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ABSTRACT

Supermassive stars are Population III stars with masses exceeding 10* M, that could be the progenitors of the first supermassive
black holes. Their interiors are in a regime where radiation pressure dominates the equation of state. In this work, we use the
explicit gas dynamics code PPMSTAR to simulate the hydrogen-burning core of a 10* M supermassive main-sequence star.
These are the first three-dimensional hydrodynamics simulations of core convection in supermassive stars. We perform a series
of 10 simulations at different heating rates and on Cartesian grids with resolutions of 7683, 11523, and 1728°. We examine
different properties of the convective flow, including its large-scale morphology, its velocity spectrum, and its mixing properties.
We conclude that the radiation pressure-dominated nature of the interior does not noticeably affect the behaviour of convection
compared to the case of core convection in a massive main-sequence star where gas pressure dominates. Our simulations also
offer support for the use of mixing-length theory in one-dimensional models of supermassive stars.
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turbulence.

1 INTRODUCTION

Over the last decade, several very massive (=>10° M) quasars at
redshift z ~ 7 have been identified (e.g. Mortlock et al. 2011;
Wu et al. 2015; Banados et al. 2018). The existence of such
supermassive black holes when the universe was less than 1 Gyr
old is perplexing. Producing a >>10° M, black hole from a standard
<100M, Population IIT star by that time would require larger
accretion rates than what can be sustained (Park & Ricotti 2011;
Whalen & Fryer 2012).

To solve this conundrum, the formation of much more massive
black hole ‘seeds’ is thought to be required. One promising scenario
is the collapse of primordial supermassive stars (SMSs), Population
III stars with masses >10* Mg (Rees 1984; Woods et al. 2019).
Such stars could be formed from a primordial halo at z ~ 10-
20 if a strong Lyman—Werner ultraviolet field destroys molecular
hydrogen, thereby delaying the collapse of the cloud and preventing
its fragmentation into conventional-mass stars (Agarwal et al. 2012;
Dijkstra, Ferrara & Mesinger 2014; Regan et al. 2017). Eventually,
the cloud cools from atomic hydrogen line transitions and collapses
with infall rates reaching 0.01-1 M, yr~! (Latif et al. 2013), thus
permitting the formation of SMSs. Alternatively, an SMS may be
formed in a halo where cold flows drive violent turbulence that
prevents star formation until a critical mass is reached and the halo
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collapses catastrophically (Latif et al. 2022). Thanks to the very
large infrared luminosities of SMSs, the JWST may soon enable
their detection (Surace et al. 2018, 2019; Whalen et al. 2020; Woods
et al. 2021b).

Modelling the evolution of SMSs has been a subject of intense
theoretical efforts over the last years (Begelman 2010; Hosokawa,
Omukai & Yorke 2012; Hosokawa et al. 2013; Umeda et al. 2016;
Woods et al. 2017, 2021a; Haemmerlé et al. 2018a, b; Nagele et al.
2020; Herrington, Whalen & Woods 2023). There are significant
disagreements between independent evolutionary models (e.g. see
the review by Woods et al. 2019), and the absence of constraining
observational data prevents their empirical validation. In this work,
we examine more closely one uncertain aspect of the modelling of
SMSs: the treatment of convection in their cores.

In the hydrogen-burning cores of main-sequence SMSs, the total
pressure is overwhelmingly dominated by the radiative pressure.
More precisely, B = Pg,s/P < 0.1, where the total pressure P is given
by

RpT  aT*
P=Pgas+Prad= + s (1)
w 3

with R the ideal gas constant, p the mass density, 7" the temperature,
1 the mean molecular weight, and a the radiation density constant.
Those are rather exotic conditions where the mixing-length theory
(MLT; Cox & Giuli 1968), so far used in all evolutionary calculations
of SMSs, has seldom been tested. The only exception we are aware of
is the iron opacity peak convection zone of massive main-sequence
stars, where f is also of the order of 0.1 and three-dimensional (3D)
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hydrodynamics simulations have been carried out (Jiang et al. 2015,
2017; Schultz, Bildsten & Jiang 2022).

Here, we present the first 3D hydrodynamics simulations of core
convection in SMSs. Our approach is described in Section 2, where
we detail the one-dimensional (1D) model used to initialize the 3D
simulations and briefly describe the PPMSTAR gas dynamics code used
in this work. We then present the main results of our simulations
in Section 3 and an MLT analysis in Section 4 before giving our
conclusions in Section 5.

