The Eleventh International Conference on

Engineering Computational Technology
23~25 August, 2022 | Montpellier, France

Proceedings of the Eleventh International Conference on
Engineering Computational Technology
Edited by B.H.V. Topping and P. Ivanyi
Civil-Comp Conferences, Volume 2, Paper 10.2
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.2.10.2
©Civil-Comp Ltd, Edinburgh, UK, 2022

Effective Physics Simulations based on Model
Reduction and Domain Decomposition

Lin Jiang, Yu Liu and Ming-C. Cheng

Department of Electrical & Computer Engineering
Clarkson University, Potsdam, NY, USA

Abstract

This investigation implements domain decomposition in proper orthogonal
decomposition (POD) to construct an effective multi-block methodology for physics
simulations of engineering and scientific problems. To develop such a methodology,
the structure of interest is first partitioned into smaller blocks, and solution data of
each block are collected from detailed numerical simulation (DNS) accounting for
parametric variations in the block. The collected data that represent the block are used
to generate (or train) a set of basis functions (or POD modes) that are therefore
tailored to the characteristics of the block accounting for its parametric variations.
With the well-trained modes, the approach significantly reduces the degree of
freedom (DoF) needed to reach an accurate solution. To construct a model for a larger
domain, the trained POD blocks are then glued together using the discontinuous
Galerkin method to enforce thermal continuity at the block interfaces. The multi-
block concept further minimizes the computational effort in the training process and
allows the POD methodology to offer efficient simulation models for large-scale
structure with a high resolution, which may be crucial for many engineering and
scientific applications.

The multi-block POD methodology has been applied to physics simulations in two
distinct areas, including a prediction of the dynamic thermal distribution in a 2-block
3D semiconductor structure and simulation of a 3-block 1D quantum-well structure
whose electron wave functions are governed by the Schrodinger equation. It has been
illustrated that the POD methodology in both applications is able to offer very good
agreement with the DNS results using just 3 or 4 POD modes in the 3D and 1D
problems.
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1 Introduction

Solutions of complex physics problems usually rely on direct numerical simulations
(DNSs), such as finite-difference (FD) and finite-element (FE) method. Many
commercial and open-source codes have been developed in recent decades, covering
a wide range of scientific and engineering applications with good accuracy. These
DNS tools are however computationally intensive, especially when a high resolution
is needed. To minimize the computational effort, numerical degrees of freedom (DoF)
needs to be substantially reduced. The common approach is to project the problem
onto a functional space described by a finite set of orthogonal basis functions, such
as the Fourier basis, wavelets, Bessel functions, Legendre Polynomials, Wannier
functions, etc. Each set of these basis functions for a problem is however assumed
based on its solution form, physical geometries and excitations but may not be optimal
for the problem of interest.

To significantly improve the projection method, the basis functions need to be
optimized for the particular problem of interest. Proper orthogonal decomposition
(POD) [1,2] 1s an effective projection-based method that minimizes the DoF needed
to reach an accurate solution via decomposition of solution data collected from DNS
accounting for parametric variations. However, such a decomposition (training)
process is problematic on 2 issues. Firstly, to collect the massive amount of data from
DNS in a large-scale multi-dimensional structure, particularly with a high resolution,
it is computationally prohibitive. Secondly, to account for enough variations of
physical parameters and boundary conditions (BCs) in the training, time-consuming
DNS needs to be performed many times to cover a wide range of operating/BC
conditions, which is impractical for engineering design of a structure.

This work investigates an approach implementing domain decomposition in POD,
where the domain is partitioned into subdomains (named elements or blocks). The
training is then performed for each smaller block locally instead of the entire domain
globally. This approach offers more efficient/thorough training for the POD basis
functions (or modes). It also provides a more practical, flexible way of analysing and
designing complex engineering or scientific problems based on the concept of
building blocks. Use of building blocks has been an important practice for modern
technology development, including semiconductor chips, nanostructures, material
synthesis, metamaterials, etc. Two test cases of physics simulations using the multi-
block POD methodology are presented below, including chip-level dynamic thermal
simulation of a 2-block semiconductor structure and a quantum eigenvalue problem
of a 3-block quantum well (QW) structure.

2 Methods

POD generates its modes n(r) from solution data Q(r,t) by maximizing the mean
square inner product of the mode and the solution [1,2]. This leads to an eigenvalue
problem,



fQ,(Q(I‘, ) ® Q1)) n(rHdQ" = An(r), (1)

where A is the eigenvalue and the brackets indicate an average over many snapshots
in time. In static problems, the “snapshots” are collected with variations of excitations
and/or BCs. The heat transfer problem is discussed first below, followed by the
Schrédinger equation.

With Q(r, t) replaced by T(r, t), temperature is expressed as a linear combination
of the modes,

M

T(rt) =% a (t)n;(r), (2)
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where M is the selected number of modes for the solution and g; (t) is the temperature
in the POD space for each mode. To solve a;, the heat transfer equation can be
projected onto a POD space,
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with £ as thermal conductivity, Ps power density, p density, C specific heat and S the
surface vector. Using Equation (2) in Equation (3), a set of coupled ordinary
differential equations (ODESs) can be derived,
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where the coefficients (¢;; and g;;) and interior and boundary surface powers (P,
and Pg,r ;) are defined by the integrals in Equation (3) [3,4].

