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Abstract
The !eld of model order reduction (MOR) is growing in importance due to
its ability to extract the key insights from complex simulations while discard-
ing computationally burdensome and super"uous information. We provide an
overview of MOR methods for the creation of fast & accurate emulators of
memory- and compute-intensive nuclear systems, focusing on eigen-emulators
and variational emulators. As an example, we describe how ‘eigenvector
continuation’ is a special case of a much more general and well-studied MOR
formalism for parameterized systems. We continue with an introduction to the
Ritz and Galerkin projection methods that underpin many such emulators, while
pointing to the relevant MOR theory and its successful applications along the
way. We believe that this guide will open the door to broader applications in
nuclear physics and facilitate communication with practitioners in other !elds.

Keywords: model reduction, reduced-order models, emulators, Bayesian statis-
tics, Galerkin projection, variational principles, complex simulations, Ritz pro-
jection, Eigenvector Continuation, nuclear physics

1. Introduction

Nuclear physics calculations often need to be repeated many times for different values of
some model parameters, for example when sampling the model space for Bayesian uncertainty
quanti!cation [1–9] and experimental design [10–12]. The computational burden can be alle-
viated by using emulators, or surrogate models, which accurately approximate the response
of the original (i.e., high-!delity) model but are much cheaper to evaluate. The development
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of emulators by nuclear physicists is a welcome addition to the community’s toolkit, but
such applications are neither the !rst nor the most sophisticated in the long history of model
reduction for complex simulations.

The naïve implementation of realistic computer models in physics, mathematics, or engi-
neering generally can demand an ever-increasing computational burden, but it has been known
for decades that much of the information contributing to this burden is super"uous and can
be compressed into a much more ef!cient form while retaining high accuracy. The broad and
relatively mature !eld of model order reduction (MOR) has focused on exactly this problem of
extracting the dominant information while excluding the costly, redundant information from
simulations; the resulting emulator is known as the reduced-order model. Initially, the sys-
tems under consideration contained only !xed sets of model parameters, but later on the study
of parametric MOR (PMOR) addressed the need to emulate systems as the parameter values
changed.

The problems already addressed by PMOR are wide-ranging; for example, a sampling
of applications in engineering, computational physics, and computer science is presented in
reference [13]. The problems include large-scale systems of ordinary and partial differen-
tial equations with time dependence and nonlinearities, eigenvalue problems, and much more.
Although these particular examples are classical, the nuclear physicist is likely to !nd problems
in the MOR literature with analogous mathematical structure and goals to their own problems.
In later sections we point to examples in the quantum realm such as bound-state and scattering
problems and density functional theory (DFT).

Reduction schemes in the MOR literature can be classi!ed as data-driven or model-driven,
although hybrid approaches are also possible. Data-driven approaches typically need little to
no understanding of the system under consideration, but rather rely on interpolating the out-
put of the high-!delity model. These are hence classi!ed as non-intrusive. Examples include
Gaussian processes [14] and dynamic mode decomposition (DMD) [15, 16], and there are
further exciting developments along these lines coming from the machine learning literature
(e.g., references [17–19]).

Alternatively, the model-driven approaches take the high-!delity system of equations as
given, from which they derive the reduced-order equations. Emulation via model-driven meth-
ods continue to be physics-based, respecting the underlying structure of the system, and are
likely to extrapolate more effectively than data-driven emulators. Many model-based meth-
ods employ the concept of projection, where the high-dimensional system is projected onto
a well-chosen low-dimensional manifold. The challenge of many model-driven approaches is
related to their intrusive nature, i.e., they require writing new codes for projecting the system
of interest into a reduced space.

Despite the mature literature on MOR, many of its aspects have been reinvented across mul-
tiple different disciplines. Indeed, the nuclear physics community has recently been exploiting
an already-established model-driven, projection-based PMOR technique in the study of the
eigenvalue problem. Introduced to the nuclear community as eigenvector continuation (EC)
[20, 21], this method has been demonstrated to be highly effective for nuclear bound-state
[3, 5, 22, 23] and scattering calculations [24–27]. EC has not been recognized in its broader
context (see section 6.4) because the projection techniques common in the model reduction
literature are not widely known in the nuclear physics community. Furthermore, many reviews
of the subject presume a level of maturity with these tools that might make them dif!cult to
digest.

We therefore provide a guide to projection-based PMOR for the nuclear physics community.
Our goal in the present work is not to introduce speci!c new nuclear physics applications, but
to make the existing literature more accessible. In particular, we explain how one can obtain
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emulators by projecting generic differential equations and eigenvalue problems into a low-
dimensional subspace, all while relating key ideas back to the broader MOR literature. By
doing so, we seek to open the door to broader applications, allow the nuclear community to
take advantage of the vast literature, and facilitate communication with practitioners in other
!elds.

In section 2 we begin by introducing important concepts and notation. We then provide an
intuitive example of PMOR as applied to the eigenvalue problem in section 3 and place exist-
ing work in the nuclear physics literature into a broader context. Next, sections 4 and 5 provide
two distinct methods for projecting differential equations onto effective low-dimensional man-
ifolds via variational principles (or, the Ritz method) and the Galerkin projection, respectively.
Finally, we return in section 6 to the recent developments made in the MOR community to
discuss the incredible opportunities available to nuclear physicists interested in applying such
techniques. An outlook is given in section 7.

2. Setting the stage

We would like to solve a differential equation or an eigenvalue problem where the operators
are a function of parameters θ3. In the case of a differential equation, the goal is to obtain the
solution ψ of

D(ψ;θ) = 0 in Ω, (1a)

B(ψ;θ) = 0 on Γ, (1b)

where {D, B} are operators, and {Ω,Γ} are the domain and boundary, respectively. Generaliza-
tions to systems of differential equations follows straightforwardly. For the eigenvalue problem
the solutions are {E, |ψ〉}, which satisfy

H(θ)|ψ〉 = E|ψ〉 (2)

for a given Hermitian operator H. Throughout this work we switch between an abstract
vector notation |ψ〉 and functions ψ with the representation dependencies suppressed. Time-
dependence is permitted in these systems but is not explicitly considered here—see section 6
for pointers on how to handle these cases.

