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ABSTRACT
We propose a new approach for trading VIX futures. We assume that 
the term structure of VIX futures follows a Markov model. Our trading 
strategy selects a position in VIX futures by maximizing the expected 
utility for a day-ahead horizon given the current shape and level of 
the term structure. Computationally, we model the functional depen-
dence between the VIX futures curve, the VIX futures positions, and 
the expected utility as a deep neural network with !ve hidden layers. 
Out-of-sample backtests of the VIX futures trading strategy suggest 
that this approach gives rise to reasonable portfolio performance, 
and to positions in which the investor will be either long or short VIX 
futures contracts depending on the market environment.
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1. Introduction

The shape of the VIX futures curve is informative if it shows a shape that is likely to 
persist for only a short period of time. In this situation, there may be a simple VIX 
futures trade that will produce profits when the curve reverts to a more typical 
shape. For example, if the curve has a hump then there may be a long-short VIX 
futures position, or a calendar spread, with zero entry cost, which will pay a positive 
amount when the curve reverts to contango. Ideally, such a reversion will happen 
quickly so that the trade generates a profit with near certainty. In practice there is 
some risk because most trades involve non-zero probability of losses. Nevertheless, 
over long-term horizons with multiple trading opportunities, losses can be dimin-
ished if trading strategies are constructed to optimize the expected value of 
a suitable utility function. VIX futures are a good choice for such trading strategies 
because their curves have a propensity to quickly revert to contango, which allows 
for fast turnaround before the next trading opportunity.1

We use a stationary VIX futures curve model, as done in Avellaneda and Papanicolaou 
(2019), to generate day-ahead scenarios of VIX futures. Let U �Ö Ü denote a chosen utility 
function. A trading signal is the optimal trading action that maximizes expected utility 
under the probability distribution of the model, 
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a xÖ Ü à argmax
a2A

E U Rtá1 aÖ ÜÖ ÜjXt à xâ ä ; (1:1) 

where t denotes time, E denotes expected value, and where 

Xt à VIX futures curve at time t; vector valued ;

A à a set of possible trades=actions a; vector valued ;

Rtá1 aÖ Ü à change in position from time t to t á 1 if action a 2 A is taken :

The action space A consists of various positions in VIX futures, and Rtá1ÖaÜ is a function 
of the action a and the transition occurring in the VIX futures curve, 

Xt;Xtá1; aÖ Ü7!Rtá1 aÖ Ü :

We take A to be a finite set of trades that are predetermined, and we assume that the 
transition distribution for Xt is also given. We estimate the expected value in Equation (1.1) 
using a deep neural network, see Goodfellow, Bengio, and Courville (2016). Historical VIX 
futures data are applied to estimate the parameters for the model of Xt , and then the neural 
network is trained using simulated data generated by this estimated model. In our model, the 
most likely curve is a contango, and all other curve shapes will revert towards this most likely 
state. To illustrate, Figure 1 shows a contango and a backwardation curve of VIX futures. We 
construct a trading signal by solving the optimization problem (1) with A consisting of four 
different allocations in one-month and five-month rolling VIX futures strategies (see 
Section 2.1 where we define these rolling strategies). For most contango curves, the action 
suggested by the trading signal is to long the one-month strategy and to short the five-month 
strategy. In backwardation, the suggested trade is to short the one-month and go 2⇥ long 
the five-month. In backtesting of this trading signal, we find that if transaction costs are not 
too high, then for a trading period of around 200 days, there can be profits of double-digit 
percentage and Sharpe ratios significantly higher than one.

Figure 1. The VIX futures’ contango curve seen on 2019-11-11 (left) and the backwardation seen on 
2020-03-11 (right). A trading signal is constructed based on the value and shape of this curve.
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1.1. Literature of Related Research

The VIX has been the ‘fear gauge’ for the financial markets of the United States since 
1993, see Whaley (2000) and Whaley (2009). Since 2004, the market for VIX futures has 
made it possible to gain exposure to VIX, and the creation of exchange-traded notes 
(ETNs) has made it possible to gain exposure with greater ease, see Alexander, Kapraun, 
and Korovilas (2015). The significance of mean reversion and contango in VIX futures 
and ETNs is analysed in Avellaneda and Papanicolaou (2019). Mean reversion is also the 
key assumption in the class of stochastic volatility models driven by stationary factor 
processes, see for instance Fouque, Papanicolaou, and Ronnie Sircar (2000). Historically, 
volatility models in finance have relied on the Markov property, but recently there has 
been a trend towards VIX pricing driven by fractional Brownian motion, see Bayer, Friz, 
and Gatheral (2016). A Markovianization of the fractional-curve model is achieved by 
considering the infinite-dimensional futures curve in its entirety, see Euch and 
Rosenbaum (2018). Foundational concepts in machine learning such as convergence 
and deep learning extensions can be found in Mohri, Rostamizadeh, and Talwalkar 
(2018) and Sutton and Barto (2018). The implementation of high-dimensional learning 
has been made possible by recent developments in neural network software such as 
TensorFlow and PyTorch. An example of note is the deep-Q neural network (DQN) 
algorithm, see Mnih et al. (2015) and Fan et al. (2020). For applications to finance see 
Aldridge and Avellaneda (2020), Sirignano and Spiliopoulos (2017), Casgrain, Ning, and 
Jaimungal (2019), and Ruf and Wang (2021). Studies on high-dimensional deep learning 
have highlighted the improvement in out-of-sample prediction when large neural net-
works are utilized, see Zhang et al. (2017), Belkin, Ma, and Mandal (2018), and Hastie 
et al. (2022). Evaluation of out-of-sample performance is often done using cross- 
validation methods, but special care needs to be taken when applying these methods to 
financial data, see Arlot and Celisse (2010), Arnott, Harvey, and Markowitz (2019), and 
Ruf and Wang (2020). In particular, with times series data there can be significant auto- 
correlations, yet cross-validation methods are still applicable so long as the time series are 
assumed to satisfy some basic assumptions such as zero auto-correlations in the noise 
process, see Burman and Nolan (1992), Bergmeir and Benítez (2012), and Bergmeir, 
Hyndman, and Koo (2018).

