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We propose a new approach for trading VIX futures. We assume that Received 2 March 2021

the term structure of VIX futures follows a Markov model. Our trading Accepted 19 November 2021
strategy selects a position in VIX futures by maximizing the expected

utility for a day-ahead horizon given the current shape and level of \Iflf(vfmg:els);irading signals;
the term structure. Computationally, we model the functional depen- contango; deep learning;
dence between the VIX futures curve, the VIX futures positions, and feedforward neural

the expected utility as a deep neural network with five hidden layers. networks; cross validation

Out-of-sample backtests of the VIX futures trading strategy suggest
that this approach gives rise to reasonable portfolio performance,
and to positions in which the investor will be either long or short VIX
futures contracts depending on the market environment.

1. Introduction

The shape of the VIX futures curve is informative if it shows a shape that is likely to
persist for only a short period of time. In this situation, there may be a simple VIX
futures trade that will produce profits when the curve reverts to a more typical
shape. For example, if the curve has a hump then there may be a long-short VIX
futures position, or a calendar spread, with zero entry cost, which will pay a positive
amount when the curve reverts to contango. Ideally, such a reversion will happen
quickly so that the trade generates a profit with near certainty. In practice there is
some risk because most trades involve non-zero probability of losses. Nevertheless,
over long-term horizons with multiple trading opportunities, losses can be dimin-
ished if trading strategies are constructed to optimize the expected value of
a suitable utility function. VIX futures are a good choice for such trading strategies
because their curves have a propensity to quickly revert to contango, which allows
for fast turnaround before the next trading opportunity.'

We use a stationary VIX futures curve model, as done in Avellaneda and Papanicolaou
(2019), to generate day-ahead scenarios of VIX futures. Let U(-) denote a chosen utility
function. A trading signal is the optimal trading action that maximizes expected utility
under the probability distribution of the model,
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a(x) = argmax E[U(Ry1(a))|X; = x], (1.1)
acA

where t denotes time, [ denotes expected value, and where

X, = VIX futures curve at time ¢, vector valued,
A = a set of possible trades/actions a, vector valued,

R;;1(a) = change in position from time ¢ to t + 1 if action a € A is taken.

The action space A consists of various positions in VIX futures, and R, (a) is a function
of the action a and the transition occurring in the VIX futures curve,

(X¢, X111, a)—Reyi(a).

We take A to be a finite set of trades that are predetermined, and we assume that the
transition distribution for X is also given. We estimate the expected value in Equation (1.1)
using a deep neural network, see Goodfellow, Bengio, and Courville (2016). Historical VIX
futures data are applied to estimate the parameters for the model of X;, and then the neural
network is trained using simulated data generated by this estimated model. In our model, the
most likely curve is a contango, and all other curve shapes will revert towards this most likely
state. To illustrate, Figure 1 shows a contango and a backwardation curve of VIX futures. We
construct a trading signal by solving the optimization problem (1) with A consisting of four
different allocations in one-month and five-month rolling VIX futures strategies (see
Section 2.1 where we define these rolling strategies). For most contango curves, the action
suggested by the trading signal is to long the one-month strategy and to short the five-month
strategy. In backwardation, the suggested trade is to short the one-month and go 2 x long
the five-month. In backtesting of this trading signal, we find that if transaction costs are not
too high, then for a trading period of around 200 days, there can be profits of double-digit
percentage and Sharpe ratios significantly higher than one.
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Figure 1. The VIX futures’ contango curve seen on 2019-11-11 (left) and the backwardation seen on
2020-03-11 (right). A trading signal is constructed based on the value and shape of this curve.
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1.1. Literature of Related Research

The VIX has been the ‘fear gauge’ for the financial markets of the United States since
1993, see Whaley (2000) and Whaley (2009). Since 2004, the market for VIX futures has
made it possible to gain exposure to VIX, and the creation of exchange-traded notes
(ETNs) has made it possible to gain exposure with greater ease, see Alexander, Kapraun,
and Korovilas (2015). The significance of mean reversion and contango in VIX futures
and ETNs is analysed in Avellaneda and Papanicolaou (2019). Mean reversion is also the
key assumption in the class of stochastic volatility models driven by stationary factor
processes, see for instance Fouque, Papanicolaou, and Ronnie Sircar (2000). Historically,
volatility models in finance have relied on the Markov property, but recently there has
been a trend towards VIX pricing driven by fractional Brownian motion, see Bayer, Friz,
and Gatheral (2016). A Markovianization of the fractional-curve model is achieved by
considering the infinite-dimensional futures curve in its entirety, see Euch and
Rosenbaum (2018). Foundational concepts in machine learning such as convergence
and deep learning extensions can be found in Mohri, Rostamizadeh, and Talwalkar
(2018) and Sutton and Barto (2018). The implementation of high-dimensional learning
has been made possible by recent developments in neural network software such as
TensorFlow and PyTorch. An example of note is the deep-Q neural network (DQN)
algorithm, see Mnih et al. (2015) and Fan et al. (2020). For applications to finance see
Aldridge and Avellaneda (2020), Sirignano and Spiliopoulos (2017), Casgrain, Ning, and
Jaimungal (2019), and Ruf and Wang (2021). Studies on high-dimensional deep learning
have highlighted the improvement in out-of-sample prediction when large neural net-
works are utilized, see Zhang et al. (2017), Belkin, Ma, and Mandal (2018), and Hastie
et al. (2022). Evaluation of out-of-sample performance is often done using cross-
validation methods, but special care needs to be taken when applying these methods to
financial data, see Arlot and Celisse (2010), Arnott, Harvey, and Markowitz (2019), and
Ruf and Wang (2020). In particular, with times series data there can be significant auto-
correlations, yet cross-validation methods are still applicable so long as the time series are
assumed to satisfy some basic assumptions such as zero auto-correlations in the noise
process, see Burman and Nolan (1992), Bergmeir and Benitez (2012), and Bergmeir,
Hyndman, and Koo (2018).