Here we consider systems where obtaining |ψ〉 (and E) will require a non-negligible
amount of computing time, which becomes compounded when a range of parameter values
are required, e.g., in a Monte Carlo sampler or an optimizer. The choice in PMOR is then
made to spend compute resources in the of!ine stage, where the heavy lifting can be easily
parallelized in many cases [28], such that emulation during the online phase can be performed
ef!ciently. A critical component of the online–of"ine paradigm is the removal of all size-ψ
operations during the online phase, a property available for operators with an af!ne parameter
dependence. That is,

H(θ) =
∑

n

hn(θ)Hn, (3)

or likewise for D(ψ; θ) or B(ψ; θ), where the operators can be written as a sum of products
of parameter-dependent functions hn(θ) and parameter-independent operators Hn. This fac-
torization permits the operators to be projected once up front, rather than for every value of

3 Note that the literature may use a different notation, including µ for the set of parameters.
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θ we would like to emulate, and will be discussed in more detail in the following sections.
For non-linear systems and cases with non-af!ne parameters, various hyperreduction methods
have been developed to augment the model reduction techniques (see sections 4.5 and 6.3).

The projection-based emulation approaches described here rely on (i) choosing an effective
low-dimensional representation of ψ and (ii) writing equations (1) and (2) in integral form.
For the !rst step one proposes a trial function comprised as a linear combination of a set of Nb

known basis functions {ψi}

ψ̃ ≡
Nb∑

i=1

βiψi = X#β, (4)

X ≡
[
ψ1 ψ2 . . . ψNb

]
. (5)

While the coef!cients #β are unspeci!ed at this point, their values will become !xed after impos-
ing conditions speci!c to the integral forms described below. We focus on bases X that are
constructed out of snapshots [29–32], high-!delity solutions ψi = ψ(θi), at a set of parameter
values {θi}. This requires that a high-!delity solver for ψ exists, though the details of such
a solver are irrelevant for our discussion. The snapshot approach has been found to construct
highly ef!cient and system-speci!c trial bases across a wide range of cases. We will return to
exactly how these snapshots can be chosen in section 6. This form of the trial function (4) will
be used throughout the rest of this work. Colloquially, we will describe the space of Nb basis
functions as the ‘small space’ and the space of ψ and its corresponding operators (D, B, and
H) as the ‘large space’.

One familiar integral form available to many differential equations comes from variational
principles. Variational principles begin with the de!nition of a scalar functional S (the action)
that can be written as

S[ψ] =

∫

Ω
dΩF(ψ) +

∫

Γ
dΓG(ψ), (6)

where F and G are known differential operators. The unknown function ψ is determined as
the one that makes S stationary, i.e., δS = 0, under arbitrary variations δψ. This will form the
basis of variational emulators discussed in section 4.

It is not always the case that equation (1) can be cast in the form of a variational principle as
in equation (6). In this case we can instead turn to the weak form of equation (1) whose errors
or residuals we aim to minimize [33]. This will form the basis of the more general Galerkin
emulators discussed in section 5.

However, before exploring the more abstract variational and Galerkin approaches, we begin
in section 3 with a concrete and (to physicists) familiar example of both: the eigenvalue
problem. This contains many of the ideas fundamental to these more general cases but is likely
a more accessible place to start.

3. Eigen-emulators

3.1. Derivation

The eigenvalue problem frequently appears in nuclear physics when solving the few- or many-
body Schrödinger equation. We are often particularly interested in the ground state with energy
Emin and the associated wave function, but the full spectrum of eigen-energies and wave func-
tions may also be of interest. More generally, eigenvalues appear across the physical sciences
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and engineering due to their appearance in the solution of differential equations, and come with
a broad range of associated boundary conditions. Here we focus on converting the simple case
to a form amenable to reduced-order modeling, and we point to the literature on variational
forms of eigenvalue problems for more speci!c cases [34].

We can write down the following functional whose stationary solution approximates the
eigen-energy, that is S = E , where

E[ψ] = 〈ψ|H|ψ〉 − Ẽ(〈ψ|ψ〉 − 1) (7)

and the normalization of the wave function has been imposed with a Lagrange multiplier Ẽ.
Under arbitrary variations δψ, the change in E for Hermitian H can be written as

δE[ψ] = 2〈δψ|[H − Ẽ]|ψ〉 − δẼ(〈ψ|ψ〉 − 1). (8)

Assuming |ψ̃〉 = X#β as in equation (4), we then !nd that the values of #β satisfying the sta-
tionary condition δE[ψ̃%] ≡ 0, denoted #β%, are those obtained from the following generalized
eigenvalue problem

H̃#β% = ẼÑ#β%, (9)

#β†
%Ñ#β% = 1, (10)

where H̃ ≡ X†HX is the Hamiltonian projected into the subspace spanned by X, and Ñ ≡ X†X
is the norm matrix. The meaning of Ẽ can be understood by substituting these relationships
back into the variational form (7):

E[ψ̃%] = Ẽ#β†
%Ñ#β% = Ẽ. (11)

Thus Ẽ is an approximation to the energy. Equations (9) and (10), combined with equation (4),
therefore constitute the reduced-order model for E and |ψ〉 projected to the Nb × Nb small
space. In the context of the Rayleigh–Ritz method4 Ẽ is known as the Ritz value while ψ̃% =
X#β% is known as the Ritz vector.

We have seen how a variational principle for an eigenvalue problem can lead to a reduced-
order model for both E and ψ. But there is a more general approach to arrive at exactly
equations (9) and (10) that is often described as the Galerkin method. The Galerkin approach
begins with the weak form of the eigenvalue problem (2):

〈φ|H − E|ψ〉 = 0, (12)

where φ is an arbitrary test function. It can be shown that if equation (12) holds for all φ,
then equation (2) must hold as well: if (H − E)|ψ〉 has any non-zero elements, then one can
immediately !nd a φ such that equation (12) does not hold.