1.2. Main Results and Structure of the Article

The focus of this article is on a new method for trading VIX futures, wherein 
trading signals are the optimal action function given by Equation (1.1). We imple-
ment this new approach on a variety of utility functions and utilize deep neural 
networks to estimate the objective in Equation (1.1). We conduct cross-validation 
studies using a k-fold procedure. We use historical VIX futures data consisting of 
end-of-day VIX futures curves from January 2008 to February 2021. In out-of- 
sample tests we find that trading signals constructed with deep neural networks 
have the potential to produce reasonable profits and Sharpe ratios. These findings 
are an indication that VIX futures curves contain useful predictive information for 
trading, and that deep neural networks are able to filter and apply the relevant 
information from the curves.
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The article is organized as follows: Section 2 introduces the VIX curve model, explains 
how parameters are estimated, and describes the futures positions that we optimize over; 
Section 3 presents cross-validation studies of the neural network method on historical 
VIX futures data – both with and without transaction costs; Section 4 concludes; 
Appendix A shows a real-time backtest that we conducted with weekly re-training of the 
neural network from December 28th, 2020 through February 19th, 2021; Appendix A also 
provides a detailed account of how the outputs of the neural network map to exact trading 
positions in VIX futures; Appendix B provides metrics for various non-neural network 
benchmarks.

2. A Model for Trading VIX Futures

Let t denote time and let VIX t denote the value of VIX on that date. Let d be an integer 
such that d á 1 is the number of VIX futures contracts,2 and let T1 <T2 < . . . <Tdá1 
denote the expiration dates of these VIX futures contracts. Let us denote 

Fi
t :à VIX future expiring at time Ti ; (2:1) 

where t à 0; 1; 2; � � � ; Ti is the current date. A term-structure of constant-maturity VIX 
futures (CMFs), each with horizon θi-many months, for i à 1; 2; 3; � � � ; d, are con-
structed as a linear interpolation of the VIX futures, 

Vi
t :à ωi

tFi
t á 1� ωi

t
� �

Fiá1
t ; (2:2) 

where t  Ti  t á θi  Tiá1 and ωi
t à

Tiá1�t�θi
Tiá1�Ti

; note now that Vi
t is defined for all t. 

Note also that VIX t is like a zero-horizon CMF. CMFs are preferable for statistical 
estimation because they do not have non-stationary effects that are caused by contract 
expiry.

2.1. Rolling VIX Futures Strategies

A rolling VIX futures strategy maintains the CMF weights of Equation (2.2) for fixed 
maturity θi. For each i, we let Ii denote the value of the rolling VIX futures strategy with 
horizon θi, for which returns are given by 

ΔIi
t

Ii
t

:à
ωi

tΔFi
t á 1� ωi

t
� �

ΔFiá1
t

ωi
tFi

t á 1� ωi
tÖ ÜFiá1

t
á rΔt ; (2:3) 

where ΔIi
t à Ii

tá1 � Ii
t , ΔFi

t à Fi
tá1 � Fi

t , r � 0 is the interest rate, and Δt à 1
252. Simple 

calculation leads to an equivalent expression to Equation (2.3) in terms of the CMFs, 

ΔIi
t

Ii
t
à r á _ωi

t
Fiá1

tá1 � Fi
tá1

Vi
t

✓ ◆
Δt á ΔVi

t
Vi

t
; (2:4) 

where _ωi
t à

ωi
tá1�ωi

t
Δt < 0 for all t<Ti. The drift term in Equation (2.4) contains the quantity 

referred to as the roll yield, 

Roll i
tá1 :à _ωi

t
Fiá1

tá1 � Fi
tá1

Vi
t

;
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which we utilize to re-write Equation (2.4) as follows, 

ΔIi
t

Ii
t
à r á Roll i

tá1
� �

Δt á ΔVi
t

Vi
t
: (2:5) 

From Equation (2.5) we see that if Vi
t is a stationary process then the return rate of the ith 

rolling VIX futures strategy has a most likely value equal to the risk-free rate plus the 
mode of Roll i

tá1. As shown in Avellaneda and Papanicolaou (2019), the most likely VIX 
futures curves are contango and the most likely roll yields are negative, which explains 
why the value of the rolling VIX futures strategies decay.

In the past there have been some attempts to apply statistical arbitrage techniques to 
VIX. One idea is to use the Engle-Granger test to find co-integrated pairs among rolling 
VIX futures strategies, see Engle and Granger (1987). For the one-month rolling VIX 
futures strategy (θ à one month) and the five-month strategy (θ à five months), 
a simple linear regression of one set of returns on the other suggests that we should 
short the one-month and long 0:9⇥ five-month. However, this is not a good pair to 
trade because the residual is not stationary; for daily data between 2008 and 2020 the 
values of these positions do not reject a unit root hypothesis. In addition, historical 
backtesting shows that these trades have large drawdowns and negative returns at the 
most inopportune times. Another possibility is to match volatility levels between the one- 
month and five-month rolling VIX futures portfolios, which suggests a position 1⇥
short the one-month and 2⇥ long the five-month, respectively. This was a popular trade 
during the decade of 2010, but also had large drawdowns. The conclusion is that 
allocations in these rolling VIX futures portfolios are useful but there needs to be 
a rule for deciding when to open and close the trade. 

Remark 2.1 (Exchange Traded Notes) Rolling VIX futures portfolios represent the under-
lying redemption value for several VIX ETNs. Such notes are among the more liquid 
instruments for gaining exposure to VIX, see Alexander, Kapraun, and Korovilas (2015). 
Some of the more liquid ETNs include the iPath VXX (long one-month), the iPath VXZ 
(long five-month), the VelocityShares TVIX (2⇥ long one-month), and the iPath XIV 
(short one-month). Trading in these notes can be replicated with trades in the rolling VIX 
futures strategies. However in practice, replication is not entirely accurate. Firstly, the issuer 
of a note may have call-back features embedded, which can terminate the note at any time. 
Secondly, the rolling VIX futures strategy is technically just the redemption value and the 
notes are free to trade at market value, which means that there may be a slight discrepancy 
between the ETN’s returns and its respective rolling futures formula.