1.2. Main Results and Structure of the Article

The focus of this article is on a new method for trading VIX futures, wherein
trading signals are the optimal action function given by Equation (1.1). We imple-
ment this new approach on a variety of utility functions and utilize deep neural
networks to estimate the objective in Equation (1.1). We conduct cross-validation
studies using a k-fold procedure. We use historical VIX futures data consisting of
end-of-day VIX futures curves from January 2008 to February 2021. In out-of-
sample tests we find that trading signals constructed with deep neural networks
have the potential to produce reasonable profits and Sharpe ratios. These findings
are an indication that VIX futures curves contain useful predictive information for
trading, and that deep neural networks are able to filter and apply the relevant
information from the curves.



4 A. PAPANICOLAOU ET AL.

The article is organized as follows: Section 2 introduces the VIX curve model, explains
how parameters are estimated, and describes the futures positions that we optimize over;
Section 3 presents cross-validation studies of the neural network method on historical
VIX futures data — both with and without transaction costs; Section 4 concludes;
Appendix A shows a real-time backtest that we conducted with weekly re-training of the
neural network from December 28th, 2020 through February 19th, 2021; Appendix A also
provides a detailed account of how the outputs of the neural network map to exact trading
positions in VIX futures; Appendix B provides metrics for various non-neural network
benchmarks.

2. A Model for Trading VIX Futures

Let t denote time and let VIX, denote the value of VIX on that date. Let d be an integer
such that d 4+ 1 is the number of VIX futures contracts,” and let T, <T, < ... < Ty,
denote the expiration dates of these VIX futures contracts. Let us denote

F; := VIX future expiring at time T3, (2.1)
wheret =0, 1, 2, - -+, T is the current date. A term-structure of constant-maturity VIX
futures (CMFs), each with horizon 6;-many months, for i =1, 2, 3, ---, d, are con-

structed as a linear interpolation of the VIX futures,
Vii=wiF, + (1 — w})F/™, (2.2)

where t < T; <t+6; < T;;; and wt %) note now that V; is defined for all ¢.
Note also that VIX, is like a zero-horizon CMF. CMFs are preferable for statistical

estimation because they do not have non-stationary effects that are caused by contract
expiry.

2.1. Rolling VIX Futures Strategies

A rolling VIX futures strategy maintains the CMF weights of Equation (2.2) for fixed
maturity 6;. For each i, we let I' denote the value of the rolling VIX futures strategy with
horizon 6;, for which returns are given by

AL} wiAF] + (1 - o)) AR

= 1= — < + rAt, 2.3
L WiF{ + (1 — w) Fy! 23
where AIl =1, — I}, AF, = F, | — F}, r > 0 is the interest rate, and At = 252 Simple
calculatlon leads to an equlvalent expression to Equation (2.3) in terms of the CMFs,
A (L RDCEL) . AV
e SR (P LS B 25 ) R 2.4
L < S A Vi 24

where @} = ’*A ; % <0forallt < T;. The drift term in Equation (2.4) contains the quantity

referred to as the roll yield,

i+1 i
ROHI i Ft+1 Ft-H
t+1 7 Yt Vl ’
t
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which we utilize to re-write Equation (2.4) as follows,

AL ;
I—it = (r+ Roll},,)At +
t

AV}
Vi

(2.5)

From Equation (2.5) we see that if V! is a stationary process then the return rate of the i
rolling VIX futures strategy has a most likely value equal to the risk-free rate plus the
mode of Roll!_ ;. As shown in Avellaneda and Papanicolaou (2019), the most likely VIX
futures curves are contango and the most likely roll yields are negative, which explains
why the value of the rolling VIX futures strategies decay.

In the past there have been some attempts to apply statistical arbitrage techniques to
VIX. One idea is to use the Engle-Granger test to find co-integrated pairs among rolling
VIX futures strategies, see Engle and Granger (1987). For the one-month rolling VIX
futures strategy (0 = one month) and the five-month strategy (6 = five months),
a simple linear regression of one set of returns on the other suggests that we should
short the one-month and long 0.9 x five-month. However, this is not a good pair to
trade because the residual is not stationary; for daily data between 2008 and 2020 the
values of these positions do not reject a unit root hypothesis. In addition, historical
backtesting shows that these trades have large drawdowns and negative returns at the
most inopportune times. Another possibility is to match volatility levels between the one-
month and five-month rolling VIX futures portfolios, which suggests a position 1 x
short the one-month and 2 x long the five-month, respectively. This was a popular trade
during the decade of 2010, but also had large drawdowns. The conclusion is that
allocations in these rolling VIX futures portfolios are useful but there needs to be
a rule for deciding when to open and close the trade.

Remark 2.1 (Exchange Traded Notes) Rolling VIX futures portfolios represent the under-
lying redemption value for several VIX ETNs. Such notes are among the more liquid
instruments for gaining exposure to VIX, see Alexander, Kapraun, and Korovilas (2015).
Some of the more liquid ETNs include the iPath VXX (long one-month), the iPath VXZ
(long five-month), the VelocityShares TVIX (2 x long one-month), and the iPath XIV
(short one-month). Trading in these notes can be replicated with trades in the rolling VIX
futures strategies. However in practice, replication is not entirely accurate. Firstly, the issuer
of a note may have call-back features embedded, which can terminate the note at any time.
Secondly, the rolling VIX futures strategy is technically just the redemption value and the
notes are free to trade at market value, which means that there may be a slight discrepancy
between the ETN’s returns and its respective rolling futures formula.

2.2. Vector Auto-Regressive Model

The two main quantities that we consider are the CMFs (Vf)jzo and the roll yields

(Rolli);.izl. As seen from Equation (2.5), these quantities can be used to make short-term
predictions on the rolling VIX futures strategies. For example, the roll yield and the
anticipated direction of mean reversion could be the basis for a trading strategy that

performs well in the long term.
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For the " day of a given time period, the VIX futures curve is described by the
following state vector,

X, = [log VIX,, log V}, log V7, - - -, log th, Roll}, Roll?, -- -, RollﬂT7

where all entries of this vector are directly computable from (VIX, F!, FZ, .-, F&1) _ .
Given data at times t = 1, 2, -- -, T, let X* denote the mode, -
X" = mode(X;),
1<T

that is, X* is the most likely curve, which is illustrated in Figure 2. The figure
displays the mean of the state given by %Z?:1Xt’ and the mode of the state.
Statistical analysis in Avellaneda and Papanicolaou (2019) shows that X, is
a stationary stochastic process whose historical time series exhibits a tendency to
mean revert towards a contango curve. In its most likely state, the VIX future is
around 12%-14%, the long-term VIX future is around 17%-20%, and all in-between
CMFs lie on an upward sloping curve.