2 METHODS

2.1 1D models

To set the initial conditions for our 3D hydrodynamics simulations,
we draw from the KEPLER 1D models of Woods et al. (2017). KEPLER
is a Lagrangian hydrodynamics and stellar evolution code that
includes convective mixing using MLT and uses an adaptive nuclear
reaction network coupled to the hydrodynamics (for more details, see
Weaver, Zimmerman & Woosley 1978; Woosley et al. 2004). These
models are each evolved under a constant accretion rate until the stars
either undergo collapse via the post-Newtonian general relativistic
instability or approach the end of their nuclear-burning lifetime.
They are initialized as 10 Mg polytropes with a central density
pc = 1073 gem™3 and a central temperature 7, = 1.2 x 10° K. The
initial protostar is assumed to be chemically homogenous and both
its initial composition and that of all accreted material are assumed
to be primordial (with abundances following Cyburt, Fields & Olive
2001, 2002). Here, we consider a model accreting 0.1 M yr~! after
it has reached a total mass of ~10000 Mg, as the initial set-up for
our 3D simulations. This corresponds to a star that is on the main
sequence but still early in its evolution.

To initialize the 3D simulations, we use the 1D model’s central
pressure, its entropy (S) profile, and its p profile. From those
quantities, a 3D base state is generated by integrating the hydrostatic
equilibrium equation and using the equation of state (1) implemented
in our 3D gas dynamics code. This guarantees the generation of a
3D base state that is exactly in hydrostatic equilibrium. As in our
previous works (Blouin et al. 2023; Herwig et al. 2023), small-
scale numerical noise is removed from the KEPLER S and p profiles
using spline interpolations, and a constant entropy is imposed in the
convective core. For reference, Fig. 1 compares the original 1D model
to its representation in PPMSTAR, after the smoothing procedure.
Since we are mostly interested in the behaviour of convection in
the hydrogen-burning core, our initial set-up only includes layers
inside a radius Rp,x = 15000 Mm. Most of the radial extent of
the radiative envelope is therefore not included, but this inner
15000 Mm nevertheless contains more than half of the mass of the
star, M (Rpax) =~ 5600 Mg.

2.2 PPMSTAR simulations

We use the PPMSTAR explicit gas dynamics code (Woodward,
Herwig & Lin 2015; Jones et al. 2017; Herwig et al. 2023). Two
fluids are included, one with ;1 = 0.5920 representing the envelope
material and one with © = 0.6164 representing the heavier core
material. PPMSTAR now takes into account radiation pressure in its
equation of state (Mao et al., in preparation), a necessary upgrade
to simulate SMSs. Radiation diffusion is also considered, which is
done by including a radiative flux term Fyy = —%VT. Direct
interpolation of Rosseland mean opacity tables is not practical due
to the large computational cost that such a procedure would entail in
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Figure 1. Comparison between the initial 1D KEPLER model (solid blue
line) and its representation in PPMSTAR (dashed orange line). The hydrogen-
burning convective core occupies the R < 8400 Mm region. The original
1D stratification is accurately recovered in the 3D set-up and small-scale
numerical noise has been suppressed using spline interpolations (see the p
profile in the convective boundary region). The second panel also displays
the g profile (dotted black line, right vertical axis).
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Table 1. Summary of the simulations presented in this

paper.

ID L/L, Grid t (h)
V2 103 7683 2880
V3 103 11523 2456
V4 102 11523 3756
V5 10 11523 5252
V7 102 17283 2528
V8 102 7683 3691
V9 10* 7683 2028
V10 1033 7683 1831
Vil 1023 7683 1893
V12 10 7683 6153

the context of a highly optimized gas dynamics code like PPMSTAR.
Instead, we build a simple polynomial fit to the OPAL opacity tables
(Iglesias & Rogers 1996) in the composition—density—temperature
space around the parameters relevant to our simulation set-up. As
shown in Fig. 1, this procedure satisfactorily recovers the opacity
profile of the reference 1D model.