To obtain a reduced-order model from equation (12) we would ideally like to map ψ → ψ̃
and !nd the #β that satisfy equation (12) for all φ, hence ensuring the satisfaction of equation (2).
Unfortunately this would result in an over-determined system because an arbitrary φ has many
more degrees of freedom than ψ̃. Alternatively, we can derive the Ritz subspace method by
imposing that the error made by the trial eigenvector is orthogonal to the Nb-dimensional
subspace X spanned by X:

H|ψ̃〉 − Ẽ|ψ̃〉⊥X , (13)

4 See references [35, 36] for commentary on the history of the method name.
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or likewise

〈φ|H − Ẽ|ψ̃〉 = 0, ∀ φ ∈ X . (14)

Note here that, due to a peculiarity of the eigenvalue problem, we had to make the replace-
ment E → Ẽ because the eigenvalue is an output of the system: if the span of X does not
exactly contain ψ(θ) then Ẽ += E in general. Equation (14) is known as the Galerkin condition,
and is equivalent to imposing that 〈ψi|H − Ẽ|ψ̃〉 = 0 must hold for i ∈ [1, Nb]. This yields a
system of Nb equations and Nb unknowns #β and, together with the normalization condition,
reduces exactly to equations (9) and (10). The Lagrange multiplier was not strictly neces-
sary in this implementation of the Galerkin method because the normalization is irrelevant for
equation (14), but see section 5 for a discussion on including constraints for other Galerkin
problems.

The applications of the eigensystem reduced-order models to nuclear physics have bene-
!ted from the fact that Hamiltonians derived from chiral effective !eld theory (EFT) have the
form of equation (3) due to their af!ne dependence on the parameters θ called low-energy
couplings. By projecting each Hn → H̃n ≡ X†HnX in the of"ine stage, H̃(θ) can be ef!ciently
reconstructed for each new θ, and equation (9) rapidly solved, in the online stage. Furthermore,
if the hn(θ) are smooth, as they are for chiral EFT, then we have found that the low-dimensional
representations exploited by the reduced-order models are often quite well satis!ed, partic-
ularly when the dimension of H is large with respect to the dimension of θ. Furthermore,
downstream observables bene!ting from the same af!ne representation can be quickly emu-
lated via 〈ψ|O|ψ〉 ≈ #β†

%[X†OX]#β% where the factor in brackets is computed and stored in the
of"ine stage. Thus, the time spent ‘training’ the reduced-order model (constructing the basis
X and projecting H and O) in the of"ine stage can lead to multiple fast & accurate emulators
for the energy and other observables.

3.2. Results from other fields

The Hermitian and symmetric eigenvalue problems have been extensively studied in the math-
ematical literature and thus the ability to approximate eigenvalues and eigenvectors from a
subspace is well known [37, 38]. For example, the convergence properties of eigenvalues and
eigenvectors, along with their error bounds, are discussed under these subspace projections
in the linear algebra and applied mathematics literature. These analyses extend beyond the
extremal eigenvalues, but to all eigenvalues in the spectrum of H, where the applicability of
subspace approaches to excited states has been clear for decades. The sense in which the Ritz
values and vectors are optimal approximations is well known, and, e.g., discussed in references
[37, 39].

Furthermore, eigenvalue problems had been studied in the !eld of PMOR well before EC
was introduced into the nuclear literature. For example:

• Machiels et al [40] applied a parametric snapshot-based reduced-orderapproach to quickly
evaluate eigenvalue problems, and subsequently proved theorems about the error bounds
of the approximate eigenvalues. Horger et al [41] built upon this approach for error bounds
of multiple eigenvalues and discusses ef!cient greedy algorithms for the basis generation.

• Pau [42] used this reduced-basis approach to quickly and accurately compute eigenvalues
for band structure calculations.

• Buchnan et al [31] constructed a reduced-order model for parametric eigensystems in
reactor physics.
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• Cheng [43] constructed reduced-order models of the bound-state Schrödinger equation for
electron wave functions in semiconductor nanostructures.

• Gräbner et al [44] emulated a parameterized non-linear eigenvalue problem using a
snapshot-based reduced-order model for resonant frequencies.

Eigenvalue problems in PMOR appear during the greedy sampling (see section 6) and
uncertainty quanti!cation phases of reduced-order models for partial differential equations
[45, 46]. These phases require, in part, the solution to a generalized eigenvalue problem to
obtain the coercivity constant α(θ) relevant for the error bounds [45–48], where α(θ) is the
minimum eigenvalue. A fast approximation for α(θ) is needed across many values of θ and
hence calculations in the large space must be avoided. References [45, 46] considered the
reduced-order model (equation (9)) for α(θ) but ultimately proposed instead the so-called suc-
cessive constraint method (SCM) due to its ability to provide a rigorous lower bound to α(θ).
Nevertheless, others still encourage the use of equation (9) due to its speed [49] and simplicity
[30, chapter 4] over the SCM.

Each of the examples provided in this section contain all of the key ingredients of
EC—creating snapshots at parameter values, projecting large eigensystems to the span of these
snapshots, evaluating rapidly in an online phase, etc—but have been known as the reduced
basis (RB) method in the model reduction community.

4. Variational emulators

4.1. Theory

Variational principles are ubiquitous in physics. Many differential equations have a correspond-
ing action S, where the solution to the differential equation also makes S stationary. This yields
an alternate way of solving a set of PDEs: rather than solving the Euler–Lagrange equations
themselves, one can instead !nd the solution that makes the action stationary under variations
in ψ. The use of variational principles as a means to solve otherwise dif!cult problems dates
back to Ritz [35, 36, 50, 51]. Thus, these methods often go under the names of (Rayleigh-)Ritz
[35, 36], or are simply described as variational. But as we will see in section 5, the Galerkin
approach is more general and hence these are occasionally named Ritz–Galerkin methods.
Here we provide a brief description of how reduced-order models can arise from variational
principles; for an extensive discussion of variational methods, see references [33, 52, 53].