We take the state vector X, for t = 1, 2, ---, T, centre it around the mode, and then
place it in a larger matrix

v=X-X"X-X, -, Xr—X"].

Note that we are centring around the mode rather than the mean, which we do for
robustness because CMFs have a heavy right skew.
The vector auto-regressive (AR) model for the state vector is the following,

Vi =8 TAY, + 2y, (2.6)
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Figure 2. The mean and modal curves of VIX CMFs (left) and the mean and modal curves of the roll yields
(right). The VIX futures curves are usually in contango, with the possibility of a volatility spike causing an
upward skew in the distributions of VIX futures. Therefore, the mean CMF curve is above the modal curve,
and a similar relationship appears in the mean and modal curves of the negative roll yields.
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where Z, is an independent and identically distributed Gaussian random vector with
mean zero and covariance X. The least-squares estimator of A is given by

-1

T—1 T T-1 T
Z Vi — - ‘/’) (‘/’t - ‘/’) (‘/’t - ‘/’) )
t=1 t=1
a=(1-A)7.
where ¥ = %ZLI ¥,. The covariance matrix X can be estimated by
. 1 L=t
> T z.z/,

where Z;, =y, | — @ — Ay,
We can write the returns on the rolling VIX futures strategies from Equation (2.5) as

exp(X},,) — exp(X})
exp (X’t)

which will be useful in the sequel where we draw samples from a distribution for
X, and use to simulate trading returns. That is, we will use the vector AR model
that is described by Equation (2.6) to simulate X;, which we insert into Equation
(2.7) for computing the returns of rolling VIX futures strategies. Figure 3 shows
the simulations of the one-month and five-month rolling VIX futures strategies,
with each simulation including its respective historical portfolio value.

ALl

= (r+ X% At + ,  for1<i<d, (2.7)
t
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Figure 3. Simulations of the one-month rolling VIX futures strategy and the five-month rolling VIX
futures strategy, which are generated from the vector AR model in Equation (2.6). The dark line in each
plot is the historical value of the respective strategy. The declining value in these rolling strategies is
studied in Avellaneda and Papanicolaou (2019).
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2.3. Trading-Signal Construction

We consider the following quantity,

Rt+1(a) = Z ai <AI—;I; — TAt) . (28)

i
This represents the profit or loss for a position in rolling VIX futures strategies.” Let A
denote the space of admissible actions. An optimal action is determined by maximizing
the expected utility,
max E[U(R;y4(a))|X; = x], (2.9)
acA
where the action is decided by the trader at time ¢t immediately before R, (a) is realized,
and where U(R) is the utility function.
We denote by P; the value of the trading-signal portfolio at time ¢, for which returns
are computed as
AP,
— = Ren(a(X) + rat, (2.10)
t
where a(X;) = argmax,_ , E[U(Ri;1(a))|X;]. In testing, we use the time series of P; to
compute performance metrics, such as profit percentages and Sharpe ratios.

3. Computing the Trading Signals with Historical Data

We carry out the method described in Section 2 on historical VIX futures data. Our data
is daily, beginning April 14" of 2008 and going until November 6 of 2020, and consists
of one-month, two-month, three-month, fourth-month, five-month, and six-month VIX
futures, in other words, i =1, 2, ---, 6 and d = 5 in Equation (2.1). The data is down-
loadable from the VIX Central website.* Using these data, we construct the time series of
VIX CMFs and VIX rolls as given by Equations (2.2) and (2.4), respectively. We take the
weights ' that appear in Equation (2.2) to be w'=w for all i such that there is 100% in the
front-month contract as soon as the prior future matures, and then 0% in this front-
month at the next maturity date. We analyse the time series of portfolio value utilizing
the following performance metrics: annualized expected rate of return denoted by
E[R;(a(X;))], volatility denoted by std [R;(a(X;))], trading profit, Sharpe ratio,” and
maximum drawdown.

A standard procedure for in-sample training and out-of-sample testing is straightfor-
ward: divide the data into two blocks, with the first block designated for in-sample
training, and the second block designated for out-of-sample testing. More specifically,
we take the VIX futures curves from April 14" of 2008 to August 7th of 2019 for in-
sample training, and then utilize the remaining curves from August 8" of 2019 to
November 5% of 2020 for out-of-sample testing. But this out-of-sample test is based on
a single portfolio run, which means that good performance could be attributable to luck.
Therefore, to make full usage of the data, we apply the method of the k-fold cross-
validation.
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Table 1. The start date and end date for each of the ten backtesting folds in the k-fold cross validation.

Fold # Time Interval Fold # Time Interval

0 2008-04-16 to 2009-07-17 5 2014-07-31 to 2015-10-29
1 2009-07-20 to 2010-10-19 6 2015-10-30 to 2017-02-01
2 2010-10-20 to 2012-01-23 7 2017-02-02 to 2018-05-04
3 2012-01-24 to 2013-04-29 8 2018-05-07 to 2019-08-07
4 2013-04-30 to 2014-07-30 9 2019-08-08 to 2020-11-05

We divide the data into k = 10 folds, each with 316 or 317 days, and then utilize these
folds to conduct ten separate in-sample trainings and out-of-sample testings. More
specifically, we train on a configuration of nine folds, and then upon the remaining
fold we conduct an out-of-sample test, see chapter four of Mohri, Rostamizadeh, and
Talwalkar (2018) for details on k-fold cross validation. Table 1 gives the precise demarca-
tion dates for the folds. When we paste non-contiguous folds, we exclude the pasting
outlier when estimating the vector AR model (2.6). For example, in order to out-of-
sample test on fold #5, we need to paste fold #4 to fold #6 for training, and in doing so we
make sure to exclude the data point at the jump from fold #4 to #6.