The gravitational acceleration profile is fixed throughout the
simulations, meaning that a dynamical collapse of the type expected
for a polytrope with y < 4/3 cannot take place. Convection in the
core is driven by heating the central region of the star. Heat is injected
in the simulation following a Gaussian profile centred on R = 0 and
with a half-width at half-maximum of 2160 Mm, closely matching
the 1D model predictions. In order to limit the computational cost
of simulating low-Mach number flows, all simulations presented in
this work are driven by a heating luminosity L that is >10 times
the nominal nuclear luminosity L, of the initial 1D model,' thereby
increasing the flow velocity. The properties of the real star can then
be estimated by extrapolating from those higher luminosities to the
lower nominal luminosity (e.g. Jones et al. 2017; Herwig et al. 2023).
Note that for a simulation with L = KL,, the opacity is set to be k =
k./K, where «, is the nominal opacity from OPAL. This proportional
decrease ensures energy conservation (the additional energy injected
in the star can flow through the radiative layers more easily).

Our simulations are performed on Cartesian grids of 7683, 11523,
and 1728 and they each run for several thousand hours of star time.
All runs analysed in this work are listed in Table 1. The different
grid resolutions allow to characterize the numerical convergence of
our simulations (Section 3.2), and the various heating luminosities
enable the establishment of the scaling laws required to extrapolate
the simulation results to the nominal luminosity (Section 3.5).

Except for V12, which we discuss in more detail in Section 3.5,
all simulations have run long enough to attain a state of dynamical
equilibrium (i.e. the properties of their convective cores reach a
steady state). This is shown in Fig. 2, where the spherically averaged
rms velocity one pressure scale height below the convective boundary
is plotted as a function of time for our three 11523 simulations with
different heating luminosities. We can see that V3 reaches dynamical
equilibrium after ~1000 h. The fact that the lower L runs require more
time to achieve dynamical equilibrium simply reflects their slower
dynamics. In the following sections, the initial transient phase is
discarded and only the steady-state portion of each simulation is
used in our analysis.

It is useful to compare the total simulation times to the convective
turnover time-scale. We can estimate the convective turnover time-

'L, =1.485 x 10" ergs~!.
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Figure 2. Time evolution of the spherically averaged rms velocity
1 Hp (~2400Mm) below the convective boundary for runs V3, V4, and
V5.

scale by taking the diameter of the convective core and dividing
it by the rms velocity |U|. For run V3 (L = 1000L,), this yields
Teonv =~ 17000 Mm/0.06 Mm/s =~ 79 h, meaning that this simulation
lasted for about 31 turnover time-scales, including 2220 past the point
where it reaches dynamical equilibrium. This is sufficient to calculate
robust mean flow properties.

3 RESULTS

3.1 Centre-plane slice renderings

Fig. 3 shows centre-plane slice renderings of the amplitude of the
tangential velocity component |U,| (i.e. the velocity component
perpendicular to the radial direction), the radial velocity U,, the
vorticity magnitude |V x Ul, and the fractional volume of the
envelope fluid (FVeny).2 In the first three panels, we can easily
distinguish the convective core, characterized by high flow velocities
and turbulent motions. The |U;| and U, panels clearly show how the
flow is dominated by a large dipolar structure. From the centre, the
material is carried by fast upflows towards the convective boundary in
a north-eastern direction (in orange in the U, panel). Upon reaching
the core boundary, the flow is forced to turn and then travels mainly
in the horizontal direction along the inner contour of the convective
core (dark red regions in the |U,| panel), before eventually separating
from the boundary and turning back towards the centre (in blue in the
U, panel). This separation is due to the opposing pressure generated
by the opposite tangential flow. Facing this pressure gradient and
constrained by the convective boundary, the flow is forced to turn
inwards (Herwigetal. 2023). As described in Woodward et al. (2015),
this separation generates instabilities that promote the ingestion of
envelope material into the core (see the FV.,, plumes travelling
inwards from the convective boundary in the fourth panel).