One can derive a set of differential equations—Euler–Lagrange equations—from a varia-
tional principle (6) by enforcing δS = 0 under arbitrary variations δψ. However, such differ-
ential equations may require a !ne grid or otherwise be expensive to solve. Instead we would
like to obtain a set of reduced-order models directly from the variational principle. To do so we
note that variations δψ can no longer be completely arbitrary given our choice of trial function
in equation (4). Rather than stipulate that δS = 0 for any arbitrary variation δψ, we instead
extract the optimal coef!cients, #β%, as those for which S is stationary under variations in #β:

δS[ψ̃] =
Nb∑

i=1

∂S
∂βi

δβi = 0. (15)

This yields a set of Nb equations and unknowns #β because the factor multiplying each δβi must
be identically zero.

The general case would involve a numerical search for the solution to equation (15), but
if S is quadratic in ψ then the solution can be determined analytically. We will focus here on
the case of solving a differential equation, which will result in a linear problem to be solved,
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because we have already tackled the eigenvalue problem in section 3. In this case, S can be
written as

S[ψ̃] =
1
2
〈ψ̃|A|ψ̃〉 + 〈b|ψ̃〉 + c (16)

=
1
2
#β† Ã#β + #b · #β + c, (17)

where Ã = X†AX, bi = 〈b|ψi〉, and c is a constant. The quadratic portion could be made
symmetric—if it is not already—by writing it as

S =
1
2
#β† Ãs

#β + #b · #β + c, (18)

Ãs =
Ã + Ãᵀ

2
, (19)

which can be desirable for numerical purposes. It then follows that the optimal coef!cients #β%

are those that satisfy

δS = Ãs
#β% + #b = 0, (20)

which can be solved with standard linear algebra methods. This linear equation is of dimension
Nb, the number of basis elements {ψi}, rather than of the much larger dimension of ψ itself.
Therefore, as long as {ψi} approximately span the space that ψ traces as a function of θ, the
trial function constructed by equations (4) and (20) will be a fast & accurate emulator of ψ.

This method is particularly bene!cial for quickly emulating many θ values if both A and
|b〉 are af"ne in θ, that is

A(θ) =
∑

n

fn(θ)An, (21)

|b(θ)〉 =
∑

n

gn(θ)|bn〉, (22)

which need not contain the same number of terms and, from which,

Ã(θ) =
∑

n

fn(θ)Ãn, (23)

#b(θ) =
∑

n

gn(θ)#bn (24)

can be quickly reconstructed because Ãn = X†AnX and bni = 〈bn|ψi〉 need only be computed
once in the of"ine stage. This follows similarly from the discussion in section 3, but in this
case both A and |b〉 can depend on the parameters of the system, rather than simply the
Hamiltonian H.

Note that the number of basis elements Nb needed for an accurate ψ̃ may be much smaller
than one might naïvely expect. Even if the dimension of a high-!delity solution ψ is quite large
(e.g., due to a !ne grid size in the differential equation solver), the space that ψ traces out as a
function of θ is often much smaller. Thus, constructing an emulator for accurately reproducing
ψ(θ) can be achievable with a well-chosen basis X (see section 6).

8



J. Phys. G: Nucl. Part. Phys. 49 (2022) 102001 Guide

4.2. Constraints

The derivation in section 4.1 assumed that ψ was unconstrained, but oftentimes one has
to enforce a set of constraints Cj(ψ) = 0 for j = 1, . . . , Nc. For example, in the eigenvalue
problem example in section 3, we had to enforce that the wave function is normalized to
one, i.e., C(ψ) = 〈ψ|ψ〉 − 1 = 0. Constraints can be straightforwardly included in a variational
principle via the method of Lagrange multipliers. Here, each constraint is appended as a term in
the variational form with a corresponding λ j, i.e., λ jC j(ψ). When imposing stationarity, each
of these terms yields a δλ jC j(ψ) + λ jδC j(ψ) contribution to δS. Speci!cally, equation (15)
needs to be rewritten as

δS[ψ̃] =
Nb∑

i=1

∂S
∂βi

δβi +
Nc∑

j=1

∂S
∂λ j

δλ j = 0, (25)

from which follows a set of Nb + Nc equations. Enforcing these constraints then yields a larger
system of equations to solve when emulating ψ in the online phase, though in some systems it
is possible to solve for λ j in terms of ψ, hence reducing the problem back to its original size
while still incorporating the constraints [33]. Solving for λ j to remove it from S is bene!cial
if possible because (i) it will decrease the size of the linear system to be solved and (ii) it can
make the system better conditioned numerically.

4.3. Concrete example

At this point it is helpful to provide a concrete example of a variational principle that leads
to a reduced-order model. Here we provide a simple projection example without complicating
details or abstract notation; see reference [33] for more examples.

Consider the functional, given functions g and f [54],

S =

∫

Ω
dΩ

[
1
2
∇ψ · ∇ψ − gψ

]
−
∫

Γ
dΓ fψ. (26)

Under an in!nitesimal variation δψ, the change δS is then

δS =

∫

Ω
dΩ[∇δψ · ∇ψ − gδψ] −

∫

Γ
dΓ f δψ (27)

=

∫

Ω
dΩ δψ

[
−∇2ψ − g

]
+

∫

Γ
dΓ δψ

[
∂ψ

∂n
− f

]
, (28)

from which it follows that the stationary solution is

−∇2ψ = g in Ω, (29)

∂ψ

∂n
= f on Γ, (30)

which is exactly the Poisson equation with Neumann boundary conditions.
By instead starting with S[ψ̃] and imposing equation (15), then it follows that (with summed

indices implied)

δS = δβi

[∫

Ω
dΩ

[
(∇ψi) · (∇ψ j)β j − gψi

]
−
∫

Γ
dΓ fψi

]
. (31)
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With Ãi j ≡
∫
ΩdΩ(∇ψi) · (∇ψ j), gi ≡

∫
Ω dΩ gψi, and f i ≡

∫
Γ dΓ fψi the reduced-order model

becomes

Ã#β% = #g + #f , (32)

which is an explicit example of equation (20). This could provide a fast & accurate emulator
of ψ(θ) ≈ X#β%(θ) for systems where g or f are af!ne functions of the parameters θ.