Our approach is to utilize the training data to estimate the parameters of the vector AR
model (2.6) proposed in Section 2.2, and then to draw samples from the vector AR model
to train the neural network. The neural network is an approximation of the functional
form of E[U(R;11(a))|X¢], see Cybenko (1989) and Pinkus (1999), for each action a in the
action space,

"4: {(0’ O)? (_1’ 1)7 (_17 2)7 (13 _1)7 (13 _2)}7 (31)
where the individual actions are

(0, 0) = no trade,
(—1,1) = short I' and long I’ ,
(-1, 2) = short I' and 2 x long I° ,
(1, —1) = long I' and short I°,

(1, —2) = long I' and 2 x short I’ |

and where I' and I° denote the one-month and the five-month rolling VIX futures
strategies, respectively, as defined by Equation (2.5) in Section 2.1.

The k-fold cross validation described above is susceptible to data leakage because
utilizing a vector AR model implies some dependence between folds, see Arnott, Harvey,
and Markowitz (2019), Ruf and Wang (2020). In the literature, it is argued that cross
validation methods can effective for auto-regressive models when noise is uncorrelated,
see Arlot and Celisse (2010), Bergmeir and Benitez (2012), Bergmeir, Hyndman, and Koo
(2018), Burman and Nolan (1992), and Cerqueira, Torgo, and Igor (2020). To test for
data leakage in our cross-validation studies, we re-run our cross-validation studies
utilizing the non-adjacent block configurations that are proposed in Bergmeir,
Hyndman, and Koo (2018). More specifically, we in-sample train the model utilizing
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data from folds #2 through #8, and then out-of-sample test the model utilizing data of
fold #0; we in-sample train the model utilizing data from folds #3 through #9, and then
out-of-sample test the model utilizing data of fold #1; we in-sample train the model
utilizing data from fold #0 and folds #4 through #9, and then out-of-sample test the
model utilizing data of fold #2; and etc. The purpose for doing the k-fold cross-
validations with this configurations is to eliminate the contiguous training folds that
may have information about the testing fold. However, when we re-run with these non-
contiguous configurations, we observe almost no difference compared with the numbers
resulting from standard k-fold cross validation.

3.1. Neural Network Approach

For general concave utility functions, there is not an explicit calculation for the
expected utility E[U(Ri1(a))|X¢]. Therefore, we use a neural network to find an
approximating function. The architecture of the neural network that we implement
is a deep feed-forward neural network (DEN), as described in Goodfellow, Bengio,
and Courville (2016). For a discrete set of actions A = {al, az -, ap}, the universal
approximation theorem, see Cybenko (1989) and Pinkus (1999), is a mathematical
theorem to ensure that DFN is an effective way to estimate the nonlinear mapping

X [Q(Xe, @), QX @), -+, Q(Xe, a)] '

where Q(x,a;) is optimized to approximate E[U(R,+1 (a)))|X: = x]. Our approach is
to sample X; from the vector AR model (2.6) that is proposed in Section 2.2, and
then use these samples to train the neural network, and finally perform k-fold cross
validation to test out-of-sample performance of the optimal neural-network trading
actions.

The DEN we use has the specifications depicted in Figure 4. We utilized a dense
connective structure between layers, in other words, all layers have neurons that are
fully connected with the neurons in the previous layer. It has eleven neurons on the
input layer, each of which represents an element X' for a given i. The number of
neurons on the output layer is five, which represents the five actions in the action
space A. We set the number of the hidden layers to five, each of them containing
J =50 x 11 neurons. In in-sample training, we generate 10° days of data and run
the back-propagation for 15 epochs with a batch size of 160. We used a tableau
method to determine the number of hidden layers and the number of neurons per
layer. The results of this tableau show that portfolio performance has noticeable
decline when we use a dense DFN with too few neurons and layers (e.g., 2 layers
with only 20 neurons per layer), and also performs poorly when we use a dense
DEN with too many layers and (e.g., 8 layers and 1000 neurons per layer).

In the dense DFN, we choose the activation function f(x) to be the Parametric
Rectified Linear Unit (PReLU) function,

(3.2)

f(x):{x for x>0

ax for x<0,
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Neural Network Schematic Diagram

Input layer Hidden layerl Hidden layer2 Hidden layer5 Ouput layer

Figure 4. Schematic diagram of the deep neural network. In our studies we took J = 550, i.e., 550
neurons in each hidden layer.

where a>0 with « = 0.1. For all results that we present, we take the PReLU activation
function for both the hidden layers and the output layer of the DFN. We repeat all tests
using hyperbolic tangent activation function f(x) = tanh(x) and linear activation func-
tion f(x) = wx + b for the output layer, but the results from PReLU are slightly better.
Given the neurons, the layers, and the activation function, the underlying structure of

Q:RYM SR is

Q(Xtv ao)
Q(Xta 611)
QXy, a2) | =f(Wf(- - f(Wyf(W]X;+b1) +by) ) + bs), (3.3)
Q(Xh a3)
Q(Xtv 614)

where Wy, € =1,2,---, 6 is a matrix of weights connecting the neurons on the

(€ — 1)th layer to the o layer, and b¢, € =1, 2, -- -, 6 is a vector of biasing values for
each layer; here subscript 6 represents the terminal output layer.

We train the dense DFN using samples that are drawn from the vector AR model (2.6)
of Section 2.2 with Gaussian noise. We generate independent and identically distributed
samples X(()’) fori=1, 2, ---, N from the stationary distribution of the vector AR model

(2.6). We take N= 10°. For each X(()i), we simulate a batch of one-step forward samples to

approximate the conditional expected utility, which we label as Rgi’i/)(a) for i =
1,2, ---, M for each a € A. We took M = 300. We then fit the dense DFN to the
sample averages by minimizing the quadratic loss function with respect to the parameters
W and b,
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After training, the optimally fitted neural network is then used to compute optimal
trading actions, namely, a(X;) = argmax,Q(X;, a).