This overall flow morphology, dominated by a large dipole
structure that goes through the centre of the star, is indistinguishable
from that observed in our recent PPMSTAR simulations of core
convection in 25 M main-sequence stars (Herwig et al. 2023). This

2FV,,y is the variable used to track the concentration of the envelope fluid:
FVeny = Xenvp/Penv, With Xepy the mass fraction of the envelope fluid, peny
its density, and p the density of the two-fluid mixture.
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Figure 3. Centre-
of the tangential velocity component |U,|, with dark blue, turquoi

velocity U,, with blue colours representing inward-moving flows (li
flows (light orange being

ne slice renderings of run V3 (L = 1000L,, 11523 grid) at dump 626 of the simulation (corresponding to t = 1365 h). Top left: magnitud

yellow, red, and dark red representing a sequence of increasing velocities. Top right: radial
blue being faster flows than dark blue) and orange colours representing outward-moving

ter flows than dark orange). Bottom left: vorticity magnitude, with the same colour sequence as for |U;|. Bottom right: fractional

volume of the envelope fluid FV.,, with dark red being pure envelope material (smaller ;) and dark blue being pure core material (larger ). High-resolution

movies are available at https://www.ppms

is a first indication that the Pp,q-dominated equation of state that
describes the hydrogen-burning cores of SMSs has little impact on
convection compared to more conventional stellar interiors where
Py, dominates.

Finally, note that the ring-like structures clearly ble in the
radiative region of the |U,| and |V x U| panels are internal gravity
waves oscillating in the stable envelope after being excited by the
pummelling of the convective boundary. We can infer their nature

MNRAS 521, 4605 3 (2023)

based on the presence of discrete modes that have frequencies below
the local Brunt—Viisild frequency, as expected for internal gravity
waves (see Appendix A).

3.2 Radial profiles

Spherically averaged radial profiles of the rms radial and tangential
velocity components are shown in Fig. 4. Inside the convective core
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Figure 4. Spherically averaged radial (blue) and tangential (orange) velocity
components at = 2500h for runs V8 (768> grid, solid lines), V4 (11523,
dashed lines), and V7 (17283, dotted lines). The vertical dash—dotted line
marks the location of the convective boundary, identified by finding the
location of the minimum U, gradient (Jones et al. 2017). Note that the
simulations shown here were driven with 100x the nominal luminosity (see
Table 1).

(i.e. to the left of the dash—dotted vertical line), we can see the
signature of the large-scale flow pattern described in Section 3.1.
In particular, |U,| decreases as the flow nears the boundary and
is deflected to travel mostly in the tangential direction, in turn
explaining why |U,| increases in the same region. In the radiative
envelope, the internal gravity waves leave an imprint on the |Uj|
profile, with a series of oscillations corresponding to the ring-like
structures visible in the top left panel of Fig. 3. These features
are similar to those observed in previous work on shell convection
(Herwig et al. 2006; Woodward et al. 2015; Jones et al. 2017;
Andrassy et al. 2020; Stephens et al. 2021) and core convection
(Herwig et al. 2023).

Fig. 4 can also be used to assess the numerical convergence of our
simulations. Separate runs using three different grid resolutions (up
to 17283) are shown, and all three use the same heating luminosity
(L = 100L,). Clearly, the flow velocities in the convection zone
change very little upon increasing the resolution, signalling a good
convergence. In the envelope, high-wavenumber waves, which are
less well resolved at lower grid resolutions, contain a significant
amount of the total power (see Appendix A), and higher resolution
translates into higher velocities. However, the velocity difference
decreases when going from a 11523 to a 1728 grid compared to
going from a 7683 to a 11523 grid, indicating that we are approaching
convergence regarding the flow properties in the radiative envelope
(which is not the main target of this investigation).

3.3 Power spectra

Now that we have examined the spherical averages of the velocity
components, we turn to their fluctuations on the sphere at a given
radius. To do so, we have decomposed the power contained in
the flow into spherical harmonics (Fig. 5). This is done using the
filtered briquette data output (Stephens et al. 2021) for which the grid
resolution in each direction is four times lower than the computational
grid. For each velocity component, we show how much power
is contained within a given spherical harmonics (identified by its
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Figure 5. Power spectra of the tangential (top panel) and radial (bottom
panel) velocity components for different heating rates and radii inside the
convective core (see the legend above the top panel). The power is binned
as a function of £, the spherical harmonics angular degree. The spectra are
averaged over the last 200 dumps of each simulation, and the solid and
dashed lines correspond to simulations V3, V4, and V5 (11523 grid). An
£33 Kolmogorov power law is shown for comparison. The dotted orange
line shows the power spectrum for V7 (100 heating, 17283 grid) at R =
6000 Mm.

