viscosity to the rarefaction wave
for all time—as a result of the discontinuity-smearing introduced by the algorithm on the initial
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condition for the velocity, described in Section 3.4.2, which the FC-SDNN then preserves for all
times in regions near the rarefaction wave on account of the resulting smoothness of the numerical
solution in such regions). For this example FC expansions with d = 5 were used. As shown in
Figure 11, and per the discussion in Section 4.2.1, the expected convergence of orders h and h? in

the L' and L2-norms respectively are obtained.
107¢ 3
Slope = 0.51

Slope = 1.01

1072

h h

1072

Figure 11: Convergence of the FC-SDNN solution for the Burgers 2D test at t = 0.25 in the L!
and L? norms (left and right panels, respectively), using FC order d = 5. Red dots: errors on the

complete domain. Green diamonds: errors away from the shocks ((z,y) € (]0,0.4] x [0,0.35]) U
([0,0.25] % [0,0.6]) U ([0.6,1] x [0.6,1]).)

4.3 1D and 2D Euler systems

This section presents a range of 1D and 2D test cases for the Euler system demonstrating the FC-
SDNN algorithm’s performance in the context of a nonlinear systems of equations. The test cases
include well-known 2D arrangements, including the shock-vortex interaction example [40], 2D Rie-
mann problem flow [25], Mach 3 forward facing step [47], and Double Mach reflection [47]. In partic-
ular the results illustrate the algorithm’s ability to handle contact discontinuities and shock-shock in-
teractions as well as shock reflection and propagation along physical and computational boundaries.

4.3.1 1D Euler problems

The 1D shock-tube tests considered in this section demonstrate the solver’s ability to capture
not only shock-wave discontinuities (that also occur in the Burgers test examples considered in
Section 4.2) but also contact discontinuities. Fortunately, in view of the localized spectral filtering
strategy used for the initial-data (Section 3.4.2), the algorithm completely avoids the use of artificial
viscosity around contact discontinuities, and thus leads to excellent resolution of these important
flow features. This is demonstrated in a variety of well known test cases, including the Sod [42],
Lax [24], Shu-Osher [41] and Blast Wave [35] problems, with flows going from left to right—so
that the left boundary point (resp. right boundary point) is the inflow (resp. outflow) boundary.
Following [16, Sec. 19], inflow (resp. outflow) boundary condition were enforced at the inflow
boundaries (resp. outflow boundaries) by setting p and u (resp p) identically equal, for all time, to
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Figure 10: Fifth-order (d = 5) FC-SDNN numerical solution to the 2D Burgers equation with initial
condition displayed on the upper-left panel, whose exact solution at ¢t = 0.25 is displayed on the
upper-right panel. The middle and left-lower panels display the FC-SDNN numerical solutions at
t = 0.25 obtained by using N x N spatial grids with three different values of N, as indicated in
each panel. The FC-SDNN numerical viscosity at ¢ = 0.25 for the case N = 1000 is presented in
the lower-right panel.
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the corresponding boundary values of these quantities at the initial time ¢ = 0. For the examples
in this section FC expansions with d = 5 were utilized. For each one of these problems, the FC-EV
solutions are provided for reference; the selected EV parameters are provided in Table 2. For each
test case and each algorithm (FC-SDNN and FC-EV), the value of the constant CFL in (22), which
is included as part of each description, was selected so as to obtain the largest time-step At which
preserves stability.

Problem | Burgers 1D | Sod | Lax | Shu-Osher | Blast Wave
Crnaz 0.2 0.1 | 0.15 0.85 1
CE 0.1 15 20 10 0.05

Table 2: FC-EV parameters for the 1D Burgers and 1D Euler problems.