2.2. Vector Auto-Regressive Model

The two main quantities that we consider are the CMFs Vi
t

� �d
ià0 and the roll yields 

Roll i
t

� �d
ià1. As seen from Equation (2.5), these quantities can be used to make short-term 

predictions on the rolling VIX futures strategies. For example, the roll yield and the 
anticipated direction of mean reversion could be the basis for a trading strategy that 
performs well in the long term.
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For the tth day of a given time period, the VIX futures curve is described by the 
following state vector, 

Xt à log VIX t; log V1
t ; log V2

t ; � � � ; log Vd
t ; Roll 1

t ; Roll 2
t ; � � � ; Roll d

t
⇥ ⇤`

;

where all entries of this vector are directly computable from VIX s; F1
s ; F2

s ; � � � ; Fdá1
s

� �
st . 

Given data at times t à 1; 2; � � � ; T, let X⇤ denote the mode, 

X⇤ à mode
tT

XtÖ Ü ;

that is, X⇤ is the most likely curve, which is illustrated in Figure 2. The figure 
displays the mean of the state given by 1

T
PT

tà1 Xt , and the mode of the state. 
Statistical analysis in Avellaneda and Papanicolaou (2019) shows that Xt is 
a stationary stochastic process whose historical time series exhibits a tendency to 
mean revert towards a contango curve. In its most likely state, the VIX future is 
around 12%-14%, the long-term VIX future is around 17%-20%, and all in-between 
CMFs lie on an upward sloping curve.

We take the state vector Xt for t à 1; 2; � � � ; T, centre it around the mode, and then 
place it in a larger matrix 

ψ à X1 � X⇤;X2 � X⇤; � � � ; XT � X⇤â ä :

Note that we are centring around the mode rather than the mean, which we do for 
robustness because CMFs have a heavy right skew.

The vector auto-regressive (AR) model for the state vector is the following, 

ψtá1 à μá Aψt á Ztá1 ; (2:6) 

Figure 2. The mean and modal curves of VIX CMFs (left) and the mean and modal curves of the roll yields 
(right). The VIX futures curves are usually in contango, with the possibility of a volatility spike causing an 
upward skew in the distributions of VIX futures. Therefore, the mean CMF curve is above the modal curve, 
and a similar relationship appears in the mean and modal curves of the negative roll yields.
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where Zt is an independent and identically distributed Gaussian random vector with 
mean zero and covariance ⌃. The least-squares estimator of A is given by 

bA à
XT�1

tà1
ψtá1 � ψ
� �

ψt � ψ
� �`

" #
XT�1

tà1
ψt � ψ
� �

ψt � ψ
� �`

" #�1

;

μ̂ à I � bA
⇣ ⌘

ψ ;

where ψ à 1
T
PT

tà1 ψt . The covariance matrix ⌃ can be estimated by 

b⌃ à 1
T � 1

XT�1

tà1

bZtbZ`
t ;

where bZtá1 à ψtá1 � μ̂� bAψt.
We can write the returns on the rolling VIX futures strategies from Equation (2.5) as 

ΔIi
t

Ii
t
à r á Xdái

tá1
� �

Δt á
exp Xi

tá1
� �

� exp Xi
t

� �

exp Xi
t

� � ; for 1  i  d ; (2:7) 

which will be useful in the sequel where we draw samples from a distribution for 
Xt and use to simulate trading returns. That is, we will use the vector AR model 
that is described by Equation (2.6) to simulate Xt, which we insert into Equation 
(2.7) for computing the returns of rolling VIX futures strategies. Figure 3 shows 
the simulations of the one-month and five-month rolling VIX futures strategies, 
with each simulation including its respective historical portfolio value.

Figure 3. Simulations of the one-month rolling VIX futures strategy and the five-month rolling VIX 
futures strategy, which are generated from the vector AR model in Equation (2.6). The dark line in each 
plot is the historical value of the respective strategy. The declining value in these rolling strategies is 
studied in Avellaneda and Papanicolaou (2019).
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2.3. Trading-Signal Construction

We consider the following quantity, 

Rtá1 aÖ Ü :à
X

i
ai ΔIi

t
Ii

t
� rΔt

✓ ◆
: (2:8) 

This represents the profit or loss for a position in rolling VIX futures strategies.3 Let A
denote the space of admissible actions. An optimal action is determined by maximizing 
the expected utility, 

max
a2A

E U Rtá1 aÖ ÜÖ ÜjXt à xâ ä ; (2:9) 

where the action is decided by the trader at time t immediately before Rtá1 aÖ Ü is realized, 
and where U RÖ Ü is the utility function.

We denote by Pt the value of the trading-signal portfolio at time t, for which returns 
are computed as 

ΔPt
Pt
à Rtá1 a XtÖ ÜÖ Ü á rΔt ; (2:10) 

where a XtÖ Ü à argmaxa2A E U Rtá1 aÖ ÜÖ ÜjXtâ ä. In testing, we use the time series of Pt to 
compute performance metrics, such as profit percentages and Sharpe ratios.

3. Computing the Trading Signals with Historical Data

We carry out the method described in Section 2 on historical VIX futures data. Our data 
is daily, beginning April 14th of 2008 and going until November 6th of 2020, and consists 
of one-month, two-month, three-month, fourth-month, five-month, and six-month VIX 
futures, in other words, i à 1; 2; � � � ; 6 and d à 5 in Equation (2.1). The data is down-
loadable from the VIX Central website.4 Using these data, we construct the time series of 
VIX CMFs and VIX rolls as given by Equations (2.2) and (2.4), respectively. We take the 
weights ωi that appear in Equation (2.2) to be ωi;ω for all i such that there is 100% in the 
front-month contract as soon as the prior future matures, and then 0% in this front- 
month at the next maturity date. We analyse the time series of portfolio value utilizing 
the following performance metrics: annualized expected rate of return denoted by 
E Rt a XtÖ ÜÖ Üâ ä, volatility denoted by std Rt a XtÖ ÜÖ Üâ ä, trading profit, Sharpe ratio,5 and 
maximum drawdown.