For a multi-block domain, using the discontinuous Galerkin method [5,6],
Equation (3) becomes
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where the penalty factor u = Ny/Ar with Ny as the penalty number and Ar as the local
mesh size, and (-) and [-] are the average and difference across the interface,
respectively. Using Equation (2) for each block, an ODE matrix equation for an N-
block domain can be derived. With the n-th block vector, a, (n =1toN),
determined, the n-th block temperature can be estimated in Equation (2).



In a quantum block surrounded by others, Q(r,t) in Equation (1) is replaced by
the electron wave function (WF) 1 (r). Similar to Equation (5), the Schrodinger
equation can be projected onto a set of POD modes for each block as
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where m" is electron effective mass, U potential energy and # the reduced Plank’s
constant. y in each block is expressed as a linear combination of its modes,

M

P(r) =3 a ;n;(r). (7)

j=1

where g; representing the time-independent Schrodinger equation in the POD space.
Using Equation (7) in Equation (6), a multi-block quantum eigenvalue problem can
be formulated for an (NxM)x(NxM) Hamiltonian in the multi-block POD space for an
N-block domain each with M modes.

3 Results

For demonstration of POD on thermal analysis of a 2-block 3D domain consisting of
Core-1 and L2-Cache in a CPU shown in Figure 1, uniform power is applied to each
block with additional higher power to the red square area. Dynamic power is averaged
over 120k cycles at 3.2GHz and assigned randomly. Heating thickness is 0.0558mm
on the top. Adiabatic BCs are assumed except the bottom with constant heat flux.
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Figure 1: Floorplan of AMD-ATHLON-II X4-610e CPU with the 2-block domain,

including L.2-Cache (Block-1) and Core-1 (Block-2). Path A and Points B and C are
the locations for the demonstrations below.

With POD modes generated for each block via data collected from an FE method,
2-block POD thermal model is validated against FE simulation. Figure 2 shows that



least square errors (LSEs) with 4 modes in the entire domain and heat layer are near
2.48% and 1.78%, respectively, at Ny~ 40-80. Dynamic temperatures at Points B and
C are illustrated in Figures. 3(a) and 3(b), and the profile along Path A in Figure 3(c),

where results with 4 modes from these 2 approaches nearly overlap except near the
temperature peak.
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Figure 2. LSEs in the (a) entire domain and (b) heating layer.
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Figure 3: Dynamic temperatures at (a) Point B and (b) Point C and temperature
distribution along (c) Path A.
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Figure 4: (a) Top: QW structure for the demonstration. Bottom: 2 QW structures for
the training. (b) LSEs of WFs in QSs 1-4 over the entire domain.



The quantum POD simulation is demonstrated in a 6-QW structure, shown in
Figure 4(a), partitioned into 3 blocks labelled as AB-E-CD. FD Schrodinger
simulations of the A-E-E-D and A-B-C-D domains, shown in Bottom of Figure 4(a),
are performed separately to collect WF data to generate POD modes for Blocks AB,
E and CD. The demonstration in Figure 4(b) shows that an LSE of the 3-block POD
model below 1%, compared to the FD simulation, is achieved with just 3 modes for
the first 2 quantum states (QSs), and for QSs 3 and 4, 4 modes are needed. WFs from
the POD model with 3 or 4 modes shown in Figures 5(a) and 5(b) for QSs 1 and 3 are
in excellent agreement with the FD simulation.
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Figure 5: Energy band diagram and WFs in the (a) first and (b) third quantum states.

4 Conclusions and Contributions

POD has been found effective for physics simulations in different applications [3,4,7-
10]. However, it has been limited to small/simplified structures due to computational
effort needed for the training, including data collection, mode generation and
calculations of model parameters. For a large-scale structure, this becomes
prohibitive. For example, for thermal-aware task scheduling for CPUs/GPUs [11-14],
the scheduling relies on information on hot spots. Currently, the thermal-aware
CPU/GPU scheduling is almost all based on efficient RC thermal circuits with large
RC elements, which very likely misestimate the peak values and locations of small-
diameter hot spots. Although the POD approach offers an effective method with fine-
enough resolution to capture all the hot spots, it is computationally intensive to train
the large-scale CPU/GPU structure to develop a POD model.

Implementing domain decomposition in POD, the multi-block POD methodology
offers an efficient alternative for training smaller blocks individually. With the multi-
block approach, a more thorough training can be performed to generate a more
accurate and robust set of POD modes for each block. In addition, a greater flexibility
can be achieved if building blocks for the system are trained. A set of POD building
blocks for a specific technology can then be stored in a database for design/simulation
of a larger structure. The building-block concept is one of the major reasons for
efficient engineering design and fast growth of modern technologies. Fast advance in
multi-core CPUs/GPUs is a typical example of utilizing the building blocks, including
cores, caches, memory units, streaming microprocessors and many other functional
units. The concept of the POD building blocks can be implemented, for example, in
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thermal-aware design exploration of GPU/CPU floorplans [15-18] that is a crucial
step to minimize the heating issues and improve their reliability and performance.
Another example is the use of building blocks for design/synthesis of nanostructures
and materials, which requires efficient and accurate solution of the Schrédinger or
Schrodinger-like equations to facilitate calculations of electronic structure. The
quantum multi-block POD simulation methodology, if successfully implemented in
multi-dimensional domain, will be useful for such applications.

This work has validated the great efficiency and the high accuracy of the multi-
block POD simulation methodology in 2 different areas of applications. With the
improved efficiency for the POD training provided by the multi-block approach,
effective multi-physics multi-dimensional simulations enabled by the multi-block
POD methodology will become possible in the near future.
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