3.2. Piece-Wise Linear and Exponential Utility Functions

We first test trading signals constructed using a piece-wise linear utility function,
U(R) = max(R, 0) + ymin(R, 0), (3.5)

and then test using an exponential utility function,
1
UR) = = exp(—R), (3.6)

where we take the risk aversion coeflicient y = 1.3 for the piece-wise linear utility
function and y = 3 for the exponential utility function. We then fit the dense DEN
with respect to the piece-wise linear utility function (3.5) with the same quadratic
loss given in Equation (3.4), and fit the dense DFN with respect to the exponential
utility function (3.6) by minimizing the quadratic loss of the certainty equivalent,

- ¢ (f)) _11M(<u’>) 2

min — Xyha)-U "= U(R} '(a . 3.7

i Ev3 (o) -0 (5o @) on
Figure 5 illustrates trading-signal heat plots for the piece-wise linear utility func-
tion (3.5) and the exponential utility function (3.6). The most obvious difference is
that the piece-wise linear utility has states where the trading signals suggest to take
position (0, 0). Tables 2 and 3 display the portfolio metrics for the k-fold cross
validation of out-of-sample tests, and Figure 6 shows the time series of portfolio
values, as given by the piece-wise linear utility function (3.5) and the exponential
utility function (3.6). By observing these tables and figures, strong portfolio
performance can be concluded based on the values of profits and Sharpe ratios,
but it is important also to highlight the large drawdowns and the difficulty they
would pose in practice. In order to perform comprehensive comparisons, we also
display some results that are calculated from utilizing benchmarks. Tables Bl
through Table 11 B5 in Appendix B show similar portfolio metrics for the SPDR
S&P 500 Trust ETF, whose ticker symbol is SPY, and the four individual trading
actions that are defined in equation (3.1). Notice that none of these benchmarks
posts a positive return over every fold, whereas the trading signals given by the
neural network do. Moreover, notice in Appendix B that only for fold #1 of
constant trading actions (—1, 1) and (—1, 2) have comparable performance to
the results of the neural network; in all other folds there is not any constant
trading action choice that is comparable to the trading strategies that are provided
by the neural network.
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Projected Trading Signal With Respect To The Pair ( VIX, One

Projected Trading Signal With Respect To The Pair ( VIX, One Month Roll )
Of Neural Network For Piecewise Linear Utility Functi i i

Of Neural Network For Exponential Utility Function

Month Roll )
on

1(1,-2) (1,-2)

(1,-1)

(1,-1)

(-1,2) (-1,2)

One Month Roll
Action
One Month Roll
Action

(-1,1) (-1L,1)

(0,0) -4 (0,0)

Empty 25 30 35 40 45 50 Empty

Log VIX Log VIX

Figure 5. Heat plots showing the projection of the trading signals onto the two-dimensional space
spanned by logarithm of VIX and the one-month roll, with the projected values being the most-
common trading actions at these points. The left plot is the projection of the trading signal
constructed with piece-wise linear utility function (3.5), the right plot is the projection of the trading
signal constructed with exponential utility function (3.6). Both trading signals are constructed utilizing
the dense DFN approach of Section 3.1. The value ‘Empty’ represents the values of logarithm of VIX
and one-month roll that do not occur.

Table 2. Portfolio metrics for out-of-sample tests in k-fold cross validation on trading signal con-
structed with piece-wise linear utility function (3.5). These metrics are computed from the portfolio
returns given by equation (2.10) with no transaction costs.

Statistics
Fold E[Re(a(X:))] std [Re(a(Xy))] Profit (%) Sharpe Ratio Maximum Drawdown
0 2.361 0.443 304.264 5.297 -0.196
1 1.195 0.368 145.924 3.215 -0.138
2 4.951 0.447 724.848 11.053 -0.117
3 2.835 0.410 384.387 6.878 -0.214
4 0.854 0.242 108.168 3.474 -0.128
5 1.129 0.361 137.044 3.093 -0.123
6 1.027 0.375 121.582 2.709 -0.156
7 1415 0.754 130.578 1.862 —-0.293
8 0.329 0.302 34.784 1.056 -0.180
9 3.284 0.491 429.191 6.661 -0.240

3.3. Transaction Costs

Finally, it remains to test if the trading signals from Section 3 can perform with
transaction costs. Execution of this strategy is done utilizing market orders, which
means that market makers provide liquidity, and therefore, we cross their bid-ask spread
each time when we complete a trade. The price data that we use in our backtests are bid-
ask midpoints. Thus, to simulate real-life trading of market orders, we should pay (at
least) 1/2 the bid-ask spread each time when we open or close a VIX futures position.
VIX futures have a tick size of five cents,’ which means that our backtests should
always assume a bid-ask spread of at least five cents in U.S. Dollars. In the simplest
backtest, we hold the bid-ask spread constant at five cents, which means we pay $0.025
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Table 3. Portfolio metrics for out-of-sample tests in k-fold cross validation with trading signal
constructed with exponential utility function (3.6). These metrics are computed from the portfolio
returns given by equation (2.10) with no transaction costs.

Statistics
Fold E[R:(a(Xy))] std [Re(a(Xy))] Profit (%) Sharpe Ratio Maximum Drawdown
0 1.728 0.456 209.177 3.763 -0.239
1 1.610 0.412 198.810 3.880 -0.165
2 4.534 0.462 645.731 9.775 -0.175
3 3.138 0.463 418.006 6.751 -0.202
4 0.742 0.284 90.055 2.577 -0.190
5 0.683 0.388 74.484 1.731 -0.236
6 0.886 0.400 100.162 2.187 —-0.189
7 1.239 0.785 103.799 1.564 —-0.281
8 0.639 0.356 71.310 1.765 -0.171
9 2.518 0.564 294.004 4.443 —-0.248
Out-Of-Sample Test Of K-Folds Cross Validation For Piecewise Linear Utility Function
—— Testing Fold 0
800 Testing Fold 1
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Out-Of-Sample Test Of K-Folds Cross Validation For Exponential Utility Function
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Figure 6. Time series of portfolio value for out-of-sample tests of k-fold cross validation on trading signals
constructed with piece-wise linear utility function (3.5) (top) and exponential utility function (3.6) (bottom).
The state-action value function Q(X;, a) is obtained by training the dense DFN given by Equation (3.3). The
returns R;(a(X;)) are computed with the trading actions a(X;) = argmaxgc 4Q(X;, a), and the portfolio
values are computed from Equation (2.10) with no transaction costs.
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each time when we open or close a VIX futures position. However, bid-ask spreads may
widen, particularly when the VIX futures curve is in backwardation. With this widening
in mind, a transaction-cost function for the i VIX future is