A standard procedure for in-sample training and out-of-sample testing is straightfor-
ward: divide the data into two blocks, with the first block designated for in-sample 
training, and the second block designated for out-of-sample testing. More specifically, 
we take the VIX futures curves from April 14th of 2008 to August 7th of 2019 for in- 
sample training, and then utilize the remaining curves from August 8th of 2019 to 
November 5th of 2020 for out-of-sample testing. But this out-of-sample test is based on 
a single portfolio run, which means that good performance could be attributable to luck. 
Therefore, to make full usage of the data, we apply the method of the k-fold cross- 
validation.
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We divide the data into k à 10 folds, each with 316 or 317 days, and then utilize these 
folds to conduct ten separate in-sample trainings and out-of-sample testings. More 
specifically, we train on a configuration of nine folds, and then upon the remaining 
fold we conduct an out-of-sample test, see chapter four of Mohri, Rostamizadeh, and 
Talwalkar (2018) for details on k-fold cross validation. Table 1 gives the precise demarca-
tion dates for the folds. When we paste non-contiguous folds, we exclude the pasting 
outlier when estimating the vector AR model (2.6). For example, in order to out-of- 
sample test on fold #5, we need to paste fold #4 to fold #6 for training, and in doing so we 
make sure to exclude the data point at the jump from fold #4 to #6.

Our approach is to utilize the training data to estimate the parameters of the vector AR 
model (2.6) proposed in Section 2.2, and then to draw samples from the vector AR model 
to train the neural network. The neural network is an approximation of the functional 
form of E U Rtá1 aÖ ÜÖ ÜjXtâ ä, see Cybenko (1989) and Pinkus (1999), for each action a in the 
action space, 

A à f 0; 0Ö Ü; �1; 1Ö Ü; �1; 2Ö Ü; 1; �1Ö Ü; 1; �2Ö Üg ; (3:1) 

where the individual actions are 

0; 0Ö Ü à no trade ;

�1; 1Ö Ü à short I1 and long I5 ;

�1; 2Ö Ü à short I1 and 2⇥ long I5 ;

1; �1Ö Ü à long I1 and short I5 ;

1; �2Ö Ü à long I1 and 2⇥ short I5 ;

and where I1 and I5 denote the one-month and the five-month rolling VIX futures 
strategies, respectively, as defined by Equation (2.5) in Section 2.1.

The k-fold cross validation described above is susceptible to data leakage because 
utilizing a vector AR model implies some dependence between folds, see Arnott, Harvey, 
and Markowitz (2019), Ruf and Wang (2020). In the literature, it is argued that cross 
validation methods can effective for auto-regressive models when noise is uncorrelated, 
see Arlot and Celisse (2010), Bergmeir and Benítez (2012), Bergmeir, Hyndman, and Koo 
(2018), Burman and Nolan (1992), and Cerqueira, Torgo, and Igor (2020). To test for 
data leakage in our cross-validation studies, we re-run our cross-validation studies 
utilizing the non-adjacent block configurations that are proposed in Bergmeir, 
Hyndman, and Koo (2018). More specifically, we in-sample train the model utilizing 

Table 1. The start date and end date for each of the ten backtesting folds in the k-fold cross validation.
Fold # Time Interval Fold # Time Interval
0 2008-04-16 to 2009-07-17 5 2014-07-31 to 2015-10-29
1 2009-07-20 to 2010-10-19 6 2015-10-30 to 2017-02-01
2 2010-10-20 to 2012-01-23 7 2017-02-02 to 2018-05-04
3 2012-01-24 to 2013-04-29 8 2018-05-07 to 2019-08-07
4 2013-04-30 to 2014-07-30 9 2019-08-08 to 2020-11-05

APPLIED MATHEMATICAL FINANCE 9



data from folds #2 through #8, and then out-of-sample test the model utilizing data of 
fold #0; we in-sample train the model utilizing data from folds #3 through #9, and then 
out-of-sample test the model utilizing data of fold #1; we in-sample train the model 
utilizing data from fold #0 and folds #4 through #9, and then out-of-sample test the 
model utilizing data of fold #2; and etc. The purpose for doing the k-fold cross- 
validations with this configurations is to eliminate the contiguous training folds that 
may have information about the testing fold. However, when we re-run with these non- 
contiguous configurations, we observe almost no difference compared with the numbers 
resulting from standard k-fold cross validation.

3.1. Neural Network Approach

For general concave utility functions, there is not an explicit calculation for the 
expected utility E U Rtá1 aÖ ÜÖ ÜjXtâ ä. Therefore, we use a neural network to find an 
approximating function. The architecture of the neural network that we implement 
is a deep feed-forward neural network (DFN), as described in Goodfellow, Bengio, 
and Courville (2016). For a discrete set of actions A à a1; a2; � � � ; ap

�  
, the universal 

approximation theorem, see Cybenko (1989) and Pinkus (1999), is a mathematical 
theorem to ensure that DFN is an effective way to estimate the nonlinear mapping 

Xt 7! Q Xt; a1Ö Ü;Q Xt; a2Ö Ü; � � � ; Q Xt; ap
� �⇥ ⇤`

;

where Q x; aj
� �

is optimized to approximate E U Rtá1 aj
� �� �

jXt à x
⇥ ⇤

. Our approach is 
to sample Xt from the vector AR model (2.6) that is proposed in Section 2.2, and 
then use these samples to train the neural network, and finally perform k-fold cross 
validation to test out-of-sample performance of the optimal neural-network trading 
actions.

The DFN we use has the specifications depicted in Figure 4. We utilized a dense 
connective structure between layers, in other words, all layers have neurons that are 
fully connected with the neurons in the previous layer. It has eleven neurons on the 
input layer, each of which represents an element Xi

t for a given i. The number of 
neurons on the output layer is five, which represents the five actions in the action 
space A. We set the number of the hidden layers to five, each of them containing 
J à 50⇥ 11 neurons. In in-sample training, we generate 105 days of data and run 
the back-propagation for 15 epochs with a batch size of 160. We used a tableau 
method to determine the number of hidden layers and the number of neurons per 
layer. The results of this tableau show that portfolio performance has noticeable 
decline when we use a dense DFN with too few neurons and layers (e.g., 2 layers 
with only 20 neurons per layer), and also performs poorly when we use a dense 
DFN with too many layers and (e.g., 8 layers and 1000 neurons per layer).

