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Breaking Up Is Hard to Do: Magmatism During Oceanic Arc
Breakup, Subduction Reversal, and Cessation
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'Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA, 2U.S. Geological Survey,
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Abstract The formerly continuous Vitiaz Arc broke into its Vanuatu and Fijian portions during a reversal

of subduction polarity in the Miocene. Basaltic volcanism in Fiji that accompanied the breakup ranged from
shoshonitic to low-K and boninitic with increasing distance from the broken edge of the arc that, presumably, marks
the broken edge of the slab. The Sr-Pb-Nd isotope ratios of the slab-derived component in the breakup basalts most
closely match those of the isotopically most depleted part of the Samoan seamount chain on the Pacific Plate that
was adjacent to the site of breakup at 4-8 Ma, and differ from those of subsequent basalts in spreading segments

of the surrounding backarc North Fiji and Lau Basins. Subduction of the Samoan Chain along the Vitiaz Trench
Lineament may have controlled the limit of polarity reversal and, hence, where the double saloon doors (Martin,
2013) opened. Prior to breakup, Fijian volcanics were more similar isotopically to the Louisville Seamount Chain.

Plain Language Summary The subduction zone that included Tonga and Fiji was once connected
to Vanuatu. We attribute the arc breakup to subduction of the Samoan Seamount Chain. Volcanism in Fiji
accompanying breakup ranges from shoshonitic closest the tear in the arc, to low-K and boninitic farthest
from it. The ambient mantle source of magma during breakup was the same as earlier in arc history but

the slab-derived component changed during breakup. Post-breakup volcanism came from different mantle
unaffected by subduction and derived from beneath the Pacific Plate.

1. Introduction

Most information about magma genesis in subduction zones is about their volcanic fronts under steady-state
conditions (e.g., Gill, 1981; Plank, 2005; S. J. Turner & Langmuir, 2022). Non-steady-state events include
subduction initiation (Ishizuka et al., 2018; Reagan et al., 2019), and interruptions of steady-states caused by
episodes of flat-slab subduction or slab windows in continental arcs (Gutscher et al., 2000; Madson et al., 2006;
Vogt, 1973), or back-arc basin opening in oceanic ones (Gill et al., 2021; Sdrolias et al., 2003). This paper deals
with subduction cessation that most often accompanies collision of an arc with a continent or another arc such as
in the Banda and Sangihe arcs in Indonesia, respectively (Elburg et al., 2005; Hanyu et al., 2012). The magmatic
consequences of cessation can include quiescence, K-rich arc volcanism, and intra-plate-type volcanism.

This paper investigates an instance of subduction cessation in Fiji where, following a long period of normal
subduction prior to 12 Ma, an oceanic arc broke across-strike rather than rifted along-strike, resulting in K-rich
(shoshonitic) arc volcanism that was followed by intra-plate basalts, and the formation of new backarc basins as
the arc fragments rotated apart and the influence of subduction ceased (Gill et al., 1984). We will show that (a)
subduction of the older parts of the Samoan Seamount Chain contributed to magmatism where the arc broke,
(b) melt from this subducted seamount track was restricted to within 100 km of the break and led to Au-Te ore
deposits, and (c) the previous mantle wedge was rapidly replaced by new mantle unaffected by either subduction
or a deep plume and might include the delaminated root of the Ontong Java Plateau.

2. Geological Context
2.1. The Upper Plate: Vitiaz Arc History

The once-continuous oceanic island arc on the easternmost Indian Plate above the subducting Pacific Plate in
the southwest Pacific Ocean includes what are now the Vanuatu (New Hebrides) arc, Fiji, Tonga and Kermadec
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arcs, and Lau-Colville Ridge remnant arc (Figure 1). This assembly is known collectively as the Vitiaz Arc (Gill
& Gorton, 1973; Jezek et al., 1977; Packham, 1982), named for the Vitiaz Trench Lineament that stretches from
the northern end of the Tonga Trench to the northern end of the Vanuatu Trench (Brocher, 1985; Pelletier &
Auzende, 1996). Although that lineament is now a complex and poorly known transform fault boundary between
the Pacific Plate and North Fiji Basin, the previously continuous arc was >3,000 km long and strongly arcuate
with a decreasing angle of plate convergence to the northwest (Figure 2a). It was a mirror image of the modern
Aleutian arc, but concave to the south instead of north.

The Vitiaz Arc is thought to have originated at about the same time as the [zu-Bonin-Mariana arc in the northwest
Pacific (Hathway & Colley, 1994; Todd et al., 2012), and to have migrated eastward accompanying roll-back of

10°S
14°S
'Nonm,
Eibl
BASINES
18°S
22°s
“l26's
V¥ Trenck v = ‘ 20 ¥ £ ! o
— — Pateo TRencH s % J S o 130°S
—— Fracture Zones : g .
—— SpreApiNG Rinee

168°E A 7 176°'W 172°W 168°'W

Figure 1. Tectonic features referred to in this paper. The spreading centers shown in orange are labeled as follows in
clockwise fashion: NSR, North-South Ridge; FTJ, Fiji Triple Junction at 16°S; N160°R, North 160° Ridge; SPR, South
Pandora Ridge; YYVZ, Yasawa-Yadua Volcanic Zone; FSC, Futuna Spreading Center; NWLSC, Northwest Lau Spreading
Center; RR, Rochambeau Ridge; NELSC, Northeast Lau Spreading Center; FRSC, Fonualei Ridge Spreading Center; CLSC,
Central Lau Spreading Center; ELSC, East Lau Spreading Center; VFR, Valu Fa Ridge. The location of most of these
spreading centers is from Pelletier et al. (2001). NFB (North Fiji Basin) in later figures includes data from the NSR, FTJ,
N160°R, and SPR. The LIP fragments outlined by green dashed lines are from B. Taylor (2006) as follows: OJP, Ontong
Java Plateau; Robbie Ridge; and MP, Manihiki Plateau. The Louisville, Samoa, and Rurutu-Arago hot spot tracks and their
ages shown in green, brown, and blue, respectively, are stylized after Jackson et al. (2020) using the Wessel and Kroenke
(2008) absolute plate motion model anchored to the location of Vailulu'u seamount for the Samoan hotspot. Alexa Bank and
the Rotuma, Futuna, and Wallis islands are young OIB-like volcanoes on both sides of the Vitiaz Trench Lineament (Hart
etal., 2004; A. A. Price et al., 2017; R. C. Price et al., 1991; Sinton et al., 1985). The Alexa-type seamounts between the
white arrows on the Pacific Plate include Alexa, Niulakita, Nukelaelae, Bustard, Bayonaise, and Tuscarora, from west to
east. The Ellice Basin (EB) covers the entire northern part of the figure, both east and west of the Rurutu track (Benyshek

et al., 2019). The South Fiji Basin shoshonites extend south of the figure and east of the Three Kings Rise (TKR; Mortimer
et al., 2021). Data for pelagic and Louisville-derived volcaniclastic sediments from DSDP Site 204, and basalts from ODP
Site 834 are shown in later figures. The bathymetry is from GeoMapApp.
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the Tonga Trench during the 34-15 Ma opening of the South Fiji (backarc) Basin behind it that included the area
now occupied by the North Fiji Basin (Herzer et al., 2011; Schellart et al., 2006). Vitiaz Arc volcanism resumed
in the Middle to Late Miocene, products of which are known as the Lau Volcanic Group in the Lau Islands, Fiji
(Cole et al., 1985; Gill, 1976; Woodhall, 1985a), the Wainimala Group in Viti Levu, Fiji (Gill, 1987; Hathway &
Colley, 1994; Marien et al., 2022; Wharton et al., 1995), and the Western Belt of the Vanuatu arc (Carney et al., 1985).
That configuration continued until the time considered by this paper (i.e., 12-3 Ma), and is shown in Figure 2a, after
Martin (2013) and Schellart et al. (2006). Data for the Oligocene and Miocene arcs are shown in our figures.

At some time after 12 Ma, the Vitiaz Arc broke across-strike into a Vanuatu western portion and a Fiji-Tonga-Ker-
madec eastern portion, with Vanuatu rotating clockwise to its current position, Fiji rotating counterclockwise, and
the North Fiji Basin opening between them. We will refer to this as “arc breakup” which differs from the more
common arc rifting due to seafloor spreading between frontal and remnant arcs to form an intervening backarc
basin. The breakup was first recognized by Chase (1971), Gill and Gorton (1973), and Packham (1973), and
later supported by paleomagnetic studies in Vanuatu (Falvey, 1978; Musgrave & Firth, 1999) and Fiji (Malahoff,
Hammond, Naughton, Keeling, & Richmond, 1982; G. K. Taylor et al., 2000), and by aeromagnetic anomalies in
the North Fiji Basin (Malahoff, Feden, & Fleming, 1982). However, the age constraints from both the paleomag-
netism and magnetic anomalies are uncertain. The most common interpretation is that arc breakup and rotation,
and backarc spreading, started at ~12 Ma (Auzende et al., 1995; Pelletier et al., 1993; Schellart et al., 2006).

Paired magnetic anomalies from seafloor spreading in the North Fiji and Lau Basins are as old as anomaly 2A
(Gauss Chron; 2.6-3.6 Ma: Auzende et al., 1994; Zellmer & Taylor, 2001). However, all anomalies inferred
to be older than that are from the low-resolution aeromagnetic mapping in the late 1970s. They are short and
complex, and have not been confirmed by ship-borne magnetometers or detailed modeling of subchrons. None of
them can be traced back to Anomaly 1. They reflect some combination of unstable creation of new oceanic crust
(spreading), and attenuation of older crust plus extrusion and intrusion of younger magma (rifting). The latter
characterizes the 125 km wide Havre Trough (Gill et al., 2021; Wysoczanski et al., 2010), and the western 80 km
of the Lau Basin where the crust is about 50% thicker than in the eastern basin (Crawford et al., 2003). This makes
the interpretation of magnetic anomalies as old as 12 Ma uncertain. Nevertheless, at least 100 km of the western
North Fiji Basin must be older than 3.6 Ma which makes it likely that rifting and spreading there started by about
7 Ma if net extension is about 3 cm/y.

Paleomagnetic evidence for rotation older than 6 Ma comes only from altered hornblende andesite dikes on
Tavua Island in the Mamanucu group west of Viti Levu, Fiji. Tilt and reversal tests for them are inconclusive,
and their ~10 Ma whole rock K-Ar age has not been replicated (G. K. Taylor et al., 2000). The mineralogy and
bulk composition of the dikes (i.e., sample 71-391 in Gill, 1972) are more similar in composition to the high-K
andesites of this study than to the Wainimala Group in adjacent Viti Levu shown as “Miocene” in our figures.
Consequently, one can say with confidence only that Vanuatu and Fiji had started to separate by 6 Ma, after which
Vanuatu rotated clockwise by at least 52°, and Fiji rotated counterclockwise by a similar amount. The result was
called double-saloon-door tectonics by Martin (2013) whose reconstruction is shown in Figure 2.

Note, however, that there are important differences between the two broken arc segments in Figure 2. The Vanuatu
segment reversed its subduction polarity, it is longer and adjacent to the Ontong Java Plateau, extension occurred
behind the arc (i.e., no remnant arc is known) so that the entire previous volcanic arc rolled back along with the
trench, and the extended region is wider and therefore may have started to open sooner. In contrast, the Fiji-Tonga
segment maintained its subduction polarity, extension during trench roll-back was in the former forearc stranding
its Miocene volcanic front on the remnant arc (Gill, 1976), and the oldest known backarc crust (4—-5 Ma) at ODP
Site 834 is within fragments of the remnant arc (Crawford et al., 2003; Cronan & Hodkinson, 1997).

Arc polarity reversal and the related eastward subduction beneath the Solomon Islands is attributed to its colli-
sion with the Ontong Java Plateau. The collision may have started with “soft-docking” of the plateau as early
as 22 Ma in the southern Solomon Islands, but “hard-docking” is now thought to have begun at only ~4 Ma
(Mann & Taira, 2004). The aerial extent of the collision is uncertain. Mann and Taira (2004) speculate that the
plateau extended as far east as Fiji such that subduction of its southern half reversed the polarity of Vanuatu at
the same time as the Solomon Islands. That scenario is used in recent numerical models of the collision (Almeida
et al., 2022; Wang et al., 2022). For several reasons, we prefer the more conventional alternative in which colli-
sion is restricted to the Solomon Islands. There is no evidence of accreted plateau in either Vanuatu or along the
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(a) Pre-Breakup (~10Ma)
0JP L N

(b) Initial Breakup (8-4Ma?)