Sod problem. We consider a Sod shock-tube problem for the 1D Euler equations (5) on the
interval [—4, 5] with initial conditions

(oo1.p) = (1,0,1)  if <05
P P)= 9 (0.125,0,0.1) if z > 0.5,

a setup that gives rise (from right to left) to a right-moving shock wave, a contact discontinuity
and a rarefaction wave (left images in Figure 12(a) and (b)). The solution was computed up
to time 7" = 2. The results presented in Figure 12 show well resolved shocks (upper and
middle right) and contact discontinuities (center images in Figure 12(a) and (b)), with no
visible Gibbs oscillations in any case. The FC-SDNN and FC-EV solvers (for which adaptive
time steps (22) were used with CFL = 3 and CFL = 2, respectively) demonstrate a similar
resolution in a vicinity of the shock, but the FC-SDNN method provides a much sharper
resolution of the contact-discontinuity. As shown in Figure (12c), after a short time the FC-
SDNN algorithm does not assign artificial viscosity in a vicinity of the contact discontinuity,
leading to the significantly more accurate resolution observed for this flow feature.

Lax problem. We consider a Lax problem on the interval [—5, 5], with initial condition

(poup) = [ (0445,0.698,3.5%8) if =<0
Pt P) = (0.5,0,0.571)  if >0

which results in a combination (from right to left) of a shock wave, a contact discontinuity
and a rarefaction wave (left images in Figure 13(a) and (b)). The solution was computed up
to time T' = 1.3. The results are presented in Figure 13, which shows well resolved shocks
(upper and middle right) without detectable Gibbs oscillations. The viscosity time history
displayed in Figure 13c shows that the FC-SDNN method only assigns artificial viscosity
in the vicinity of the shock discontinuity but, as discussed above, not around the contact
discontinuity, leading to a sharper resolution by the FC-SDNN method in this region (center
images in Figure 13(a) and (b)). The FC-EV and FC-SDNN algorithms, (for which adaptive
time steps (22) were used with CFL = 2 and CFL = 4, respectively) demonstrate a similar
shock resolution, but the latter approach is significantly more accurate around the contact
discontinuity.
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(c) Time history of assigned artificial viscosity for N = 1000, for FC-EV (left) and FC-SDNN (right).

Figure 12: Solutions to the Sod problem produced by the FC-SDNN and FC-EV algorithms of order
d =5 at t = 0.2. Exact solution: solid black line. FC-SDNN solution: Blue dashed-line. FC-EV
solution: Green dot-dashed line. Numbers of discretization points: N = 500 in the upper panels
and N = 1000 in the middle panels. Bottom panels: artificial viscosity assignments.
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Figure 13: Solutions to the Lax problem produced by the FC-SDNN and FC-EV algorithms of order
d =5 at t = 1.3. Exact solution: solid black line. FC-SDNN solution: Blue dashed-line. FC-EV
solution: Green dot-dashed line. Numbers of discretization points: N = 500 in the upper panels
and N = 1000 in the middle panels. Bottom panels: artificial viscosity assignments.
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Shu-Osher problem. We consider the Shu-Osher shock-entropy problem on the interval [—5, 5],
with initial condition given by

(3.857143,2.6929369, 10.33333) if z < —4

The solution is computed up to time 7" = 1.8. In this problem, a shock wave encounters
an oscillatory smooth wavetrain. This test highlights the FC-SDNN solver’s low dissipation,
as artificial viscosity is only assigned in the vicinity of the right-traveling shock as long as
the waves remain smooth, allowing for an accurate representation of the smooth features. In
particular, Figure (14c) shows that the support of the FC-SDNN artificial viscosity is much
more narrowly confined around the shock position than the artificial viscosity resulting in the
FC-EV approach. As a result, and as illustrated in the right images in Figure 14(a) and (b),
the FC-SDNN method provides a more accurate resolution in the acoustic region (behind the
main, rightmost, shock). For this problem, the FC-EV and FC-SDNN algorithms, (for which
adaptive time steps (22) were used with CFL = 3 and CFL = 4, respectively).