4.4. Results from other fields

Many examples from sections 3.2 and 5.4 could be listed here due to the relationship between
emulators constructed from variational principles and Galerkin methods. Instead we highlight
an explicitly variational problem particularly relevant for nuclear systems: DFT.

Computing the ground state energies in systems of nuclei and/or electrons reduces again
to a minimization problem, where the wave functions—or equivalently densities—are those
that minimize the non-linear functional E . These minimization problems appear in quantum
chemistry and nuclear physics and are often approached in the DFT framework [55, 56]. The
emulation of DFTs via reduced-order models has been studied in the quantum chemistry lit-
erature, e.g., in references [57, 58] (see also references [42, 59, 60]), where an empirical
interpolation method (EIM) (see section 6) was used to avoid issues with the nonlinearities
of E . This interpolation method permitted the reduced-order model to project all large-space
operators to the reduced space of snapshots up front, which is a critical step to retain an ef!cient
online-of"ine decomposition in the emulator.

4.5. Results from nuclear physics

We have already discussed how the eigenvalue problem can be projected to a subspace by
starting with a variational principle in section 3, which corresponds to computing the energy
spectrum and wave functions in a bound nuclear system. Its suitability for uncertainty quanti!-
cation in low-energy nuclear physics has been demonstrated, e.g., in chiral EFT applications
to few- and many-body systems, where it has been described as EC [3, 5, 22]. Variational
approaches for reduced-order models [24, 26, 27] have also been very successfully applied
to scattering states via the Kohn variational principle [61], where the Schrödinger equation is
no longer an eigenvalue problem (for a brief review see reference [62]). Furthermore, a new
approach for emulating directly scattering K or T matrices (without trial wave functions) was
proposed in reference [25] based on the Newton variational principle (NVP) [63]. Each of
these methods has bene!ted from an af!ne parameterization of the Hamiltonian H(θ), which
permitted fast & accurate emulation of nuclear observables.

In addition, the emulation of scattering states with non-af!ne parameterization was also
studied in reference [27], where Ã(θ) (de!ned in equation (17)) does not satisfy equation (23).
In order to reduce the computing costs in the online phase, a Gaussian process (GP) [14] was
used to emulate Ã(θ) across the parameter space. The training of the GP increased the of"ine
computing costs, but the online costs were similar to those with af!ne parameterizations. Since
the θ dependence for Ã(θ) is much smoother than those for ψ(θ) and ψ̃(θ), the number of GP
training points are kept to a minimum while still achieving great accuracy.

To our knowledge, the !rst application of projection-based PMOR as applied to nuclear
DFT was presented in reference [64] (see reference [65] for the code). Here, a trial density
was proposed as a linear combination of exact densities {ρi} at a set of training locations θi.
The coef!cients #β were found as those that minimized the energy of the system given a set
of parameters at which to emulate. Because this is a non-quadratic variational problem, such
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coef!cients were found empirically via an optimizer. The goal of this work was to use a proof of
principle to advocate for the adoption of such projection-based tools by the nuclear community
outside of bound-state and scattering systems connected to Hamiltonians.

5. Galerkin emulators

5.1. Theory

The Galerkin approach, also more broadly called the ‘method of weighted residuals’, relies on
the weak formulation of the differential equations in equation (1). To obtain the weak form, the
differential equation and boundary condition are multiplied by arbitrary test functions φ and
φ̄, integrated over the domain and boundary, and their sum set equal to zero:

∫

Ω
dΩφD(ψ) +

∫

Γ
dΓ φ̄B(ψ) = 0. (33)

If equation (33) holds for all φ and φ̄, then equation (1) must be satis!ed as well. The form
of equation (33) is often rewritten using integration by parts to reduce the order of deriva-
tives and to simplify the solution. Importantly, the weak form has the integral form needed
for our emulator application. The weak form and its Galerkin projection are used extensively,
for example, in the !nite element method; see references [33, 66, 67] for an in-depth study
and list of examples. For discussion of the convergence properties of the Galerkin method,
its relation to abstract variational problems, and other salient mathematical details, see ref-
erences [52, 68–70]. Here we follow the introduction of Galerkin methods as provided in
reference [33].

Starting with the weak form, we can begin to construct an emulator that avoids the need
for an explicit variational principle. It begins by !rst noting that substituting our trial function
(4) into D(ψ) and B(ψ) will not in general satisfy equation (1) regardless of the choice of #β.
Therefore, there will be some residual, and the goal is to !nd #β% which minimize that residual
across a range of test functions φ and φ̄. This system would be over-determined in the case of
truly arbitrary test functions, so instead we propose the test bases

φ =
Nb∑

i=1

δβiφi, φ̄ =
Nb∑

i=1

δβiφ̄i, (34)

where δβ i are arbitrary parameters, not related to β i. The δβi will play the same role as those
in equation (15), namely as a bookkeeping method for determining the set of equations that
are equivalently zero. By enforcing that the residuals against these test functions vanish for
arbitrary δβi, the bracketed expression in

δβi

[∫

Ω
dΩφiD(X#β%) +

∫

Γ
dΓ φ̄iB(X#β%)

]
= 0, (35)

is zero for all i ∈ [1, Nb], from which the optimal #β% are extracted. Because this approximately
satis!es the weak formulation, we have found an approximate solution to equation (1).

In a variety of cases [33], the test function basis is chosen to coincide with the trial func-
tion basis X, i.e., φi = φ̄i = ψi. This particular choice is known as the Galerkin method, but it
is sometimes further speci!ed as the Ritz–Galerkin or Bubnov–Galerkin methods. However,
the method of weighted residuals is more general than the variational methods described in
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section 4 because the test space need not be equivalent to the trial space (i.e., φi += ψi). In these
cases, the approach is described as the Petrov–Galerkin method [33]; this can result in more
ef!cient emulators for some differential equations [67].