= N N

(c) Modern

Figure 2. Schematic geologic history of the northern Vitiaz Arc and adjacent Pacific Plate. The position of the arc is

based on Martin (2013) where (a) pre-breakup is his Figure 5, (b) initial breakup is his Figure 6 that incorporates 33° of
counterclockwise of Fiji, and (c) summarizes our Figure 1. Martin assumed ages of 10—-12 and 7.5 Ma, respectively, for panels
(a and b), whereas we infer ages of ~10 and 4-8 Ma, respectively, for reasons given in the text. In both cases, the geometry
post-dates opening of the South Fiji Basin. The southwest-dipping plate boundary in (a) schematically shows the location of
the Vitiaz Trench ~100 km outboard of the 2,000 mbsl isobath that outlines the arc. The light brown lines north of the arc

in (b) are from Martin (2013) and show magnetic lineations in the northwest North Fiji Basin that are interpreted as records
of extension (rifting or spreading) west of the breakup site, with less to the east. CK in (b) shows the location of Cikobia
Island near the pole of rotation for Fiji. Four features are shown on the Pacific Plate. OJP is the portion of the Ontong Java
Plateau that appears in Figure 1; the feature continues to the northwest where it has collided with the Solomon arc (Mann

& Taira, 2004). The brown and blue lines show the Samoan and Rurutu Hot Spot tracks, respectively, at ~10 and ~6 Ma,
based on Buff et al. (2021), assuming a Pacific Plate motion azimuth of N64°W and velocity of 7 cm/y. The location of Alexa
Bank (A) on the Samoan trace is shown for 4, 8, and 10 Ma. The scalloped shape of the Vitiaz Trench Lineament in (b) is the
same as today (Figure 1) for simplicity. The green line shows the trace of the Louisville Seamount Chain based on Ruellan

et al. (2003) and the Pacific Plate vector as above. Subsequently it subducts as the Lau Basin opens and would be south of
panel (c) and under the Lau Ridge and Vanua Levu today.
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Vitiaz Trench Lineament, nor of subducted plateau beneath the northwest North Fiji Basin. The eastern half of
what Mann and Taira (2004; Figure 7) call the “now subducted edges of OJP” is where B. Taylor (2006) placed
the Hikurangi portion of the former Ontong Java-Manihiki-Hikurangi mega-plateau. His reconstruction makes it
unlikely that any part of the former mega-plateau would have intersected the Vitiaz Trench Lineament.

Another constraint on the timing of arc breakup is the presence of 7-12 Ma tonalitic plutons in Viti Levu,
Fiji, that resulted from various combinations of crustal anatexis and differentiation of mantle-derived basalt
(Gill & Stork, 1979; Marien et al., 2022). This time period was characterized by significant magmatic focusing,
dilation, and deformation of the arc for several million years near where the break occurred because (a) both
genetic processes require extensive intrusion of basalt into the crust, (b) the tonalites intrude broad anticlines
and were rapidly uplifted, and (c) the crust of Viti Levu is thicker than in Vitiaz Arc segments further east (Chen
et al., 2019). We suggest, therefore, that the start of organized spreading within the North Fiji Basin (i.e., the
creation of paired magnetic anomalies in oceanic crust of normal thickness), and accompanying rotation of the
arc segments, post-date the plutonism and occurred between magnetic anomalies 4 and 3 (8-5 Ma).

A final constraint on the timing of arc breakup is that the volcanism in Fiji discussed in this paper, and on Futuna
Island to the northeast (Figure 1), remained arc-type until 3 Ma, and only then was it replaced by OIB-type volcan-
ism (Gill & Whelan, 1989b; Grzesczyk et al., 1991; A. A. Price et al., 2017). The only arc-type volcanic rocks
<3 Main Fiji are in Kadavu, just north of the eastern Hunter Fracture Zone (Figure 1). They are 0.4-2.9 Ma (Whelan
et al., 1985) and adakitic, reflecting limited subduction of the young South Fiji Basin (Danyushevsky et al., 2008).

2.2. The Surrounding Backarc Basins

The clockwise rotation of Vanuatu and counter-clockwise rotation of Fiji opened the North Fiji Basin between them,
just as the clockwise rotation of the Tonga arc opened the Lau Basin between it and Fiji. Concurrent extension also
occurred, and continues, north and east of Fiji along several shorter segments (Pelletier et al., 2001; e.g., YYVZ in
Figure 1). The detailed history of these segments is beyond the scope of this paper, but three aspects of their basalt
geochemistry are important to it. First, there is evidence of a deep-seated plume source (i.e., high *He/*He ratios)
only along Rochambeau Ridge northeast of Fiji at 178°W (RR in Figure 1; Lupton et al., 2015). Although this is
younger than, and well to the east of, the basalts discussed here, it raises the possibility of plume involvement in arc
breakup (A. A. Price et al., 2017). Second, isotopic enrichments in OIB- and MORB-type basalts decrease south-
ward away from the Vitiaz Trench Lineament, implying that their mantle sources came from beneath the Pacific
Plate or Samoa as the plate boundary evolved from subduction to transform in character (Pearce et al., 2007; A.
A. Price et al., 2017). The sub-Pacific Plate mantle may be filling a void left by an “avalanche” of the Vitiaz arc
slab through the 600 km discontinuity (Pysklywec et al., 2003), or may just be drawn southward by opening of
the adjacent backarc basins (e.g., Almeida et al., 2022). This new mantle replaced the former mantle wedge that
underlay the Vitiaz Arc from Vanuatu to Kermadec since its inception. Ironically, the old mantle wedge under the
eastern Indian Plate has been called isotopically “Pacific” for more than two decades because it is isotopically
similar to what is now beneath the East Pacific Rise, whereas the new mantle that may come from beneath the
Pacific Plate has been called isotopically “Indian” because the basalts have high 2%Pb/2*Pb at low 2°°Pb/?%Pb,
and high ¥7Sr/%Sr and '7Hf/'""Hf relative to '*Nd/'**Nd ratios (Hergt & Hawkesworth, 1994; Pearce et al., 2007).
We put “Indian” in quotation marks to stress that its use is solely to denote those geochemical traits rather than
implying a genetic association with the mantle beneath Indian Ocean spreading centers. We will simply call it
“new.” Its 17SHf/!7"Hf isotope ratios reach 0.2835 in the YYVZ just north of Fiji (A. A. Price et al., 2014), one of
the highest values in any MORB globally. This new mantle first appears ~3 Ma in the Lau Basin and Fiji (Gill &
Whelan, 1989b; Hergt & Hawkesworth, 1994), but its age dependence elsewhere is unknown. If influx of a mantle
plume, or this kind of new mantle, were the cause instead of consequence of breakup of the Vitiaz Arc, then it
would leave distinctive geochemical markers in the rocks discussed in this paper.

ODP Site 834 in the rifted western Lau Basin (Figure 1) has special significance for this paper. It was drilled
in a graben about 20 km east of the 2,000 mbsl isobath of the Lau Ridge, about 50 km east of the nearest Lau
island, Moce. It reached 112 m into basalt that is isotopically ‘“Pacific” but with slight backarc geochemical
features (Hergt & Farley, 1994; Hergt & Hawkesworth, 1994; Hergt & Woodhead, 2007). The basalts underlie
coarse volcaniclastic sediments from the Lau islands that were deposited during the Cochiti magnetic subchron
of Anomaly 3 (4.2 Ma). Consequently, they are correlative with, but have much less of a subduction signature
than, our breakup basalts nearby.
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2.3. The Subducting Plate: Oceanic Plateaus, Seamount Chains, and the Melanesian Borderland

The Pacific Plate that subducted beneath the Vitiaz Arc throughout its history contains an abandoned spreading
center known as the Osborn Trough that was once part of the boundary between the Pacific and Phoenix Plates
(Figure 1; Billen & Stock, 2000). Spreading at the Osborn Trough, which is now near the boundary between the
Tonga and Kermadec arcs, separated the Manihiki and Hikurangi portions of the once continuous Cretaceous
Ontong Java-Manihiki-Hikurangi Plateau (OJMHP) Large Igneous Province (B. Taylor, 2006). Its formation
and fragmentation had a lasting impact on the Vitiaz Arc in several ways. First, collision of two of the three
large plateau fragments with subduction zones north and south of the Vitiaz Arc, caused subduction polarity
reversal in the north (Ontong Java-Solomon Arc collision discussed above) and subduction cessation in the
south (Hikurangi-Chatham Rise collision) prior to the more recent partial westward subduction of Hikurangi
beneath North Island, New Zealand (Davy et al., 2008; Reyners et al., 2011). The southern edge of the Ontong
Java plateau passed just a few hundred km north of the western Vitiaz Arc for tens of million years (Figure 1;
Benyshek et al., 2019; B. Taylor, 2006). Slivers of it could have subducted beneath the Vitiaz Arc during
that time much as slivers of the Hikurangi Plateau seem to have been subducted beneath the Kermadec Arc
during the Miocene (Hoernle et al., 2021). “Plateau slivers” might just mean oceanic crust that is geochemically
enriched or thickened by magmatism from plateau sources that contributed to loci of ridge spreading (e.g.,
Castillo et al., 2009).

The second impact is from the Louisville Seamount Chain (LSC) that is thought to be the tail of the
OJMHP (Beier et al., 2011; Vanderkluysen et al., 2014). The western end of the LSC disappears into the
Tonga-Kermadec Trench at 26°S which is the boundary between the actively spreading Lau Basin to the
north and the still-rifting Havre Trough to the south (Figure 1; Ruellan et al., 2003). The age of this oblique
collision of the LSC with the trench overlaps with, but is as uncertain as, when spreading started in the North
Fiji and Lau basins. Whatever the exact timing, after the South Fiji Basin opened, the LSC lay within a few
hundred km east of the Tonga-Fiji portion of the Vitiaz Arc throughout the Neogene (Figure 2). Because
coarse volcaniclastic sediments from the LSC are found at DSDP Site 204 ~100 km north of it (Figure 1; S.
Turner et al., 1997), LSC-derived sediment was available for subduction beneath Tonga and Fiji throughout
the Neogene.

The final impact is not directly related to the OJMPH itself, but it is related to other plumes affecting the south-
west Pacific Plate, namely the multiple seamount chains that passed near the Vitiaz Trench Lineament during the
Neogene. They include the Macdonald, Rurutu-Arago, and Samoan seamount chains that sometimes are referred
to as the “Hot Spot Highway” (e.g., Jackson et al., 2010). They form partly overlapping age-progressive seamount
chains aligned along Pacific Plate flow lines (Figure 1). All of them except Macdonald passed just north of the
Vitiaz Arc before or during the time when it broke into Vanuatu and Fijian segments. The Samoan chain in
particular was within 100 km of the former trench (Hart et al., 2004), and may have been partially subducted
during 20-3 Ma. None of the other hotspot tracks came this close to Fiji.

The westernmost, oldest-known seamounts of the Samoan chain are especially important for this paper. Follow-
ing A. A. Price et al. (2022), we refer to them as Alexa-type; they are a subset of what was called WESAM by
Hart et al. (2004). From west to east, the six for which geochemical data are published are Alexa, Niulakita,
Nukulaelae, Bustard, Bayonaise, and Tuscarora. Their location is shown in general in Figure 1, and in detail by
A. A. Price et al. (2022). Their basalts are more depleted isotopically than those farther east in the Samoan chain,
having ¥Sr/3%Sr < 0.7044, > Nd/'*Nd > 0.5128, and 2°°Pb/?*Pb < 19.05.