spherical wavenumber ¢). We have repeated this exercise for two
different radii inside the convective core. For U,, note how the
¢ = 1 mode contains the most power, consistent with the large
dipole structure visible in the top right panel of Fig. 3. Up to high
¢ (¢ <30 at R=6000Mm and ¢ < 50 at R = 3000 Mm), we
recover a Kolmogorov £33 power law, as expected for a turbulent
convective flow. This demonstrates that the P,,q-dominated nature of
the equation of state has no influence on the smaller scale structure
of the convective flow. Note that the departure from the Kolmogorov
scaling at large ¢ simply reflects the finite grid resolution. With a
higher resolution, the £~ power law would continue to yet higher
£. In fact, as revealed by a comparison of the R = 6000 and 3000 Mm
power spectra, the Kolmogorov scaling also extends to higher £ when
the radius at which the power spectrum is calculated increases, since
the angular resolution of the Cartesian simulation grid projected
on the sphere is improved. A similar extension of the Kolmogorov
scaling can also be observed for V7 (dotted orange line in Fig. 5),

MNRAS 521, 4605-4613 (2023)
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Figure 6. Evolution of the spherically averaged w profile in run V3 (L =
1000L, and 11523 grid). A continuous outward migration of the convective
boundary is observed, which we attribute to the fact that the initial set-up is
not thermally relaxed.

which was performed on a 1728° grid instead of 11523 for the other
simulations displayed here.

3.4 Convective boundary

We have seen in Section 2.2 how the properties of the flow in the
convective core reach a steady state after a few thousand hours. This
is to be contrasted with the behaviour of the convective boundary.
Fig. 6 shows the evolution of the p profile in the boundary region
for run V3 (L = 1000L, and 1152% grid), which reveals that the
convective boundary migrates outwards at a rate of a few Mm per
100 h. We attribute this behaviour to the fact that the 1D model used
to initialize our 3D simulations is not thermally relaxed. This is not
due to a flaw in our calculations but rather to a well-known feature of
SMSs: those stars never reach thermal equilibrium (Begelman 2010).
The expansion of the convective core is simply an attempt by our 3D
simulations to establish thermal equilibrium in the star.

We cannot rule out that part of the migration of the convective
boundary is due to genuine convective boundary mixing (penetration,
overshoot, etc.). However, we cannot distinguish between this effect
and the expansion due to the out-of-equilibrium nature of the
initial set-up, thereby preventing us from characterizing convective
boundary mixing in SMSs. In a future work, it may be interesting
to generate 1D SMS models that are artificially relaxed to thermal
equilibrium. 3D simulations initialized from such stratifications
should have more stable convective boundaries, and it would then
become possible to determine the properties of the boundary. Of
course, the stratification would then differ from the true expected
structure of rapidly accreting SMSs, but may provide an instructive
experiment.

3.5 Heating series

In Fig. 7, we study the behaviour of the flow as a function of the
heating luminosity by plotting the rms velocity one pressure scale
height below the convective boundary for our 10 simulations listed
in Table 1. Before delving into the luminosity dependence, let us
examine how |U]| varies with respect to the grid resolution. At 100x
and 1000x heating, we see that all grid resolutions agree very well
with each other, as can be expected from our analysis of Fig. 4.
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Figure 7. Spherically averaged rms velocity 1 Hp(2~ 2400 Mm) below the
convective boundary as a function of the driving luminosity. In each case,
|U| was averaged over the last 800 h of the simulation; each run has reached
dynamical equilibrium inside the convective core by that time. Note the
superposition of the symbols for the three different grid resolutions in
the 100x heating case. The triangle symbol indicates that the underlying
simulation is not fully converged (see the text for details).

In sharp contrast, the 768 and 1152° simulations at L = 10L,
strongly disagree, indicating poor numerical convergence. At this
low heating rate, a 768 grid is apparently too coarse to properly
resolve the slow flow (Ma >~ 0.004). In addition, despite running
for more than 6000h, V12 (the 7683, 10L, simulation) has not
yet converged to a stable |U| value. |U| keeps decreasing, which
is why we represent this simulation with a downward triangle in
Fig. 7. For these reasons, we ignore this simulation in the following
discussion.