Under the Ritz–Galerkin assumption for the test space we can derive the reduced-order
model for the case of a linear operator: D(ψ) = D|ψ〉 + |b〉. If we ignore the boundary condi-
tion for simplicity, it then follows from equation (35) that

D̃#β% + #b = 0, (36)

where D̃ = X†DX and bi = 〈b|ψi〉. Just like in section 4, we have arrived at a linear problem
for the solution to #β% and insofar as Nb is small compared to the size of ψ, this will yield
improvements to the time it takes to obtain a solution for #β%. Further speedups are available if
D and |b〉 are af!ne in the parameters θ so that D̃ and #b can be ef!ciently recomputed in the
online phase—see sections 3 and 4.

5.2. Concrete example

Here we repeat the example provided in section 4.3 but instead start from the Poisson equation
(equations (29) and (30)) and then derive the weak form.

First we multiply each equation by a test function φ = φ̄, integrate over the respective
domains, and add the equations together:

∫

Ω
dΩφ

[
−∇2ψ − g

]
+

∫

Γ
dΓφ

[
∂ψ

∂n
− f

]
= 0. (37)

Next we use the divergence theorem to symmetrize the system and to reduce the order of the
derivatives:

∫

Ω
dΩ[∇φ · ∇ψ − gφ] −

∫

Γ
dΓ fφ = 0, (38)

which is the weak form we desire. Finally, by asserting that equation (38) holds for ψ → ψ̃ =
X#β and φ =

∑
i δβiψi for i ∈ [1, Nb], then we have its discretized form

δβi

[∫

Ω
dΩ

[
∇ψi · ∇ψ jβ j − gψi

]
−
∫

Γ
dΓ fψi

]
= 0, (39)

which is exactly equations (31) and (32) found via the variational approach!

5.3. When Galerkin coincides with variational emulators

We have already seen that the eigen-emulators of section 3 could be derived by both variational
and Galerkin procedures, and we have found that the exact same reduced-order model for the
Poisson equation arises in both the variational and the Galerkin procedures. This raises the
question: when is the variational approach equivalent to the Galerkin approach?

The answer becomes clear if one restricts to cases where equation (1) is the Euler–Lagrange
equation derived from the action (6). By the de!nition of the Euler–Lagrange equations, this
statement is equivalent to

δS[ψ] = 0 =

∫

Ω
dΩ δψD(ψ) +

∫

Γ
dΓ δψB(ψ). (40)

12
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We can then consider changing variables from the trial stationarity condition (15)

δS[ψ̃] = 0 =
Nb∑

i=1

∂S
∂βi

δβi =
Nb∑

i=1

[
∂S
∂ψ

]

ψ=ψ̃

∂ψ̃

∂βi
δβi, (41)

where the !rst two factors on the right-hand side are equation (40) with δψ → ∂ψ̃/∂βi = ψi

and thus

0 = δβi

∫

Ω
dΩψiD(X#β%) + δβi

∫

Γ
dΓψiB(X#β%), (42)

for all i ∈ [1, Nb]. This is exactly equation (35) under the Galerkin assumption that φi = φ̄i =
ψi. Note that S was not assumed to have a quadratic form for this derivation, and no linearity
assumptions were made about D or B.

There are some !nal steps to proving that Galerkin is strictly more general than a variational
(Ritz) approach. The !rst is that all variational principles have corresponding Euler–Lagrange
equations. This can be shown via the fundamental lemma of the calculus of variations. Second,
there is the question of how Lagrange multipliers are to be introduced in the weak form without
!rst starting with a variational principle. In this case, one simply adds the relevant constraint
terms to the weak form. That is, if the constraint C(ψ) = 0 would appear as λC(ψ) in the
functional S, then one would simply add δλC(ψ) + λδC(ψ) to the weak form and use the
fact that δψ̃ = Xδ#β. Therefore, if the differential equations to be solved directly correspond
to the Euler–Lagrange equations of an action, then the variational approach is identical to the
Galerkin approach. The generality of the Galerkin method comes from the fact that one need
not assert that φi = φ̄i = ψi.

Although we have shown that the Galerkin method is more general than the Ritz approach,
there is still value to obtaining a variational principle and deriving a reduced-order model from
it. First, the functional S is often physically meaningful in its own right, and hence the varia-
tional emulators provide a straightforward way of quickly computing its value. For example,
in the NVP approach to emulating the scattering K (or T) matrix [25], both the trial function
K̃ and the NVP functional K[K̃] at the stationary point are estimates of K, but the variational
principle has better error properties: if K̃ has an error of O(δK) then K has an error of order
O(δK2). Thus, obtaining and using the variational principle as an emulator for K is superior
to simply applying the Galerkin method. Second, the variational emulators are guaranteed to
provide symmetric matrices when solving for #β. This feature can provide numerical bene!ts
both when constructing the relevant matrices and when solving for #β.

5.4. Results from other fields

We have found that examples of reduced-order models relying on a Galerkin projection are
numerous and exist across a multitude of disciplines. A wide array of such examples are given
in reference [13], which is an entire volume of a three-part series dedicated to the applications
of MOR in diverse settings, ranging from engineering to life sciences. A comprehensive list of
reduced-order models built from Galerkin methods would be impossible; we instead provide
a curated list of helpful articles below.

A broad survey on parametric model reduction [28] cites multiple examples of highly suc-
cessful applications of reduced-order models, some of which we highlight here. In the thermal
modeling of electric motors that depends on 20 parameters, Bruns and Benner [71] use model
reduction for a speedup over 300–500 times the high-!delity model. Lassila et al [72] dis-
play the power of reduced-order modeling in the study of nonlinear viscous "ows by reducing
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high-!delity models of dimension >10 000 to emulators of dimensions 8–20, with minimal
accuracy impact and speedup factors of up to 450. Convection–diffusion models arise in the
investigation of contaminant transport, where Lieberman et al [73] exploit MOR to reduce
the model order from over one million down to 800 with negligible accuracy loss and a 3000
speedup factor.

Rozza et al [46] provide an illuminating introduction and motivation to reduced-order
models built from Galerkin projections. Its applications include heat conduction and convec-
tion–diffusion, inviscid "ow, and linear elasticity systems. Beyond the speci!c applications
listed here, reference [46] describes how to effectively choose parameter values θ for build-
ing the basis via a greedy algorithm, explores issues of convergence and error bounds, and
performs an analysis of computational costs.