Collectively, seamounts from the Samoan and Rurutu-Arago chains, and perhaps the northern portion of the LSC,
and the Robbie Ridge protrusion from the Manihiki Plateau (Figure 1), festoon the southern margin of the Ellice
Basin along what has been called the Melanesian Borderland immediately north of the Vitiaz Trench Lineament
(Brocher, 1985). The borderland is a complex and highly faulted assortment of apparently old, well-sedimented
volcanic seamounts, young volcanoes, and deep basins that form a zig-zag boundary that is reminiscent of where
seamounts are subducting in trenches worldwide (Pelletier & Auzende, 1996). Some of the faulted seamounts
are surrounded by extensive volcaniclastic aprons. Brocher (1985), Pelletier and Auzende (1996), and Schellert
et al. (2006) all inferred that similar material has been subducted in the past west of Alexa Bank. Taken together,
these materials include all geochemical types of ocean island basalts, although each chain is somewhat distinct
geochemically (Jackson et al., 2010).
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2.4. Summary of the Geological Context

All parts of the Vitiaz Arc have complex histories that are intertwined along the former arc's western trace that is
called the Vitiaz Trench Lineament. Figure 2 illustrates that history and has three important implications for this
paper. First, partial or complete subduction of one or more seamount chain, or slivers of the Ontong Java Plateau,
might directly or indirectly have contributed to breakup of the Vitiaz Arc at ~180°E during the Late Miocene lead-
ing to rotation of Vanuatu, Fiji, and Tonga, and formation of the North Fiji and Lau Basins in their wake. At least
the seamount chains were in the right place at the right time. Second, neither the history of the seamount chains
and plateau slivers on the Pacific Plate, nor the history of backarc basin spreading and arc rotation on the Indian
Plate, are known in sufficient detail to fix the time and cause of arc breakup precisely. However, breakup is likely
to have started between 12 and 7 Ma. We favor the younger age for the start of spreading and significant rotation
because it is the end of plutonism and uplift in Viti Levu, Fiji, that was adjacent to the tear in the arc. Third, abun-
dant and diverse OIB materials (e.g., seamounts, plateau slivers, and volcaniclastic sediments) were available for
subduction beneath the central portion of the Vitiaz Arc including Fiji throughout the last 15 million years after
opening of the South Fiji Basin pushed the arc toward the path of the OJMPH and the Hot Spot Highway. This
paper deals with the magmatic consequences of their interactions with the arc before and during breakup.

3. Samples, Lineaments, and Nomenclature

Tables 1 and 2 present new whole rock major and trace element, and Sr-Nd-Pb-Hf isotope ratios for 45 upper
Miocene to Pliocene mafic volcanic rocks from throughout Fiji. Details about their location, rock type, and
phenocryst mineralogy are included. Their general locations are shown in Figure 3. We selected the most mafic,
representative, and dated samples from each island or volcanic center. These data are the first published compre-
hensive analyses for 14 of the islands, and for five of the volcanic centers on Viti Levu. Older XRF + INAA data
for some of the same samples are available along with data for another dozen samples from the same centers
(Gill & Whelan, 1989a). Sr-Nd-Pb isotope data for four of the samples were published by Gill (1984) and happily
agree with the new results within the older error. There are whole rock K-Ar ages for two-thirds of the samples
(Whelan et al., 1985). Other comprehensive rock analyses have been published for the Sabeto, Tavua, and Namosi
volcanoes on Viti Levu (Gill, 1970, 1987; Rogers & Settlefield, 1994; G.-Z. Sun et al., 2017), and for Tavua,
Vatu-i-cake, and the Astrolabes (Leslie et al., 2009). Analyses of additional samples from these volcanoes, and
from additional coeval volcanoes, are available in an Earth Chemistry Library (Gill, 2020). Hand specimens of
most of the samples in this study, and other well-analyzed ones from the ECL, are archived in the US Smithsonian
Museum of Natural History except for those with a 68-, 69-, or C prefix, for which agate-ground powders are
available from the first author.

We group our samples into five geographic lineaments shown in Figure 3, the first three of which were identified
by Gill and Whelan (1989a) and adopted by Leslie et al. (2009) and G.-Z. Sun et al. (2017): Viti Levu, Lomaiviti,
Vatulele-Beqa, Vanua Levu, and Astrolabes (Table 1; Figure 3). The volcanic centers on these lineaments range
in age from 5.2 to 3.0 Ma (Table 1; Whelan et al., 1985). We refer to them collectively as “breakup basalts.”

We use the low-K, medium-K, high-K, and shoshonite categories of Gill (1981) to classify our samples in
Tables 1 and 2. However, because most differences between our low- and medium-K samples are incidental for
this paper, for simplicity we show them with the same symbol in figures and refer to them as medium-K in text.
Most samples lie within their assigned category in a K,O vs. SiO, diagram (Figure 4a), and most exceptions are
the result of crystal accumulation in the shoshonitic absarokites, as can be inferred from a complementary K,O
vs. MgO diagram (Figure 4b) where the three groups are more clearly separated. The medium-K and high-K cate-
gories correspond roughly to the tholeiitic and calcalkaline ones used by Gill and Whelan (1989a). We avoided
those terms because there is no consistent difference in Fe-enrichment between the categories for our samples.

The Viti Levu lineament consists of several large shoshonitic volcanoes that collectively constitute the Koro-
imavua and Mba stratigraphic Groups on the northern half of the island. We analyzed samples from the Sabeto,
Nausori, and Tavua centers. They are flanked on the north by smaller coeval medium- and high-K edifices
including Namosau, Vatia, Rakiraki, and Tova, from west to east. Tavua is the best studied of these volcanoes
geologically, geochemically, and paleomagnetically (Gill, 1970; Ibbotson, 1967; Leslie et al., 2009; Malahoff,
Hammond, et al., 1982; Rogers & Settlefield, 1994). Tavua and Sabeto host the large Emperor and Tuvatu epith-
ermal Au-V-Te deposits, respectively (Spry & Scherbarth, 2006).
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Figure 3. Location of samples and lineaments. The abbreviations identify
islands or volcanic centers as follows: A, Astrolabe; B, Beqa; BT, Batiki; CK,

15% The Lomaiviti lineament lies south of Vanua Levu between Viti Levu and the
Lau Ridge, in the armpit apex of Fiji's counterclockwise rotation (Figures 1
and 3). The edifices are mostly shoshonitic and high-K volcanoes that are

| 16 3—4 Ma in age and rise from ambient seafloor 2,000-3,000 mbsl, deepening

southward (Coulson, 1976). Samples from one of them, Vatu-i-cake, were
studied by Leslie et al. (2009). Our samples are from subaerial lava flows, or

clasts from volcanic breccias, on nine of the islands.

17°S
The Vatulele-Beqa lineament lies 15-40 km south of Viti Levu, and includes

Vatulele and the small islets of Yaunca and Ugaga within the reef surround-
ing Beqa. All are shoshonitic except Beqa that is high-K. They are 4-5 Ma as
[ 18's are the Viti Levu shoshonites. Several younger 3—4 Ma shoshonites centers
lie 50 km southeast of Beqa in the Astrolabe Reef near Kadavu (Leslie
et al., 2009).

19 Our samples from Vanua Levu, Fiji's second largest island, are from the
basaltic Natewa Group that constitutes most of the island. Some are from
named formations within the Group (Table S1) that may represent sepa-

s BT 0 20%s rate volcanic centers (Coulson, 1971; Rickard, 1966). They are distributed
180° 179w 178W ~150 km east-west and ~40 km north-south, are from lava flows, dikes,
and clasts in volcanic breccias, and are geochemically representative of the

~100 samples for which we have unpublished major element analyses. The

Cikobia; G, Gau; KVG, Korobasaga Volcanic Group (Lau); MK, Makogai; Natewa Group formed a shallow submarine to subaerial ridge and includes
ML, Moala; MT, Matuku; NAM, Namosi; NL, Namenalala; NM, Namosau; pillow basalts that are now up to 1,000 m above sea level. Most are low-to
NS, Nausori; OV, Ovalau; R, Rakiraki; S, Sabeto; T, Tova; TV, Tavua; U, medium-K, and similar in composition to the coeval Korobasaga Volcanic

Ugaga; V, Vatia; VC, Vatu-i-cake; VL, Vatulele; W, Wakaya; YD, Yadua;
and YN, Yanuca. The symbols are explained in the legend and are used in
all figures. The triangles in Vanua Levu show sample sites in the Natewa

Group in the northern Lau islands (small blue triangles in Figure 3: Cole
etal., 1985; Gill, 1976; Hergt & Woodhead, 2007). Korobasaga samples from

Formation. The four small blue (medium-K) KVG triangles in northern Lau the southern Lau islands of Moce and Olorua are slightly high-K, as are one
are Vanua Balavu, Kibobo, Malima, and Kanacea islands. The two small red sample each from Kibobo and Kanacea islands. We interpret the Lau islands
(high-K) KVG triangles between 18° and 19°S are Olorua and Moce islands. and Vanua Levu as the Pliocene volcanic front of the Fiji-Tonga portion of

ODP Site 834 lies just east of the figure at 18.57°S. Bathymetry as in Figure 1.

the Vitiaz Arc, so that all breakup basalts are part of a stranded remnant arc.

We include one sample (69—876) from the older Namosi Andesite formation

in southeast Viti Levu that was a volcano that reached sea level at ~6 Ma and
hosts an economic porphyry copper ore body (Orovan et al., 2018; Tanaka et al., 2010). Although this sample also
is medium-K, it is richer in K and other incompatible elements than those from Vanua Levu, befitting its more
reararc location. This formation was the source of a prototypical calcalkaline andesite (S. R. Taylor et al., 1967)
that was the first known to have an eclogite liquidus mineralogy at 3 GPa and, therefore, to be a potentially
primary slab melt (Green & Ringwood, 1968). Geological and mineralogical information about the formation is
provided by Gill (1987).

The last center is Cikobia, a 2 X 10 km island that lies 60 km north of the northeast tip of Vanua Levu (Figure 1;
Woodhall, 1985b). We include data for it because its volcanic rocks are distinctive, and it is relatively inaccessible.
If Lomaiviti is the armpit of the Lau Ridge, then Cikobia is its protruding elbow on the edge of the Lau Basin near
one end of the Futuna Spreading Center. Its pre-rotation location at ~14°S (Figure 2) places it near the site of the
boninites at the north end of the Tonga Ridge. Although Cikobia is mostly covered by limestone, its underlying
volcanic rocks crop out for ~2 km on the southeast coast. D.Woodhall mapped the island and provided samples C48
from near Oneva and AK1 from near Qaraibo. Gill later collected C1 and 2 in the same general area. All are pillow
lavas and breccias, and the latter have cm-thick glass rims. The overlying limestone contains N17 foraminifera (Late
Miocene). A K-Ar whole rock total fusion age of the crystalline pillow interior of C48 was determined by R. Duncan
in February 1985 as follows: 7.39 + 0.20 Ma; K = 0.481 wt.%; Rad.**Ar = 0.5428 10~% mol/gm; %Rad.*°Ar = 29.07.
C48 and AK1 are low-Ti (0.25 wt.% TiO,), boninitic high-Mg andesites (whole rock 57% SiO,; 7.5% MgO; Mg#
66). They are chemically most similar to the North Tonga boninites in Dredge 113 of Falloon et al. (2008) that are
accompanied by 2.7 Ma adakitic rhyolite. In contrast, C1 and 2 are similar to the low-K basalts in Vanua Levu. They
have a few percent of plagioclase (An87) and clinopyroxene (Mg#86 with 0.8% Cr,0,) mantled by orthopyroxene
(Mg#86-82) micro-phenocrysts in vesicular glass. Woodhall's (1985b) map unit was described, with the benefit of
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Literature:
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© SH Viti
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© ODP 834

L

Oligocene
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Si0,
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Figure 4. (a) SiO, vs. K,O; (b) MgO vs. K,0. Symbols are as in Figure 3.
The larger symbols show data from Table 1. The smaller symbols show

data from the literature: shoshonites from Leslie et al. (2009), Rogers and
Settlefield (1994), and G.-Z. Sun et al. (2017); and the 3-5 Ma Korobasaga
Volcanic Group (KVG) in the Lau islands from Cole et al. (1985) and

Gill (1976). ODP Site 834 data are from Hergt and Farley (1994). The field for
Miocene includes the Lau Volcanic Group (Cole et al., 1985; Gill, 1976), and
the Wainimala Group of Viti Levu (Todd et al., 2021). The field for Oligocene
includes the Yavuna Group of Viti Levu (Todd et al., 2012, 2021). The legend
suffix (e.g., Viti) denotes the lineament shown in Figure 3. The boundaries

for low, medium, and high-K, and shoshonite are from Gill (1981). The
highlighted samples are absarokites that have accumulated cpx > ol. The effect
of accumulating 10% of each mineral are shown by the arrows. The boundaries
in (b) are specific to this study.

our analyses of AK1 and C48, as “Basalt, basaltic andesite and andesite (aff.
boninite) pillow lava, hyaloclastite and interbedded sediments near top”; his
accompanying report is unpublished.