Previous hydrodynamics simulations have found that the convec-
tive velocity scales as L' (e.g. Porter & Woodward 2000; Miiller
et al. 2016; Jones et al. 2017; Herwig et al. 2023). This is also what
MLT predicts. Indeed, in the limit of large convective efficiency
(which is appropriate here given the almost perfectly adiabatic core
stratification), MLT gives (Cox & Giuli 1968)

U= Ql/za vmd - Vad 13 c
2\ A

where ¢, is the speed of sound, « is a free parameter of order
unity, and V4 and V,4 have their usual meanings. Adopting the
proportionality constant ay = 9/4 of Cox & Giuli (1968), the
dimensionless parameters of equation (2) are given by

@

Y ek g p pr

A= S VBacP TS @
Q=4;w, @
and

with ¢, the heat capacity at constant pressure and lyir = oHp.
When we change the heating rate (and concurrently the opacity) in
our simulations, only A varies in equation (2) because of the change
in k (Vg remains constant because L and k change by the same
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factor but in opposite directions). From there, it follows that U oc L'3
according to MLT, regardless of the value of .3

Given these theoretical considerations and earlier 3D simulation
results, it is perplexing to find in Fig. 7 a luminosity scaling that
disagrees with the expected L' scaling. At L > 1000L,, our results
are compatible with an L"® power law, but at lower luminosities,
they clearly favour a shallower dependence on L. This behaviour
cannot be attributed to numerical convergence issues arising at low
luminosities, since, as we have discussed, there is excellent agree-
ment between different grid resolutions down to at least L = 100L,.
Note that we reach the same conclusions if we study the scaling of
the average rms velocity component in the whole convective core
(instead of just looking at one particular radius) or if we examine
the rms radial velocity component |U,| (instead of looking at |U|).
We have not been able to identify a satisfying explanation for the
unexpected U — L relation revealed by Fig. 7. It is possible that this
peculiar behaviour is related to the fact that the star is out of thermal
equilibrium (see Section 3.4). Testing this hypothesis would require
new simulations performed using an artificially thermally relaxed
initial stratification.

4 MIXING-LENGTH THEORY ANALYSIS

In this section, we look in more details at simulation V3 (L = 1000L,
and 11523 grid) and verify whether the properties of its convective
core conform to predictions from MLT. Using other simulations
for this analysis yields similar results, so we only focus on V3 for
conciseness. The first thing we can compare is the superadiabadicity
V — V4. Since we are looking at the deep interior where convection
is very efficient, the superadiabadicity is expected to be very small. In
fact, it is so small that we cannot directly measure it in our simulation:
the radial profile of V — V4 oscillates around O with an amplitude
close to the single-precision floating point precision of PPMSTAR. We
can nevertheless constrainitto V. — V4 < 3 x 107> (measured 1 Hp
below the convective boundary), which is consistent with the MLT
prediction of 3 x 107¢ (assuming o = 1).

Another quantity that we can compare to MLT is the diffusion
coefficient in the convection zone. We measure this quantity in our
simulation using the inversion method described in section 2.4 of
Herwig et al. (2023). Very briefly, we take FV.,, radial profiles
at different times and invert the 1D diffusion equation to identify
which diffusion profile D(R) can reproduce the observed evolution.
The result from this analysis is shown as a black solid line in
Fig. 8, where the FV.,, profiles used in the analysis are also shown
for reference (blue and orange lines). Our inversion technique can
only recover D(R) if the gradient of FV,,, is not zero: this is why
Fig. 8 is restricted to the outer portion of the convection zone.

Also shown in Fig. 8 is a dashed green line that corresponds
to the prediction from the standard MLT formula D = _%U aHp.
We have assumed that U in this equation corresponds to the
rms velocity |U| profile from the 3D simulation. The MLT dif-
fusivity 1 Hp inside the core matches the measured 3D value
if we assume o = 0.48. However, the agreement closer to the
boundary is poor. This is a well-known problem and a simple
solution is to decrease the mixing length close to the boundary
(Eggleton 1972; Jones et al. 2017). This is what we did for the
dashed—dotted line, where we now use the following prescription

3Interestingly, the same L3 scaling is recovered if only the heating luminosity

(and not the opacity) is changed. In that case, Vi, = % KLP increases

¢ . % > mwacG mT4
linearly with L, while A remains constant.
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Figure 8. Diffusion coefficient (black solid curve) inferred from the change
in the FV¢yy profile (from ‘FVI’ to ‘FV2’) in the V3 simulation (1000x
heating). The dashed line corresponds to the MLT formula D = LUaHp
with & = 0.48, while the dash—dotted line uses a non-constant « (equation
6). The rms velocity |U| profile from the 3D simulation was used to evaluate
D= %U o Hp. The vertical dotted line marks the location of the convective
boundary.