In the dense DFN, we choose the activation function f xÖ Ü to be the Parametric 
Rectified Linear Unit (PReLU) function, 

f xÖ Ü à x for x � 0
αx for x< 0 ;

⇢
(3:2) 
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where α> 0 with α à 0:1. For all results that we present, we take the PReLU activation 
function for both the hidden layers and the output layer of the DFN. We repeat all tests 
using hyperbolic tangent activation function f xÖ Ü à tanh xÖ Ü and linear activation func-
tion f xÖ Ü à wxá b for the output layer, but the results from PReLU are slightly better.

Given the neurons, the layers, and the activation function, the underlying structure of 
Q : R 11 ! R 5 is 

Q Xt; a0Ö Ü
Q Xt; a1Ö Ü
Q Xt; a2Ö Ü
Q Xt; a3Ö Ü
Q Xt; a4Ö Ü

0

BBBB@

1

CCCCA
à f W`

6 f � � � f W`
2 f W`

1 Xt á b1
� �

á b2
� �

� � �
� �

á b6
� �

; (3:3) 

where W,; , à 1; 2; � � � ; 6 is a matrix of weights connecting the neurons on the 
,� 1Ö Üth layer to the ,th layer, and b,; , à 1; 2; � � � ; 6 is a vector of biasing values for 

each layer; here subscript 6 represents the terminal output layer.
We train the dense DFN using samples that are drawn from the vector AR model (2.6) 

of Section 2.2 with Gaussian noise. We generate independent and identically distributed 
samples X iÖ Ü

0 for i à 1; 2; � � � ; N from the stationary distribution of the vector AR model 
(2.6). We take Nà 105. For each X iÖ Ü

0 , we simulate a batch of one-step forward samples to 
approximate the conditional expected utility, which we label as R i; i0Ö Ü

1 aÖ Ü for i0 à
1; 2; � � � ; M for each a 2 A. We took M à 300. We then fit the dense DFN to the 
sample averages by minimizing the quadratic loss function with respect to the parameters 
W and b, 

Figure 4. Schematic diagram of the deep neural network. In our studies we took J à 550, i.e., 550 
neurons in each hidden layer.
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min
W; b

X

a2A

1
N
XN

ià1
Q X iÖ Ü

0 ; a
⇣ ⌘

� 1
M
XM

i0à1
U R i; i0Ö Ü

1 aÖ Ü
⇣ ⌘ !2

: (3:4) 

After training, the optimally fitted neural network is then used to compute optimal 
trading actions, namely, a XtÖ Ü à argmaxaQ Xt; aÖ Ü.

3.2. Piece-Wise Linear and Exponential Utility Functions

We first test trading signals constructed using a piece-wise linear utility function, 

U RÖ Ü à max R; 0Ö Ü á γ min R; 0Ö Ü; (3:5) 

and then test using an exponential utility function, 

U RÖ Ü à � 1
γ exp �γRÖ Ü; (3:6) 

where we take the risk aversion coefficient γ à 1:3 for the piece-wise linear utility 
function and γ à 3 for the exponential utility function. We then fit the dense DFN 
with respect to the piece-wise linear utility function (3.5) with the same quadratic 
loss given in Equation (3.4), and fit the dense DFN with respect to the exponential 
utility function (3.6) by minimizing the quadratic loss of the certainty equivalent, 

min
W;b

X

a2A

1
N
XN

ià1
Q X iÖ Ü

0 ; a
⇣ ⌘

� U�1 1
M
XM

i0à1
U R i; i0Ö Ü

1 aÖ Ü
⇣ ⌘ ! !2

: (3:7) 

Figure 5 illustrates trading-signal heat plots for the piece-wise linear utility func-
tion (3.5) and the exponential utility function (3.6). The most obvious difference is 
that the piece-wise linear utility has states where the trading signals suggest to take 
position 0; 0Ö Ü. Tables 2 and 3 display the portfolio metrics for the k-fold cross 
validation of out-of-sample tests, and Figure 6 shows the time series of portfolio 
values, as given by the piece-wise linear utility function (3.5) and the exponential 
utility function (3.6). By observing these tables and figures, strong portfolio 
performance can be concluded based on the values of profits and Sharpe ratios, 
but it is important also to highlight the large drawdowns and the difficulty they 
would pose in practice. In order to perform comprehensive comparisons, we also 
display some results that are calculated from utilizing benchmarks. Tables B1 
through Table 11 B5 in Appendix B show similar portfolio metrics for the SPDR 
S&P 500 Trust ETF, whose ticker symbol is SPY, and the four individual trading 
actions that are defined in equation (3.1). Notice that none of these benchmarks 
posts a positive return over every fold, whereas the trading signals given by the 
neural network do. Moreover, notice in Appendix B that only for fold #1 of 
constant trading actions �1; 1Ö Ü and �1; 2Ö Ü have comparable performance to 
the results of the neural network; in all other folds there is not any constant 
trading action choice that is comparable to the trading strategies that are provided 
by the neural network.

12 A. PAPANICOLAOU ET AL.



3.3. Transaction Costs

Finally, it remains to test if the trading signals from Section 3 can perform with 
transaction costs. Execution of this strategy is done utilizing market orders, which 
means that market makers provide liquidity, and therefore, we cross their bid-ask spread 
each time when we complete a trade. The price data that we use in our backtests are bid- 
ask midpoints. Thus, to simulate real-life trading of market orders, we should pay (at 
least) 1/2 the bid-ask spread each time when we open or close a VIX futures position.

VIX futures have a tick size of five cents,6 which means that our backtests should 
always assume a bid-ask spread of at least five cents in U.S. Dollars. In the simplest 
backtest, we hold the bid-ask spread constant at five cents, which means we pay $0.025 

Figure 5. Heat plots showing the projection of the trading signals onto the two-dimensional space 
spanned by logarithm of VIX and the one-month roll, with the projected values being the most- 
common trading actions at these points. The left plot is the projection of the trading signal 
constructed with piece-wise linear utility function (3.5), the right plot is the projection of the trading 
signal constructed with exponential utility function (3.6). Both trading signals are constructed utilizing 
the dense DFN approach of Section 3.1. The value ‘Empty’ represents the values of logarithm of VIX 
and one-month roll that do not occur.