Chen et al [47] review the state of the RB method literature, collecting many of the main
ingredients necessary for building and analyzing reduced-ordermodels. They demonstrate their
claims via benchmark problems and describe generalizations to time-dependent systems, risk
prediction, Bayesian inverse problems, and more. The topic of uncertainty quanti!cation is
addressed in detail, which, for example, allows for effective placement of snapshot locations
ψ(θi) via a greedy algorithm.

6. The model reduction framework

Projection-based PMOR consists of (1) sampling across parameters for snapshot candidates,
(2) creating the snapshots and generating a basis X, and (3) using the basis to construct the
reduced system [28]. sections 4 and 5 partially address step (3) by providing two closely
related methods of constructing these projected systems, one based on variational principles
and another based on the Galerkin method. Here we take a bird’s-eye view of the parametric
model reduction work"ow to show where different assumptions can lead to different types of
reduced-order models, and to point to extensions at the cutting edge of the model reduction
literature. For in-depth reviews, see, e.g., references [13, 28–30, 74].

6.1. Sampling parameters

Many reduced-order emulators rely on the concept of snapshots, or exact solutions at particular
values across a range of parameters θ. So then the question becomes how to wisely choose
the snapshot locations {θi}. For parameter spaces that are not too large, one could employ a
space-!lling design (such as a Latin-hypercubeor grid-based approach), or one could center the
design close to the range of parameter values that will be emulated. De!ne the !nite number
of points sampled from the space as Nsample. Ultimately, we will want a set of Nb ! Nsample

snapshots to construct the RB, but the manner in which the snapshots are generated from the
Nsample training parameters differs based on the basis construction method.

6.2. Constructing a basis

The next step is to take the snapshots and to construct a basis X given the set of training param-
eters. Notably, we have mostly restricted our attention to systems without time dependence.
In the static, time-independent case, the sampling need only occur in the space of parame-
ters θ. Here we discuss two approaches for determining the ‘optimal’ Nb basis vectors: proper
orthogonal decomposition (POD) and greedy algorithms.

POD (also known as principal component analysis) [75] is an explore-and-compress strat-
egy used to extract the most important basis vectors from a set of snapshots [68]. It computes
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snapshotsψ(θi) at all Nsample parameter values and subsequently keeps only the Nb most impor-
tant vectors. It performs a singular value decomposition of the Nsample snapshot vectors and then
removes those least important to the spanning set, i.e., those with the smallest eigenvalues.
Often the set of important vectors are chosen such that the percent of the remaining ‘energy’
(sum of the eigenvalues) is large, say, 99% relative to the total set of vectors. The orthonormal-
ization performed during the POD step is also helpful during the online phase of the emulator
because it can improve the conditioning of the system. Because POD evaluates the snapshots
at all of the proposed Nsample parameter values before then compressing the information, this
can either be wasteful of computing resources or severely limit the size of Nsample. Hence, we
now turn to an alternative.

The greedy algorithm for basis generation is an iterative approach [46, 47, 68] that does
not evaluate the high-!delity model at all Nsample parameter values. At each step the next loca-
tion θi to take a snapshot is chosen to be that which is expected to minimize the error in the
emulator. Critical to such an approach is a fast approximation to the emulator error. Uncer-
tainty quanti!cation for reduced-order models have been well studied and, e.g., are available
for parabolic and elliptic PDEs [47, 68], and the eigenvalue problem [41, 76]. At each step,
the error at the set of Nsample parameter values is estimated, and that with the largest expected
error is then evaluated with the high-!delity model and appended to the basis. The search stops
once the desired error tolerance has been achieved, or after a given number of steps. Because
the error estimate is built to be much faster than the high-!delity model, this approach is often
much more ef!cient than the POD method.

Now we move on to the time-dependent cases, where sampling can occur not only in param-
eter space, but also in time (or frequency). In the time-dependent case there are more options,
such as the rational interpolation method [77, 78], whose snapshots will include samples from
the frequency domain and the parameter domain. Additionally, there exist POD variants for
both the time and the frequency domains [28]. Note that mixed approaches exist: for example,
in a POD-greedy approach one can opt to use a greedy algorithm in an ‘outer loop’ in parameter
search, while using a POD-based approach to evaluate each time snapshot before discarding
the least important [68]. Another common technique is known as balanced truncation, which
creates a set of reduced models at each parameter value, which are then interpolated to create
an emulator across θ [28].

6.3. Building the reduced-order model

Finally, the reduced model must be created from the basis. In the examples shown above, where
the snapshots are collected into a single basis X and the operators are projected to this basis, this
is straightforward. This can work well if the system is linear and the operators are af!ne with
respect to the parametersθ, which critically permits the reduced-order model to be independent
of the size of the high-!delity space during the online phase. However these conditions are not
always satis!ed.

In the non-af!ne or non-linear cases, one can turn to so-called hyperreduction approaches
to construct approximate af!ne representations, which trade accuracy for speed [32]. These
can be classi!ed into the ‘approximate then project’ or the ‘project then approximate’ classes.
The approximate-then-project approach !rst approximates the non-af!ne or non-linear oper-
ators as a linear combination of af!ne operators whose coef!cients are to be determined, and
whose operators can then be projected via X into the small space up front. Some common
approximate-then-projectmethods [68] include the EIM [79, 80], the discrete EIM [81, 82], and
the gappy-POD method [83, 84]. Project-then-approximate approaches have been developed
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more recently and attempt to interpolate the basis X or the projected operators H̃(θ) = X†H(θ)X
themselves; see references [30, 85–87] for examples. Outside of explicit projection-based
approaches, non-intrusive methods have been proposed for dealing with non-linear and non-
af!ne systems, including the use of machine learning tools to approximate the basis coef!cients
#β or projected operators H̃, e.g., see references [27, 88].