: 1 .
TC, = Ermx(sF;, 0.05) , (3.8)

where ¢ is a fixed basis points (bps) parameter, in other words, ¢ is equal to 20bps, 30bps,
or 40bps. Using this notation for transaction costs, the returns on the value of the
trading-signal portfolio are computed similarly to Equation (2.10) except for an addi-
tional term for transaction costs,
= Rea{alX) + it - %Z TCini — i, (3.9)
where n! denotes the number of contracts in the i VIX future; computation of n! is
explained in Appendix A.
Figure 7 illustrates the time series of portfolio values for trading signals that are
constructed utilizing piece-wise linear utility function (3.5) and utilizing the portfolio
values with transaction costs that are given by Equation (3.9). Figure 8 illustrates the time

Out-Of-5ample Test For Piecewise Linear Utility Function Out-Of-5ample Test For Piecewise Linear Utility Function
With 30 Basis Points Transaction Cost Deduction With 2.5 Cents Transaction Cost Deduction
400/ — Testing Fold0  —— Testing Fold 5 X | —— Testing Fold 0 ,
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50 —
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Time Time
Out-Of-Sample Test For Piecewise Linear Utility Function Out-Of-Sample Test For Piecewise Linear Utility Function
With 40 Basis Points Transaction Cost Deduction With 20 Basis Points Transaction Cost Deduction
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Figure 7. Time series of portfolio values that are computed with transaction costs utilizing € = 0, 20,
30, and 40 bps as described in Equation (3.8), for out-of-sample tests of k-fold cross-validation on
trading the signal constructed with piece-wise linear utility function (3.5). The state-action value
function Q(X;, a) is obtained by training the dense DFN given by Equation (3.3). The returns X;(a(X;))
are computed with the trading actions a(X;) = argmax,c 4Q(X;, a), and the portfolio value with
transaction cost deduction for the optimal action is P, computed with Equation (3.9).
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Out-Of-Sample Test For Exponential Utility Function Out-Of-Sample Test For Exponential Utility Function
With 30 Basis Points Transaction Cost Deduction With 2.5 Cents Transaction Cost Deduction

Testing Fold 0 Testing Fold 5 Testing Fold 0
3507 Testing Fold 1 Testing Fold 6 W Testing Fold 1 )

Testing Fold 2 Testing Fold 7 . V 1 1 Testing Fold 2

300! Testing Fold 3 Testing Fold 8 o 400 Testing Fold 3

Testing Fold 4 Testing Fold 9 I i ' Testing Fold 4

Testing Fold 5

250! | Testing Fold 6

300 Testing Fold 7

Testing Fold 8
Testing Fold 9

Wealth

100

0 o
0 50 100 150 200 250 300 0 50 160 150 200 250 300
Time Time
©Out-Of-Sample Test For Exponential Utility Function Out-Of-Sample Test For Exponential Utility Function
With 40 Basis Points Transaction Cost Deduction With 20 Basis Points Transaction Cost Deduction
—— Testing Fold 0  —— Testing Fold 5 1 —— Testing Fold 0
Testing Fold 1 Testing Fold 6 N Testing Fold 1 W
2507 —— Testing Fold 2 Testing Fold 7 WATAN a00| — Testing Fold 2 N APV L o
Testing Fold 3 Testing Fold 8 { N1 Testing Fold 3 A
—— Testing Fold 4 Testing Fold 9 N iy —— Testing Fold 4

200 Worn Testing Fold 5
\ Testing Fold 6

300 Testing Fold 7 | \
Testing Fold 8 S "=AY

—— Testing Fold 9

Wealth

100

150 200 250 300 0 50 100 150 200 250 300
Time Time

Figure 8. Time series of portfolio values that are computed with transaction costs utilizing € = 0, 20,
30, and 40 bps as described in equation (3.8), for out-of-sample tests of k-fold cross-validation on
trading the signal constructed with exponential utility function (3.6). The state-action value function
Q(X;, a) is obtained by training the dense DFN given by Equation (3.3). The returns R:(a(X;)) are
computed with the trading actions a(X;) = argmax,c4Q(X:, a), and the portfolio value with transac-
tion cost deduction for the optimal action is P; computed with equation (3.9).

series of portfolio value for trading signals that are constructed utilizing exponential
utility function (3.6) and utilizing the portfolio values with transaction costs that are
given by Equation (3.9). Tables 4 and 5 display the metrics for portfolios that are
computed with varying levels of transaction costs utilizing piece-wise linear utility
function (3.5) and exponential utility function (3.6). In general, these portfolios can
still perform well when transaction costs are included, but we do observe a decline as we
increase the basis points parameter in the transaction cost function (3.8). In other words,
as we increase the values of € in Equation (3.8), the profits and Sharpe ratios decrease.
Finally, as is the case of no transaction cost, maximum drawdowns remain high when
transaction costs are included.

4. Conclusion

In this article, we have proposed and analysed a method for constructing VIX futures
trading signals. The basis for the method is in the identification of certain trading
opportunities by observing the shape of the VIX futures curve. The trading signal uses
a deep feed-forward neural network with dense connective structure to determine the
best trading action for day-ahead expectation of returns. We backtested this method and
found it to perform well in out-of-sample tests, showing considerable profits and
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reasonable Sharpe ratios, but also showing levels of maximum drawdown that would be
difficult to manage in practice. When we included transaction costs, we observed that the
portfolio performance reduced to more pedestrian levels.

Notes

1. Here, ‘quickly’ means relative to other curves such as crude oil or treasuries.

2. The VIX futures term structure is a collection of VIX futures contracts with nine monthly
maturities, and six weekly contracts that are not very liquid.

3. Of course, every strategy of rolling VIX futures is equivalent to an allocation of futures
contract (see equation (2.3)).