Table 2. Portfolio metrics for out-of-sample tests in k-fold cross validation on trading signal con-
structed with piece-wise linear utility function (3.5). These metrics are computed from the portfolio 
returns given by equation (2.10) with no transaction costs.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Ratio Maximum Drawdown

0 2.361 0.443 304.264 5.297 −0.196
1 1.195 0.368 145.924 3.215 −0.138
2 4.951 0.447 724.848 11.053 −0.117
3 2.835 0.410 384.387 6.878 −0.214
4 0.854 0.242 108.168 3.474 −0.128
5 1.129 0.361 137.044 3.093 −0.123
6 1.027 0.375 121.582 2.709 −0.156
7 1.415 0.754 130.578 1.862 −0.293
8 0.329 0.302 34.784 1.056 −0.180
9 3.284 0.491 429.191 6.661 −0.240
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Table 3. Portfolio metrics for out-of-sample tests in k-fold cross validation with trading signal 
constructed with exponential utility function (3.6). These metrics are computed from the portfolio 
returns given by equation (2.10) with no transaction costs.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Ratio Maximum Drawdown

0 1.728 0.456 209.177 3.763 −0.239
1 1.610 0.412 198.810 3.880 −0.165
2 4.534 0.462 645.731 9.775 −0.175
3 3.138 0.463 418.006 6.751 −0.202
4 0.742 0.284 90.055 2.577 −0.190
5 0.683 0.388 74.484 1.731 −0.236
6 0.886 0.400 100.162 2.187 −0.189
7 1.239 0.785 103.799 1.564 −0.281
8 0.639 0.356 71.310 1.765 −0.171
9 2.518 0.564 294.004 4.443 −0.248

Figure 6. Time series of portfolio value for out-of-sample tests of k-fold cross validation on trading signals 
constructed with piece-wise linear utility function (3.5) (top) and exponential utility function (3.6) (bottom). 
The state-action value function Q Xt; aÖ Ü is obtained by training the dense DFN given by Equation (3.3). The 
returns Rt a XtÖ ÜÖ Ü are computed with the trading actions a XtÖ Ü à argmaxa2AQ Xt; aÖ Ü, and the portfolio 
values are computed from Equation (2.10) with no transaction costs.

14 A. PAPANICOLAOU ET AL.



each time when we open or close a VIX futures position. However, bid-ask spreads may 
widen, particularly when the VIX futures curve is in backwardation. With this widening 
in mind, a transaction-cost function for the ith VIX future is 

TCi
t à

1
2

max εFi
t; 0:05

� �
; (3:8) 

where ε is a fixed basis points (bps) parameter, in other words, ε is equal to 20bps, 30bps, 
or 40bps. Using this notation for transaction costs, the returns on the value of the 
trading-signal portfolio are computed similarly to Equation (2.10) except for an addi-
tional term for transaction costs, 

ΔPt
Pt
à Rtá1 a XtÖ ÜÖ Ü á rΔt � 1

Pt

X

i
TCi

t ni
t � ni

t�1
�� �� ; (3:9) 

where ni
t denotes the number of contracts in the ith VIX future; computation of ni

t is 
explained in Appendix A.

Figure 7 illustrates the time series of portfolio values for trading signals that are 
constructed utilizing piece-wise linear utility function (3.5) and utilizing the portfolio 
values with transaction costs that are given by Equation (3.9). Figure 8 illustrates the time 

Figure 7. Time series of portfolio values that are computed with transaction costs utilizing ε à 0, 20, 
30, and 40 bps as described in Equation (3.8), for out-of-sample tests of k-fold cross-validation on 
trading the signal constructed with piece-wise linear utility function (3.5). The state-action value 
function Q Xt; aÖ Ü is obtained by training the dense DFN given by Equation (3.3). The returns Xt a XtÖ ÜÖ Ü
are computed with the trading actions a XtÖ Ü à arg maxa2AQ Xt; aÖ Ü, and the portfolio value with 
transaction cost deduction for the optimal action is Pt computed with Equation (3.9).
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series of portfolio value for trading signals that are constructed utilizing exponential 
utility function (3.6) and utilizing the portfolio values with transaction costs that are 
given by Equation (3.9). Tables 4 and 5 display the metrics for portfolios that are 
computed with varying levels of transaction costs utilizing piece-wise linear utility 
function (3.5) and exponential utility function (3.6). In general, these portfolios can 
still perform well when transaction costs are included, but we do observe a decline as we 
increase the basis points parameter in the transaction cost function (3.8). In other words, 
as we increase the values of ε in Equation (3.8), the profits and Sharpe ratios decrease. 
Finally, as is the case of no transaction cost, maximum drawdowns remain high when 
transaction costs are included.

4. Conclusion

In this article, we have proposed and analysed a method for constructing VIX futures 
trading signals. The basis for the method is in the identification of certain trading 
opportunities by observing the shape of the VIX futures curve. The trading signal uses 
a deep feed-forward neural network with dense connective structure to determine the 
best trading action for day-ahead expectation of returns. We backtested this method and 
found it to perform well in out-of-sample tests, showing considerable profits and 

Figure 8. Time series of portfolio values that are computed with transaction costs utilizing ε à 0, 20, 
30, and 40 bps as described in equation (3.8), for out-of-sample tests of k-fold cross-validation on 
trading the signal constructed with exponential utility function (3.6). The state-action value function 
Q Xt; aÖ Ü is obtained by training the dense DFN given by Equation (3.3). The returns Rt a XtÖ ÜÖ Ü are 
computed with the trading actions a XtÖ Ü à arg maxa2AQ Xt; aÖ Ü, and the portfolio value with transac-
tion cost deduction for the optimal action is Pt computed with equation (3.9).
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reasonable Sharpe ratios, but also showing levels of maximum drawdown that would be 
difficult to manage in practice. When we included transaction costs, we observed that the 
portfolio performance reduced to more pedestrian levels.