Blast Wave problem. Finally, we consider the Blast Wave problem as presented in [35], on the
interval [0, 1], with initial conditions given by

(1,0,1000) if z < 0.5

(p,u,p) :{ (1,0,0.01) if > 0.5, ()

up to time 7" = 0.012. This setup is similar to the one considered in the Sod problem,
but with a much stronger right-moving shock. In order to avoid unphysical oscillations at
the boundaries, which could result from the presence of the strong shock, the value of the
operator 7 is set to 1 on the leftmost and rightmost nine points in the domain, thus effectively
assigning a small amount of viscosity at the boundaries at every time step of the simulation.
The FC-EV and FC-SDNN algorithms, (for which adaptive time steps (22) were used with
CFL = 2 and CFL = 2, respectively) provide a sharp resolution of the shock, as shown in
Figure 15. As the mesh is refined the contact discontinuity is resolved more sharply by the
former method which, as in the previous examples, does not assign viscosity around such
features.

Remark 6. As shown in the left panel of Figure 15, the FC-EV method assigns a non-
vanishing artificial viscosity everywhere ahead of the shock for this example. This undesirable
feature results from the term % in the entropy residual (13) which, in view of the relation

n(e) = %log(p/ p?) given in Section 2.2.2, contains an additive contribution of the form
g%—which is large ahead of the shock in view of the small pressure value in that area,
together with the numerically non-vanishing values of % that result from the global character
of the Fourier expansions used and the non-smooth global viscosity profiles that underly the

Entropy Viscosity method.

4.3.2 2D Euler problems

The test cases considered in this section showcase the FC-SDNN method’s ability to handle complex
shock-shock, as well as shock-boundary interactions, including shocks moving orthogonally to the
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(c) Time history of assigned artificial viscosity for N = 1000, for FC-EV (left) and FC-SDNN (right).

Figure 14: Solutions to the Shu-Osher problem produced by the FC-SDNN and FC-EV algorithms
of order d = 5 at ¢t = 1.8. Solid black line: finely resolved FC-SDNN (N = 10, 000, for reference).
Blue dashed line: FC-SDNN with N = 500 and N = 1000 (middle panels). Green dot-dashed line:
FC-EV with N = 500 (upper panels) and N = 1000 (middle panels). Bottom panels: artificial

viscosity assignments.
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Figure 15: Solutions to the Blast wave problem produced by the FC-SDNN and FC-EV algorithms
of order d = 5 at t = 0.012. Solid black line: exact solution. Blue dashed line: FC-SDNN with
N = 1000 (upper- and middle-left panels), N = 2000 (upper- and middle-center panels), and
N = 3000 (upper- and middle-right panels). Green dot-dashed line: FC-EV with N = 1000 (left
panels), N = 2000 (center panels), and N = 3000 (right panels). Bottom panels: artificial viscosity
assignments.
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Figure 16: Second-order (d = 2) FC-SDNN numerical solution to the Euler 2D Riemann problem
considered in Section 4.3.2, at t = 0.25, obtained by using a spatial discretization containing N x N
grid points with three different values of N, as indicated in each panel. For each discretization, the
solution is represented using thirty equispaced contours between p = 0.5 and p = 1.99.

boundaries as in the Riemann 2D and the Shock vortex problems, or moving obliquely to the
boundary of the domain, after reflecting on a solid wedge, in the Double Mach reflection problem,
or reflecting multiple times on the solid walls of a wind tunnel with a step, in the Mach 3 forward
facing step problem. For the examples in this section FC expansions with d = 2 were used. As
a result the FC method can provide significantly improved accuracy over other approaches of the
same or even higher accuracy orders. In all cases the solutions obtained are in agreement with
solutions obtained previously by various methods [14,25,30,47]. As indicated in the introduction,
the proposed approach leads to smooth flows away from shocks, as evidenced by correspondingly
smooth level set lines for the various flow quantities, in contrast with corresponding results provided
by previous methods.