The Vanua Levu, Viti lineaments are

northeast-trending, subparallel to the current trend of the Fiji Platform and

Levu, and Vatulele-Beqa
orthogonal to its torn edge facing the North Fiji Basin (Figure 3). We specu-
late that they and the Lomaiviti lineament are stress fractures from rupturing
and rotation of the arc.

Younger intra-plate Fijian ocean island basalts (FOIB) occur in Lomaiviti,
Vanua Levu, Taveuni, and some of the Lau islands. Analyses and discussion
of them are given by Gill and Whelan (1989b) and A. A. Price et al. (2017),
and we show data for them in figures.

4. Analytical Methods

All samples are fresh subaerial whole rocks. Visible alteration was removed
before crushing. For elemental analyses, they were broken in a steel jaw
crusher and pulverized in agate. For isotope analyses, separate rock chips
were leached in 2.5 N HCl at 70°C for an hour before dissolution.

Table S1 includes the sources of the data. Most were obtained in Kiel during
2018-2020 following the methods in Hauff et al. (2021), namely major
elements by XRF, trace elements by solution ICPMS and XRF, Sr and Nd
isotopes by TIMS, Pb isotopes by double-spiked TIMS, and Hf isotopes
by MC-ICPMS. The major and trace elements in the C1, 2 Cikobia glass
samples were analyzed in Kiel by microprobe and LA-ICPMS, respectively.
See Haulff et al. (2021) for analytical details and results for standards.

Five of the samples were analyzed earlier following methods in Pearce
et al. (2007), and eight were analyzed earlier at UCSC following methods
in Ryder et al. (2006). Trace elements in the two Cikobia boninites were
analyzed at Memorial University Newfoundland following methods of
Jenner et al. (1990). The principal difference from the Kiel methods is that
Pb isotope measurements in these cases were by Tl-addition MC-ICPMS.
The UCSC samples were pulverized in WC and therefore no Ta concentra-
tions are reported for them, and their Nb contents may be up to 0.5 ppm too
high. These are the first Pb isotopes using a spiked technique, and the first
Hf isotopes, for any breakup basalts. Tables 1 and 2 contain the new analyt-
ical results. Tables S1 and S2 provide a more complete version of that table
that includes sample locations, geological context, age, analytical errors for
isotope ratios, petrography, and results for standards.

5. Results
5.1. Phenocryst Mineralogy

All samples are variably porphyritic; although no groundmass is pure glass,

the Cikobia samples were hand-picked to be mostly glass. Some mineral modes are included in Table S1. The

phenocrysts of the medium-K and high-K rocks are plagioclase followed in abundance by clinopyroxene, olivine,

and magnetite. Some medium-K samples have orthopyroxene, and some high-K ones have hornblende. The

abundance of clinopyroxene relative to MgO is greater in the high-K than medium-K samples. The shosho-

nitic series includes absarokites that have clinopyroxene and olivine but not plagioclase, vs. shoshonites with

all three + biotite, leucite, nepheline, and analcime in coarse-grained varieties called monzonite (Rodda, 1976).

The absarokites often have >50% phenocrysts, with about four times more clinopyroxene than olivine. Leslie
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Figure 5. Nb/YDb vs. (a) La/Yb, (b) Th/Yb, and (c) Ba/Yb, reflecting
increasingly fluid-mobile numerators in that order. Data and symbols as

in Figure 4, omitting literature data for samples ground in WC or with Nb/
Ta <10 or both. The MORB fields are for the East Pacific Rise from Niu

et al. (2002) and Yang et al. (2020); NMORSB is defined as having La/

Smy, = 0.8-1.5. The fields for pelagic and volcaniclastic sediments (VCS) are
end-members from DSDP Site 204 (S. Turner et al., 1997). A slab-derived
sediment component will lie between them. The Alexa-LSC-VCS field on the
extension of the MORB trend includes data from Finlayson et al. (2018) and
A. A. Price et al. (2022) for Alexa-type seamounts, and Beier et al. (2011)
for the Louisville Seamount Chain from which the volcaniclastic sediments
at Site 204 were derived. Data for ODP Site 834 basalts are from Hergt and
‘Woodhead (2007). See Figure 4 in Gill et al. (2021) for the effects on these
diagrams of adding a slab component and melting the resulting modified

mantle.

et al. (2009) and G.-Z. Sun et al. (2017) provide mineral modes and analyses,
and petrographic images, for representative Fijian shoshonitic rocks.

5.2. Major Elements

Compositions are shown in Figure 4. Most samples are basalt and a few are
andesite. Our medium-K rocks from Vanua Levu have slightly lower K,O and
P,O; relative to MgO than their coeval analogs in the Lau Islands, and lower
than in Namosi that is more reararc. All are typical arc rocks, and they have
higher K,O but lower TiO, than the coeval basalts in ODP Site 834 east of the
Lau Ridge. That is, the basalts erupted closer to the trench were less arc-like.

There are no consistent compositional differences between the high-K rocks
of different lineaments. However, the shoshonites in Viti Levu and the Astro-
labes have a few wt.% higher SiO, than those in Lomaiviti and Vatulele.
Notably, the shoshonitic rocks have Na,O contents relative to SiO, that are
similar to the medium-K and high-K rocks, and even lower than in N-MORB.
The positive correlation between Na,O and Nb is similar to that in D-MORB
(not shown), indicating strong source depletion despite enrichment in K,O.

5.3. Trace Elements

All suites have characteristic arc-type enrichments of Cs, Rb, Ba, U, Pb, and
Sr relative to Th + REE, and depletions of Nb, Ta, Zr, and Hf (Figures 5
and 6). Remarkably, the medium-K basalts, and even the shoshonites from
Viti Levu, have as much relative Nb-depletion as in D-MORB (Nb/Yb
ratios < 0.8), underscoring the strongly depleted mantle from which they
came. That level of Nb-depletion has characterized Fiji throughout its history,
as shown for the Oligocene and Miocene rocks in the figures. However, its
extent varies between lineaments, being greatest for Viti Levu, intermediate
in most of Lomaiviti, and least in the Vatulele-Beqa and Astrolabe areas plus
two high-K volcanoes in Lomaiviti (Namenalala and Batiki). This geographic
difference also is seen in olivine-hosted melt inclusions (Leslie et al., 2009),
s0 is not related to crystal accumulation.

The shoshonitic rocks have the greatest relative enrichment in Rb, Ba, Sr,
and Pb as well as K, but the differences in other incompatible elements
between high-K and shoshonitic samples is irregular with substantial over-
lap. The pattern of enrichment in the medium-K basalts is similar to that
of earlier Fijian volcanics. However, the level of K, Rb, Sr, Ba, LREE, and
Th enrichment in the shoshonites is without precedent in Fiji, is greater
than in the Quaternary Tonga or Kermadec arcs, and even exceeds that in
south Pacific pelagic sediments for Ba (Figure 6; cf. S. Turner et al., 1997).
The large enrichments of Pb and U relative to Ce and Nb, respectively (Ce/

Pb < 7; Nb/U < 10), is most pronounced in the shoshonites, but U is enriched relative to Th in all suites, with
Th/U = 1.5-2.5. The least Pb and U enrichment is in the least Nb-depleted samples from Vatulele + Namenalala
and Batiki, noted above.

REE patterns for all suites are shown in Figure 6. Those of the medium-K basalts are almost flat with a subtle

maximum at Nd-Sm in some samples. Patterns of the high-K and shoshonitic samples are LREE-enriched and

overlap. The Cikobia boninites have the usual U-shaped pattern with a minimum at Nd. All suites have flat
HREE patterns like MORB with Dy/Yb increasing from 1.6 to 1.9 with increasing MgO, reflecting greater
modal clinopyroxene. Only Vatulele shoshonites have steeper HREE patterns, with Dy/Yb of 2.2-2.3. Our data

for shoshonitic samples confirm earlier results from fewer centers (Gill, 1970; Leslie et al., 2009; Rogers &
Settlefield, 1994; G.-Z. Sun et al., 2017).
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The depleted nature of the Fijian shoshonites sets them apart from other intra-oceanic examples including the
Northern Seamount Province in the Marianas (Fryer et al., 1997; Gribble et al., 1998; Stern et al., 1993; Tollstrup
& Gill, 2005) and the Miocene South Fiji Basin (Mortimer et al., 2021). Both of those suites have higher Nb/Yb
ratios and much greater LREE-enrichment than Fiji (Figure 6¢). They also have Ba > Sr rather than the reverse
in Fiji. The Fijian shoshonites have even more negative Zr-Hf anomalies than in the Northern Marianas, and lack
the latter's high Nb/Ta ratios that were attributed to a lithospheric origin (Pearce et al., 2005).

Although the basalts in ODP Site 834 basalts are the same age as the breakup basalts, and erupted only a few tens
of km trenchward of them, they have much less arc-type trace element enrichments and depletions. They have
similarly low Nb/YDb ratios, strong LREE-depletion, much less positive Cs, Rb, Ba, Th, U, K, and Sr anomalies,
and no negative Zr-Hf ones (Figure 6). The only similar breakup basalts are from Cikobia that also lay trenchward
of the rest prior to rotation (Figure 2). The arc component somehow by-passed both.

5.4. Radiogenic Isotopes

Figure 7 shows the rough positive correlation between Nd and Hf isotope ratios that are the least likely to be
affected by a slab component and, instead, the most likely to record the ambient mantle wedge. Almost all
breakup basalts have similar '"Hf/!"7Hf ratios (~0.28315-20) that are similar to those of the Miocene volcanic
and plutonic rocks that preceded them in Fiji, but higher (more depleted) than the Oligocene volcanics erupted
prior to opening of the South Fiji Basin. The medium-K basalts straddle the Hf-Nd isotope Terrestrial Array
of Vervoort and Blichert-Toft (1999) whereas the high-K and shoshonitic suites lie above it. In that sense, they
are more “Indian” than “Pacific” in character. This contrasts with the Oligocene volcanic rocks from Fiji, and
the Havre Trough, South Fiji Basin, and ODP Site 834 that all lie below the Terrestrial Array and are decidedly
“Pacific” (Figure 7; Hergt & Woodhead, 2007; Gill et al., 2021; Marien et al., 2022; Todd et al., 2012). Collec-
tively, these suites below the Terrestrial Array reflect the pre-breakup ambient mantle. The Fijian rocks with less
depleted Hf and Nd isotope ratios in Figure 7a are the less Nb-depleted samples from Vatulele and Lomaiviti (see
below). All the Fijian suites have higher Nd and Hf isotope ratios than do the more enriched Northern Mariana
and South Fiji Basin shoshonites (not shown: Mortimer et al., 2021; Tollstrup & Gill, 2005) which is consistent
with the more depleted trace element ratios of the Fijian rocks discussed above.

Figure 7a includes a field for the 7-12 Ma Colo plutonics that range from gabbro to tonalite (Marien et al., 2022).
It includes data for just the pluton suites that were interpreted as being mostly differentiates of mantle derived
basaltic parents, that is, those with light-depleted or flat REE patterns. They overlap the medium-K breakup
basalts. In contrast, samples of LREE-enriched plutons, that were interpreted as having assimilated more crust,
have higher *Nd/'**Nd at similar "Hf/!7’Hf, and overlap the older Fijian volcanics.

In contrast, Figure 8 shows Pb and Sr isotope ratios that are more likely to reflect the slab component. 2°°Pb/?%“Pb
ratios are highest in the shoshonites from Viti Levu and adjacent Lomaiviti (Wakaya and Vatu-i-cake),
whereas 87Sr/®Sr ratios are highest in the Cikobia boninite and all Lomaiviti suites, and lowest in the medium-K
basalts. Although the similarly high #’Sr/*¢Sr in some Oligocene volcanics may reflect post-eruption seawater
alteration, the Lomaiviti results are a primary feature. The 2°°Pb/?%“Pb ratios are above levels for N-MORB, in the
range of E-MORB, and approach FOZO values.