Notes

1. Here, ‘quickly’ means relative to other curves such as crude oil or treasuries.
2. The VIX futures term structure is a collection of VIX futures contracts with nine monthly 

maturities, and six weekly contracts that are not very liquid.
3. Of course, every strategy of rolling VIX futures is equivalent to an allocation of futures 

contract (see equation (2.3)).
4. The VIX Central website: http://vixcentral.com.
5. We compute the Sharpe ratios by annualized excess return being divided by annualized standard 

deviation, where the annualized excess return is 
QT

tà1 1á Rt a XtÖ ÜÖ ÜÖ Ü
h i252=T

� 1á rÖ Ü, and 

annualized standard deviation is std Rt a XtÖ ÜÖ Üâ ä
ÅÅÅÅÅÅÅ
252
p

.
6. Each VIX future that is traded on the Chicago Board Options Exchange (CBOE) has 

a multiplier of 1000, which means that the tick size is effectively 50 U.S. Dollars.
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Appendix A. Mapping Trading Signal to Futures Positions

The dense DFN model that is proposed in Section 3.1 provides optimal trading actions for 
the yields of rolling VIX futures strategy Ii described in Equation (2.8). For example, the 
trading signal occurring at the volatility spike on January 26th of 2021, the piece-wise linear 
utility function (3.5) and the deep feed-forward neural network (3.3) produces an optimal 
action �1; 1Ö Ü. This represents a position with weight � 1 in I1 and weight of 1 in I5. This 
appendix provides a translation of the outputs for the neural network algorithm into the 
exact quantities that a real-life trader would utilize when setting up a position.

In expression (3.1), we define the five actions that are considered in our analyses, which 
are aj for j à 0; 1; 2; 3; 4, with a0 à 0; 0Ö Ü, a1 à �1; 1Ö Ü, a2 à �1; 2Ö Ü, a3 à 1; �1Ö Ü, and 
a4 à 1; �2Ö Ü. Each action ai is a two-dimensional vector, 

aj à a1
j ; a5

j

⇣ ⌘

where a1
j is the portfolio weight for I1 and a5

j is the weight for I5. This action can be 
converted into the actual number of contracts in VIX future Fi that is defined by Equation 
(2.1). Letting ni denote the number of VIX future contract in Fi for i à 1, 2, 5, and 6, the 
followings are the conversions from a given ai

j to the ni for trading signals taking positions in 
I1 and I5, 

n1 à
ωa1

j P
V1 ; n2 à

1� ωÖ Üa1
j P

V1 ; n5 à
ωa5

j P
V5 ; n6 à

1� ωÖ Üa5
j P

V5 ; (A1) 

where P denotes the wealth of trading portfolio, given by either Equation (2.10) or equation 
(3.9), and where we have taken the rolling weight ω to be the same for all i as described in 
the beginning of Section 3. For example, if the optimal trading action is �1; 1Ö Ü, then we 
have a1

j à �1 and a5
j à 1, and we apply accordingly the above equation for ni.

Table A1 shows the positions in VIX futures Fi
t for a real-time run starting from December 

28th of 2020 to February 19th of 2021 of trading signal constructed with the piece-wise linear 
utility function (3.5). The portfolio values that are shown in the table include a transaction 
cost of 1/2 the bid-ask spread for each trade, in other words, the portfolio values are 
calculated utilizing Equation (3.9) with ε à 0, and each position is rounded to the nearest 
whole number of contracts. Of note is the drop in P from January 26th of 2021 to January 
27th of 2021, which was the day of the GameStop trading freeze. The trading signal incurred 
a loss from the VIX spike caused by GameStop, but then recovered the losses in the 
following days.
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Appendix B. Metrics for the SPY and VIX ETFs

Results that are reported in Section 3.1 should be compared with some standard benchmarks and 
non-neural-network trading actions. Table B1 presents, for SPDR S&P 500 Trust ETF, the same 
metrics that are utilized to evaluate the VIX futures trading-signal portfolios for the same ten time 
periods of the k-fold cross validation. Tables B2–11 B5 respectively display the same metrics that 
are utilized to evaluate the VIX futures trading-signal portfolios for the same ten time periods of 
the k-fold cross validation for the trading portfolio utilizing one of the trading actions that are 
defined in Equation (3.1).

Table A1. Real-time backtest results from December 28th of 2020 to February 19th of 2021 for the 
piece-wise linear utility function (3.5). The dense feed-forward neural network (3.3) is re-trained 
weekly, the numbers of contracts ni in Fi

t are given by equation (A1), the portfolio value P is given 
in Equation (3.9) with ε à 0, the CMF roll weight ω appears in Equation (2.2), and i is explained in 
Section 3. The net position in VIX futures is 

P
i ni. The position is long if the net position is positive, 

short if the net position is negative, and neutral if the net position is zero. Of note is the loss observed 
from Jan. 26th to 27th during the GameStop trading freeze, and then recovery of losses in the 
following days.