Riemann4 problem (Riemann problem, configuration 4 in [25]). We consider a Riemann
problem configuration on the domain [0, 1.2] x [0, 1.2], with initial conditions given by

(1.1,0,0,1.1) if z€[0.6,1.2] and y € [0.6,1.2]
] (0.5065,0.8939,0,0.35) if x € [0,0.6) and y € [0.6,1.2]
(P wv.p) = 7 (11,0.8039,0,0.35)  if € [0,0.6) and y € [0, 0.6) (52)

(0.5065,0,0.8939,0.35) if = € [0.6,1.2] and y € [0,0.6),

and with vanishing normal derivatives for all variables on the boundary, at all times. The
solution is computed up to time 7' = 0.25 by means of the FC-SDNN approach. The initial
setting induces four interacting shock waves, all of which travel orthogonally to the straight
segments of the domain boundary. The results, presented in Figure 16, show a sharpening of
the shocks as the mesh is refined and an absence of spurious oscillations in all cases. As shown
on the left image in Figure 17, the FC-SDNN viscosity assignments are sharply concentrated
near the shock positions.
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Figure 17: Artificial viscosity profiles for the Euler 2D Riemann problem considered in Figure 16
at t = 0.25 (left) and for the Shock vortex problem considered in Figure 18 at ¢t = 0.35 (right).

Shock vortex problem [40]. We next consider a “shock-vortex” problem in the domain [0, 1] x
[0,1], in which a shock wave collides with an isentropic vortex. The initial conditions are
given by

. (pL—i-ﬁ,uL—i—fL,vL—l—@,pL +]3) if ze€ [0,05)
(pruv.p) = { (PR, UR, VR, PR) if x€][0.5,1]

where the left state equals the combination of the unperturbed left-state (pr,ur,vr,pr) =
(1,4/7,0,1) in the shock wave with the isentropic vortex

(53)

T — T,

- T — T y—1 s DL PLtD - .
d(r), v=-— d(r), —o(r)"=—- +p = (pr+p)”, (54
) o), Lo =R (), (4
centered at (z.,y.) = (0.25,0.5) (where 1 = \/(z — )2 + (y — 4c)?, ®(r) = eeCU=(/r)),
As in previous references for this example we use the vortex parameter values r. = 0.05,
¢ = 0.204, and € = 0.3. The initial right state is given by

pL(’Y+1)PR+’V—1
(y=Dpr+~y+1

U=

1 —pr
UR = ’7—|—\/§ , UR:O, Pr = 1.3.
i VY —1+pr(y = 1)

Vanishing normal derivatives for all variables were imposed on the domain boundary at all
times.

PR =

The solution was obtained up to time 7" = 0.35, for which the vortex has completely crossed
the shock. The solutions displayed in Figure 18 demonstrate the convergence of the method
as the spatial and temporal discretizations are refined: shocks become sharper with each mesh
refinement, while the vortex features remain smooth after the collision with the shock wave—a
property that other solvers do not enjoy, and which provides an indicator of the quality of the
solution. The right image in Figure 17 shows that, as in the previous examples, the support
of the artificial viscosity imposed by the SDNN algorithm is narrowly focused in a vicinity of
the shock.

Mach 3 forward facing step [47]. We now consider a “Mach 3 forward facing step problem”
on the domain ([0, 0.6] x [0, 1]) U ([0.6,3] x [0.2,1]), in which a uniform Mach 3 flow streams
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(a) N = 200 (b) N = 300 (c) N = 400

Figure 18: Second-order (d = 2) FC-SDNN numerical solution to the Euler 2D Shock-vortex problem
considered in Section 4.3.2, at t = 0.35, obtained by using a spatial discretization containing N x N
grid points with three different values of N, as indicated in each panel. For each discretization, the
solution is represented using thirty equispaced contours between p = 0.77 and p = 1.42.