Figure 9 combines elements of the previous two figures and shows that, as usual in arcs, there is mixing between
depleted and enriched components, and 8’Sr/%Sr is elevated above “*Nd/!**Nd compared to MORB and OIB.
The lower *3Nd/!*Nd in the high-K, shoshonitic, and boninite suites is again apparent, and is accompanied
by higher #7St/%Sr. The overall enrichment is greater than at the Quaternary volcanic front of Tonga and most
of Kermadec (not shown). The Vatulele shoshonites and Namenalala high-K rocks with high Nb are, again,

Figure 6. (a and b) REE normalized to ordinary chondrites (Nakamura, 1974). Data and symbols as in Figure 4. Literature data are not shown but are similar. Much of
the vertical variation reflects differentiation. (c) Multi-element patterns of representative samples from Table 2, ODP Site 834 (12R3, 66-71: Hergt & Farley, 1994), and
the Northern Mariana Seamount Province (Eifuku D31-1-6: Bloomer et al., 1989; Peate & Pearce, 1998) relative to Primitive Mantle (S.-S. Sun & McDonough, 1989).
All samples have 7-10 wt.% MgO. Shoshonites from two different lineaments are shown to illustrate the diversity within Fijian categories. Note that the breakup basalts
have typical arc-like enrichments of Cs, Rb, Ba, U, Pb, and Sr relative to Th + REE, that are in turn enriched relative to Nb, Ta, Zr, and Hf, whereas ODP Site 834
basalts have much less enrichment amidst greater scatter (cf. Figure 5). The Northern Mariana shoshonites are less depleted in Y + REE and less enriched in Sr, Pb, Ba,
and alkalies than their Fijian counterparts.
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Figure 7. '¥Nd/'“Nd vs. '7°Hf/!77Hf: the mostly mantle component. (a) Data
and symbols as in Figure 4, plus a field for Fijian Colo plutonics from Marien
et al. (2022). The Terrestrial Array is from Vervoort and Blichert-Toft (1999).

(b) Data as above plus fields for the NFB, North Fiji Basin (A. A. Price

et al., 2016, 2014); FSC, Futuna Spreading Center and YYVZ, Yasawa-Yadua
Volcanic Zone (A. A. Price et al., 2017); VCS, volcaniclastic sediments from
the Louisville Seamount Chain in DSDP Site 204 (Hergt & Woodhead, 2007;

Pearce et al., 2007); EPR, East Pacific Rise MORB (Class & Lehnert, 2012;
Salters et al., 2011); AMW, Ambient Mantle Wedge for the Vitiaz Arc
and South Fiji Basin OIB (Todd et al., 2011); ODP Site 834 (Hergt &

‘Woodhead, 2007); Rotuma, FOIB (Fijian OIB), and the Alexa-type seamounts

of the Samoan Seamount Chain (Finlayson et al., 2018; Hart et al., 2004; A.
A. Price et al., 2022, 2017); OTJ, Ontong Java Plateau (Tejeda et al., 2004,
without age correction); the Manus Basin (Woodhead et al., 2001); and the

Knipovich segment of the Arctic Mid-Atlantic Ridge (Sanfilippo et al., 2021).

Data for volcanic rocks with SiO, >60% are excluded.

exceptions. Their Sr as well as Nd isotope ratios are more similar to E-MORB
and OIB, that is, to basalts with old enrichments (EM2) instead of recent slab
components.

Figures 10a and 10c show only spiked Pb isotope ratios. In none of the Fijian
samples is 27Pb/?*Pb as high relative to 2Pb/?*Pb as at the Kermadec
volcanic front (not shown: Gill et al., 2021; Timm et al., 2014), reflecting
little if any direct or indirect recycling of continentally derived material in
Fiji. The least radiogenic Pb is in the medium-K basalts and lies within the
field of previous Fijian Pb near the Northern Hemisphere Reference Line
(NHRL) of Hart (1984). The same is true of a high-K basalt and shosho-
nite from the Vatulele lineament that are the least Pb-enriched (lowest Ce/
Pb) of these rock types. Breakup basalts have higher 2°Pb/?*Pb than in
most Pacific N-MORB but similarly low A%7Pb and A?%Pb as defined by
Hart (1984), which is why the Fijian mantle has long been considered to
be from inherently “enriched” mantle (Gill, 1984; Todd et al., 2012). Pb
in most Fijian igneous rocks of all ages, and especially in the Viti Levu
shoshonites, have higher 2°Pb/?%*Pb than do mixtures of the usual mixing
components of subducting crust of the Pacific Plate; that is, pelagic sediment
and altered MORB (Figures 10b and 10d: S. Turner et al., 1997). An addi-
tional high-2Pb/?**Pb source component is required. This requirement is
even more extreme than for the atypical volcanoes at the Kermadec front for
which a contribution of Pb from subduction of seamounts on the Hikurangi
Plateau has been invoked (Timm et al., 2014). The Pb in the high-K basalts
of Lomaiviti and Lau is noticeably more enriched in 2%8Pb/2%4Pb + 207Pb/204
Pb with respect to 2°Pb/2*Pb (i.e., they have higher A%7Pb and A2%Pb) than
anything earlier in Fiji (Figures 10a and 10c).

6. Discussion
6.1. Temporal and Spatial Patterns

Our new geochemical data confirm that Fijian volcanism during arc
breakup continued to be characterized by subduction-related composi-
tions up to 3 Ma, as previously documented (e.g., Gill et al., 1984; Gill &
Whelan, 1989a; Leslie et al., 2009; Rogers & Settlefield, 1994; G.-Z. Sun
et al., 2017). Indeed, the 7-3 Ma medium-K basalts are typical of volcanic
fronts ~125 km above a slab. This suggests but does not prove that subduc-
tion itself continued beneath Fiji during this time even while it began to rotate
counter-clockwise and the Lau Basin started to open (Figure 2; Malahoff,
Hammond, et al., 1982; G. K. Taylor et al., 2000).

As a result, we recognize four stages in the geochemical evolution of the
Vitiaz Arc. The first lasts from subduction initiation until opening of the
South Fiji Basin (Todd et al., 2012). It is shown by the “Oligocene” samples
in our figures and includes “Eua” in Tonga and the Yavuna Group in Fiji.
Its ambient mantle wedge was “Pacific” isotopically, it was relatively unde-
pleted with lower Nd and Hf isotope ratios (Figure 7), and it had a relatively
small mass fraction of LREE- and Th-bearing slab component (Figure 5).
In that respect it was like the modern Tongan volcanic front. The second

stage post-dates opening of the South Fiji Basin and is shown by the “Miocene” samples in our figures that

come from the Lau Volcanic and Wainimala Groups. Although they remain “Pacific” isotopically, their ambi-

ent mantle was more depleted with higher Hf isotope ratios (Figure 7). They are characterized by more relative

enrichment in LREE and Th than in the first stage (Figure 5), and they are closer to the Hf-Nd Terrestrial Array

in Figure 7, indicating the addition of a more melt-like slab component, as previously recognized by Hergt
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Figure 8. 29Pb/?*Pb vs. ¥7Sr/%Sr: the mostly slab component. Data, symbols,
fields, and data sources as in Figure 7 where smaller symbols are from the
literature. Unspiked Pb data are included, and unleached samples are shown
whenever possible, but all Alexa-type and Ontong Java samples were leached
to some extent before digestion. The two small purple fields in (a) are for
atypical Fijian Miocene rocks. Some Samoan basalts with high *He/*He plot at
the top right corner of (b) (e.g., from Ofu: Jackson et al., 2007), but most have
higher #7Sr/®¢Sr than in this figure as do pelagic sediments.

and Woodhead (2007). The third stage accompanies arc breakup and is char-
acterized by a slab component derived from subducted Alexa-type Samoan
seamounts + Pb from Louisville seamount material in Viti Levu shosho-
nites. The final stage abruptly post-dates arc breakup and is characterized
by basalts from a new “Indian” mantle in the backarc basins, Fijian OIB, and
along the Vitiaz Trench Lineament (e.g., Rotuma). This final stage is visi-
bly offset from the first three in Figure 12 that combines Hf-Nd isotope and
concentration anomalies. It shows that the ambient mantle of the first three
stages remained broadly similar apart from becoming more depleted after

opening of the South Fiji Basin.

Spatially, our new data confirm that the magnitude of subduction-related
geochemical features decreased west to east during the third stage, from
shoshonitic closest to where the arc broke, through high-K to low-K and
boninitic in the east. Shoshonitic and high-K centers are spatially separate on
the Viti Levu lineament, with the latter lying 20-30 km north of the former.
They are interspersed along the Lomaiviti and Vatulele-Beqa lineaments.
K-Ar ages are oldest (4.0-5.2 Ma) for the shoshonitic centers on the western
portions of the Viti Levu (Nausori and Tavua) and Vatulele lineaments, and
younger (3—4 Ma) further east (Malahoff, Hammond, et al., 1982; Whelan
et al., 1985). There is a similar apparent eastward younging amongst the
medium-K basalts of Vanua Levu, although the age differences are small.
The oldest volcanic rocks (~7 Ma) are the boninitic ones from Cikobia,
and the nearby low-K Udu rhyolites in northeastern Vanua Lavu (Whelan
et al., 1985).

We noted earlier that the Nb/Yb ratios of the shoshonites on Viti Levu are
lower than in outlying islands. Viti Levu is not only the largest Fijian island,
but also the most uplifted during breakup and it exposes many tonalitic
plutons (Marien et al., 2022). We attribute the Nb-depletion, uplift, and pluto-
nism to focused mantle melting and basalt intrusion into the crust near the
site of arc breakup. If so, then any subsequent slab component should have
its maximum expression there because the mantle would be most depleted.

The medium-K basalts and andesites merit special comment. Our new data
for rocks from the Natewa Formation on Vanua Levu are similar in age
and composition to those from the Korobasaga Volcanic Group on the Lau
Islands (Cole et al., 1985, 1990; Gill, 1976; Hergt & Woodhead, 2007). These
two groups define the Pliocene volcanic front of the Vitiaz Arc that remained
active while the Tonga Trench started to roll-back to form what became the
intervening Lau Basin. Although that basin is now a backarc basin between
the Quaternary Tonga Arc volcanic front and the Lau Ridge remnant arc,
from 5 to 3 Ma it was a forearc basin trenchward of the Natewa-Korobasga
volcanic front. The Korobasaga rocks are distinguished from their prede-
cessors, the Lau Volcanic Group, by their lower Zr and higher Sr contents
(Gill, 1976), a trait that is shared by our new data for Vanua Levu. This

combination suggests a higher degree of flux melting for the Korobasaga rocks in which more flux adds the Sr

and more melting lowers the Zr. The Vanua Levu medium-K rocks extend to even more radiogenic Sr and Pb

isotope ratios than in most Korobasaga rocks, and to less radiogenic Nd, indicating more slab-derived compo-
nent closer to the breakup site. Neither is as depleted in LREE and HFSE relative to HREE, nor as isotopically
“Indian”, as in the modern central Tonga arc (Hergt & Woodhead, 2007). However, both are much more arc-like
than the basalts at ODP Site 834. The latter have “Pacific”-type isotopes (Figures 7-10) and similarly low Nb/
Yb and high '7Hf/!"""Hf ratios as the arc (i.e., their mantle source was comparably depleted), but they have less