Date P ω a1 a5 n1 n2 n5 n6 P
i ni

2020-12-28 100.00 0.65714 −1 2 −3 −1 5 3 4
2020-12-29 101.25 0.62857 −1 1 −3 −1 2 1 −1
2020-12-30 103.20 0.60000 0 0 0 0 0 0 0
2020-12-31 103.03 0.57143 0 0 0 0 0 0 0
2021-01-04 103.03 0.45714 −1 2 −2 −2 4 4 4
2021-01-05 102.23 0.42857 −1 2 −2 −2 3 4 3
2021-01-06 101.15 0.40000 −1 2 −2 −2 3 5 4
2021-01-07 104.18 0.37143 0 0 0 0 0 0 0
2021-01-08 103.88 0.34286 −1 1 −1 −3 1 3 0
2021-01-11 101.23 0.25714 −1 1 −1 −3 1 3 0
2021-01-12 103.22 0.22857 −1 1 −1 −3 1 3 0
2021-01-13 105.05 0.20000 −1 1 −1 −3 1 3 0
2021-01-14 105.45 0.17143 −1 1 −1 −4 1 3 −1
2021-01-15 103.63 0.14286 −1 1 −1 −3 1 3 0
2021-01-19 105.99 0.02857 −1 2 0 −4 0 8 4
2021-01-20 103.19 0.00000 0 0 0 0 0 0 0
2021-01-21 102.89 0.96429 −1 2 −4 0 7 0 3
2021-01-22 103.37 0.92857 0 0 0 0 0 0 0
2021-01-25 103.10 0.82143 −1 1 −3 −1 3 1 0
2021-01-26 105.44 0.78571 −1 1 −3 −1 3 1 0
2021-01-27 92.60 0.75000 −1 2 −2 −1 5 2 4
2021-01-28 90.38 0.71429 −1 2 −2 −1 4 2 3
2021-01-29 89.03 0.67857 −1 2 −2 −1 4 2 3
2021-02-01 92.25 0.57143 −1 2 −2 −1 4 3 4
2021-02-02 93.27 0.53571 −1 2 −2 −2 3 3 2
2021-02-03 96.28 0.50000 0 0 0 0 0 0 0
2021-02-04 96.03 0.46429 −1 1 −2 −2 2 2 0
2021-02-05 96.69 0.42857 −1 1 −2 −2 1 2 −1
2021-02-08 98.28 0.32143 −1 1 −1 −3 1 2 −1
2021-02-09 98.66 0.28571 −1 1 −1 −3 1 2 −1
2021-02-10 98.85 0.25000 −1 1 −1 −3 1 3 0
2021-02-11 100.93 0.21429 −1 1 −1 −3 1 3 0
2021-02-12 104.66 0.17857 −1 1 −1 −3 1 3 0
2021-02-16 105.57 0.03571 1 −1 0 4 0 −3 1
2021-02-17 115.42 0.00000 −1 1 0 −4 0 4 0
2021-02-18 115.25 0.96429 −1 1 −4 0 4 0 0
2021-02-19 118.17 0.92857 0 0 0 0 0 0 0
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By comparing with the metrics for DFN-based trading signals that are displayed in Tables 2 and 
3 in Section 3.1, we can observe that the results that are produced by the neural network algorithm 
that we propose have reasonably good returns, profits, and Sharpe ratios, but also have high 
volatility and high drawdowns.

Table B1. Metrics for SPDR S&P 500 trust ETF (ticker symbol: SPY) for the same ten folds listed in 
Table 1, which are utilized in the k-fold cross validation of Section 3.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Ratio Maximum Drawdown

0 −0.172 0.415 −29.111 −0.439 −0.514
1 0.216 0.180 25.147 1.144 −0.157
2 0.138 0.211 14.347 0.607 −0.186
3 0.192 0.125 23.383 1.452 −0.096
4 0.222 0.105 27.567 2.014 −0.056
5 0.100 0.144 11.191 0.624 −0.119
6 0.097 0.130 11.171 0.676 −0.128
7 0.155 0.114 18.722 1.271 −0.101
8 0.095 0.145 10.514 0.583 −0.193
9 0.218 0.304 20.637 0.685 −0.337

Table B2. Portfolio metrics of fixed trading strategy �1; 1Ö Ü for the same ten folds listed in Table 1 
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Ratio Maximum Drawdown

0 −0.199 0.461 −26.908 −0.453 −0.597
1 1.493 0.445 141.464 3.334 −0.298
2 0.059 0.520 −7.700 0.093 −0.558
3 0.285 0.563 9.509 0.488 −0.334
4 0.246 0.347 17.518 0.679 −0.249
5 −0.011 0.458 −10.867 −0.045 −0.363
6 0.729 0.505 54.305 1.421 −0.290
7 −0.156 0.802 −48.498 −0.207 −0.795
8 0.126 0.423 2.731 0.274 −0.364
9 0.320 0.603 9.142 0.513 −0.645

Table B3. Portfolio metrics of fixed trading strategy �1; 2Ö Ü for the same ten folds listed in Table 1 
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Ratio Maximum Drawdown

0 0.196 0.427 9.200 0.436 −0.287
1 1.467 0.374 146.905 3.902 −0.120
2 −0.113 0.354 −16.253 −0.349 −0.362
3 −0.307 0.415 −34.318 −0.763 −0.574
4 −0.104 0.249 −12.872 −0.459 −0.331
5 0.043 0.264 0.721 0.125 −0.225
6 0.379 0.330 31.456 1.120 −0.166
7 −0.361 0.574 −44.803 −0.647 −0.637
8 0.281 0.267 24.143 1.015 −0.151
9 1.096 0.537 88.277 2.020 −0.313
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Table B4. Portfolio metrics of fixed trading strategy 1; �1Ö Ü for the same ten folds listed in Table 1 
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Ratio Maximum Drawdown

0 0.273 0.461 14.908 0.571 −0.361
1 −0.592 0.445 −56.353 −1.354 −0.734
2 −0.036 0.520 −15.183 −0.089 −0.386
3 −0.206 0.563 −30.512 −0.384 −0.474
4 −0.181 0.347 −22.036 −0.551 −0.366
5 0.031 0.457 −6.840 0.046 −0.407
6 −0.410 0.505 −44.223 −0.832 −0.689
7 0.208 0.802 −6.190 0.247 −0.406
8 −0.094 0.423 −16.518 −0.246 −0.426
9 −0.227 0.603 −33.219 −0.939 −0.661

Table B5. Portfolio metrics of fixed trading strategy 1; �2Ö Ü for the same ten folds listed in Table 1 
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics 
Fold E Rt a XtÖ ÜÖ Üâ ä std Rt a XtÖ ÜÖ Üâ ä Profit %Ö Ü Sharpe Maximum

Ratio Drawdown
0 −0.147 0.427 −21.336 −0.368 −0.437
1 −0.588 0.374 −55.217 −1.601 −0.721
2 0.150 0.354 8.118 0.397 −0.217
3 0.471 0.415 36.258 1.111 −0.246
4 0.139 0.249 10.495 0.517 −0.180
5 −0.022 0.264 −5.455 −0.121 −0.206
6 −0.260 0.330 −28.469 −0.821 −0.473
7 0.596 0.574 40.017 1.022 −0.250
8 −0.204 0.267 −22.303 −0.801 −0.318
9 −0.514 0.537 −52.529 −0.976 −0.691
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