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Abstract. We present a proof of the Moon in a puddle theorem, and use its key lemma to
prove a generalization of the four-vertex theorem.

INTRODUCTION. The theorem about the Moon in a puddle provides the simplest
meaningful example of a local-to-global theorem which is mainly what differential
geometry is about. Yet, the theorem is surprisingly not well-known. This paper aims to
redress this omission by calling attention to the result and applying it to a well-known
theorem.
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MOON IN A PUDDLE. The following question was initially asked by Abram Fet
and solved by Vladimir Ionin and German Pestov [10].

Theorem 1. Assume y is a simple closed smooth regular plane curve with curvature
bounded in absolute value by 1. Then the region surrounded by y contains a unit disc.

We present the proof from our textbook [12] which is a slight improvement of the
original proof. Both proofs work under the weaker assumption that the signed curva-
ture is at most one, assuming that the sign is chosen suitably. A more general statement
for a barrier-type bound on the curvature was given by Anders Aamand, Mikkel Abra-
hamsen, and Mikkel Thorup [1]. There are other proofs. One is based on the curve-
shortening flow; it is given by Konstantin Pankrashkin [8]. Another one uses cut locus; it
is sketched by Victor Toponogov [13, Problem 1.7.19]; see also [9,11].

Let us mention that an analogous statement for surfaces does not hold—there is a
solid body V in the Euclidean space bounded by a smooth surface whose principal
curvatures are bounded in absolute value by 1 such that V does not contain a unit ball;
moreover one can assume that V is homeomorphic to the 3-ball. Such an example can
be obtained by inflating a nontrivial contractible 2-complex in R? (Bing’s house
constructed in [3] would do the job). This problem is discussed by Abram Fet and
Vladimir Lagunov [5, 6]; see also [12].

Avpathy:[0,1] > R? suchthaty (0) = y (1) will be called a loop; the point y (0)
is called the base of the loop. A loop is smooth, regular, and simple if it is smooth and
regular in [0, 1], and injective in the open interval (0, 1).

Let us use the term circline as a shorthand for a circle or line. Note that the osculat-ing
circline of a smooth regular curve is defined at each of its points—there is no need to
assume that the curvature does not vanish.

Suppose that y is a closed simple smooth plane loop. We say that a circline o
supports y at a point p if the point p lies on both o and y, and the cicrline o lies in
one of the closed regions that y cuts from the plane. If furthermore this region is
bounded, then we say that o supports y from inside. Otherwise, we say that o supports y
from the outside.

Key lemma. Assume y is a simple smooth regular plane loop. Then at one point of y
(distinct from its base), its osculating circle o supports y from inside.

Spherical and hyperbolic versions of this lemma were given in [9, Lemma 8.2] and
[2, Proposition 7.1] respectively.

Proof of the theorem modulo the key lemma. Since y has absolute curvature of at
most 1, each osculating circle has radius of at least 1.

According to the key lemma, one of the osculating circles o supports y from inside.
In this case, o lies inside y, whence the result. [ |

Proof of the key lemma. Denote by F the closed region surrounded by y. Arguing by
contradiction, assume that the osculating circle at each point p = pg on y does not lie in
F . Given such a point p, let us consider the maximal circle o that lies entirely in F and is
tangent to y at p. The circle o will be called the incircle of F at p.

Note that the curvature of the incircle o has to be strictly larger than the curvature of
y at p, hence there is a neighborhood of p in y that intersects o only at p. Further note
that the circle o has to touch y at another point at least; otherwise, we could increase
o slightly while keeping it inside F .
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Figure 1. The sequences p, and g, converge to a point pe.

Choose a point p; = pg on y, and let gy be the incircle at p,. Choose an arc y; of
y from p; to a first point g; on ;. Denote by &, and &, the two arcs of o, from p; to
g, such that the cyclic concatenation of &, and y; surrounds 4.

Let p, be the midpoint of y;, and o, be the incircle at p,.

Note that o, cannot intersect 6,. Otherwise, if s is a point of the intersection, then
0, must have two more common points with &, say x and y—one for each arc of o,
from p, to s. Therefore o, = 0, since these two circles have three common points: s,
X, and y. On the other hand, by construction, p, B 0, and p, ! 0,—a contradiction.

Recall that o, has to touch y at another point. From above it follows that it cannot
touch y \ yi, and therefore we can choose an arc y, in y; that runs from p, to a first
point g, on 0,. Since p, is the midpoint of y;, we have that

(3) lengthy, < 1 - lengthy;.

Repeating this construction recursively, we obtain an infinite sequence of arcs
y1 By, B...; by (B), we also get that

lengthy, > 0 as n—> oo,

Therefore the intersection y; Ny, N ... contains a single point; denote it by po.

Let 0-. be the incircle at p..; it has to touch y at another point, say g... The same
argument as above shows that g.. B y,, for any n. It follows that ge. = p..—a contra-
diction. -

Figure 2. Two ovals pretend to be circles.

Exercise. Assume that a closed smooth regular curve (possibly with self-intersections) y
lies in a figure F bounded by a closed simple plane curve. Suppose that R is the
maximal radius of a disc contained in F. Show that the absolute curvature of y is at
least Rl at some parameter value.
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Figure 3. A closed curve with 4 supporting osculating circles.

FOUR-VERTEX THEOREM. Recall that a vertex of a smooth regular curve is de-
fined as a critical point of its signed curvature; in particular, any local minimum (or
maximum) of the signed curvature is a vertex. For example, every point of a circle is a
vertex.

The classical four-vertex theorem says that any closed smooth regular plane curve
without self-intersections has at least four vertices. It has many different proofs and
generalizations. A very transparent proof was given by Robert Osserman [7]; his paper
contains a short account of the history of the theorem.

Note that if an osculating circline o at a point p supports y, then p is a vertex. The
latter can be checked by direct computation, but it also follows from the Tait—-Kneser
spiral theorem [4]. It states that the osculating circlines of a curve with monotonic
curvature are disjoint and nested; in particular, none of these circlines can support the
curve. Therefore the following theorem is indeed a generalization of the four-vertex
theorem:

Theorem 2. Any smooth regular simple plane curve is supported by its osculating
circlines at 4 distinct points, two from inside and two from outside.

Proof. According to the key lemma, there is a point p B y such that its osculating
circle supports y from inside.

The curve y can be considered as a loop with p as its base. Therefore the key lemma
implies the existence of another point g with the same property.

This shows the existence of two osculating circles that support y from inside; it
remains to show the existence of two osculating circles that support y from outside.

Let us apply to y an inversion with respect to a circle whose center lies inside y.
Then the obtained curve y; also has two osculating circles that support y; from inside.

Note that these osculating circlines are inverses of the osculating circlines of y.
Indeed, the osculating circline at a point x can be defined as the unique circline that
has second order of contact with y at x. It remains to note that inversion, being a
local diffeomorphism away from the center of inversion, does not change the order of
contact between curves.

Note that the region lying inside y is mapped to the region outside y; and the other
way around. Therefore these two new circlines correspond to the osculating circlines
supporting y from outside. ]

Advanced exercise. Suppose y is a closed simple smooth regular plane curve and o is

a circle. Assume y crosses o at the points py, . .., P2.n and these points appear in the
same cycle order on y and on o. Show that y has at least 2-n vertices.
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Figure 4.

The order of the intersection points is important. An example with only four vertices
and arbitrarily many intersection points can be guessed from the diagram on the right.
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