But in fact, one need not create one basis and one reduced system; rather one could partition
X into multiple bases across the span of θ. This can help alleviate the curse of dimensionality in
the parameters θ and the computational costs during the of"ine stage. Additionally, it permits
the use of variable !delity bases in different parts of the domain. If one opts to create a set of
local systems, each component must be then coupled with one another across the interfaces.
For a survey on this topic, see reference [30].

6.4. Discussion

Now that we have introduced many of the common steps in model reduction, we can begin
to contextualize other named methods, such as the RB method and EC. The RB method was
initially introduced in reference [89] and has found widespread use in the emulation of PDEs
in a reduced-order approach [68]. Due to its similarities with many of the methods discussed
here and in the model reduction literature, it may be dif!cult to distinguish between the RB
method and more general model reduction techniques.

In fact, the RB method corresponds to speci!c choices in the model reduction framework
[28]. First, the parameter set for the RB method is often chosen using a greedy algorithm with
the help of a fast error estimate, though POD approaches are sometimes adopted, particularly
in time-dependent systems where a POD-greedy combination is employed [68]. Next, a single
basis X is constructed out of snapshots and often orthonormalized for stability. Finally, the RB
model is built from a global basis projection, i.e., the same basis is used for the entire space
of θ. These are but one of many choices that can be made at each step in the construction of a
reduced-order model.

Likewise, we are able to help place EC into its proper context. EC is a parametric reduced-
order model for an eigenvalue problem. It uses a global basis that is constructed with a
snapshot-based POD approach. The ‘active learning’ approach proposed in reference [76] is
the inclusion of a greedy sampling algorithm to obtain the next parameter value θi. Each of
these are common throughout the model reduction literature and have been studied for eigen-
value problems; therefore EC is a speci!c implementation of the RB method to construct a
reduced-order model.

We conclude by noting that reduced-order emulators have pros and cons. First, these emu-
lators work better in some systems than others—where the quantity of interest lies in on a
low-dimensional manifold compared to the size of ψ, and where operations on the large space
of ψ can be avoided during the online phase. As one might expect, the relative size of the low-
dimensional representation depends on the speci!c differential equation. For example, highly
non-linear equations may not permit the same low-dimensional representation. Further, how
the operators depend on the parameters could be critical to the effectiveness of the reduced sys-
tem in two distinct ways: (i) the relative smoothness of the parameter dependence impacts the
ability ofψ to live in a low-dimensional representation, and (ii) af!ne parameter dependence, or
at least an effective hyperreduction approach, is critical to avoiding matrix multiplication in the
large space of ψ. Lastly, one should not overlook how the quantity of interest itself affects the
quality of the low-dimensional representation. For example, E has better convergence prop-
erties than |ψ〉 in the eigenvalue problem; the RB literature discusses the improvements of
focusing on compliant quantities of interest [30, 47].
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Table 1. A sampling of recent MOR software libraries; see reference [13, section 13.3] for an extensive listing.

Library Language Website Remark

pyMORa [90] Python pymor.org Focuses on RBMs for parameterized PDEs;
integrates with external PDE solvers

libROM C++ librom.net Library for ef!cient MOR techniques and
physics-constrained data-driven methods;
includes POD, DMD, projection-based
ROM, hyper-reduction, greedy algorithm

MORLAB [91] MATLAB mpi-magdeburg.mpg.de/projects/morlab MOR of dynamical systems based on the
solution of matrix equations using spectral
projection methods

modred [92] Python modred.readthedocs.io Library for computing modal
decompositions and ROMs, including
POD, DMD, and Petrov–Galerkin
projection

pyROM [93] Python github.com/CurtinIC/pyROM Framework that employs Python
visualisation tools; includes POD and
DMD

pressio [94] C++ pressio.github.io Minimally-intrusive interface for MOR
routines, including Galerkin projections

aSee also the website of the Model Reduction for Parametrized Systems (MoRePaS) collaboration: morepas.org.
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Beyond the considerations of emulator quality, building an intrusive emulator for complex
systems can be a challenge. There has been great progress in building general software tools
for practitioners in reduced-order modeling [13, 48]. Table 1 provides a sampling of recent
MOR software libraries. Continuing to develop and publicize such tools will permit greater
acceptance of these powerful methods in nuclear physics.

7. Outlook

The present work provides for nuclear physicists accessible pointers to some of the relevant lit-
erature on projection-based model reduction and shows that solving the parametric eigenvector
problem from a subspace is merely a special case of a much broader set of tools. By properly
contextualizing the methods under the projection-based model reduction umbrella, we have
shown how reduced-order models built from a variational principle relate to an equally vast
literature on the Galerkin method, which is even more general. We have not proposed anything
novel; rather our message is that much information on emulators, some partially rediscovered
and more not-yet-applied, can be at our !ngertips if we look more widely.

We have shown that the ‘RB method’ is the established name of the methods described
in the nuclear physics literature as EC, and suggest its adoption. We believe that putting EC
in a more general context, and particularly using a uni!ed naming convention, will not only
alleviate confusion due to a con"ict of terms used in other !elds, but will permit access to a
much broader literature. It would surely accelerate progress in the application of emulators in
the nuclear community [95] and facilitate fruitful external collaborations.
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[9] Alnamlah I K, Pérez E A C and Phillips D R 2022 arXiv:2203.01972 [nucl-th]

[10] Melendez J A, Furnstahl R J, Grießhammer H W, McGovern J A, Phillips D R and Pratola M T
2021 Eur. Phys. J. A 57 81

[11] Phillips D R et al 2021 J. Phys. G: Nucl. Part. Phys. 48 072001
[12] Farr J N, Meisel Z and Steiner A W 2021 arXiv:2111.11536 [nucl-th]
[13] Benner P, Schilders W, Grivet-Talocia S, Quarteroni A, Rozza G and Miguel Silveira L 2020 Model

Order Reduction: Volume 3: Applications (Berlin: de Gruyter & Co)
[14] Rasmussen C E and Williams C K I 2006 Gaussian Processes for Machine Learning (Adaptive

Computation and Machine Learning Series) (Cambridge, MA: University Press Group Limited)
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