through a wind tunnel with a forward facing step, of 0.2 units in height, located at x = 0.6.
The initial condition is given by

(1.4,3,0,1) if (z,y) € (]0,0.6) x [0,1]) U ([0.6,3] x [0.2,1])

en) ={ 43000 (.y) € {06} x 0,0.2] )

and the solution is computed up to time 7" = 4. An inflow condition is imposed at the left
boundary at all times which coincides with the initial values on that boundary, while the
equations are evolved at the outflow right boundary. Reflecting boundary conditions (zero
normal velocity) are applied at all the other boundaries. (Following [14,47], no boundary
condition is enforced at the node located at the step corner.) The simulation was performed
using the adaptive time step (22) with CFL = 1. The density solution is displayed in Figure 19.

Double Mach reflection [47] We finally consider the “Double Mach reflection problem” on the
domain [0,4] x [0,1]. This problem contains a reflective wall located on the x > z, part of
the bottom boundary y = 0 (here we take x,, = 1/6), upon which there impinges an incoming
shock wave forming a § = 7/3 angle with the positive z-axis. The initial condition is given

by
(8,57.1597,—-33.0012,563.544) if 0 <z <z, + &
e(:E,?J,O) = (pa pu, PU,E) = { (14’070725) if @, + % <7 <(921 (56)

and the solution is computed up to time 7' = 0.2. This setup, introduced in [47], gives rise to
the reflection of a strong oblique shock wave on a wall. (Equivalently, upon counter-clockwise
rotation by 30°, this setup can be interpreted as a vertical shock impinging on a 30° ramp.) As
a result of the shock reflection a number of flow features arise, including, notably, two Mach
stems and two contact discontinuities (slip lines), as further discussed below in this section.
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Figure 19: Top panel: Second-order (d = 2) FC-SDNN numerical solution to the Mach 3 forward
facing-step problem considered in Section 4.3.2, at t = 4, obtained by using 1200 x 400 spatial grid.
Bottom panel: Viscosity assignment.

The initial and boundary values used in this context do not exactly coincide with the ones
utilized in [47]. Indeed, on one hand, in order to avoid density oscillations near the intersection
of the shock and the top computational boundary, we utilize “oblique” Neumann boundary
conditions on all flow variables e = (p, pu, pv, E'). More precisely, we enforce zero values on
the derivative of e with respect to the direction parallel to the shock, along both the complete
upper computational boundary and the region 0 < z < x, (that is, left of the ramp) on the
lower computational boundary. This method can be considered as a further development of the
approach proposed in [44], wherein an extended domain in the oblique direction was utilized
in conjunction with Neumann conditions along the normal direction to the oblique boundary.
In order to incorporate the oblique Neumann boundary condition we utilized the method
described in [2], which, in the present application, proceeds by obtaining relations between
oblique, normal and tangential derivatives of the flow variables e. Inflow boundary conditions
were used which prescribe time-independent values of p, u and v on the left boundary; outflow
conditions on the right boundary, in turn, enforce a time independent value of p.

Additionally, following [44], we utilize a numerical viscous incident shock as an initial condi-
tion in order to avoid well-known post-shock oscillations, as noted in [18], that result from
the use of a sharp initial profile. Such a smeared shock is obtained in our context by applying
the FC-SDNN solver to the propagation of an oblique flat shock on all of space (without the
ramp) up to time 7" = 0.2, including imposition of oblique Neumann boundary conditions
throughout the top and bottom boundary. The solution €, amounts to a smeared shock pro-
file on the (z, y) plane Which at time ¢, is centered on the straight line = z4(y,t) where
zs(y,t) =z, + sm(@)t +; ( 7 This shock is followed by some back-trailing oscillations, as has
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Figure 20: Top and middle panels: Second-order (d = 2) FC-SDNN numerical solution to the Double
Mach reflection problem considered in Section 4.3.2, at t = 0.2, obtained by using 3200 x 800 spatial
grid. Bottom panel: Viscosity assignment.