enrichment in Ba, Th, and La (Figures 5 and 6). Therefore, the same old ambient mantle remained beneath the
Vitiaz Arc until ~3 Ma, but much less slab fluid was added to it in the forearc.
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(a) 51312 — With few exceptions, the shoshonitic suite has the maximum enrichment in
K, Rb, Cs, Sr, U, and Pb relative to MgO and REE (Figures 4-6) which
51308 usually is attributed to more slab-derived fluid. However, they also have
A higher Th (Figure 5b), and lower '“*Nd/'*Nd with respect '"°Hf/!'""Hf ratios
Miocene AN (Figure 7) that broadly correlate negatively with light REE-enrichment
51304 Ottgocene (Figure 11) and Zr, Hf-depletion relative to middle and heavy REE in our
) samples (Figure 6). This suggests more transport of LREE than Zr, Hf in
Z . .
:_,'\ S1300 4 g} . 5] the slab component behind the volcanic front and near the tear, presumably
2 et P i in a melt or super-critical fluid. Hergt and Woodhead (2007) made a similar
g @ High K Vi ° ° point when comparing the KVG to modern Tonga. That is, the source of all
12967 (‘):‘hghhxllr:ll L] ° oo o . breakup basalts was affected by addition of a higher temperature slab compo-
@ Shoonr Vo N ¢ nent than in modern Tonga. Because the shoshonites are isotopically similar
51292 thN ¢ H to, as well as spatially interspersed with, the high-K basalts, the differences
3 sﬁ:{f; KNG - between them are mostly related to the cumulative degree of melting of simi-
© SH Astrolabe lar sources (Gill & Whelan, 1989a; Leslie et al., 2009). If the medium-K
.70|30 _70|35 _70| 40 '701 45 basalts represent the highest percent melting, then the degree of melting was
87Q /35Sy lower close to where the arc broke and higher at the volcanic front.
(b) 51322 None of these suites erupted in central Viti Levu where tonalitic plutons had
intruded several million years earlier (7-12 Ma: Gill & Stork, 1979; Marien
51317 N et al., 2022). We speculate that the crust there was too thick and ductile for
1 N basalt magmas to penetrate. The medium-K Namosi Andesite on the south-
'51312—< o eastern edge of the plutons is an exception. Although our sample of it is more
= 51307 R NFH N enriched in Nb, LREE, and Th than the other medium-K samples in this
Z 1 \ ‘A&“‘\ A paper (Figure 5), its isotope ratios are similar.
S 51302 § %Ao‘ e . . -
> | FSC\\\\ - The boninitic high-Mg andesites and medium-K basalts of Cikobia are the
g 51207 o ¢ oldest rocks of this study, the furthest from the breakup with Vanuatu, the
1 T R * * closest to the forearc rifting that led to the Lau Basin, and near the arc's pole
51292 = of rotation. We interpret them as an early volcanic expression of the impend-
1 ing breakup. The boninite's Th/REE ratios are as low as in modern Tonga and
'51287—_ they have positive Zr-Hf anomalies (Hf/Sm ~2) above their U-shaped REE
51282 I | I patterns (Figure 6). Although they have low Ti, Na, Y, and HREE contents,
7025 7030 7035 7040 7045 they are not enriched in Sr; that is, they are not adakitic. Instead, they indicate
87Qr/36Sr shallow, high-degree melting of depleted peridotite fluxed by a slab melt,

Figure 9. %Sr/%Sr vs. 1 Nd/!'*Nd. Data, symbols, fields, and data

sources as in Figures 7 and 8. Note in (b) that the “new mantle” is offset to
higher 87Sr/%¢Sr relative to '“*Nd/!'**Nd than the EPR, most LSC, and ODP
Site 834. The Viti Levu shoshonitic sample with an atypically low '**Nd/'“Nd
like that of the Astrolabes is from a Tavua-related monzonite sill (Rogers &
Settlefield, 1994). The high-K KVG basalts with atypically high ¥’Sr/*Sr also
have high the highest 2°*Pb/?%Pb ratios. Most Samoan basalts lie off this figure

to the lower right.

6.2. Sources During Breakup

as inferred for their Tongan analogs (Falloon et al., 2008). Their unusually
low “>Nd/'**Nd and high 87Sr/%Sr ratios reflect this relatively large slab melt
contribution. In contrast, the basalts have the lowest K, Rb, Ba, Pb, Th, and
U, and the least radiogenic Sr and Pb in this study. The pre-rotation location
of Cikobia lay tens of km trenchward of the location of other medium-K
basalts (Figure 2), as did the ODP Site 834 basalts to which they are most
similar. Consequently, the pillow lavas of this small island have the least, and
most, slab component of the breakup basalts. Unfortunately, the stratigraphic
relationships are unknown because the samples were collected by different
people at different times.

The greatest change in magma sources affecting the Fiji area during the Neogene was the isotopic shift from old

“Pacific” to new “Indian” mantle following breakup of the Vitiaz Arc. The ambient mantle beneath the Vitiaz

Arc was “Pacific” from its inception to upper Miocene (Gill et al., 2021; Todd et al., 2012). The change results
in higher ¥7Sr/%Sr and ""°Hf/'"7Hf with respect to '“*Nd/'**Nd, higher 2°8Pb/?%Pb with respect to 2°Pb/?*Pb,
and lower 205Pb/24Pb in the basalts. The change was first discovered, and the names were first applied, during
ODP drilling in the Lau Basin where the oldest basalts (4-5 Ma at Site 834) remain isotopically “Pacific”,
but everything <3 Ma is “Indian” (Hergt & Hawkesworth, 1994; Hergt & Woodhead, 2007). Young basalts
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Figure 10. 2°°Pb/2%Pb vs. (a, b) 2°8Pb/?*Pb, and (c, d) 2’Pb/?**Pb. Data, symbols, field, and data sources as in Figure 7.
Only spiked data are shown except for Alexa-type, OTJ, and the pelagic and volcaniclastic sediments from DSDP Site 204.
NHRL is the Northern Hemisphere Reference Line from Hart (1984). (a) The high-K and shoshonitic samples near the
NHRL are from the Vatulele lineament. The two high-K basalts furthest above the NHRL at low 2°°Pb/?%Pb are from Moala
and Matuku in southernmost Lomaiviti. (c and d) as above.

dredged from all parts of the Lau and North Fiji Basins are “Indian” (e.g., Pearce et al., 2007; A. A. Price
et al., 2016, 2014, 2017), as is the mantle wedge now beneath Tonga (Hergt & Woodhead, 2007). Is this new
mantle the cause or the effect of arc breakup?

At first glance, the Nd-Hf isotopes of the high-K and shoshonitic rocks, and the medium-K Namosi andesites,
differ from what came before them, and appear “Indian” by lying above the Terrestrial Array in Figure 7. This
implies that the new mantle had already displaced the previous “Pacific” ambient mantle wedge by ~6 Ma when
the Namosi rocks appeared. Because the Colo plutons that have the least crustal component (e.g., Korolevu) are
isotopically similar to the medium-K Pliocene basalts, although not as extreme as Namosi and the shoshonites
(Figure 7), the new mantle might have been present as early as 10 Ma. However, the apparently “Indian” character
of the breakup basalts is deceiving because Figure 5 shows that their LREE like La (and Nd) are enriched relative
to Nb/YDb, consistent with having been added by a slab-derived component. If the added Nd is unradiogenic, then
the only change from before is the presence of more sediment-derived LREE in the slab component added to the
depleted ambient mantle. Its Hf isotope ratios remain high and its Nb/Yb ratios remain low.

This also is seen in Figure 11 which illustrates the complexity of the topic. “*Nd/'“*Nd and La/Yb correlate
negatively as expected for mixing between depleted mantle and a sediment-rich slab component, or enriched
mantle (EM2). Many breakup basalts overlap data for, and extend to more enriched compositions than, earlier
Fijian volcanics. Although most of the shoshonitic samples are offset to higher La/Yb than the medium-K and
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high-K breakup basalts, and older Fijian volcanics, that can be explained
by smaller degrees of melting for the shoshonites. Conversely, all Fijian

onfnf;f © HighKVii samples other than shoshonites have lower La/Yb relative to '*Nd/'*Nd
5131 YW[ gg:;)::?%?‘;ll than EPR MORB, and that can be explained by greater prior depletion of
@ Shoshonite Vatulele the ambient arc mantle wedge. If so, then little changed during breakup
“‘? » Ofisocene + Miocene :BON except for more slab-derived LREE added to the mantle wedge and lower

;; | A A e ® :":i\i;}r:x(( kvG percent melting near the tear.
= 5130 \\ '\\*& . Sum o This conclusion is more forcefully shown in Figure 12 that combines Hf
s ’\\\\\\ OMWH‘W \ and Nd isotope and concentration data in a way that was introduced by
§\ 1e \\\‘\ a... ® Pearce et al. (1999) and applied to the southwest Pacific, including rock
2 \\i\\ & “S ® suites discussed in this paper, by Hergt and Woodhead (2007) and Pearce
g S129 i\\NF;‘\\ %, ® et al. (2007). See its figure caption for details. The main conclusion is that
_ the position of the breakup basalt data relative to the Terrestrial Array
\) =% (i.e., their apparent “Indian-ness”) correlates positively with their rela-
D) tive LREE-enrichment—for example, how far their La/Yb ratio is above
5128 — \\\ sumod (\\ the MORB-OIB line in Figure 5a, or their LREE are above Zr and Hf in
: /,\? Figure 6¢. The breakup basalts, like all earlier Fijian volcanics, lie within
T ——— the field identified as the Pacific Domain by Pearce et al. (2007) and were
10 derived from old Pacific-type mantle to which an LREE-rich slab component

Figure 11. La/Yb vs. '*Nd/'*Nd, showing that some of the variation

n 3Nd/'"“Nd in breakup basalts is related to source fertility. Literature

data as in previous figures but only for basalts with >4.5 wt% MgO. EPR

data overlap the Fijan Ambient Mantle Wedge (AMW) and ODP 834 fields,
whereas the lower *Nd/'*Nd relative to La/Yb in the North Fiji Basin is an
intrinsic difference, and is shared by the three high-K Lomaiviti basalts that
also are Nb-enriched. The two types of Fijian OIB (FOIB-I, II) are basanitic
and hawaiitic, respectively (Gill & Whelan, 1989b). The higher La/Yb in some
shoshonites and Rotuma reflect lower percent melting.

La/Yb

was added.

In Figure 12, the Oligocene volcanics that predate opening of the South Fiji
Basin, and the 4-5 Ma basalts in ODP Site 834, both reflect the old “Pacific”
mantle. Neither has much slab component, as also can be seen in Figures 5
and 6. The Miocene volcanics and medium-K breakup basalts straddle the
Hf-Nd isotope Terrestrial Array, as also can be seen in Figure 7a. This
figure makes clear that the magnitude of the Nd isotope displacement
of the breakup basalts above the Terrestrial Array (i.e., their apparent
“Indian-ness”) correlates positively with their relative LREE-enrichment;
for example, how far their La/Yb ratio is above the MORB line in Figure 5,
or their LREE are above Zr + Hf in Figure 6¢c. Because the breakup basalt
data project back to the 0, O intersection in Figure 12, they are derived
from old “Pacific” mantle to which an LREE-rich slab component was added. The breakup basalts, like all
earlier Fijian volcanics, lie within the trend identified as the Pacific Domain by Pearce et al. (2007) and as
Lau Island-Kermadec by Hergt and Woodhead (2007). The big change in the ambient mantle comes after
arc breakup. The North Fiji Basin basalts are clearly from new “Indian” mantle even though the basalts have
positive Hf concentration anomalies. They lie between the fields of the North and Central Tonga arcs, and
the North and Central Lau Spreading Centers by those authors. All are <3 Ma, and they reflect the arrival of
new ambient mantle. The most extreme relative Hf isotopic enrichment is in the very depleted basalts from
the YYVZ.

However, note in Figure 7a that one Lomaiviti high-K basalt (from Namenalala) and two shoshonites (from
Vatulele) have lower **Nd/'“*Nd and 7Hf/!7"Hf than the rest. They also are characterized by higher Nb/Yb,
Nb/U, and Ce/Pb ratios, ruling out additional subduction components as the cause. Instead, they are more like
OIB basalts. Figure 11 shows that they resemble basalts of the North Fiji Basin, Rotuma, and the <3 Ma Fijian
OIB-like basalts (FOIB) (Gill & Whelan, 1989b; A. A. Price et al., 2017). Indeed, Namenalala Island lies midway
between two of the largest FOIB volcanoes, Seatura in southwest Vanua Levu, and Koro Island in Lomaiviti.
Therefore, some new mantle seems to have been present as early as 4.7 Ma, the age of Vatulele, on the outskirts of
Viti Levu. The higher La/YDb in shoshonites and some other samples in Figure 11, like FOIB-I that are basanites,
just reflects lower percent melting.