4. The VIX Central website: http://vixcentral.com.

5. We compute the Sharpe ratios by annualized excess return being divided by annualized standard
252/T
deviation, where the annualized excess return is Hthl(l + R,(a(Xy))) —(1+7r), and
annualized standard deviation is std[R;(a(X,))]v/252.
6. Each VIX future that is traded on the Chicago Board Options Exchange (CBOE) has
a multiplier of 1000, which means that the tick size is effectively 50 U.S. Dollars.
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Appendix A. Mapping Trading Signal to Futures Positions

The dense DFN model that is proposed in Section 3.1 provides optimal trading actions for
the yields of rolling VIX futures strategy I' described in Equation (2.8). For example, the
trading signal occurring at the volatility spike on January 26" of 2021, the piece-wise linear
utility function (3.5) and the deep feed-forward neural network (3.3) produces an optimal
action (—1, 1). This represents a position with weight — 1 in I' and weight of 1 in I°. This
appendix provides a translation of the outputs for the neural network algorithm into the
exact quantities that a real-life trader would utilize when setting up a position.

In expression (3.1), we define the five actions that are considered in our analyses, which
are a; for j=0, 1,2, 3, 4, with a; = (0, 0), a; = (-1, 1), a; = (-1, 2), a3 = (1, —1), and
ay = (1, —2). Each action a; is a two-dimensional vector,

_ (1 5
a = (aj7uj)

where a; is the portfolio weight for I' and a; is the weight for I°. This action can be
converted into the actual number of contracts in VIX future F' that is defined by Equation
(2.1). Letting n’ denote the number of VIX future contract in F’ for i =1, 2, 5, and 6, the
followings are the conversions from a given a; to the n’ for trading signals taking positions in

I' and P,

1
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1 5 5
o (1 - w)ajP wa; P (1-w)aP

2 _ 5 _ 6 _ ]
vl n Tyt o n =Ty n =Ty (A1)

where P denotes the wealth of trading portfolio, given by either Equation (2.10) or equation
(3.9), and where we have taken the rolling weight w to be the same for all i as described in
the beginning of Section 3. For example, if the optimal trading action is (—1, 1), then we
have a! = —1 and a4 = 1, and we apply accordingly the above equation for n'.

Table A1 shows the positions in VIX futures F! for a real-time run starting from December
28" of 2020 to February 19" of 2021 of trading signal constructed with the piece-wise linear
utility function (3.5). The portfolio values that are shown in the table include a transaction
cost of 1/2 the bid-ask spread for each trade, in other words, the portfolio values are
calculated utilizing Equation (3.9) with ¢ =0, and each position is rounded to the nearest
whole number of contracts. Of note is the drop in P from January 26" of 2021 to January
27™ of 2021, which was the day of the GameStop trading freeze. The trading signal incurred
a loss from the VIX spike caused by GameStop, but then recovered the losses in the
following days.
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Table A1. Real-time backtest results from December 28" of 2020 to February 19" of 2021 for the
piece-wise linear utility function (3.5). The dense feed-forward neural network (3.3) is re-trained
weekly, the numbers of contracts n' in F} are given by equation (A1), the portfolio value P is given
in Equation (3.9) with € = 0, the CMF roll weight w appears in Equation (2.2), and i is explained in
Section 3. The net position in VIX futures is >, n'. The position is long if the net position is positive,
short if the net position is negative, and neutral if the net position is zero. Of note is the loss observed
from Jan. 26th to 27th during the GameStop trading freeze, and then recovery of losses in the
following days.

Date P w a a n' n? n° n% Son
2020-12-28 100.00 0.65714 -1 2 -3 =1 5 3 4
2020-12-29 101.25 0.62857 -1 1 -3 -1 2 1 -1
2020-12-30 103.20 0.60000 0 0 0 0 0 0 0
2020-12-31 103.03 0.57143 0 0 0 0 0 0 0
2021-01-04 103.03 0.45714 -1 2 -2 -2 4 4 4
2021-01-05 102.23 0.42857 -1 2 -2 -2 3 4 3
2021-01-06 101.15 0.40000 -1 2 -2 -2 3 5 4
2021-01-07 104.18 0.37143 0 0 0 0 0 0 0
2021-01-08 103.88 0.34286 =1 1 -1 -3 1 3 0
2021-01-11 101.23 0.25714 -1 1 -1 -3 1 3 0
2021-01-12 103.22 0.22857 -1 1 -1 -3 1 3 0
2021-01-13 105.05 0.20000 =1 1 =1 -3 1 3 0
2021-01-14 105.45 0.17143 -1 1 -1 -4 1 3 =1
2021-01-15 103.63 0.14286 =1 1 =1 -3 1 3 0
2021-01-19 105.99 0.02857 -1 2 0 -4 0 8 4
2021-01-20 103.19 0.00000 0 0 0 0 0 0 0
2021-01-21 102.89 0.96429 -1 2 -4 0 7 0 3
2021-01-22 10337 0.92857 0 0 0 0 0 0 0
2021-01-25 103.10 0.82143 -1 1 -3 =1 3 1 0
2021-01-26 105.44 0.78571 -1 1 -3 -1 3 1 0
2021-01-27 92.60 0.75000 -1 2 -2 =1 5 2 4
2021-01-28 90.38 0.71429 -1 2 -2 -1 4 2 3
2021-01-29 89.03 0.67857 -1 2 -2 =1 4 2 3
2021-02-01 92.25 0.57143 -1 2 -2 -1 4 3 4
2021-02-02 93.27 0.53571 -1 2 -2 -2 3 3 2
2021-02-03 96.28 0.50000 0 0 0 0 0 0 0
2021-02-04 96.03 0.46429 -1 1 -2 -2 2 2 0
2021-02-05 96.69 0.42857 =1 1 -2 -2 1 2 -1
2021-02-08 98.28 0.32143 -1 1 -1 -3 1 2 -1
2021-02-09 98.66 0.28571 =1 1 -1 -3 1 2 -1
2021-02-10 98.85 0.25000 -1 1 -1 -3 1 3 0
2021-02-11 100.93 0.21429 -1 1 -1 -3 1 3 0
2021-02-12 104.66 0.17857 -1 1 -1 -3 1 3 0
2021-02-16 105.57 0.03571 1 -1 0 4 0 -3 1
2021-02-17 115.42 0.00000 -1 1 0 -4 0 4 0
2021-02-18 115.25 0.96429 -1 1 -4 0 4 0 0
2021-02-19 118.17 0.92857 0 0 0 0 0 0 0