for a:

a(AR) = min (0.48, 0.54AR* 4 0.19AR + 0.012) s (6)

with

Ar=Ra—R ©)
Hp

where Rgs is the radius of the Schwarzschild boundary in the
initial 1D model. Clearly, a much better agreement is now found.
Note that a linear (Blouin et al. 2023) or exponential (Herwig
et al. 2023) prescription for a(AR) fails to replicate the measured
diffusivity profile: a quadratic function provides a better fit. All things
considered, the analysis presented in this section shows that MLT
with o of order unity can reproduce the mixing measured in our
simulations. Once again, this conclusion agrees with what has been
previously established for stellar interior convective zones dominated
by gas pressure.

5 CONCLUSION

We have performed the first 3D hydrodynamics simulations of
core convection in primordial SMSs. We find that the peculiar
conditions encountered in the interiors of those stars (in particular
their radiation pressure-dominated nature) have no important effects
on the properties of convection. We showed that the flow morphology
is indistinguishable from that of core convection in massive main-
sequence stars (where the gas pressure dominates), that the velocity
spectra follow the expected Kolmogorov cascade, and that MLT with
« of order unity can reliably describe mixing in the core. Our results
offer compelling support for the use of MLT in 1D evolutionary
models of SMSs.

Future work should focus on characterizing the properties of the
convective boundary. This was not possible with our simulations as
the convective boundary continually moves outwards, a behaviour
that we attribute to the fact that the star is not in thermal equilibrium.
A customized 1D initial stratification where the star is allowed to
relax to thermal equilibrium could conceivably be used for future
3D simulations aimed at measuring the properties of the convective
boundary. Such simulations could also help elucidate the unexpected

MNRAS 521, 4605-4613 (2023)

€202 8unf g0 Uo Jasn Blosauul 10 Alsiaaiun Aq 091.£80//S09Y/S/ L ZS/a101e/seluw/woo dno olwapeode//:sdiy Woll papeojumo(]


art/stad846_f8.eps

4612  S. Blouin et al.

relation we have observed between the convective flow velocity and
the heating luminosity.
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APPENDIX A: WAVENUMBER-FREQUENCY
DIAGRAMS

We show in Fig. A1 power spectra of the radial velocity component
for simulation V3 (L = 1000L,, 11523 grid). The power is binned
as a function of the angular degree (as in Section 3.3) and of the
temporal frequency. The wavenumber—frequency diagrams stop at
v = 63 pHz, which corresponds to the Nyquist cut-off frequency
given the time interval that separates each detailed output of the
simulation. Higher frequency modes are resolved in the simulation
but cannot be reconstructed from the outputs (there are ~2000
simulation time-steps between each dump). The top panel shows
the power spectrum in the stable layers (at R = 12 000 Mm), while
the bottom panel shows the spectrum in the convective core (at
R = 7000 Mm). In the convection zone, the spectrum is smooth and
does not display any specific features, as expected for a turbulent
flow. In contrast, in the radiative envelope, we see a distinctive
power distribution, with a set of well-defined ridges composed of
discrete modes. With increasing ¢, v increases for most ridges but
decreases for some. The first behaviour is the signature of internal
gravity waves, also known as g modes in asteroseismology (compare,
for example, Fig. Al to similar diagrams shown in Rogers et al.
2013; Alvan, Brun & Mathis 2014; Horst et al. 2020; Thompson
et al. 2023). Internal gravity waves have frequencies below the
local Brunt—Viisild frequency, which here is N /2w = 79 uHz at
R = 12000 Mm. While we cannot resolve such high frequencies,
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Figure Al. Power spectra of U, at R = 12000 Mm (top panel) and R =
7000 Mm (bottom panel) as a function of the angular degree £ and the temporal
frequency for V3 (11523 grid, 1000 heating). The spectra were obtained by
considering the last 400 dumps of the simulation. Note the different colour
scale between the two panels.
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the arcking of the ridges does suggest a convergence to the Brunt—
Viisild frequency at large £. As for the ridges that have decreasing

frequencies with increasing ¢, they are artefacts of our Fourier
decomposition. They correspond to aliases of internal gravity waves

with v > 63 nHz that are reflected at the Nyquist frequency.
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