Figure 11 also shows that these somewhat OIB-like high-K and shoshonitic basalts with the lowest “*Nd/'*“Nd
ratios share traits with seamounts on the Pacific Plate that would have been near the tear just prior to or during
the breakup. Specifically, they are most similar isotopically to basalts from the Alexa-type seamounts of the
Samoan chain, and the LSC and volcaniclastic sediments derived therefrom. That is, seamount material with
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Figure 12. The x and y axes combine Hf and Nd concentration and isotope
ratios, respectively, in a way that was introduced by Pearce et al. (1999). See
that paper for a quantitative explanation of them. It has been applied to the
southwest Pacific, including rock suites discussed in this paper, by Hergt

and Woodhead (2007) and Pearce et al. (2007). Qualitatively, the x-axis
shows the magnitude of Nd concentration anomalies relative to Hf. Positive
numbers reflect positive Nd (or negative Hf) anomalies that are common in
arcs, and negative numbers reflect positive Hf anomalies that are common

in MORB. The magnitude of the concentration anomaly is affected both by
igneous differentiation, and the amount and kind of slab component. Positive
numbers were attributed to increasing subduction input in Figure 5 of Pearce
et al. (2007). The vertical axis tells how far above (positive values) or below
(negative ones) the isotope ratios of the same sample lie relative to a reference
line in an Hf vs. Nd isotope diagram like Figure 7. Pearce et al.’s (1999)
values and those in Figure 12 are relative to their line separating Indian(I) vs.
Pacific(P)-type MORB that is similar to Vervoort and Blichert-Toft's (1999)
Terrestrial Array that we show in Figure 7. Negative numbers identify samples
below the Terrestrial Array that are “Pacific” in character, while positive
numbers identify samples above the array that are “Indian” in character. The
arrows labeled Pacific Domain and Central and Northern Tonga, and the data
fields for NLSC, CLSC, and ELSC (North, Central and East Lau Spreading
Center), are from Pearce et al. (2007). The Miocene and KVG (Korobasaga
Volcanic Group) data in our figure include some from Pearce et al. (2007)
and Hergt and Woodhead (2007). Breakup basalt and literature KVG data are
the same as in Figure 7a. North Fiji Basin basalt data are from A. A. Price

et al. (2014, 2017). This figure requires not only Hf as well as Nd isotope
ratios, but also careful digestion methods to ensure that Hf and all REE are in
solution. For that reason, samples with Zr/Hf > 50 are excluded.

similar '*Nd/'*Nd and La/Yb ratios might have been subducted at the Vitiaz
Trench close to the time that these more OIB-like breakup basalts erupted
just south of the trench in Fiji.

With that in mind, we now return to Figures 7-10 and compare the isotopic
characteristics of breakup basalts to those of the incoming Samoa, Louis-
ville, and Rurutu seamount chains and the Ontong Java Plateau on the Pacific
Plate, the basalts of the North Fiji Basin, the <3 Ma OIB from Fiji, and the
young basalts from Rotuma on the Vitiaz Trench Lineament. We exclude
basalts from the Macdonald seamount chain on the Pacific Plate that never
subducted into the Tonga Trench because it lay too far to the northeast (A. A.
Price et al., 2017). The multiple spreading centers in the northeast Lau Basin
also lie too far east of the breakup basalts to matter.

Figure 7 shows isotopic traits that are most characteristic of the ambi-
ent mantle and least affected by the slab component. Previously we noted
that the breakup basalts have similar Hf isotope ratios as the Oligocene
to Miocene volcanic and plutonic rocks that preceded them, but lower Nd
isotopes, especially in the shoshonitic and high-K suites. We attributed that
to the addition of more slab-derived Nd to the Pacific-type ambient mantle
that characterized the Vitiaz Arc from its inception. In contrast, Figure 7b
shows that the Hf-Nd isotopes of <3 Ma Fijian OIB (FOIB) and those from
Rotuma overlap those of the enriched basalts of the North Fiji Basin that
come from, or lie north of, the Fiji Triple Junction (FTJ in Figure 1). These
basalts plot along the MORB-OIB trend in Figure 5 (but are not shown) and
do not have arc-type relative enrichments of La, Th, and Ba. That is, they
are from the new “Indian”-type mantle that followed breakup of the Vitiaz
Arc and, therefore, lacked a subduction component. In addition, the atypical
high-Nb Fijian breakup basalts lie near the Fijian OIBs in Figures 7-11 and,
therefore, also are from a source that contains some new mantle. Although
some data for the Alexa-type seamounts and Ontong Java overlap those for
the most enriched North Fiji Basin and Fijian OIBs, they extend to below
the Terrestrial Array, as do the volcaniclastic sediments in DSDP Site 204
derived from the LSC. Although that means there is little or no Hf and Nd
from these sources in most breakup basalts, there is ambiguity in this figure
about whether those elements in the high-K and shoshonitic breakup basalts
are from new mantle (they are most similar to the Futuna Spreading Center:
A. A. Price et al., 2016) or old mantle plus slab-derived Nd. We prefer the
latter interpretation because of (a) the enrichment in LREE relative to Nb/Yb
in the breakup basalts (Figure 5), (b) the difference between North Fiji Basin
and most breakup basalts in the relationship between LREE-enrichment
and Nd isotopes (Figure 11), (c) the similarity in Hf isotopes between most
breakup basalts and ODP Site 834 (Figure 7), and (d) the positive correla-

tion between Nd concentration anomalies and the displacement of Nd isotope ratios above the Terrestrial Array

(Figure 12). That is, most or all of the Hf in breakup basalts is from the old ambient mantle wedge, whereas more
of the Nd is slab-derived. Our conclusion extends the arguments that Hergt and Woodhead (2007) applied to the
KVG to most of the breakup basalts. The new ambient mantle extends from something at least as depleted as in

the YYVZ to something at least as enriched as Ontong Java or Samoa.

Figure 8a showed that the slab-derived Sr and Pb in many breakup basalts, especially the medium-K ones,

remained similar to what had characterized Fiji throughout its previous history, and that the Pb is most radio-

genic in the shoshonitic and high-K rocks of Viti Levu and adjacent Lomaiviti. Those basalts are the most
depleted in HFSE and HREE and, therefore, where the slab component is least diluted by ambient mantle.
Figure 8b shows that this slab component could come many sources, to which could be added Samoa that
has higher 87Sr/®6Sr than shown in the figure. Rurutu can be excluded because its #7Sr/%Sr ratios are <0.704

GILL ET AL.

26 of 35

QSUQOIT suowwoy) aAnear) aiqeaidde ay) £q pauroaoS a1e sa[ore YO ‘asn Jo sa[ni 10y Areiqi auruQ A9[Ip\ UO (SUOIIPUOD-PUE-SULIDY/W0d K3[1m ATeIqjaut[uo//:sd)y) suonipuo)) pue suud ], oy 23S [£707/10/£0] uo Areiqr autuQ LI ‘€990100DTT0T/6T01°01/10p/wod Kojim Aeiqiourjuo'sqndnSe//:sdny woiy papeojumo( ‘71 ‘770T ‘LT0TSTS1



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2022GC010663

when its 2°Pb/2%Pb ratios are >19.8. However, this is an especially difficult figure to interpret because the
isotope ratios of both elements are so susceptible to both seafloor alteration and acid leaching during sample
preparation. As much as possible, we show data for minimally leached samples from Ontong Java and the
Alexa-type seamounts, but all were acid-cleaned to some extent before digestion. All ratios are current, not
initial. The data for Fijian breakup basalts most closely match those of the Alexa-type seamounts, whereas
the Pb in both the Rurutu and Louisville chains, and Sr in most of the Samoan chain, is more radiogenic. A
minority of samples from Ontong Java come close, but the Pb in most of Ontong Java is insufficiently radio-
genic, especially for the shoshonites that have the highest Pb contents of breakup basalts. The mis-match is
greatest for the stratigraphically highest Singgalo Ontong Java basalts that would be the most likely to melt
during subduction.

Figure 9b shows that Sr in most breakup basalts is mostly slab-derived, especially relative to “Pacific”-type
ambient mantle. Ontong Java or any of the seamount chains could explain the slab component in this figure.
However, the Sr and Nd in the most Nb-rich shoshonitic and high-K basalts need little slab component and could
come largely from the new “Indian”-type mantle whose Sr is somewhat more radiogenic relative to Nd than in
the previous ambient mantle.

Although at first glance the Pb isotope ratios in breakup basalts could be explained in many ways, closer inspec-
tion of Figure 10 indicates otherwise. Those with the highest 2°°Pb/?%Pb ratios also have the highest Pb contents
(i.e., the shoshonites of Viti Levu and adjacent Lomaiviti). They require a source component that lies close to the
NHRL such as the basalts and volcaniclastic sediments from the LSC (Beier et al., 2011; S. Turner et al., 1997).
Those with the lowest 2°°Pb/?Pb ratios, in the high-K basalts of southern Lomaiviti and Lau, are most similar
to the Alexa-type seamounts (Hart et al., 2004; A. A. Price et al., 2022). Although they share the high A?’Pb
and A%08Pb of Ontong Java and the new mantle of the North Fiji Basin, they have higher 2°°Pb/2%Pb ratios than
either. We infer that the Alexa-type Pb and Sr in breakup basalts are slab-derived because the basalts have low
Ce/Pb (<5) in contrast to the later Fijian OIB that also have high A2’Pb and A2%Pb but Ce/Pb > 20 as in other
intra-plate basalts. Consequently, Figure 10 may indicate that the change in Pb from pre-breakup igneous rocks
in Fiji, which lies close to the NHRL, to the Pb in break-up basalts with higher A?*’Pb and A?%®Pb, reflects a
change from subducted Louisville to Samoan chain sources. Their high A?’Pb might also indicate relatively
more pelagic sediment in the slab source (Figure 10d). Because post-breakup basalts have high OIB-like Ce/Pb
ratios, their Pb is intrinsic to the new mantle and ranges from ratios as depleted as in YYVZ to ratios as enriched
as in Ontong Java or Samoa.

Previously, Fijian Pb near the NHRL has been attributed to FOZO-type enrichments in the old ambient mantle
wedge because such Pb is found in Miocene backarc basalts in the South Fiji Basin (Gill, 1984; Todd et al., 2011).
That remains a viable explanation for why such Pb has characterized Fiji throughout its history, including in the
Oligocene when it was far from the LSC and Hot Spot Highway, and why 2°°Pb/?%‘Pb remained 18.7-19.0 in
almost all Fijian volcanic rocks including those with Ce/Pb > 25. However, because Louisville-derived volcan-
iclastic sediments became increasingly available for subduction beneath Fiji from the Late Miocene onward
(Figure 2), and most Fijian suites have low Ce/Pb ratios, it is simpler to attribute the Pb in at least the breakup
basalts to an exogenous source.

It is also instructive to comment on what the Fijian shoshonite sources are not. We noted earlier that the Fijian
shoshonites differ from their neighbors in the South Fiji Basin (Figure 1; Mortimer et al., 2021) and those in
the Northern Mariana Seamount Province (NMSP; e.g., Gribble et al., 1998). The former have isotope ratios
similar to those of volcanic rocks in the Taupo Volcanic Zone in New Zealand and seem somehow conti-
nentally influenced. The absence of old continental crust in Fiji (Marien et al., 2022) and its distance from
New Zealand account for the differences in the shoshonites. However, differences from the NMSP are more
difficult to explain because those shoshonites also are attributable to recycled parts of the Hot Spot Highway,
including the Samoan chain (Finlayson et al., 2018). The chief differences between Fiji and the NMSP are
that Nd and Hf isotopes in the NMSP are much lower and more similar to the subducting seamounts, and their
Zr + LREE concentrations are much higher (Figure 6). In contrast, the isotope ratios of more fluid-mobile Sr
and Pb are quite similar in Fiji and the NMSP, apart from Pb north of 24°N in the NMSP (i.e., Iwo Jima and
Fukutoku-oka-no-ba) that is more like the Rurutu Chain. This pattern can be explained by more melting of the
slab beneath the NMSP, perhaps related to less oblique convergence there, or to tearing of the arc and found-
ering of the slab in Fiji.
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Finally, although a complete review of the characteristics of the new “Indian-type” mantle that feeds the many
spreading centers of the North Fiji and Lau Basins after 3 Ma is beyond our scope, one aspect merits comment. As
with most mantle sources, at least two components are involved, one depleted, the other enriched. The enriched
component has received the most attention and historically just been called “Samoan.” It varies between spread-
ing centers and decreases with distance from the Vitiaz Trench Lineament (Pearce et al., 2007; A. A. Price
et al., 2017). However, the depleted component most defines the “Indian”-ness of the new mantle; namely,
its low 2%°Pb/2%4Pb, high A?%Pb, and high '7Hf/!7’Hf with respect to '*Nd/'*Nd. It has some of the high-
est 70Hf/!7"Hf ratios on Earth at the YY VZ segment only 100 km north of Fiji (Figure 1; A. A. Price et al., 2014).
They are as high as those in basalts of the Knipovich segment of the Arctic Mid-Atlantic Ridge that are inter-
preted as reflecting ultra-depleted asthenosphere (Figure 7b; Sanfilippo et al., 2021). Similarly high "°Hf/"""Hf
ratios also characterize the Manus Basin, another backarc basin that formed in response to Neogene reversal of
subduction polarity between the Pacific and Indian Plates (Figure 7b; Woodhead et al., 2001). That is, the “new
mantle” that upwelled between the Pacific and Indian Plates following breakup of the Vitiaz Arc contains an
ultra-depleted matrix as its most distinctive feature that is absent from Fiji's breakup basalts only 100 km away.