been observed in [18,44]. In order to eliminate these artifacts from the initial condition, a
diagonal strip of N, points centered around the shock location is selected. Then, on a strip of
N, points surrounding the initial position of the shock, the initial condition e to the Double
Mach reflection problem is defined as

eh(xa Y, 0) = QC,r(xS(yv 0) - 'T>éh(x + J}s(y, T): Y, T) + (1 - QC,T(‘TS(yv O) - JZ))G(JT, Y, 0)

where ¢, is the window function defined in (34). N, is taken to be small enough to exclude
the back-trailing oscillations from the strip, and large enough as to provide a relatively smooth
profile for the initial condition. For the double-Mach solution depicted in Figure 20, which
was obtained on the basis of a 3200 x 800-point grid, the incident-shock parameter values
Ny =125, ¢ = 25 and r = 50 were used.

Among several notable features in the ¢ = 0.2 solution we mention the density-contour roll-ups
of the primary slip line that are clearly visible in the density component of the solution pre-
sented in Figure 20a and highlighted in Figure 21a as well as the extremely weak secondary
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Figure 21: Zoom-in on two features displayed in Figure 20: (a) Density-contour roll-ups in Fig-
ure 20(a); and, (b) Secondary slip line in Figure 20(b).

slip line, that is most easily noticeable in the variable v (Figure 20b) as a dip in the contour
lines highlighted in Figure 21b but which is also visible in this area as a blip in the density
contour lines (Figure 20a). The accurate simulation of these two features has typically been
found challenging [19,44,47]. The elimination of back-trailing shock oscillations, which was
accomplished, as discussed above, by resorting to use of a numerically viscous incident shock,
is instrumental in the resolution of the secondary slip line—which might otherwise be polluted
by such oscillations to the point of being unrecognizable.

4.4 Computational cost

This section presents an analysis of relative computing costs, averaged over many time steps, that
are required by the various elements of the FC-SDNN and FC-EV algorithms for a sample of tests
cases—namely the four Euler 1D problems and the 2D Euler Riemann and Shock-vortex problems
considered in Sections 4.3.1 and 4.3.2. All simulations were run and timed using Matlab scripts on
an Intel(R) Core(TM) i7-9750H @ 2.60GHz computer. Relative computing costs for the Euler 1D
problems, using N = 500 spatial points (resp. N = 1000 spatial points) are presented in Table 3
(resp. Table 4), while those for the Euler 2D problems, simulated on square N x N-point grids
with N = 200 (resp. N = 400) are presented in Table 5 (resp. Table 6). These tables display
the fractions of the computing times required by the code elements in FC-SDNN Algorithm 1 that
incur the main computational costs of the method, namely, (a) The FC-based differentiations and
other operations unrelated to viscosity calculations that are necessary to time-step the algorithm
according to the SSPRK-4 time-stepping scheme (line 13); (b) The filtering procedure (line 11); and,
(c) The artificial viscosity-assignment procedure (lines 6 through 9). For reference, the tables also
present computing costs incurred by related elements in the FC-EV algorithm. Additionally, in view
of potential interest, the tables list the relative time required for evaluation of the ANN smoothness
classification procedure (point (vi) in line 7 of Algorithm 1); inspection of the various tables shows
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this portion of the algorithm generally requires a small fraction of the artificial viscosity-assignment
cost.

The following computing-time components are listed in Tables 3 to 6. Times reported for each
problem are computed as the times required by various sections of Algorithm 1 for the problem
considered, per time-step, and relative to the time required by one FC-SDNN time-step for the
problem considered. The computing time per time-step for each algorithmic section was computed
as the quotient of the total time required by that section divided by the number of time steps. To
reduce the impact of random timing fluctuations, each algorithmic-section time provided in Tables 3
to 6 was obtained as the average of each quantity over twenty separate runs.