Appendix B. Metrics for the SPY and VIX ETFs

Results that are reported in Section 3.1 should be compared with some standard benchmarks and
non-neural-network trading actions. Table B1 presents, for SPDR S&P 500 Trust ETF, the same
metrics that are utilized to evaluate the VIX futures trading-signal portfolios for the same ten time
periods of the k-fold cross validation. Tables B2-11 B5 respectively display the same metrics that
are utilized to evaluate the VIX futures trading-signal portfolios for the same ten time periods of
the k-fold cross validation for the trading portfolio utilizing one of the trading actions that are
defined in Equation (3.1).
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Table B1. Metrics for SPDR S&P 500 trust ETF (ticker symbol: SPY) for the same ten folds listed in
Table 1, which are utilized in the k-fold cross validation of Section 3.

Statistics
Fold E[R(a(X:))] std [R:(a(X:))] Profit (%) Sharpe Ratio Maximum Drawdown
0 -0.172 0.415 -29.111 -0.439 -0.514
1 0.216 0.180 25.147 1.144 -0.157
2 0.138 0.211 14.347 0.607 —-0.186
3 0.192 0.125 23.383 1.452 —0.096
4 0.222 0.105 27.567 2.014 —-0.056
5 0.100 0.144 11.191 0.624 -0.119
6 0.097 0.130 1.7 0.676 -0.128
7 0.155 0.114 18.722 1.271 —-0.101
8 0.095 0.145 10.514 0.583 —-0.193
9 0.218 0.304 20.637 0.685 -0.337

Table B2. Portfolio metrics of fixed trading strategy (—1, 1) for the same ten folds listed in Table 1
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics
Fold E[Re(a(X:))] std [Re(a(Xy))] Profit (%) Sharpe Ratio Maximum Drawdown
0 -0.199 0.461 —26.908 —0.453 -0.597
1 1.493 0.445 141.464 3.334 —-0.298
2 0.059 0.520 —7.700 0.093 —-0.558
3 0.285 0.563 9.509 0.488 -0.334
4 0.246 0.347 17.518 0.679 -0.249
5 -0.011 0.458 -10.867 —0.045 —-0.363
6 0.729 0.505 54.305 1.421 -0.290
7 —-0.156 0.802 —48.498 —-0.207 —0.795
8 0.126 0.423 2.731 0.274 —0.364
9 0.320 0.603 9.142 0.513 —0.645

Table B3. Portfolio metrics of fixed trading strategy (—1, 2) for the same ten folds listed in Table 1
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics
Fold E[Re(a(X:))] std [Re(a(X))] Profit (%) Sharpe Ratio Maximum Drawdown
0 0.196 0.427 9.200 0.436 —-0.287
1 1.467 0.374 146.905 3.902 -0.120
2 -0.113 0.354 -16.253 —-0.349 -0.362
3 -0.307 0.415 -34.318 —-0.763 -0.574
4 -0.104 0.249 -12.872 —-0.459 -0.331
5 0.043 0.264 0.721 0.125 -0.225
6 0.379 0.330 31.456 1.120 -0.166
7 —-0.361 0.574 —44.803 —-0.647 —-0.637
8 0.281 0.267 24.143 1.015 -0.151
9 1.096 0.537 88.277 2.020 -0.313

By comparing with the metrics for DFN-based trading signals that are displayed in Tables 2 and
3 in Section 3.1, we can observe that the results that are produced by the neural network algorithm
that we propose have reasonably good returns, profits, and Sharpe ratios, but also have high
volatility and high drawdowns.
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Table B4. Portfolio metrics of fixed trading strategy (1, —1) for the same ten folds listed in Table 1
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics
Fold E[R(a(X:))] std [R:(a(X:))] Profit (%) Sharpe Ratio Maximum Drawdown
0 0.273 0.461 14.908 0.571 —-0.361
1 -0.592 0.445 —56.353 -1.354 -0.734
2 —-0.036 0.520 -15.183 -0.089 —-0.386
3 -0.206 0.563 -30.512 —-0.384 —0.474
4 -0.181 0.347 —22.036 —0.551 —-0.366
5 0.031 0.457 —6.840 0.046 —0.407
6 -0.410 0.505 —44.223 —-0.832 —-0.689
7 0.208 0.802 —6.190 0.247 —0.406
8 —-0.094 0.423 -16.518 —0.246 —-0.426
9 -0.227 0.603 -33.219 -0.939 —0.661

Table B5. Portfolio metrics of fixed trading strategy (1, —2) for the same ten folds listed in Table 1
without transaction costs, which are utilized in the k-fold cross validation of Section 3.

Statistics
Fold E[Re(a(X:))] std [Re(a(Xy))] Profit (%) Sharpe Maximum
Ratio Drawdown
0 —-0.147 0.427 —-21.336 —0.368 —-0.437
1 —-0.588 0.374 -55.217 —-1.601 -0.721
2 0.150 0.354 8.118 0.397 -0.217
3 0.471 0.415 36.258 1111 —-0.246
4 0.139 0.249 10.495 0.517 -0.180
5 —-0.022 0.264 —5.455 -0.121 —-0.206
6 —-0.260 0.330 —28.469 -0.821 -0.473
7 0.596 0.574 40.017 1.022 -0.250
8 —-0.204 0.267 —22.303 —-0.801 -0.318
9 -0.514 0.537 -52.529 -0.976 —-0.691




	Abstract
	1. Introduction
	1.1. Literature of Related Research
	1.2. Main Results and Structure of the Article

	2. A Model for Trading VIX Futures
	2.1. Rolling VIX Futures Strategies
	2.2. Vector Auto-Regressive Model
	2.3. Trading-Signal Construction

	3. Computing the Trading Signals with Historical Data
	3.1. Neural Network Approach
	3.2. Piece-Wise Linear and Exponential Utility Functions
	3.3. Transaction Costs

	4. Conclusion
	Notes
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References
	Appendix A. Mapping Trading Signal to Futures Positions
	Appendix B. Metrics for the SPY and VIX ETFs