6.3. Implications for Tectonics

We return now to the question: What caused the Vitiaz Arc to break where it did between Vanuatu and Fiji? Our
answer is the subduction of Alexa-type seamounts on the Samoan seamount chain. They were in the right place
at the right time (Figures 1 and 2) and have the right isotopic composition (Figures 7—10) to match Fiji's breakup
basalts, and the morphology of that part of the Vitiaz Trench Lineament is consistent with seamount subduction
(Pelletier & Auzende, 1997).

This question is different from what caused polarity reversal in the Vanuatu and Solomon arcs. That clearly is
related to collision with the Ontong Java Plateau (Mann & Taira, 2004). However, it is unknown whether the
collision was restricted to the Solomon Islands and led to propagation of polarity reversal southeast toward Fiji,
or whether the collision itself extended that far. Although Mann and Taira's Figure 6 infers the latter, we disagree
for the tectonic reasons given earlier. Now we add that the isotope systematics of the Fijian breakup basalts,
especially their Pb isotope ratios, differ from most Ontong Java lavas. No equivalent geochemical information is
available for 12-3 Ma rocks from Vanuatu. Although neither the tectonic nor isotopic arguments against subduc-
tion of Ontong Java beneath Vanuatu and Fiji are conclusive, they are internally consistent.

That said, seamount subduction is a common occurrence whereas arc breakup is not. Isotopically similar mate-
rial seems to be subducting beneath the NMSP without breaking it. Material from the LSC seems to have been
subducted beneath the Vitiaz Arc prior to breakup. Slivers from the Hikurangi Plateau seem to have been
subducted for several m.y. beneath part of the Kermadec Arc, perhaps contributing to its rifting to create the
Havre Trough (Hoernle et al., 2021).

The difference may be like families. As Tolstoy opened Anna Karenina, “All happy families are alike; each
unhappy family is unhappy in its own way.” In the same way, steady-state subduction is common and fairly well
understood by now, but disruptions are not and each one seems different. Collisions can cause subduction to
stop or polarities to reverse, arcs can separate along-strike into frontal and remnant parts with a backarc basin in
between, or in our case can break across-strike and its parts swing open like saloon doors. It matters whether the
causative subducted material is merely OIB-derived volcaniclastic sediment, or small seamounts, or a chain of
large guyots and islands, or a Large Igneous Province. It matters how thick and old the subducting lithosphere is.
It matters what the convergence angle and rate are. It matters what is on the upper plate.

In the oceanic Vitiaz Arc case, the Ontong Java Plateau collided with the Solomon Island segment of the arc at
an oblique angle and slow rate, resulting in prolonged “soft docking” and polarity reversal (Mann & Taira, 2004),
whereas collision of its twin, the Hikurangi Plateau, with Zealandia did not. We suggest that the polarity reversal
propagated southeastward along the Vitiaz Arc Lineament from the Solomon Islands toward Fiji until the cumu-
lative effects of the collision were insufficient to cause reversal. We infer that the highly oblique subduction of
the Samoan seamounts pinned the subduction zone enough to stop the propagation and break the arc, thereby
opening the North Fiji Basin behind Vanuatu, and accelerating forearc extension north and east of Fiji to become
the Lau Basin. They were the straw that broke the arc's back near Fiji, and enough to push open the saloon doors.
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Most versions of the tectonic history shown in Figure 2 infer spreading to form oceanic crust northeast of Vanuatu
prior to rotation of Fiji, based on interpretations of Malahoff, Feden, et al.’s (1982) aeromagnetic anomalies. No
remnant of the Vitiaz Arc has ever been found along the western Vitiaz Arc Lineament. Whatever happened there
remains unknown and perhaps without precedent, but it does not affect our interpretation of Fijian volcanism. We
infer slow rifting and rotation of Fiji away from the former plate boundary after Colo plutonism (~7 Ma), starting
with the Cikobia boninitic and tholeiitic lavas, and lasting until the start of Fijian OIB volcanism (~3 Ma). Rapid
spreading commenced in both the central North Fiji and Lau Basins after that, and evidence of significant slab
components in Fijian and Lau Basin magmas disappeared within a few hundred thousand years at that time.

We propose that the new “Indian”-type of mantle consists of a mixture of ultra-depleted matrix with
high '7SH{/!77Hf, low 2°Pb/?*4Pb, and high A2%Pb, plus diverse kinds of enriched pods. Some of this new mantle
appeared in the source of basalts adjacent to the edge of the broken arc immediately south of Viti Levu (i.e.,
in Vatulele) as early as 4.7 Ma, but it was uncommon in Fiji until ~3 Ma. Many authors have speculated that
it came from beneath the Pacific Plate north of the Vitiaz Trench Lineament or Samoa, and that the enriched
components melted out preferentially as the mantle advected southward (e.g., Pearce et al., 2007; A. A. Price
et al., 2017). Effects attributed to Samoa are restricted to the northeast Lau Basin (Lupton et al., 2015; A. A. Price
et al., 2014), but numerical models of the Ontong Java collision predict that toroidal flow around the edge of the
broken slab may entrain mantle from beneath the Pacific Plate into the North Fiji Basin (Almeida et al., 2022;
Wang et al., 2022). Basalts from the new depleted and enriched mantle are juxtaposed at the Fiji Triple Junction
and along the N160° ridge segment north of it (see Figure 1). Although evidence of ultra-depleted mantle has
not yet been found in the Ellice Basin, Ontong Java volcanism ~120 Ma left extensive residues of high degrees
of melting in the garnet stability field (Tejada et al., 2004). That combination can increase "°Hf/!7"Hf relative
to *Nd/!**Nd in the residues (e.g., Salters et al., 2011). Therefore, ultra-depleted mantle from the root of the
Ontong Java Plateau may be part of what advected into the northern North Fiji + Lau Basins after breakup of
the Vitiaz Arc, rather than subduction of the Plateau itself causing the breakup. Or perhaps some of the depleted
and enriched components in the northern North Fiji Basin came from the roots of the Samoan chain (A. A. Price
et al., 2022, 2017).

6.4. Implications for Shoshonite Genesis

Shoshonites are exotic arc volcanic rocks rich in K and other large ion lithophile elements. The genesis of the
Fijian ones has been explained before (Gill & Whelan, 1989a; Leslie et al., 2009; Rogers & Settlefield, 1994;
G.-Z. Sun et al., 2017) and our data mostly confirm their interpretations. That is, shoshonites are small degree
melts of depleted mantle in the spinel stability field that was fluxed by a slab-derived fluid or melt. Our isotope
data confirm that the ambient mantle to which the slab component was added was similar both to the source of
coeval medium- and high-K magmas, and to earlier Fijian volcanic and plutonic rocks. Only the Vatulele shosho-
nite source included some new, more “Indian-type” mantle. Leslie et al. (2009) attributed most of the differences
between Fijian shoshonites to variable fertility of the ambient mantle, whereas we suggest variable types of ambi-
ent mantle in addition to variable degrees of mantle melting and additions of a slab component.

Our new isotope data reveal that the slab component for both the shoshonitic and high-K rocks was a silicate
melt, not just dilute hydrous fluid, because it transported slab-derived LREE including Nd. Consequently, the slab
surface temperature was higher than during the steady-state subduction that preceded breakup, and in modern
central Tonga (Hergt & Woodhead, 2007). However, the temperature was lower than for the shoshonitic slab
component that transported more Hf, Zr, and LREE in the NMSP.

Our trace element data add a few subtleties that confirm the relative importance of recycled OIB-type sediment
in the source of the breakup basalts, especially the shoshonites. Th/La ratios of the shoshonites are the same
(0.10-0.15) as in the OIB-type volcaniclastics of DSDP Site 204, are as low as at the modern Tongan volcanic
front, and are lower than at the Kermadec front (0.15-0.20) despite the much higher Th and La contents in the
shoshonites. Hergt and Woodhead (2007) also realized the need for volcaniclastic sediment in the source of Lau
Ridge magmas, and their arguments apply even more to the shoshonites farther west. In contrast, the higher Th/
La ratios in most Northern Mariana (0.15-0.30) and South Fiji Basin (0.3-0.5) shoshonites, presumably are
because of more continentally derived sediment in their sources. That is consistent with both of them having
higher A207:208Pp than the Fijian shoshonites. The higher Sr/Ba ratios in Fijian shoshonites (1-3; and 1.5-2.0 just
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in Viti Levu) than in the Northern Mariana and South Fiji Basin suites (0.3—1.0) also are consistent with less
recycling of continental material in Fiji, and may indicate carbonate in the Fijian source. The slab melt in Fijian
shoshonites seems to have been low-temperature and zircon-saturated because their Sm/Hf ratios are >2 which is
even higher than in the Northern Marianas shoshonites for which zircon saturation was first invoked (Tollstrup &
Gill, 2005). The large enrichments of K, Rb, Ba, and Sr relative to LREE (Figure 6) preclude residual phlogopite
(e.g., Condamine et al., 2022). Other than that, the slab component in the shoshonites is not distinctive.

7. Conclusions

1. Comprehensive whole rock analyses are provided for the first time for five volcanoes on Viti Levu and 13 other
islands in Fiji that are 3—7 Ma, and include boninitic, low-K, medium-K, high-K, and shoshonitic suites. Collec-
tively we call them “breakup basalts”, and we refer to the former arc that they came from as the Vitiaz Arc.

2. The Sr-Pb + Nd isotope ratios of breakup basalts are most similar to those of the depleted Alexa-type
seamounts at the currently known western extent of the Samoan chain. Other seamounts of this chain may
already have been subducted at the Vitiaz Trench farther to the west.

3. Because of this isotopic similarity, and because Alexa-type seamounts were on the subducting plate and close
to the plate boundary where and when the arc broke, we infer that their subduction contributed to breakup by
“pinning” the system enough to block polarity reversal further east. However, the Vitiaz Arc was primed for
breakup by the earlier collision of the Ontong Java Plateau with the Solomon Islands sector, and the ensuing
propagation of arc polarity reversal along Vanuatu toward Fiji.

4. Breakup of the Vitiaz Arc opened saloon doors to a new and isotopically distinctive mantle whose depleted
component is characterized by high "°Hf/'7’Hf and A?%®Pb (“Indian”-type), and whose enriched components
range from like those of Ontong Java to Samoan. It seems to originate beneath the Pacific Plate, and rapidly
replaced the old “Pacific”’-type mantle that may have contained a slab component derived in part from volcan-
iclastic sediment or basalt from the LSC.

5. The old “Pacific”’-type ambient mantle + subducted Louisville-type material were important sources for the
arc in the Oligocene to Miocene, subducted Alexa-type material became increasingly important in the Plio-
cene close to the breakup site, and the new “Indian”-type ambient mantle quickly flooded the area after 3 Ma.

6. Breakup started with eruption of boninitic rocks that are similar in composition and pre-breakup location to
those erupted later at the northern termination of the Tongan Ridge.

7. The shoshonites represent small degree mantle melts fluxed by slab melts. Only those from Vatulele involved
some of the new mantle.

Data Availability Statement

All data for this paper are included in Table 1. Additional analyses from the same volcanoes, and from
additional coeval volcanoes, are available at Gill (2020): Compilation of whole rock geochemistry and
petrography of samples from the Fiji Islands, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA).
https://doi.org/10.26022/IEDA/111498 Hand specimens of most of the samples in this study, and other
well-analyzed ones from the ECL, are available from the US Museum of Natural History (Smithsonian) except
for those with a 68-, 69-, or C prefix, for which agate-ground powders are available from the first author. Any
use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US
Government.
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Erratum

The following errors were discovered after publication of this paper: Table 1 and Table 2 contained incomplete
and incorrectly set information. These tables have now been replaced with complete, corrected Tables 1 and 2.
This may be considered the authoritative version of record.
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