— Tot: total computational time.

— AV: Computing time required by the Artificial Viscosity calculation: Lines 6 through 9 in
Algorithm 1 for FC-SDNN, and Section 2.2.2 for FC-EV.

— Tot - AV: Self explanatory. Lines 11 through 14 in Algorithm 1 for FC-SDNN.

— ANN: Computing time required for evaluation of the ANN smoothness classification procedure
(for the FC-SDNN method only): Point (vi), line 7 in Algorithm 1.

— TS: number of time steps required by the simulation.
A number of general observations emerge from the results presented in Tables 3 to 6.

— For each of the examples considered in these tables, the required FC-EV and FC-SDNN
computing times per time-step are essentially the same. A slight but systematic higher cost
is incurred per time-step by the FC-SDNN method—which can be attributed to a somewhat
larger value of the AV cost inherent in this method.

— Importantly, however, the number of time-steps necessary to complete the simulation can be
much lower for the FC-SDNN approach, which results in significantly faster overall FC-SDNN
performance. (The significantly smaller time-steps required by the FC-EV method result from
this method’s use of larger viscosity values—which are needed to smooth oscillations arising,
precisely, from the non-smoothness of the FC-EV viscosity distribution used.)

— It should be noted that the relative cost of the SDNN artificial viscosity method is problem
dependent: it is higher for problems with multiple shocks (such as the Shu-Osher problem and
the Riemann 2D problem presented in Sections 4.3.1 and 4.3.2, respectively) which require
larger numbers of neural network evaluations. The FC-EV cost, in contrast, is not affected
by the number of shocks involved.

— The various timings show that the relative cost of the artificial viscosity algorithm does not
vary substantially as the gridsizes grow.

— The relative cost of the neural network evaluations is modest, less than 10%, resp. 2% for the
1D, resp. 2D problems, and this relative cost diminishes as the gridsize is increased.
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Problem Method | Tot | AV | Tot - AV || ANN | TS
So SDNN | 1.00 | 0.23 | 0.77 0.01 | 317

© EV | 0.980.09| 0.89 - 433
SDNN | 1.00 | 021 | 0.79 0.09 | 432

Shu Osher 5917009 T 0.85 o [13%7
. SDNN | 1.00 | 0.19 | 0.81 0.06 | 284
ax EV 092 0.09| 0.3 = 6683
SDNN | 1.00 | 022 | 0.78 0.08 | 613

Blast Wave |—m5—49970.09 T 0.90 12346

Table 3: Computing-time components for Euler 1D problems on an N-point grid with N = 500.

Problem Method | Tot | AV | Tot - AV || ANN | TS
So SDNN | 1.00 | 0.18 | 0.82 0.04 | 634
© EV 1095|004 001 =865

SDNN | 1.00 | 0.15 | 085 0.05 | 864

Shu Osher <596 T0.05 T 0.92 o 274
. SDNN | 1.00 | 0.14 | 0.86 0.04 | 568
ax EV 095 |0.04]| 0091 = 1337

SDNN | 1.00 | 0.16 | 0.84 0.06 | 1224

Blast Wave | —m5—491 7000 T 0.90 4736

Table 4: Computing-time components for Euler 1D problems on an N-point grid with N = 1000.

Problem Method | Tot | AV | Tot - AV || ANN | TS
Shock-vortex | SDNN | 1.00 | 0.18 0.82 0.01 | 585
Riemann4 SDNN | 1.00 | 0.19 0.81 0.02 | 650

Table 5: Computing-time components for Euler 2D problems on an N x N-point grid with N = 200.

Problem Method | Tot | AV | Tot - AV || ANN | TS
Shock-vortex | SDNN | 1.00 | 0.20 0.80 0.01 | 1417
Riemann4 SDNN | 1.00 | 0.21 0.79 0.01 | 1594

Table 6: Computing-time components for Euler 2D problems on an N x N-point grid with N = 400.

5 Algorithm design considerations

In order to facilitate consideration of the proposed algorithms in related but different application
areas, including, for example, applications concerning systems of nonlinear conservation laws in 1D,
2D and 3D, this section briefly presents a few rationales inherent in the design of the proposed
methods, whose validity should extend beyond the test cases considered in this paper.
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FC order. As illustrated in Section 4.2, and, in particular, in Figure 9, use of a high FC order
d, say d = 5, yields increased accuracy, even after the formation of shocks, even though limited
asymptotic L' and L? convergence rates, of order h and h%, respectively, are observed after shock
formation. It has been found, however, that, for problems where shocks impact upon domain bound-
aries, use of an FC order d > 2 may lead to development of spurious oscillations near the impact
points, and, even, to overall numerical instability and blow-up, and therefore should be avoided for
such applications. The higher-order FC methods are valuable, nevertheless. For example, ongo-
ing efforts concern use of an overlapping-patch setup [1,5], which could allow the application FC
procedures of lower (resp. higher) order in boundary (resp. interior) patches, thus enabling high
accuracy-order and improved dispersion character in the domain interior and away from shocks (cf.
Figure 6)—which could be exploited, by using different resolutions near and away from bound-
aries, to obtain low dispersion and uniformly small errors throughout the computational domain at
reduced computational cost.

Higher spatial dimensionality. Higher-dimensional FC-SDNN solvers can be obtained by
straightforward extension of the 1D and 2D algorithms and operators presented Section 3. On
one hand, the FC time-marching scheme presented in Section 3.1 can simply be adapted to the
3D context by emulating the algorithmic prescriptions along a third spatial coordinate direction.
The determination of a 3D smoothness classification operator, in turn, could be based on use of
one-dimensional partial discrete classification operators, such as those introduced in Section 3.2,
on a three-dimensional stencil of points; as in that section, the overall smoothness-classification
operator at a given point, for a given proxy variable ¢ used, would then be defined as the lowest
degree of smoothness among those resulting from the partial classification operators. Similarly,
the localization stencils and windowed localization operators defined in Section 3.3 for the 1D and
2D cases can be trivially extended to three dimensions. The definition of a 3D artificial viscosity
operator (cf. Section 3.3), finally, requires the empirical selection of values of the weight function
R and associated weight operator R appropriate for hyperbolic systems in the 3D context. In this
regard we recall that, as indicated in Section 3.3, while use of the 1D weight operator yields stable
2D simulations, the modified 2D operator introduced in Section 3.3.2 leads to smoother flow profiles
away from shocks for all the 2D problems considered. We therefore suggest use of the 2D R function
values as a starting point for an empirical selection of suitable values of the function R in the 3D
case.

Proxy variable. The extension of the FC-SDNN algorithm to other systems of conservation
laws requires, in each case, identification of an appropriate proxy variable ¢ (Section 3.2.1). The
proxy variable should be a dimensionless quantity which is discontinuous whenever any one of
the system’s conservative variables is discontinuous. As an example, a reasonable candidate for
the Magnetohydrodynamic (MHD) system could be a function ¢ of both, the fluid-dynamic Mach
number and the Magnetic Mach number. The empirical selection of this function should probably
be conducted in tandem with the aforementioned selection of the function R and associated operator
R, to achieve overall stability as well as desired levels of smoothness and accuracy.
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6 Conclusions

This paper introduced the FC-SDNN method, a neural network-based artificial viscosity method for
evaluation of shock dynamics in non-periodic domains. In smooth flow areas the method enjoys the
essentially dispersionless character inherent in the FC method. The smooth but localized viscosity
assignments allow for a sharp resolution of shocks and contact discontinuities, while yielding smooth
flow profiles away from jump discontinuities. An efficient implementation for general 2D and 3D do-
mains, which could be pursued on the basis of an overlapping-patch setup [1,4], is left for future work.
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